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AUTHOR Séverine Arnold, Ph.D. 
 University of Lausanne 

 Viktoriya Glushko 
 University of Lausanne 

SPONSOR Society of Actuaries: 
Aging and Retirement Research 
Committee on Life Insurance 
Research 
Financial Reporting Section 
Mortality and Longevity Research 
Product Development Section  



Short- and Long-Term Dynamics of Cause-specific
Mortality Rates Using Cointegration Analysis
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ABSTRACT

This paper applies cointegration analysis and vector error correction models to model the
short- and long-run relationships between cause-specific mortality rates. We work with
the data from five developed countries (USA, Japan, France, England and Wales, and
Australia) and split the mortality rates into five main causes of death (Infectious&Parasitic,
Cancer, Circulatory diseases, Respiratory diseases, and External causes). We successively
adopt the short- and long-term perspective, and analyze how each cause-specific mortal-
ity rate impacts and reacts to the shocks received from the rest of the causes. We observe
that the cause-specific mortality rates are closely linked to each other, apart from the
External causes that show an entirely independent behavior, and hence, could be consid-
ered as truly exogenous. We summarize our findings with the aim to help practitioners
set more informed assumptions concerning the future development of mortality.
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1 Introduction

It is commonly known that the mortality rates have been decreasing for many decades
now. Although a joyful development per se, these changes pose serious problems for
insurance companies, pension funds, and social security schemes, as they need to know if
the observed decline will continue, slow down or, on the contrary, speed up. In this work,
we will not venture to forecast the prospective evolution of mortality rates, but provide
new insights on the past developments. We believe that once we understand better the
past, we will be able to make better prognoses about the future.
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Numerous parametric models have been developed in order to take into account such
characteristics of mortality rates development as age, year of birth, and rate of improve-
ment. For a review thereof we direct the interested reader to Booth and Tickle (2008),
Cairns (2013) and Debón et al. (2006) including their references. For our part, we want
to gain additional insight into the past development of mortality rates by concentrating
on a more detailed breakdown of mortality data, namely by causes of death. Indeed, just
from an eye inspection of the cause-specific mortality rates, it becomes clear that these
rates showed strikingly divergent trends over the last 50 to 60 years. These phenomena
have already been extensively studied and described (e.g., Himes, 1994; Horiuchi and
Wilmoth, 1997; Costa, 2005; Cutler et al., 2006).

However, it is much more difficult to integrate cause-specific mortality rates into a
model, as they are dependent, and this dependence is, strictly speaking, not observable.
Indeed, given a death event at a young age from an accident, for example, it is impossible
to say what the chances of this person would be to die later from cancer or any other cause,
had he or she remained alive. Among theories and methods trying to take into account
the dependency structure between the cause-specific mortality rates one can cite models
incorporating individual risk factors (e.g., Manton and Poss, 1979; Manton et al., 1991),
models employing multiple cause-of-death data (e.g., Mackenbach et al., 1999; Manton
and Myers, 1987); and more recently, copulas (e.g., Lo and Wilke, 2010; Dimitrova et al.,
2013).

Although possible theoretically, models that take into account the dependency be-
tween the causes of death are problematic to use in practice, as they require a significant
amount of additional data that are not readily available. For this reason, the most widely
used approach is still based on the assumption of independence between the causes of
death that was developed more than 50 years ago (Chiang, 1968). In this study, we want
to look at the connections between the causes from a different angle. Without trying
to describe exactly the dependency structure between the rates of death, we propose an
approach based on cointegration analysis that complements the methods and practices
mentioned above. In a nutshell, two non-stationary time series are said to be cointegrated
if there exists such a linear combination of them that is stationary. Consequently, these
time series are linked to each other in the long run and are subject to common stochastic
trends. Cointegration analysis thus provides new insights on how cause-specific mortality
rates depend from each other and interact in the long run.

Cointegration analysis was first introduced in the seminal paper of Engle and Granger
(1987) and received a lot of attention from researchers in the years that followed. Nu-
merous tests allowing one to check for the existence of cointegrated relations between the
time variables were developed, those conceived by Søren Johansen (1988) being among
the most widely used. Cointegration analysis and the Vector Error-Correction Models
(VECMs) based on it quickly became popular in the field of econometrics as they per-
mitted establishing the long-run relationships between such variables as interest rates,
consumption, income etc. (e.g., Baillie and Selover, 1987; Clarida, 1992; Johansen and
Juselius, 1992).

To the best of our knowledge, cointegration analysis was first applied to the cause-
specific mortality rates in Arnold and Sherris (2013, 2015, 2016). We want to go further
and extend the analysis by applying a wider range of cointegration and VECM tools to
the cause-of-death mortality rates. We aim to identify new relationships and development
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patterns which were not covered by the pre-cited authors.
Namely, we want to understand the way the cause-specific mortality rates interact be-

tween each other. Using the additional tools offered by the VECMs, we study the short-
and long-term impacts that a change in a particular death rate produces in other cause-
specific mortality rates. As we do not have prior knowledge about the precise way the
cause-specific mortality rates interact, our study is exploratory in nature and gains new
insight by observing the historical data from the perspective of cointegration analysis. At
the same time, once a certain pattern is revealed in one country, it is impossible to say if
this pattern is a reflection of that country’s particularities or corresponds to some more
fundamental processes and hence, can be generalized to other countries and datasets.
For this reason, we start with the gender-specific statistics of deaths-by-cause from five
highly populated countries with similar socioeconomic characteristics and available ob-
servation periods (USA, Japan, France, England and Wales, and Australia). Thanks to
this approach, general common patterns are revealed in regard to the interaction existing
between the causes of death. At a later point, our analysis could be extended to include
other countries as well.

We see multiple ways of how our findings could be used in practice. First, the general
patterns revealed by our approach can serve as a theoretical point of comparison for
epidemiological studies on the joint development of cause-specific mortality rates due to
particular factors, e.g., air pollution impacting not only respiratory, but also circulatory
mortality rates (Zmirou et al., 1998); sedentary behavior impacting both circulatory and
cancer mortality rates (Matthews et al., 2012); body mass index providing contrasting
effects on circulatory and respiratory mortality rates (Breeze et al., 2006); influenza
vaccinations reducing all cause-specific mortality rates (Wang et al., 2007); heat waves
impacting several cause-specific mortality rates at once (Basagaña et al., 2011; Rey et al.,
2007) etc. In a similar way, results of such comprehensive assessments of cause-specific
mortality rates, as the Global Burden of Disease Study (GBDS, 2013), can be confronted
with those delivered by our model.

As previously mentioned, copula-based models are capable of taking into account the
dependence between the cause-specific mortality rates. In the same time, copulas are,
strictly speaking, not identifiable (Tsiatis, 1975). For this reason, research articles usually
present several copulas and play with different parameter values, as these choices can have
a tremendous impact on the projection results (Dimitrova et al., 2013; Li and Lu, 2019).
Efforts are made to narrow the set of possible parameters (Li and Lu, 2019) and the
question of how to estimate the correlations between the causes of death remains open
(Dimitrova et al., 2013). Our study provides a new basis that can be used to calibrate
copula-based models as it shows explicitly the extent to which cause-specific mortality
rates depend on each other.

Additionally, we contribute to the current discussion regarding whether a cause of
death should be considered as endo- or exogenous. In Arnold and Sherris (2016) the
authors observed that the results of the cointegration analysis paralleled the classifica-
tion used by biologists and demographers between the exogenous and endogenous causes
of death. Although this classification is not univocal, under the exogenous causes of
death most researchers understand diverse external or environmental factors that pro-
duce death, while the endogenous causes of death correspond to biological forces that
lead to death (Carnes et al., 2006; Arnold and Sherris, 2016). As different views exist
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on this topic (Carnes and Olshansky, 1997), we bring the discussion forward by showing
that only the External causes can be classified as entirely exogenous, whereas this is not
the case for the infectious and parasitic diseases.

We summarize our findings in a comprehensive form with the objective to help prac-
titioners set more informed assumptions when designing scenarios of the possible future
evolution of mortality by cause.

The paper is organized as follows: in Section 2 we briefly present the data preparation
process along with some theoretical notions of the cointegration analysis. Results from the
impulse-response analysis, short- and long-term dynamics of the cause-specific mortality
rates are then presented in Section 3. Section 4 concludes.

2 Data and the cointegration framework

2.1 Preparing the data

We obtained the data for the present study from the WHO Mortality Database (World
Health Organization, 2016) that contains the midyear population and the death numbers
by country, year, sex, age group and cause of death as far back as 1950. Five developed
countries were chosen for the analysis: USA, Japan, France, England and Wales, and
Australia (further shortened to US, JP, FR, E&W, and AU respectively).

To ensure consistency between the countries, the WHO defines the causes of death
according to the International Classification of Diseases (ICD). This classification changed
three times since the inception of the database, switching from ICD-7 to ICD-10 in order
to account for advances in medical science and to refine the classification. We split the
causes of death under each classification into five main groups: infectious and parasitic
diseases (I&P), cancer, diseases of the circulatory system, diseases of the respiratory
system and external causes (Table 1). These groups account for approximately 70-80%
of deaths in recent years and made up approximately 50%-70% of deaths at the onset of
the observations.

Table 1: FIVE MAIN GROUPS OF CAUSES OF DEATHS ACCORDING TO THE VERSIONS OF
INTERNATIONAL CLASSIFICATION OF DISEASES

Causes of death ICD 7 ICD 8 ICD 9 ICD 10
I&P A001-A043 A001-A044 B01-B07 A00-B99
Cancer A044-A060 A045-A061 B08-B17 C00-D48
Circulatory A079-A086 A080-A088 B25-B30 I00-I99
Respiratory A087-A097 A089-A096 B31-B32 J00-J98
External A138-A150 A138-A150 B47-B56 V00-Y89

The data are divided into the following age groups: ”deaths at 0 years”, ”at 1”, ”at 2”,
”at 3”, ”at 4”, then into five-year age groups ”5-9 years”, ..., ”90-94 years”, and finally
”deaths at 95 years and above”. Having created two new age groups by grouping together
the ages from 1 to 4 as well as 85 and above, we obtained the cause-specific mortality
rates by following transformations:

1. Grouping the death numbers according to the five causal categories.

2. Distributing the number of deaths at unspecified age proportionally among known
age groups.
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3. Calculating simple mortality rates as the number of deaths by age, sex and cause
divided by the mid-year population by age and sex:

mx,t,d,s,c = dx,t,d,s,c/lx,t,s,c,

with

dx,t,d,s,c = number of deaths at age x, in year t, for cause of death d,

gender s and country c;

lx,t,s,c = mid-year population at age x, in year t, gender s and country c;

mx,t,d,s,c = central death rate at age x, in year t, for cause of death d,

gender s and country c.

4. Applying the comparability ratios to ensure that the observations under the different
versions of the ICD are comparable. A comparability ratio is defined in such a way
that the average of the mortality rates over the last two years of a classification
coincides with the average of the mortality rates over the first two years of the next
classification. For the whole period under the observation, the mortality rates in a
new classification are divided by the comparability ratios linking this classification
with the previous one(s). In this way, we can smooth the mortality rates across the
classifications and remove the discontinuities.

5. Calculating the age-standardized central death rates, the standard population being
equal to 1) the US male population in 2007; 2) the Japanese female population in
2009. In this manner, we ensure that the age structure of the population is the
same for all countries and does not change over time. By using one relatively
young (USA) and one relatively old (Japan) reference population, we can analyze
if the population age structure has an impact on the behavior of the cause-specific
mortality rates. In total, we obtain 20 datasets: 5 countries, 2 genders, and 2
population structures.

The age-standardized death rate mUS
t,d,s,c in year t for cause d, gender s and country c,

assuming that the population age structure is constant over the whole observation
period and is equal to the age structure of the US males population in 2007 is
calculated as follows:

mUS
t,d,s,c = dUSt,d,s,c/l2007,males,USA

dUSt,d,s,c =
∑
x

mx,t,d,s,c × lx,2007,males,USA

The age-standardized death rate mJP
t,d,s,c in year t for cause d, gender s and country

c, assuming that the population age structure is constant over the whole observation
period and is equal to the age structure of the JP females population in 2009 is
calculated as follows:

mJP
t,d,s,c = dJPt,d,s,c/l2009,females,JP

dJPt,d,s,c =
∑
x

mx,t,d,s,c × lx,2009,females,JP
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6. Taking the natural logarithm of the death rates. Hereafter we will work with the
vector of time series yt for each gender s, country c, and population age structure
p ∈ (US, JP ) :

ypt,s,c =


log(mp

t,I&P,s,c)

log(mp
t,Cancer,s,c)

log(mp
t,Circulatory,s,c)

log(mp
t,Respiratory,s,c)

log(mp
t,External,s,c)


To ease the notation, we will sometimes omit the indexes c, s and p, and work with a
vector of mortality rates yt = (y1t, y2t, y3t, y4t, y5t)

T , keeping in mind that a separate
VECM equation is formulated for each country, sex, and population age structure.

We thus use the same database as in Arnold and Sherris (2016) except for the addi-
tional years of observations that we added whenever this was possible (Table 2).

Table 2: OBSERVATION PERIODS BY COUNTRY

Country Arnold and Sherris (2016) Current study
USA 1950 - 2007 1950 - 2007
Japan 1950 - 2009 1950 - 2013
France 1952 - 2008 1952 - 2011
England and Wales 1950 - 2009 1950 - 2013
Australia 1950 - 2004 1950 - 2004

When we started the current study, the WHO database provided the information on
the mid-year population for the USA only until 2007, and for unknown reasons, the data
on Australian numbers of deaths for 2005 were also missing. As a consequence, we were
obliged to limit the time series for these two countries to years 2007 and 2004 respectively.

As we will see in the following sections, the conclusions stated in Arnold and Sherris
(2016) were reconfirmed using the longer time series for Japan, France, and England and
Wales.

2.2 Cointegration analysis in application to the cause-specific
mortality rates

As already mentioned above, the causes of death are not independent. Cointegration
analysis is then a tool that can help to understand better and model the dependence
between the cause-specific mortality rates. As introduced in Engle and Granger (1987),
the time series yt that consist of the n non-stationary elements {yit}, for i = 1, ..., n,
are said to be cointegrated with a cointegrating vector β if a linear combination β′yt is
stationary:

β1y1t + β2y2t + ...+ βnynt = zt, (1)

where zt is a stationary variable of stochastic deviations. In other words, while being non-
stationary themselves, the cointegrated time series do not drift too far away from each
other, i.e., there exists a long-run equilibrium relationship between them. Also, there may
be more than one cointegrating vector, so that β becomes a matrix. The variables are
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then linked to each other by several cointegration relations, and each relation is linearly
independent from the others.

In Arnold and Sherris (2015, 2016) the time series of all cause-specific mortality rates
were found to be non-stationary and to have stochastic trends. It was also shown that
at least one cointegrating relation existed between the causes of death in each country.

Multivariate dynamic systems of the non-stationary but cointegrated variables can
then be modeled using a Vector Error Correction Model (VECM), an extension of the
Vector AutoRegression (VAR) models, which includes not only the time dependency
between the variables up to a lag p− 1, but also long-run equilibrium relations between
them:

∆yt = c + dt+ Γ1∆yt−1 + Γ2∆yt−2 + · · ·+ Γp−1∆yt−p+1 + Πyt−1 + εt
1 (2)

where ∆yt = yt − yt−1 denote the first differences of the data time series, c and d are
(n × 1) vectors of constants, Γi is a (n × n) matrix of autoregressive coefficients for
i = 1, 2, ..., p − 1, and Πyt−1 represents the cointegrated term. The latter provides the
model with the information on the long-run equilibrium between the variables that would
otherwise be lost if a VAR model were applied to the differenced variables. The rank of
the matrix Π corresponds to the number of cointegration relations.

The first differences of the cause-specific mortality rates being stationary (as verified
in Arnold and Sherris, 2016), the equation (2) will only hold if the term Πyt−1 is also
stationary, that is, if the variables are cointegrated. Then the (n×1) vector εt is a vector
of white noise terms, with

E(εt) = 0, (3)

E(εtεl) =

{
Ω for t = l
0 for t 6= l,

(4)

where Ω is a symmetric positive definite matrix. More details on the VECM and VAR
models can be found in Hamilton (1994) and Lütkepohl (2005).

The number of the cointegrating relations, if any, can then be found using the trace and
the maximum eigenvalue tests developed by Johansen (1995). The Johansen approach
also allows finding the matrix Π as

Π = αβ′, (5)

where β is a (n×r) matrix containing r vectors each representing a cointegration relation
and α is a (n× r) loading matrix that indicates how a particular variable is impacted by
the cointegration relation. Under the Johansen approach, we can also test for the form
of the deterministic elements. Let µt = c + dt denote the deterministic part of the model
and let d = αρ+α⊥γ, where αα⊥ = 0. As the mortality rates are known to have a trend,
we will consider the following forms of the deterministic elements (Johansen, 1995):

• NT: no trend in the VECM, but a linear trend in the levels of the variables: c 6=
0, ρ = 0, γ = 0, hence d = 0,

1The corresponding VAR model has p lags: yt = c + dt+ ξ1yt−1 + ξ2yt−2 + · · ·+ ξpyt−p + εt
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• TC: linear trend in the cointegration relation combined with a linear trend in the
levels of the variables (i.e., no linear trend in the differenced variables): c 6= 0, ρ 6=
0, γ = 0, hence d = αρ,

• QT: linear trend in the differenced variables, thus the quadratic trend in the levels
of the variables (i.e., the VAR model) : c 6= 0, ρ 6= 0, γ 6= 0, hence d = αρ+ α⊥γ.

In the tables that follow we will refer to the abbreviations NT, TC and QT when
describing the form of the deterministic elements chosen for a particular dataset.

Once the coefficients of the VECM model (equation 2) are defined, they allow us to
assess the short- and long-term dynamics of the system. Indeed, the coefficients of the
Γi matrices indicate if and to what extent the cause-specific mortality rates interact in
the short run. On the other hand, the analysis of the coefficients of the matrices α and
β provide us with the information on the long-term relationships in the system.

In particular, the Johansen approach can be used to test if every coefficient in the
cointegration relation (i.e., in the matrix β) is significantly different from zero. If this
is not the case, we can conclude that a particular variable does not participate in the
long-run equilibrium. In Arnold and Sherris (2016) it was found that in all countries
and at least for one of the sexes the pair of mortality rates corresponding to the In-
fectious&Parasitic diseases and the External causes did not appear significantly in the
long-run equilibrium. The cointegration analysis hence showed that the long-term equi-
librium relationship existed only between the mortality rates that could be classified as
endogenous causes of death (Cancer, Circulatory, and Respiratory diseases), exogenous
causes (Infectious&Parasitic diseases, External causes) being excluded from it. Inter-
estingly, this result coincides with the distinction used by biologists and demographers
between the exogenous and endogenous causes of death. In this paper, we will comple-
ment this study by analyzing first, the short-term component and second, the matrix
α, that is, the impact that the cointegration relation performs on a particular mortality
rate.

2.3 Introducing the lag of 2 to the VECM setup

As a first step when working with a VECM setup, one has to define the lag order to be used
in the VECM or the corresponding VAR model. In Arnold and Sherris (2016) the VAR
models with the lag order of one were indicated as optimal using Akaike’s Information
Criterion, Hannan-Quinn Criterion, Schwarz Criterion, and Final Prediction Error for
the majority of the datasets. These criteria are based on the natural logarithm of the
determinant of the estimate of the residual covariance matrix Σ̂ε = 1

T

∑T
t=1 ε̂tε̂

′
t, where T

is the number of observations in the time series, to which a penalty for the number of
parameters is added. While in the general case it is essential to pay particular attention
to the parsimony of the model, in our case we need a VAR model with a lag order of
at least two in order to have a full range of parameters in the corresponding VECM.
Indeed, for the VAR with the lag order of one, the corresponding VECM equation has
no lagged values and consists only of the cointegration relation, errors and the eventual
deterministic terms:

∆yt = c + dt + Πyt−1 + εt. (6)
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Such an equation implies that there is no connection between the first differences
of the cause-specific mortality rates in the short run, which seems to be too strong an
assumption to be adopted at the onset of the analysis. If as a preliminary step we allow
for the presence of the Γ1∆yt−1 term on the right-hand side of the equation, we can
later study its relative importance as well as the significance of the coefficients of the
corresponding parameter matrix Γ1. In case some of the matrix Γ1 coefficients turn out
to be significantly different from 0, we can then analyze the short-run adjustments of the
cause-specific mortality rates.

The models that were chosen as best describing the datasets in Arnold and Sherris
(2016) comprised already the VAR(2) models for some of the countries. To be able to
make the full analysis of the short-run adjustments, we check if for every dataset we can
find models with the lag order of two that would suitably describe the data.

First, we apply the Johansen approach to define the number of cointegration rela-
tions and the form of the deterministic elements, then we test the residuals of the fitted
VECM. The models suggested by the Johansen approach are shown in the Tables A1-A4
of Appendix (second column). These are the models that will be used in the subsequent
analysis of the short- and long-term dynamics of the cause-specific mortality rates. Fur-
ther columns contain the results of the tests on the residuals of the fitted VECM. The
overall fit is similar to that of the models proposed in Arnold and Sherris (2016) except
for the lower fit for the Japanese datasets. Also, it was not possible to find any suitable
VAR(2) model for the E&W females with the JP females population structure, so in the
following sections, we will use 19 datasets instead of 20.

For these new models, we also need to check the significance of the β matrix coeffi-
cients. As we can see in Tables 3 and 4, for 15 out of 19 considered datasets the cause-
specific mortality rates corresponding to the causes I&P and External do not appear
significantly (at a 1% significance level) in the long-term steady-states, which confirms
the conclusion made in Arnold and Sherris (2016).

Table 3: p VALUES FOR THE NULL HYPOTHESIS THAT THE I&P AND THE EXTERNAL
CAUSES OF DEATH ARE NOT SIGNIFICANTLY DIFFERENT FROM ZERO,

US MALES POPULATION BASE, VAR(2) MODELS

Country Model Males Females
US VAR(2), QT, 1 CR 0.0655 0.0007
JP VAR(2), TC, 2 CR 0.4878 0.0810
FR VAR(2), NT, 1 CR 0.1945 -

VAR(2), QT, 1 CR - 0.0062
E&W VAR(2), QT, 1 CR 0.1607 0.0015
AU VAR(2), NT, 1 CR - 0.0438

VAR(2), QT, 1 CR 0.2570 -

Note: QT = quadratic trend in the VAR; TC = linear
trend in the cointegration relation; NT = no trend; CR =
cointegration relation. A null hypothesis is accepted at a
α% significance level when the p value is higher than α%.
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Table 4: p VALUES FOR THE NULL HYPOTHESIS THAT THE I&P AND THE EXTERNAL
CAUSES OF DEATH ARE NOT SIGNIFICANTLY DIFFERENT FROM ZERO,

JP FEMALES POPULATION BASE, VAR(2) MODELS

Country Model Males Females
US VAR(2), QT, 1 CR 0.0173 0.0000
JP VAR(2), QT, 1 CR 0.0530 0.1906
FR VAR(2), NT, 1 CR 0.0999 0.0696
E&W VAR(2), QT, 1 CR 0.0788 No model
AU VAR(2), NT, 1 CR 0.1917 -

VAR(2), QT, 1 CR - 0.0691

Note: QT = quadratic trend in the VAR; TC = linear
trend in the cointegration relation; NT = no trend; CR =
cointegration relation. A null hypothesis is accepted at a
α% significance level when the p value is higher than α%.

As already mentioned, the VAR(2) models indicated in the Tables 3 and 4 will be
used in the analysis that follows in section 3.

3 Dynamics of the cause-specific mortality rates

In the following sections, we present detailed analysis for the two datasets: US and JP
males using the US males population structure. We summarize the most interesting
findings and provide the details in the Appendix for the remaining 17 datasets.

3.1 Impulse-response analysis

First, to get a high-level overview of interactions between the cause-specific mortality
rates (as described by the VECM equations built in the preceding chapter) we apply the
framework of impulse-response analysis (see, e.g., Lütkepohl, 2005). At this point, we do
not differentiate between the short- and long-term elements of the VECM, and analyze
the system as a whole. More detailed analysis of the short- and long- term components
including the statistical significance of the parameters will follow.

Basically, impulse-response analysis means that we first give a single shock to one
cause-specific mortality rate and then analyze and compare the responses to this shock
from every other cause-specific mortality rate. In this way, we study the impact of
an unexpected change in a particular mortality rate on the dynamics of the system of
mortality rates as this was observed in the past. The initial value taken by the variable
that receives the shock is equal to its own standard deviation.

When analyzing the results, we successively adopt two points of view. First, we
compare the impacts that a particular cause induces on other cause-specific mortality
rates. Then, we compare the responses of a particular cause to the individual shocks
received from the rest of mortality rates. In this way, we are able to determine not only
if a particular cause influences the others and to what extent, but also if it is influenced
by the rest of the causes and to what extent.

10



Once a shock is given to a particular cause-specific mortality rate, it propagates in
the system and confers new values to the rest of the variables. This development can be
suitably exposed on a chart. For example, Figure 1 shows the responses of every cause-
specific mortality rate to the shock given to the Circulatory mortality rate for US males
with the US males population structure (standard deviation of the differenced Circulatory
mortality rate = 0.0235). Overall, the I&P, as well as the Respiratory mortality rates,
show the most important reactions to the shock given to the Circulatory mortality rate.
The Cancer and the External mortality rates are insignificantly impacted by the shock
given to the Circulatory mortality rate. As for the Circulatory mortality rate itself, after
having received the initial shock, it maintains the increased value until the end of the
simulation period.

0.00

0.02

0.04

0 10 20 30 40 50
Year

IP response

Canc response

Circ response

Resp response

Ext response

Figure 1: Responses to the shock given to the Circulatory cause,
US males, US males population base

The responses to the shocks from the Circulatory cause observed in the dataset for
the JP males with the US males population structure are shown on Figure 2 (standard
deviation of the differenced Circulatory mortality rate = 0.0501). Similar to the US males
dataset, the Respiratory cause shows the most important response from the shock given
to the Circulatory mortality rate. The response of the I&P mortality rate is slightly less
important than that of the Respiratory rate. Interestingly, both responses have a negative
sign whereas in the US males dataset they also have the same sign, but a positive one.
One further observation for the JP males dataset is that the External causes also show a
non-negligible response to the shock from the Circulatory cause.

We see that in both cases the system comes rather quickly to a new equilibrium. As
the same observation holds for the rest of the datasets, we will compare the responses
following individual shocks at time t = 20 years.

On Figures 1 and 2 the responses are shown in absolute values. However, since the
cause-specific mortality rates have different standard deviations, each system receives a
shock of a different amplitude. As such, the responses are not comparable between the
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Figure 2: Responses to the shock given to the Circulatory cause,
JP males, US males population base

datasets, that is, a response that would be considered high in one dataset can be consid-
ered as medium or low in another dataset. To bring the results to the same comparable
basis, we will divide the absolute responses by the standard deviation of the cause-specific
mortality rate that receives the shock. Then the response of the Respiratory cause to the
shock from the Circulatory cause, i.e., the value of the cause-specific Respiratory mor-
tality rate at time t = 20 will be expressed as a proportion of the shock received by the
system, i.e., of the standard deviation of the cause-specific Circulatory mortality rate.

The results for every dataset are shown in Tables A5 and A6 of the Appendix. For the
sake of readability, along with a numerical value we provide a label that indicates if the
response can be considered as low, medium, or high: low if |response| < 3/8, medium
if 3/8 ≤ |response| < 7/8, and high if 7/8 ≤ |response|. These labels are indicative
only and were chosen to provide a roughly equal number of responses ”medium” and
”high” (40% of all responses), the rest being attributed to the category ”low” (60% of
all responses). The tables are organized as follows: Each row contains responses of all
causes to the shock given to the cause X, each column contains responses of the cause Y
to the shocks from all causes. In this way, we can judge simultaneously if a particular
cause impacts each of the remaining causes and if it reacts to the shocks received from
other causes and to what extent.

A synopsis of the observations summarized across the 19 datasets is presented in Table
5.

Table 5: IMPULSE-RESPONSE ANALYSIS: RESPONSE OF THE MORTALITY RATE Y TO THE
SHOCK GIVEN TO THE CAUSE X, HIGH-LEVEL SUMMARY ACROSS ALL COUNTRIES,

SEXES AND POPULATION STRUCTURES
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X \ Y I&P Cancer Circulatory Respiratory External

I&P Low Low Low Low

Cancer High Med High High

Circulatory High Low High Med

Respiratory Med Low Low Low

External High Low Low High

In a nutshell:

• The I&P and the Respiratory causes have virtually no impact on all other causes,
but show important responses to the shocks received from them.

• The Cancer and the Circulatory mortality rates have an important impact on other
causes, especially on the I&P and the Respiratory mortality rates, but show little
response to the shocks from other causes.

• The External causes have an equivocal behavior. On the one hand, they have almost
no impact on the Cancer and the Circulatory causes, but importantly impact the
I&P and the Respiratory causes. On the other hand, they are not impacted by the
I&P and the Respiratory causes, but show important responses to the shocks from
the Cancer and the Circulatory causes.

This first analysis shows that the cause-specific mortality rates show different behav-
iors. In the same time, when a system is analyzed as a whole, many effects are necessarily
blended. Therefore, we need to decompose our analysis by separately assessing the short-
and long-term dynamics of the system of the mortality rates in order to understand better
how the causes of death are related to each other. In the following subsections, we will
see what drivers in particular lie behind the observed development of the cause-specific
mortality rates.

3.2 Short-term dynamics

Once the VECM equations are estimated for each dataset, we can use them to separate
the short-term adjustments from the long-term dynamics for each cause-specific mortality
rate. Indeed, if a particular coefficient γij of matrix Γ1 is significant, then the cause i is
influenced by the cause j in the short run. We calculate the standard deviations and the
corresponding t-ratios of the estimates as shown in Lütkepohl (2005).

We start with the dataset for US males with the US males population structure. In
the preceding chapter the following model was chosen as best describing this dataset:

∆yt = c + dt + Γ1∆yt−1 + Πyt−1 + εt =

=


-2.7716
−0.1500
−0.2428
-2.0573
0.1558

+


0.0096
0.0000
0.0000
0.0050
0.0000

 t +


−0.1212 −0.7074 −0.1879 0.1743 0.3232
−0.0036 0.0150 -0.1659 −0.0082 0.1329
−0.0429 −0.1211 0.0337 −0.0892 0.1963
−0.1345 −0.2944 −0.0850 -0.3810 1.1189
0.0416 −0.3232 0.1981 -0.1455 0.2267

∆yt−1
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+


−0.0331
−0.0020
−0.0030
−0.0257
0.0019

 [1.7716 −5.4985 −18.6015 13.2167 14.1321
]
yt−1 + εt

The significant coefficients are in bold with the selected significance level of 5%. While
many of the Γ1 coefficients are not significant, the cause-specific mortality rates from Can-
cer, Respiratory, and External causes are influenced by the lagged values of Circulatory
and External, Respiratory and External, and Respiratory causes respectively. We see
that in this dataset three out of five cause-specific mortality rates experience the short-
term adjustments from other causes. Hence, it was justified to use the VAR(2) setup
and include the lagged values of ∆yt into the model. Otherwise, an essential piece of
information on the development of the cause-specific mortality rates would not have been
accounted for. Another interesting observation is that only the Respiratory mortality
rate shows the autoregressive feature. In other words, the corresponding cause-specific
mortality rate is dependent on the lagged value of itself.

As for the dataset of JP males with the US males population structure, the chosen
VECM has two cointegration relations with a constant and a trend, the latter being
restricted to the cointegration term:

∆yt = c + Γ1∆yt−1 + αβ′(yt−1 + (t− 1)) + εt =

=


0.3960

-0.8539
−0.7600
−1.8252
−0.7695

+


−0.1679 0.5510 0.1982 0.0335 0.2440
0.0143 -0.3818 −0.0268 0.0184 0.0406
0.1343 0.7531 0.1711 -0.1692 0.0055
0.1477 2.1179 1.3108 -0.5537 −0.1487
0.0307 0.3048 −0.2898 0.1305 −0.0906

∆yt−1

+


0.0261 0.3600
−0.0186 −0.0425
−0.0126 0.0399
0.0054 0.8417
−0.0154 −0.0149


[[

1.5951 7.7055 0.9876 −1.5822 1.8454
−1.0848 9.3172 −10.1473 −6.6630 −3.7839

]
yt−1 +

[
0.1851
−0.3817

]
(t− 1)

]

+εt

Also for this dataset, many of the Γ1 coefficients are not significant. On the other
hand, the cause-specific mortality rates corresponding to the causes Cancer, Circulatory,
and Respiratory causes are influenced by the lagged values of the Cancer, Respiratory,
Circulatory and Respiratory mortality rates respectively. Again, three out of five cause-
specific mortality rates experience the short-term adjustments from other causes. There-
fore, it would not be justified to use the VAR(1) setup for JP males with the US males
population structure. Similar to the US males dataset, the Respiratory cause shows the
autoregressive feature as well as the Cancer cause.

After the analysis was repeated for the rest of the datasets using both the US males
and the JP females population structures, the results can be summarized as follows:

• In every dataset, there is at least one cause-specific mortality rate that is signifi-
cantly impacted by other causes in the short run. For this reason, it would not be
optimal to use the VAR models with the lag order one instead of two.
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• While in the short run the I&P and Cancer causes are rarely impacted by other
causes, they also infrequently impact the rest of the causes, i.e., they show a devel-
opment mostly independent from other causes in the short run.

• On the other hand, the Circulatory, Respiratory, and the External causes are fre-
quently impacted by one or more causes in the short run and also occasionally
impact other causes. Hence, these cause-specific mortality rates are more linked in
their development to other causes than the I&P and Cancer mortality rates are.

• The Respiratory cause consistently shows the autoregressive feature. In other
words, in many datasets the corresponding cause-specific mortality rate is depen-
dent on the lagged value of itself.

• For all datasets, the larger part of the significant coefficients are negative, i.e.,
more often than not the change in the cause-specific mortality rate goes in the
opposite direction of the short-term variation of this and/or other cause-specific
mortality rates at the previous point in time. More specifically, this means that
if the mortality rate of a particular cause of death increases (decreases), the other
causes will tend to decrease (increase) in the short run.

The detailed overview of the significant coefficients in Γ1 matrix for each dataset is
presented in the tables A7 to A10 of the Appendix.

3.3 Long-term dynamics

The α matrix allows us to estimate how deviations from the steady-states impact the
cause-specific mortality rates. For r = 1 (which is the case for the majority of the
datasets) we can write the long-term component as follows:

Πyt−1 = αβ′yt−1 =


α1

α2

α3

α4

α5

 [β1 β2 β3 β4 β5
]
yt−1 =

=


α1

α2

α3

α4

α5

 (β1y1t−1 + β2y2t−1 + β3y3t−1 + β4y4t−1 + β5y5t−1) (7)

This way, if a particular coefficient αi is significant, the long-term component on the
right-hand side of the equation (2) is important in explaining the past variations of the
corresponding cause-specific mortality rate on the left-hand side. Moreover, the value of
this coefficient shows the extent to which the long-term component contributes to the
variation of the cause-specific mortality rate in question. As in the previous subsection,
we calculated the standard deviations and the corresponding t-ratios of the estimates of
α as shown in Lütkepohl (2005). The following table shows the p-values for the US males
and JP males datasets using the US males population structure.

15



Table 6: p VALUES FOR THE NULL HYPOTHESIS THAT αi IS NOT SIGNIFICANTLY
DIFFERENT FROM ZERO,

US MALES POPULATION STRUCTURE

Country/Sex Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US Males VAR(2), QT, 1 CR αi 0.000 0.085 0.243 0.001 0.496
JP Males VAR(2), TC, 2 CR α1i 0.026 0.000 0.183 0.837 0.182

α2i 0.000 0.001 0.500 0.000 0.836

On the one hand, this example shows that for the US males dataset the long-term
component enters the equations for the I&P and Respiratory mortality rates with a
significant coefficient (at a 5% significance level). On the other hand, the equations
for Cancer, Circulatory, and External mortality rates are not significantly impacted by
the long-term equilibrium. As for JP males, there are two long-term components that
each enter with a significant coefficient the equations for the I&P and Cancer mortality
rates; also, the second component enters with a significant coefficient the equation for
the Respiratory mortality rate.

We repeated the analysis for the rest of the datasets, and the results can be summa-
rized as follows:

• The I&P and the Respiratory causes seem to be the most impacted by the long-
term component: The corresponding αi coefficients are significant in 15 out of 19
datasets. A similar observation was made using the framework of the impulse-
response analysis, as there the I&P and the Respiratory mortality rates showed an
important reaction to the shocks from other causes. Hence, these shocks propagate
in the system via the cointegration relation(s).

• The External causes seem to be the least impacted: The corresponding αi coeffi-
cients are significant in only 5 out of 19 datasets. Interestingly, the results of the
impulse-response analysis for the External causes were equivocal in that there was
an important reaction to the shocks from the Cancer and the Circulatory causes, but
a low response to the shocks from the I&P and the Respiratory causes. The impact
from the Cancer and the Circulatory causes may hence come from the short-term
adjustments.

• Results for the Cancer and the Circulatory causes are more difficult to interpret:
The corresponding αi coefficients are significant in respectively 9 and 11 out of 19
datasets. The results of the impulse-response analysis also showed low reactions of
the Cancer and the Circulatory mortality rates to the shocks from other causes.

Interestingly, while as was mentioned above, the I&P and the External causes do
not participate conjointly in the long-term equilibrium, they show different behaviors
when it comes to the impact they experience from this long-term steady-state. Indeed,
the cointegration relations often enter the equation for the I&P mortality rate with a
significant coefficient, but seldom have an effect on the External causes. Therefore,
only the External causes show behavior that is entirely independent from the long-term
equilibrium state and, possibly, aging.
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The overview of the results for the remaining datasets is shown in the Tables A11 and
A12 of the Appendix.

3.4 Long-term vs. short-term dynamics

In the previous sections, we have analyzed the short- and long-term elements separately.
Now we want to assess the relative importance of the long- and short-run forces. For this
purpose, we break down the expected cause-specific mortality rates at time t, based on
the information available up to time t-1, in two elements: the short-term (ST) and the
long-term (LT) components. By comparing the behavior of each of these elements with
the realized change in the mortality rates we assess the relative importance of the long-
and short-run forces in terms of their contribution to the variation of the cause-specific
mortality rates.

For illustrative purposes, we present the results for the Respiratory equation for US
males (Figure 3) and the I&P equation for JP males (Figure 4), both datasets using the
US males population structure. In the first case, the actual mortality changes fluctuate
primarily with the short-term components (the correlation coefficient between ∆Respt
and the LT: 0.268, between ∆Respt and the ST: 0.336):

-0.3

-0.2

-0.1

0.0

0.1

0.2

1950 1960 1970 1980 1990 2000 2010
Year

delta log(q)

LT

ST

Figure 3: Respiratory cause: actual mortality changes, long- and short-term components
(US males, US males population structure)

As for JP males, the actual mortality changes fluctuate primarily with the long-term
component (the correlation coefficient between ∆IPt and the LT: 0.570, between ∆IPt
and the ST: -0.177).

As not every equation contains the long-term component, the results for the rest of
the datasets are formulated for those cases where the long-term component is present
with a significant coefficient αi.

• Out of 15 datasets for which the I&P mortality rate equation contains the long-term
component, in 13 cases the data fluctuates primarily with the long-term component
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Figure 4: I&P cause: actual mortality changes, long-term and short term components
(JP males, US males population structure)

(i.e., the correlation coefficient between the data points and the long-term compo-
nent is higher than that between the data points and the short-term component).

• Out of 9 datasets for which the Cancer mortality rate equation contains the long-
term component, in 8 cases the data fluctuates primarily with the long-term com-
ponent.

• Out of 11 datasets for which the Circulatory mortality rate equation contains the
long-term component, in 4 cases the data fluctuates primarily with the long-term
component.

• Out of 15 datasets for which the Respiratory mortality rate equation contains the
long-term component, in 7 cases the data fluctuates primarily with the long-term
component.

• Out of 5 datasets for which the External mortality rate equation contains the long-
term component, only in 1 case does the data fluctuate primarily with the long-term
component.

Summarizing the results stated above, we can say that every time the equation con-
tains the long-term component, the cause-specific mortality rate resembles in its behavior
the long-term component rather than the short-term one for the causes I&P and Cancer.
The opposite is true for the Circulatory and External causes. The Respiratory mortal-
ity rate resembles in its behavior the long-term component as often as it resembles the
short-term component.

This observation is not surprising for the I&P and the Respiratory causes. As we have
seen in previous sections, only these cause-specific mortality rates are often impacted by
the long-term equilibrium state. In the same time, the I&P mortality rate is rarely, and
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the Respiratory is frequently impacted by the short-term component. It could have been
expected that the I&P mortality rate data will fluctuate with the long-term component
in the majority of cases where the I&P mortality rate contains the cointegration rela-
tion(s). In its turn, the Respiratory mortality rate fluctuates either with the short-term
component or with the long-term component in roughly similar proportions. Therefore,
the correlation analysis reinforces the conclusions of the previous sections for these two
rates.

A similar conclusion holds for the Circulatory mortality rate: as it is frequently im-
pacted in the short run and only occasionally in the long, the short-term components
play unsurprisingly a more important role in the correlation analysis.

Regarding the Cancer mortality rate, we have seen that it was infrequently impacted
by both short- and long-term components. As none of the effects can be called dominant,
the correlation analysis helps to identify the component that plays a more important role
in the development of this cause-specific mortality rate, in this case, the long-term.

As for the External causes, the corresponding cause-specific mortality rate is often
impacted by the short-term component and virtually never by the long-term one. Even
in those rare cases in which the cointegration relation enters the equation with a significant
coefficient, the data fluctuate more with a short-term component.

The detailed results for each dataset are shown in Tables A13-A16 of the Appendix.

4 Conclusions

The analysis of dynamics of the cause-specific mortality rates shows that they are depen-
dent from each other in both short- and long-run. Although the observed experience will
never exactly repeat itself in the future, the following observations can help practitioners
set more informed assumptions on the future development of mortality rates:

• The common long-run trend shared by the cause-specific mortality rates is contin-
gent on the evolution of the Cancer, the Circulatory, and the Respiratory mortality
rates, as these are the causes that significantly contribute to the cointegration re-
lation between the mortality rates.

• Once the common long-run trend is defined, it more heavily impacts the devel-
opment of the I&P and the Respiratory mortality rates and to a lesser extent the
development of the Cancer and the Circulatory mortality rates. The External causes
are exempt from the influence of the common long-term relationship between the
causes.

• In the short run, the Respiratory mortality rate consistently shows the autoregres-
sive feature.

• Although the short-run dependencies are more challenging to model, they are sig-
nificantly pronounced in the development pattern of the Circulatory, Respiratory,
and the External mortality rates. In other words, these rates are dependent on each
other in the short run.

Coming back to the conclusion made in Arnold and Sherris (2016) that the I&P
and the External causes do not participate conjointly in the long-term steady-state, we
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see that these causes differ in the way they are impacted by the long-term equilibrium.
Though the I&P mortality rate is often impacted by the cointegration relation(s) and
when it is, fluctuates more with the long-term component, the External causes show the
opposite behavior: the corresponding rate is almost never impacted by the cointegration
relation(s), and when it is, it fluctuates more with the short-term component.

We see that the development of the External causes mortality rate is completely
independent from the long-term equilibrium both in terms of the contribution to, and
influence experienced from, the steady-state. This is a behavior of what could be called
a genuinely exogenous cause of mortality as we observe no long-term impact to or from
this cause. It develops in a way that is entirely independent of the observed equilibrium
between the rest of the cause-specific mortality rates and is subject to only short-term
shocks from other causes. Basically, this observation is not surprising, as under the
External causes are grouped such causes as transport and other accidents (falls, poisoning,
accidental fire, drowning), suicides, homicides, and war injuries. So it is rather difficult
to imagine a link connecting these mortality rates to the rest of the mortality causes
that could be observed over a long time. On the contrary, these causes of mortality can
rather be characterized by randomness and ”bad luck” rather than by a steady long-term
development.

In turn, the I&P mortality rate does not influence the long-term equilibrium observed
between the cause-specific mortality rates but is rather sensitive to the impacts received
from this equilibrium. Occasionally, it is also subject to short-term shocks from other
causes. We can conclude that while the evolution of the I&P mortality rate does not
influence the development of other cause-specific mortality rates, i.e., a sudden increase
or drop in the I&P mortality rate will not affect the rest of the cause-specific mortality
rates, its own development depends to a great extent from other causes of death, especially
in the long run. Such behavior cannot be described as fully independent, and so the I&P
cause cannot be classified as a truly exogenous cause in the same way the External causes
can.

These observations are consistent with the intuition that the biological processes of
aging are reflected in the common stochastic trend shared by the cause-specific mortality
rates. Indeed, while it can seem that the infectious or parasitic diseases are similar to
the external causes in that the origin of the force affecting the human body lies outside,
the underlying biological processes are more complicated, as human beings are not equal
when they face an infection. Even during severe epidemics, the probability of getting sick
and dying depends to a large extent on the internal immune forces of the person, which in
turn, depend, among other factors, on age. A well-known example is influenza that is the
most dangerous for the elderly. When advancing in age, we are more and more confronted
with competing risks such that a decrease in mortality from the circulatory diseases, for
example, would leave more vulnerable persons alive who could then die from an infectious
disease during an epidemic. It is then understandable that the I&P mortality rate, while
not being a part of the long-term equilibrium, is substantially affected by it. Our results
then confirm and reinforce the link between the cointegration relations observed within
a set of cause-specific mortality rates and the biological processes of aging.

One further possible application of the present study is the calibration of copula-based
models for the cause-specific mortality rates that remains an open question. Indeed, due
to the indentifiability issue raised by Tsiatis (1975), one usually has to assume that the
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dependence is represented by a known copula with known parameters. In the same time,
copula-based models are highly sensitive with respect to these choices (Dimitrova et al.,
2013). As pointed out in Kaishev et al. (2007), ”the free parameters could be set according
to a priori available (medical) information, about the degree of pairwise dependence
between the two competing risks, expressed through Kendall’s τ and/or Sperman’s ρ”.
In the absence of additional information and to demonstrate the sensitivity of the results,
the authors use four different copulas and five different values of Kendall’s τ , ranging
from -0.91 (extreme negative dependence) to 0.91 (extreme positive dependence). In
Li and Lu (2019), the authors go further and by introducing hierarchical Archimedean
copulas succeed in building a model that allows for different levels of association between
the causes of death. For this, they group the causes in different clusters based on the
(assumed) level of dependence between the causes, but also admit that the introduced
hierarchical structure is not unique. Although our study cannot provide an exact value
of parameters to be used in copula-based models, a certain degree of pairwise association
(correlation) between the causes of death can be inferred from the results of the impulse-
response analysis (Section 3.1). This could help researchers working with copula-based
models further reduce the possible range of free parameters that otherwise have to be
chosen arbitrarily. Also, the revealed differences in the long- and short-term development
of the cause-specific mortality rates can serve as the basis for building clusters of the
causes.

In the current study, we limited our analysis to the total cause-specific mortality rates
and did not differentiate by age. Yet, it is intuitively clear that when analyzed by age, the
mortality rates will present different development patterns. As the cause-specific death
numbers are available in the WHO database by five-year age groups, it seems to be a
promising path to integrate the age specifics of the mortality rates into the modeling
process. However, this remains a challenging task, as, on the one hand, the cointegration
tests have been developed for systems with maximum 12 variables (Osterwald-Lenum,
1992), and, on the other, the observation horizon, which goes back as far as 1950, is also
rather brief. In our opinion, analysis trying to overcome these difficulties while preserving
the information on the age profile has the potential to deliver additional insights on the
interaction of the cause-specific mortality rates. Moreover, the biological processes of
aging may probably be easier to measure once the data on young ages are excluded from
the analysis, as by definition, the aging risk factor becomes more important the longer
we live. For this reason, the analysis of the cause-specific mortality rates excluding young
ages may provide a better measure of the aging process.
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Basagaña, X., Sartini, C., Barrera-Gómez, J., Dadvand, P., Cunillera, J., Ostro, B., Sun-
yer, J., and Medina-Ramón, M. (2011) Heat waves and cause-specific mortality at all
ages. Epidemiology, 22(6), 765–772.

Booth, H. and Tickle, L. (2008) Mortality Modelling and Forecasting: A Review of Meth-
ods. Annals of Actuarial Science, 3, 3–43.

Breeze, E., Clarke, R., Shipley, M. J., Marmot, M. G., and Fletcher, A. E. (2006) Cause-
specific mortality in old age in relation to body mass index in middle age and in old
age: follow-up of the Whitehall cohort of male civil servants. International Journal of
Epidemiology, 35(1), 169–178.

Cairns, A. (2013) “Modeling and management of longevity risk”. Recreating Sustainable
Retirement: Resilience, Solvency, and Tail Risk. Ed. by P. B. Hammond, R. Maurer,
and O. S. Mitchell. Oxford: Oxford University Press, 71–88.

Carnes, B. A. and Olshansky, S. J. (1997) A biologically motivated partitioning of mor-
tality. Experimental Gerontology, 32(6), 615–631.

Carnes, B. A., Holden, L. R., Olshansky, S. J., Witten, T. M., and Siegel, J. S. (2006)
Mortality partitions and their relevance to research on senescence. Biogerontology, 7,
183–198.

Chiang, C. L. (1968) Introduction to Stochastic Process in Biostatistics. New York: John
Wiley and Sons.

Clarida, R. (1992) Co-Integration, Aggregate Consumption, and the Demand for Imports:
A Structural Economic Investigation. Research Paper 9213. Federal Reserve Bank of
New York.

Costa, D. L. (2005) Causes of improving health and longevity at older ages: a review of
the explanations. Genus, 61(1), 21–38.

Cutler, D., Deaton, A., and Lleras-Muney, A. (2006) The Determinants of Mortality. The
Journal of Economic Perspectives, 20(3), 97–120.

Debón, A., Montes, F., and Sala, R. (2006) A Comparison of Models for Dynamic Life
Tables. Application to Mortality Data from the Valencia Region (Spain). Lifetime
Data Analysis, 12, 223–244.

Dimitrova, D. S., Haberman, S., and Kaishev, V. (2013) Dependent competing risks:
Cause elimination and its impact on survival. Insurance: Mathematics and Economics,
53(2), 464–477.

Engle, R. and Granger, C. (1987) Co-integration and Error Correction: Representation,
Estimation and Testing. Econometrica, 55, 251–276.

22



GBDS (2013) Global, regional, and national agesex specific all-cause and cause-specific
mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global
Burden of Disease Study 2013. The Lancet, 385, 117–171.

Hamilton, J. D. (1994) Time Series Analysis. Princeton: Princeton University Press.
Himes, C. L. (1994) Age Patterns of Mortality and Cause-of-Death Structures in Sweden,

Japan, and the United States. Demography, 31(4), 633–650.
Horiuchi, S. and Wilmoth, J. R. (1997) Age Patterns of the Life Table Aging Rate for Ma-

jor Causes of Death in Japan, 1951-1990. Journal of Gerontology: Biological Sciences,
52A(1), B67–B77.

Johansen, S. (1988) Statistical Analysis of Cointegration Vectors. Journal of Economic
Dynamics and Control, 12, 231–254.

Johansen, S. (1995) Likelihood-Based Inference in Cointegrated Vector Autoregressive
Models. NewYork: Oxford University Press.

Johansen, S. and Juselius, K. (1992) Testing Structural Hypotheses in a Multivariate
Cointegration Analysis of the PPP and the UIP for UK. Journal of Econometrics,
53, 211–244.

Kaishev, V. K., Dimitrova, D. S., and Haberman, S. (2007) Modelling the joint distribu-
tion of competing risks survival times using copula functions. Insurance: Mathematics
and Economics, 41, 336–361.

Li, H. and Lu, Y. (2019) Modeling cause-of-death mortality using hierarchical Archimedean
copula. Scandinavian Actuarial Journal, 2019(3), 247–272.

Lo, S and Wilke, R. A. (2010) A copula model for dependent competing risks. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 59(2), 359–376.

Lütkepohl, H. (2005) New Introduction to Multiple Time Series Analysis. Berlin: Springer.
Mackenbach, J.-P., Kunst, A., Lautenbach, H., Oei, Y., and Bijlsma, F. (1999) Gains in

life expectancy after elimination of major causes of death: revised estimates taking
into account the effect of competing causes. Journal of Epidemiology & Community
Health, 53(1), 32–37.

Manton, K. G. and Myers, G. C. (1987) Recent trends in multiple-caused mortality 1968
to 1982: Age and cohort components. Population Research and Policy Review, 6, 161–
176.

Manton, K. G. and Poss, S. S. (1979) Effects of Dependency Among Causes of Death for
Cause Elimination Life Table Strategies. Demography, 16(2), 313–327.

Manton, K. G., Stallard, E., and Trolley, H. (1991) Limits to Human Life Expectancy:
Evidence, Prospects, and Implications. Population and Development Review, 17(4).

Matthews, C., George, S., Moore, S., Bowles, H., Blair, A., Park, Y., Troiano, R., Hollen-
beck, A., and Schatzkin, A. (2012) Amount of time spent in sedentary behaviors and
cause-specific mortality in US adults. The American Journal of Clinical Nutrition,
95(2), 437–445.

Osterwald-Lenum, M. (1992) A note with quantiles of the asymptotic distribution of the
maximum likelihood cointegration rank test statistics. Oxford Bulletin of Economics
and Statistics, 54(3), 461–472.

Rey, G., Jougla, E., Fouillet, A., Pavillon, G., Bessemoulin, P., Frayssinet, P., Clavel, J.,
and Hémon, D. (2007) The impact of major heat waves on all-cause and cause-specific
mortality in France from 1971 to 2003. International Archives of Occupational and
Environmental Health, 80(7), 615–626.

23



Tsiatis, A (1975) A nonidentifiability aspect of the problem of competing risks. Proceed-
ings of the National Academy of Sciences, 72(1), 20–22.

Wang, C.-S., Wang, S.-T., Lai, C.-T., Lin, L.-J., and Choua, P. (2007) Impact of influenza
vaccination on major cause-specific mortality. Vaccin, 25, 1196–1203.

World Health Organization (2016) WHO Mortality Database. http://www.who.int/
whosis/mort/download/en/index.html.

Zmirou, D., Schwartz, J., Saez, M., Zanobetti, A., Wojtyniak, B., Touloumi, G., Spix, C.,
Len, A. Ponce de, Le Moullec, Y., Bacharova, L., Schouten, J., Pnk, A., and Kat-
souyanni, K. (1998) Time-series analysis of air pollution and cause-specific mortality.
Epidemiology, 9(5), 495–503.

24



APPENDIX

Table A1: TESTS ON RESIDUALS OF THE FITTED VECM,
MALES, US MALES POPULATION BASE, VAR(2) MODELS

p value
Autocorrelation Normality

Country Model 15 lags 25 lags 35 lags Skewness Kurtosis Both
US VAR(2), QT, 1 CR 0.212 0.146 0.181 0.546 0.020 0.066
JP VAR(2), TC, 2 CR 0.526 0.764 0.810 0.749 0.002 0.015
FR VAR(2), NT, 1 CR 0.354 0.644 0.824 0.467 0.154 0.244
E&W VAR(2), QT, 1 CR 0.209 0.146 0.207 0.510 0.558 0.607
AU VAR(2), QT, 1 CR 0.594 0.297 0.405 0.876 0.002 0.027
Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

Table A2: TESTS ON RESIDUALS OF THE FITTED VECM,
FEMALES, US MALES POPULATION BASE, VAR(2) MODELS

p value
Autocorrelation Normality

Country Model 15 lags 25 lags 35 lags Skewness Kurtosis Both
US VAR(2), QT, 1 CR 0.133 0.007 0.021 0.768 0.141 0.369
JP VAR(2), TC, 2 CR 0.539 0.601 0.769 0.007 0.000 0.000
FR VAR(2), QT, 1 CR 0.066 0.286 0.491 0.420 0.038 0.080
E&W VAR(2), QT, 1 CR 0.389 0.307 0.353 0.025 0.000 0.000
AU VAR(2), NT, 1 CR 0.238 0.284 0.262 0.652 0.059 0.175
Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

Table A3: TESTS ON RESIDUALS OF THE FITTED VECM,
MALES, JP FEMALES POPULATION BASE, VAR(2) MODELS

p value
Autocorrelation Normality

Country Model 15 lags 25 lags 35 lags Skewness Kurtosis Both
US VAR(2), QT, 1 CR 0.496 0.202 0.202 0.879 0.189 0.511
JPn VAR(2), QT, 1 CR 0.168 0.103 0.081 0.225 0.047 0.052
FR VAR(2), NT, 1 CR 0.398 0.615 0.534 0.139 0.009 0.009
E&W VAR(2), QT, 1 CR 0.225 0.094 0.099 0.722 0.556 0.743
AU VAR(2), NT, 1 CR 0.521 0.397 0.437 0.407 0.013 0.034
Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

Table A4: TESTS ON RESIDUALS OF THE FITTED VECM,
FEMALES, JP FEMALES POPULATION BASE, VAR(2) MODELS

p value
Autocorrelation Normality

Country Model 15 lags 25 lags 35 lags Skewness Kurtosis Both
US VAR(2), QT, 1 CR 0.168 0.005 0.021 0.123 0.010 0.009
JP VAR(2), QT, 1 CR 0.469 0.625 0.664 0.000 0.000 0.000
FR VAR(2), NT, 1 CR 0.096 0.426 0.381 0.324 0.097 0.127
E&W No suitable VAR(2) model
AU VAR(2), QT, 1 CR 0.548 0.688 0.353 0.488 0.046 0.108
Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

25



Table A5: IMPULSE-RESPONSE ANALYSIS: RESPONSE OF THE MORTALITY RATE Y FROM THE SHOCK GIVEN TO THE CAUSE X,
US MALES POPULATION BASE

Cause Males Females
X \ Y Country I&P Canc Circ Resp Ext I&P Canc Circ Resp Ext

I&P US 0.53 (Med) -0.01 (Low) -0.02 (Low) -0.2 (Low) 0.1 (Low) -0.05 (Low) -0.12 (Low) -0.11 (Low) -0.47 (Med) 0.24 (Low)
I&P JP 0.97 (High) -0.13 (Low) -0.09 (Low) -0.12 (Low) -0.14 (Low) 0.58 (Med) 0.03 (Low) 0.13 (Low) 0.01 (Low) 0.01 (Low)
I&P FR 1.15 (High) -0.17 (Low) -0.07 (Low) 0.38 (Med) -0.21 (Low) 1.2 (High) -0.03 (Low) 0.07 (Low) 0.22 (Low) -0.18 (Low)
I&P E&W 1.59 (High) -0.14 (Low) -0.09 (Low) -0.33 (Low) -0.38 (Med) 0.37 (Low) -0.03 (Low) -0.08 (Low) -0.33 (Low) 0.17 (Low)
I&P AU 0.73 (Med) 0.01 (Low) -0.02 (Low) -0.12 (Low) -0.03 (Low) -0.1 (Low) 0.01 (Low) 0.16 (Low) -0.1 (Low) 0.2 (Low)

Canc US 2.05 (High) 1.13 (High) -0.15 (Low) 0.75 (Med) -0.78 (Med) 3.39 (High) 1.64 (High) -0.61 (Med) 0.8 (Med) -1.78 (High)
Canc JP 1.06 (High) 0.24 (Low) -0.27 (Low) 0.75 (Med) -0.26 (Low) 4.37 (High) 0.5 (Med) 0.03 (Low) 3.38 (High) 0.98 (High)
Canc FR 1.46 (High) 0.16 (Low) -0.92 (High) 0.64 (Med) -0.86 (Med) 2.27 (High) 0.36 (Low) 0.15 (Low) 4.56 (High) -0.45 (Med)
Canc E&W 1.61 (High) 0.58 (Med) -0.1 (Low) -2.57 (High) -1.42 (High) -4.09 (High) 0.7 (Med) -0.69 (Med) -2.96 (High) 0.59 (Med)
Canc AU -0.18 (Low) 0.68 (Med) -0.22 (Low) -1.33 (High) -0.37 (Low) 0.97 (High) 0.77 (Med) -0.01 (Low) 0.57 (Med) 0.03 (Low)

Circ US 2.26 (High) -0.04 (Low) 1.07 (High) 1.14 (High) 0.01 (Low) 1.34 (High) 0.05 (Low) 1.42 (High) 1.19 (High) 0.22 (Low)
Circ JP -0.79 (Med) -0.09 (Low) 0.91 (High) -1.09 (High) -0.52 (Med) 0.1 (Low) -0.09 (Low) 0.22 (Low) -1.03 (High) -0.61 (Med)
Circ FR -1.82 (High) 1.16 (High) 1.96 (High) -1.23 (High) 1.29 (High) -0.23 (Low) 0.13 (Low) 0.86 (Med) -0.51 (Med) 0.17 (Low)
Circ E&W 0.67 (Med) -0.11 (Low) 0.69 (Med) -0.03 (Low) -0.33 (Low) 0.92 (High) 0.06 (Low) 1.01 (High) 1.04 (High) -0.2 (Low)
Circ AU 0.4 (Med) 0.05 (Low) 0.83 (Med) 0.67 (Med) 0.16 (Low) -0.2 (Low) 0.01 (Low) 0.71 (Med) -0.7 (Med) 0.01 (Low)

Resp US -1.37 (High) -0.08 (Low) -0.07 (Low) 0.01 (Low) 0.06 (Low) -0.77 (Med) -0.11 (Low) -0.12 (Low) 0.19 (Low) -0.01 (Low)
Resp JP -0.27 (Low) 0.05 (Low) -0.05 (Low) 0.15 (Low) 0.07 (Low) -0.02 (Low) 0.01 (Low) -0.14 (Low) 0.35 (Low) 0.13 (Low)
Resp FR -0.41 (Med) 0.2 (Low) 0.05 (Low) 0.05 (Low) 0.13 (Low) -0.19 (Low) 0.01 (Low) -0.08 (Low) 0.19 (Low) -0.02 (Low)
Resp E&W -0.05 (Low) -0.02 (Low) -0.05 (Low) 0.53 (Med) -0.04 (Low) -0.56 (Med) -0.03 (Low) -0.13 (Low) 0.31 (Low) 0.07 (Low)
Resp AU -0.34 (Low) -0.05 (Low) -0.11 (Low) -0.02 (Low) -0.07 (Low) 0.65 (Med) -0.02 (Low) -0.16 (Low) 0.84 (Med) -0.17 (Low)

Ext US -4.06 (High) -0.08 (Low) 0.16 (Low) -1.01 (High) 1.71 (High) -3.39 (High) -0.38 (Med) -0.16 (Low) -1.47 (High) 1.38 (High)
Ext JP 0.42 (Med) -0.19 (Low) -0.26 (Low) -0.32 (Low) 0.68 (Med) -1.35 (High) 0.16 (Low) 0.58 (Med) -0.13 (Low) 0.79 (Med)
Ext FR 0.44 (Med) -0.28 (Low) -0.08 (Low) 1.08 (High) 0.63 (Med) -0.6 (Med) 0.07 (Low) -0.01 (Low) 0.16 (Low) 1.07 (High)
Ext E&W -0.38 (Med) -0.06 (Low) -0.05 (Low) -0.56 (Med) 0.53 (Med) 0.01 (Low) -0.04 (Low) -0.05 (Low) -0.35 (Low) 0.98 (High)
Ext AU 0.07 (Low) -0.04 (Low) 0.04 (Low) 0.42 (Med) 0.84 (Med) -1.1 (High) 0.02 (Low) 0.32 (Low) -0.16 (Low) 1.05 (High)
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Table A6: IMPULSE-RESPONSE ANALYSIS: RESPONSE OF THE MORTALITY RATE Y FROM THE SHOCK GIVEN TO THE CAUSE X,
JP FEMALES POPULATION BASE

Cause Males Females
X \ Y Country I&P Canc Circ Resp Ext I&P Canc Circ Resp Ext

I&P US 0.41 (Med) -0.02 (Low) -0.04 (Low) -0.21 (Low) 0.09 (Low) 1.25 (High) 0.04 (Low) -0.07 (Low) 0.16 (Low) 0.03 (Low)
I&P JP 0.92 (High) -0.02 (Low) 0.18 (Low) 0.64 (Med) 0.11 (Low) 0.81 (Med) 0 (Low) 0.09 (Low) 0.1 (Low) 0.1 (Low)
I&P FR 1.07 (High) -0.17 (Low) 0 (Low) 0.37 (Low) -0.14 (Low) 1.26 (High) -0.04 (Low) -0.14 (Low) 0.37 (Low) -0.48 (Med)
I&P E&W 0.78 (Med) -0.03 (Low) -0.08 (Low) 0.05 (Low) 0.23 (Low) No suitable VAR(2) model
I&P AU 0.3 (Low) 0.03 (Low) 0.08 (Low) -0.08 (Low) 0.04 (Low) 0.71 (Med) 0.03 (Low) 0 (Low) 0.15 (Low) -0.02 (Low)

Canc US 1.22 (High) 1.26 (High) -0.02 (Low) 0.78 (Med) -0.48 (Med) -2.25 (High) 0.94 (High) -0.8 (Med) -2.37 (High) -1.13 (High)
Canc JP 0.9 (High) 0.95 (High) 0.73 (Med) 2 (High) 0.79 (Med) 0.46 (Med) 0.99 (High) 1.3 (High) 2.44 (High) 0.76 (Med)
Canc FR 0.69 (Med) 0.5 (Med) -0.88 (High) -0.39 (Med) -0.75 (Med) 2.95 (High) 0.35 (Low) -0.8 (Med) 5.79 (High) -2.01 (High)
Canc E&W -0.57 (Med) 1.15 (High) 0.4 (Med) -0.87 (Med) 0.08 (Low) No suitable VAR(2) model
Canc AU 1.15 (High) 0.65 (Med) -0.24 (Low) -0.19 (Low) -0.27 (Low) 0.1 (Low) 0.84 (Med) 0 (Low) -0.92 (High) 0.29 (Low)

Circ US 2.65 (High) -0.06 (Low) 1.16 (High) 1.52 (High) 0.02 (Low) 3.3 (High) 0.44 (Med) 1.53 (High) 2.48 (High) 0.02 (Low)
Circ JP -0.41 (Med) -0.06 (Low) 0.91 (High) -0.67 (Med) -0.48 (Med) -0.46 (Med) -0.03 (Low) 0.6 (Med) -1.05 (High) -0.52 (Med)
Circ FR -1.39 (High) 1.28 (High) 2.15 (High) -1.13 (High) 1.5 (High) 0.03 (Low) 0.09 (Low) 0.97 (High) 0.08 (Low) 0.09 (Low)
Circ E&W 1.01 (High) 0.03 (Low) 1.04 (High) 0.51 (Med) -0.55 (Med) No suitable VAR(2) model
Circ AU -0.33 (Low) 0.13 (Low) 0.91 (High) -0.11 (Low) 0.07 (Low) 0.27 (Low) 0.03 (Low) 0.59 (Med) -0.63 (Med) -0.25 (Low)

Resp US -1.12 (High) -0.05 (Low) -0.12 (Low) -0.03 (Low) -0.06 (Low) -0.75 (Med) -0.14 (Low) -0.11 (Low) 0.16 (Low) -0.03 (Low)
Resp JP -0.07 (Low) 0.02 (Low) -0.21 (Low) 0.13 (Low) -0.01 (Low) -0.03 (Low) 0.02 (Low) -0.15 (Low) 0.25 (Low) 0.06 (Low)
Resp FR -0.3 (Low) 0.21 (Low) 0.06 (Low) 0.14 (Low) 0.16 (Low) -0.23 (Low) 0.02 (Low) -0.03 (Low) 0.13 (Low) 0.06 (Low)
Resp E&W -0.36 (Low) -0.02 (Low) -0.11 (Low) 0.61 (Med) 0.19 (Low) No suitable VAR(2) model
Resp AU -1.36 (High) 0.13 (Low) 0.27 (Low) 0.67 (Med) 0.14 (Low) -0.15 (Low) -0.03 (Low) -0.08 (Low) 0.14 (Low) 0.09 (Low)

Ext US -4.06 (High) -0.11 (Low) 0.11 (Low) -1.4 (High) 1.47 (High) -5.92 (High) -0.93 (High) -0.27 (Low) -3.36 (High) 1.56 (High)
Ext JP 0.14 (Low) 0.01 (Low) -0.04 (Low) -0.53 (Med) 0.75 (Med) 0.08 (Low) 0.01 (Low) 0.07 (Low) 0.13 (Low) 0.68 (Med)
Ext FR 1.11 (High) -1.05 (High) -0.73 (Med) 2.26 (High) -0.09 (Low) -1.49 (High) 0.18 (Low) 0.52 (Med) -1.41 (High) 2.39 (High)
Ext E&W 1.17 (High) 0.09 (Low) 0.39 (Med) -0.18 (Low) -0.06 (Low) No suitable VAR(2) model
Ext AU 0.72 (Med) -0.15 (Low) -0.18 (Low) 0.08 (Low) 0.78 (Med) 0.16 (Low) 0.03 (Low) 0.17 (Low) 0.69 (Med) 0.94 (High)
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Table A7: Γ1 COEFFICIENTS THAT ARE SIGNIFICANTLY DIFFERENT FROM ZERO,
SIGNIFICANCE LEVEL OF 0.05, MALES, US MALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR - Circ,Ext - Resp,Ext Resp
JP VAR(2), TC, 2 CR - Canc Resp Circ,Resp -
FR VAR(2), NT, 1 CR - - Resp Circ,Resp Circ,Resp

E&W VAR(2), QT, 1 CR Ext - -
IP,Circ
Resp

Ext

AU VAR(2), QT, 1 CR IP Canc, Ext Circ - Ext

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

Table A8: Γ1 COEFFICIENTS THAT ARE SIGNIFICANTLY DIFFERENT FROM ZERO,
SIGNIFICANCE LEVEL OF 0.05, FEMALES, US MALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR Canc,Ext Ext Canc Resp Canc,Resp

JP VAR(2), TC, 2 CR IP,Resp - Resp -
Circ,Resp

Ext

FR VAR(2), QT, 1 CR Canc,Circ - -
Canc,Circ

Resp
IP

E&W VAR(2), QT, 1 CR - - Resp Resp Resp
AU VAR(2), NT, 1 CR IP,Resp Canc Circ Circ,Resp -

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

Table A9: Γ1 COEFFICIENTS THAT ARE SIGNIFICANTLY DIFFERENT FROM ZERO,
SIGNIFICANCE LEVEL OF 0.05, MALES, JP FEMALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR Ext - - Resp,Ext Resp
JP VAR(2), QT, 1 CR Ext - - - Resp
FR VAR(2), NT, 1 CR - - Canc,Resp Circ,Resp Resp
E&W VAR(2), QT, 1 CR - - Circ Resp Ext
AU VAR(2), NT, 1 CR Circ Canc Circ Resp Ext

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

Table A10: Γ1 COEFFICIENTS THAT ARE SIGNIFICANTLY DIFFERENT FROM ZERO,
SIGNIFICANCE LEVEL OF 0.05, FEMALES, JP FEMALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR Canc,Ext Ext - Resp,Ext Canc,Resp
JP VAR(2), QT, 1 CR - - - - Circ,Ext

FR VAR(2), NT, 1 CR - - Resp
Canc,Circ

Resp
IP

E&W No suitable VAR(2) model
AU VAR(2), QT, 1 CR - Canc Circ - Circ

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

28



Table A11: EQUATIONS TO WHICH THE LONG-TERM COMPONENT ENTERS WITH A
STATISTICALLY SIGNIFICANT COEFFICIENT αi, SIGNIFICANCE LEVEL OF 0.05,

US MALES POPULATION BASE

Country Model Males Females

US VAR(2), QT, 1 CR αi ∆IPt, ∆Respt
∆IPt, ∆Canct

∆Circt, ∆Respt
JP VAR(2), TC, 2 CR α1i ∆IPt, ∆Canct ∆Circt, ∆Respt

α2i ∆IPt, ∆Canct, ∆Respt
∆IPt, ∆Canct

∆Circt, ∆Respt
FR VAR(2), NT, 1 CR αi ∆IPt, ∆Canct, ∆Respt -

VAR(2), QT, 1 CR αi - ∆IPt, ∆Canct, ∆Respt

E&W VAR(2), QT, 1 CR αi
∆Canct, ∆Respt

∆Extt

∆IPt, ∆Circt
∆Extt

AU VAR(2), NT, 1 CR αi - ∆IPt, ∆Circt, ∆Extt
VAR(2), QT, 1 CR αi ∆IPt, ∆Circt, ∆Respt -

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration relation;
NT = no trend; CR = cointegration relation.

Table A12: EQUATIONS TO WHICH THE LONG-TERM COMPONENT ENTERS WITH A
STATISTICALLY SIGNIFICANT COEFFICIENT αi, SIGNIFICANCE LEVEL OF 0.05,

JP FEMALES POPULATION BASE

Country Model Males Females

US VAR(2), QT, 1 CR αi ∆IPt, ∆Respt
∆IPt, ∆Canct

∆Circt, ∆Respt
JP VAR(2), QT, 1 CR αi ∆Circt, ∆Respt ∆IPt, ∆Circt, ∆Respt

FR VAR(2), NT, 1 CR αi
∆IPt, ∆Canct, ∆Circt

∆Respt, ∆Extt
∆IPt, ∆Respt

E&W VAR(2), QT, 1 CR αi ∆Extt
No suitable

VAR(2) model
AU VAR(2), NT, 1 CR αi ∆IPt, ∆Circt, ∆Canct -

VAR(2), QT, 1 CR αi - ∆Circt, ∆Respt

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration relation;
NT = no trend; CR = cointegration relation.

Table A13: CORRELATION COEFFICIENTS BETWEEN THE ACTUAL CHANGES IN
MORTALITY RATES AND THE LONG- AND SHORT-TERM COMPONENTS,

MALES, US MALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR LT -0.271 0.268

ST -0.164 0.336
JP VAR(2), TC, 2 CR LT 0.570 0.797 0.530

ST -0.177 -0.434 0.325
FR VAR(2), NT, 1 CR LT 0.478 0.597 0.368

ST 0.023 -0.311 0.613
E&W VAR(2), QT, 1 CR LT -0.589 0.069 0.018

ST 0.023 0.575 0.155
AU VAR(2), QT, 1 CR LT -0.389 0.450 0.239

ST -0.058 0.203 -0.059

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration relation;
NT = no trend; CR = cointegration relation.
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Table A14: CORRELATION COEFFICIENTS BETWEEN THE ACTUAL CHANGES IN
MORTALITY RATES AND THE LONG- AND SHORT-TERM COMPONENTS,

FEMALES, US MALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR LT 0.076 0.477 0.290 0.192

ST -0.172 0.012 0.343 0.451
JP VAR(2), TC, 2 CR LT 0.667 0.511 0.763 0.744

ST -0.181 -0.146 -0.315 -0.386
FR VAR(2), QT, 1 CR LT 0.415 0.272 0.582

ST 0.083 0.226 0.259
E&W VAR(2), QT, 1 CR LT 0.131 0.410 0.069

ST 0.286 0.425 0.240
AU VAR(2), NT, 1 CR LT 0.529 0.291 0.192

ST 0.183 0.457 0.311

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration relation;
NT = no trend; CR = cointegration relation.

Table A15: CORRELATION COEFFICIENTS BETWEEN THE ACTUAL CHANGES IN
MORTALITY RATES AND THE LONG- AND SHORT-TERM COMPONENTS,

MALES, JP FEMALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR LT -0.266 0.275

ST -0.200 0.372
JP VAR(2), QT, 1 CR LT 0.538 0.729

ST 0.522 0.069
FR VAR(2), NT, 1 CR LT 0.355 0.553 0.033 0.366 0.271

ST 0.259 -0.276 0.405 0.621 0.189
E&W VAR(2), QT, 1 CR LT 0.130

ST 0.272
AU VAR(2), NT, 1 CR LT 0.600 0.191 0.081

ST -0.017 0.432 0.487

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration relation;
NT = no trend; CR = cointegration relation.

Table A16: CORRELATION COEFFICIENTS BETWEEN THE ACTUAL CHANGES IN
MORTALITY RATES AND THE LONG- AND SHORT-TERM COMPONENTS,

FEMALES, JP FEMALES POPULATION BASE

Country Model ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US VAR(2), QT, 1 CR LT 0.617 0.589 0.088 0.301

ST -0.160 -0.006 0.365 0.438
JP VAR(2), QT, 1 CR LT 0.533 -0.054 0.378

ST 0.142 -0.236 -0.411
FR VAR(2), NT, 1 CR LT 0.406 0.623

ST 0.084 0.339
E&W No suitable VAR(2) model
AU VAR(2), QT, 1 CR LT 0.514 0.576

ST 0.450 0.383

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration relation;
NT = no trend; CR = cointegration relation.
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