
ACTUARIAL TECHNOLOGY TODAY | 1Copyright © 2020 Society of Actuaries. All rights reserved.

 OCTOBER 2020
ACTUARIAL TECHNOLOGY TODAY

TECHNOLOGY
SECTION

house, figuring out how best to report them was like deciding
what color to paint the walls. Do we look at cumulative counts
going back to March? Do we look at newly reported numbers on
a daily basis? Do we adjust the data for population? What about
trend? Should we look at day-over-day changes? Week-over-
week? Moving averages?

These are questions we failed to thoroughly think through
before diving in. This was evident when we first started draft-
ing this article and dropped cumulative case counts by State
onto a bubble map (formally known as a proportional symbol
map) in Microsoft’s Power BI. As shown in Figure 1 (page 2),
looking solely at case counts causes New York to eclipse the
rest of the country. An argument can be made that this is due
primarily to the population density of New York City. States
like California, Florida, and Texas also jump out as being hard
hit, but these are also big states to begin with. To be sure,
these states have all made headlines during the pandemic, but
other headline-grabbing states like Louisiana, Illinois, and
Arizona are lost in the shuffle.

What’s in a Number?
Considerations for
Mapping the COVID-19
Pandemic
By Phil Ellenberg and Kelsie Gosser

Author’s note: Using COVID-19 visualizations as a case study, this ar-
ticle highlights the considerations involved with preparing data to tell a
story. As actuaries we are often challenged with how to tell a complex
story using nuanced data. This article provides a helpful framework.

As COVID-19 remains a mainstay in 2020, it seems like
the only certainty we can count on is that we remain un-
certain about the global pandemic. In an effort to mit-

igate this uncertainty, we have collectively turned to data and,
by extension, data visualizations. Despite numerous issues with
the underlying data, COVID-19 dashboards and other visualiza-
tions have become ubiquitous in our daily lives, each with their
own recipe for showing the impact of the virus. Using confirmed
case count data for the United States from the Center for Sys-
tems Science and Engineering (CSSE) at Johns Hopkins Uni-
versity1, we intend to explore the interaction between selecting
a metric and then visualizing it. We chose the Johns Hopkins’
data over other data sources such as The New York Times or
The COVID-19 Tracking Project due to its prominence in the
media, credibility, and its ease of access.

When we first started writing this article, we went into it with
a plan to write strictly about data visualization techniques
and how to pick which graph to best illustrate the data it rep-
resents—the twist being that we were going to use COVID-19
data. We quickly found ourselves uninterested in the topic, espe-
cially after referencing countless other articles on the same topic
(although, to be fair, none of them use COVID-19 data). We
were, however, intrigued by the variety of metrics used across
the endless patchwork of COVID-19 dashboards. If case counts,
hospitalizations, fatalities, and tests were the bricks for our

ACTUARIAL TECHNOLOGY TODAY | 2Copyright © 2020 Society of Actuaries. All rights reserved.

What’s in a Number? Considerations for Mapping the COVID-19 Pandemic

What cumulative case counts miss, however, is how case counts
are changing over time. By nearly all accounts, New York’s cases
peaked in early-April. To somehow capture the trend, we were
faced with two decisions: what type of map to use, and what
metric to use. Generally speaking, proportional maps should be
used to show totals rather than rates. Filled maps, or chorop-
leths, are a standard way of displaying rates or ratios between
well-defined geographies, so this was an obvious choice. The
less obvious choice was the metric. While some dashboards

Simply adjusting the cumulative case count data for population
shows a slightly different story. While New York still dominates
when showing cumulative case counts per 100k residents in a
state, the impacts on other New England and Mid-Atlantic states
such as New Jersey, Massachusetts, Rhode Island, Connecticut,
and Delaware are immediately more noticeable. Adjusting for
population also highlights states like Louisiana, Illinois, and Ari-
zona as being more heavily impacted. (See Figure 2.)

Figure 1
Cumulative Confirmed Case Counts by State

Figure 2
Cumulative Confirmed Case Counts per 100k by State

ACTUARIAL TECHNOLOGY TODAY | 3Copyright © 2020 Society of Actuaries. All rights reserved.

What’s in a Number? Considerations for Mapping the COVID-19 Pandemic

By definition, a simple moving average takes the mean of a given
set of data over a specific number of time periods in the past. In
effect, this minimizes the effect of random fluctuations in the
short-term. To truly understand which states should be con-
cerned about becoming a hot spot, we want to be aware of short-
term fluctuations. Comparing the most recent seven-day moving
average of new cases to the previous seven-day period captures
the momentum of new case counts, which we concluded was a
more meaningful way of looking at these data. (See Figure 4.)

show the daily change in new cases, we felt that this metric was
too sensitive to change and susceptible to large swings following
weekends when test volume is typically down. Similarly, weekly
change was prone to the same pitfalls in many states where case
counts experience weekly seasonality with lower volume during
weekends. We eventually found that using a seven-day moving
average of new cases per 100k managed to smooth over these
types of swings without distorting the direction or strength of
new case counts. (See Figure 3.)

Figure 3
Seven-Day Moving Average of New Cases

Figure 4
Seven-Day Moving Average of New Cases Week-Over-Week

ACTUARIAL TECHNOLOGY TODAY | 4Copyright © 2020 Society of Actuaries. All rights reserved.

What’s in a Number? Considerations for Mapping the COVID-19 Pandemic

Once we settled on a more useful metric, we wanted to en-
sure that we were using the best color scheme for the graph-
ic. We started by looking for common heat map color pal-
ettes, which led us to “magma,” a popular palette in the even
more popular Matplotlib Python library. Originally, we simply
used Power BI’s out-of-the-box color gradient to represent the
lowest and highest values with darker colors representing a
higher week-over-week change. This, unfortunately, resulted
in a muddy graph that failed to highlight the hot spots. Af-
ter some testing, we found that using a simple gradient with a
soft, light pink color as the low value and an intense bright red as
the high value clearly highlighted the states that were being im-
pacted the most based on our metric. Even though magma is an
awesome color palette, and one that finds its way into many Ju-
pyter notebooks, it felt too intense for the state-level data we are
displaying here.

Next, we had to decide if we wanted to continue with the con-
tinuous gradient effect, or if we wanted to create color steps by
binning the data. Determining the number of steps requires a
balancing act between showing too many steps, which can cause
the change to seem more drastic than it really is, and showing
too few steps, which can have the opposite effect. We landed
on using four steps based on both the distribution of the week-
over-week change in the seven-day moving average as well as the
readability of the map itself. To be fair, both the gradient and the
steps for these maps make sense. If we were to show the data at
the county level, bins of color would likely be more appropriate

as you can more easily discern each small piece of the larger puz-
zle and where it stands with cases. When it comes to 50 states,
the gradient works just fine. (See Figure 5a and 5b.)

It goes without saying that there are many ways to display
data. Similar to data analysis, data visualization requires prac-
titioners to journey through a garden of forking paths. From
determining what metric to display to deciding on how best
to display it, there is no perfect way to design a data visualiza-
tion. Exploring metrics, graphics, and colors will get you closer
to your intended goal, but oftentimes the goal itself can be a
moving target. Moreover, the availability and quality of your
underlying data may lead you down a rabbit hole of developing
metrics or drill downs. For example, the visualizations in this ar-
ticle could benefit from the ability to filter by date, or the ability
to drill down to county-level detail. That said, it is imperative
to recognize when your visualization has met its intended goal.

We started out with the goal of simply developing a visualiza-
tion related to COVID-19. Instead, we found ourselves thinking
more critically about the entire process. We ultimately present-
ed our journey of using different metrics, their effect on devel-
oping an appropriate map, and how to think about making the
map as readable as possible without losing critical information
in the data. We hope to not only inspire readers to thorough-
ly consider both their data and purpose when developing any
type of visualization, but also to recognize the need to be flexi-
ble throughout the process. Being conscious of your underlying
data, the potential for errata, and how your data is prepared are

Figure 5a
7-Day Moving Average of New Cases

Figure 5b
7-Day Moving Average of New Cases Week-Over-Week

ACTUARIAL TECHNOLOGY TODAY | 5Copyright © 2020 Society of Actuaries. All rights reserved.

What’s in a Number? Considerations for Mapping the COVID-19 Pandemic

important steps in telling the data’s story. An even more import-
ant step is to tell the story.

LIMITATIONS
This article is written based on data available as of the time
of writing. The underlying data and circumstances related to
COVID-19 are subject to uncertainty, given the emerging ex-
perience of the pandemic. These data are dependent on many
factors at the state and local levels such as shelter in place orders,
availability of testing, and reporting agency capabilities. The vi-
sualizations presented herein are based on past data and are not
projections of the future. ■

This article is intended only for the purpose of approaching a data visu-
alization task and should not be used for other purposes.

Phil Ellenberg is a healthcare consultant with
Milliman. He can be reached at phil.ellenberg@
milliman.com.

Kelsie Gosser is a user experience (UX) engineer
with Milliman. She can be reached at kelsie.
gosser@milliman.com.

ENDNOTES

1 https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/
csse_covid_19_time_series/time_series_covid19_confirmed_US.csv

http://
http://

ACTUARIAL TECHNOLOGY TODAY | 6Copyright © 2020 Society of Actuaries. All rights reserved.

 OCTOBER 2020
ACTUARIAL TECHNOLOGY TODAY

TECHNOLOGY
SECTION

Coding the Future
By Alec Loudenback

“... the insurance business is perhaps the purest example of an
‘information-based’ industry—that is, an industry whose sole
activity consists of gathering, processing, and distributing infor-
mation.”—Martin Campbell-Kelly, writing about the Prudential
in the Victorian Era.1

Insurance and financial services are fundamentally information ser-
vices. To thrive, technology needs to be central to company strate-
gy and actuaries should view coding as a core competency—equal

to or more important than other “traditional” skills.

THE INSURANCE INDUSTRY: YESTERDAY,
TODAY, AND TOMORROW
It might be odd to say that technology and its use in insurance
is on a one-hundred-year cycle, but that seems to be the case.

One hundred thirty years ago, actuaries crowded into a room at
a meeting of the Actuarial Society of America to watch a demon-
stration that would revolutionize the industry: Herman Holler-
ith’s tabulating punch card machine.1

For the next half-century, the increasing automation—from
tabulating machines to early-adopting mainframes and com-
puters—was a critical competitive differentiator. Companies
like Prudential, MetLife, and others partnered with technology
companies in the development of hardware and software.2

The dramatic embodiment of this information-driven cycle was
portrayed in the infamous Billion Dollar Bubble movie, which
showcased the power and abstraction of the computer to com-
mit millions of dollars of fraud by creating and maintaining fake
insurance policies.

The movie also starts to hint at the oscillation away from the tech-
nological-competitive focus of insurance companies. I argue that
the focus on technology was lost over the last 50 years with the rise
of Wall Street finance, investment-oriented life insurance, industry

consolidation, and the explosion of financial structuring like deriv-
atives, reserve financing, or other advanced forms of reinsurance.

Value-add came from the C-Suite, not from the underlying
business processes, operations, and analysis. The result is, e.g.,
ever-more complicated reinsurance treaties layered into main-
frames and admin systems older than most of the actuaries in-
terfacing with them.

The pace of strategic value-add isn’t slowing, though it must
stretch farther (in complexity and risk) to find comparable op-
portunities as the past. Having more agile, data-oriented oper-
ations enables companies to be able to react to and implement
those opportunities. Technological value-add can improve a
company’s bottom line through lower expenses and higher top-
line growth, but often with a more favorable risk profile than
some of the “strategic” opportunities.

Today, there is a trend reverting back to technological value-cre-
ation and is evident across many traditional sectors. Tesla claims
that it’s a technology company; Amazon is the #1 product retailer
because of its vehement focus on internal information sharing3;
airlines are so dependent on their systems that the skies become
quieter on the rare occasion that their computers give way.

ACTUARIAL TECHNOLOGY TODAY | 7Copyright © 2020 Society of Actuaries. All rights reserved.

Coding the Future

The actuary of the future needs to have coding as one of
their core skills. Already today, the advances of business pro-
cesses, insurance products, and financial ingenuity are written
with lines of code—not spreadsheets. Not being able to code
necessarily means that you are following what others are doing
today.

It’s commonly accepted now that to gather insights from your
data, you need to know how to code. Similar to your data, your
business architecture, modeling needs, and product peculiarities
are often better suited to customized solutions. Why stop at data
science when learning how to solve problems with a computer?

THE 10X ACTUARY
As we swing back to a technological focus, we do not leave the
finance-driven complexity behind. The increasingly complex
business needs will highlight a large productivity difference be-
tween an actuary who can code and one who can’t—simply be-
cause the former can react, create, synthesize, and model faster
than the latter. From the efficiency of transforming administra-
tion extracts, summarizing, and aggregating valuation output,
to analyzing claims data in ways that spreadsheets simply can’t
handle, you can become a 10x Actuary.4

Flipping switches in a graphical user interface versus being able to
build models is the difference between having a surface-level fa-
miliarity and having full command over the analysis and the con-
cepts involved—with the flexibility to do what your software can’t.

Your current software might be able to perform the first layer
of analysis but be at a loss when you want to visualize, perform
sensitivity analysis, statistics, stochastic analysis, or process auto-
mation. Things that, when done programmatically, are often just
a few lines of additional code.

Do I advocate dropping the license for your software vendor?
No, not yet anyway. But the ability to supplement and break out
of the modeling box has been an increasingly important part of
most actuaries’ work.

Additionally, code-based solutions can leverage the entire tech-
nology sector’s progress to solve problems that are hard oth-
erwise: scalability, data workflows, integration across functional
areas, version control and versioning, model change governance,
reproducibility, and more.

Thirty to forty years ago, there were no vendor-supplied mod-
eling solutions, and so you had no choice but to build models
internally. This shifted with the advent of vendor-supplied mod-
eling solutions. Today, it’s never been better for companies to
leverage open source to support their custom modeling, risk
analysis/monitoring, and reporting workflows.

Why is it, that companies that are so involved in things (cars,
shopping) and physical services (flights) are so much more fo-
cused on improving their technological operations than insur-
ance companies whose very focus is “information-based”?
The market has rewarded those who have prioritized their
internal technological solutions.

Commoditized investing services and low yield environments have
reduced insurance companies’ comparative advantage to “manage
money.” Yield compression and the explosion of consumer-oriented
investment services means a more competitive focus on the ability
to manage the entire policy lifecycle efficiently (digitally), perform
more real-time analysis of experience and risk management, and
handle the growing product and regulatory complexity.

These are problems that have technological solutions and are
waiting for insurance company adoption.

Companies that treat data like coordinates on a grid (spread-
sheets) will get left behind. Two main hurdles have prevented
technology companies from breaking into insurance:

1. High regulatory barriers to entry, and

2. difficulty in selling complex insurance products without tra-
ditional distribution.

Once those two walls are breached, traditional insurance compa-
nies without a strong technology core will struggle to keep up.
The key to thriving is not just adding “developers” to an organi-
zation; it’s going to be getting domain experts like actuaries
to be an integral part of the technology transformation.

WHAT’S CODING GOT TO DO WITH THIS?
Everything. Programming is the optimal way to interact between
the computer and actuary—and importantly between comput-
er and computer. Programming is the actionable expression of
ideas, math, analysis, and information. Think of programming as
the 21st-century leap in the actuary’s toolkit, just as spreadsheets
were in the preceding 40 years, versus a spreadsheet-oriented
workflow:

• More natural automation of, and between processes,
• better reproducibility,
• scaling to fit any size dataset and workload,
• statistics and machine learning capabilities, and
• advanced visualizations to garner new views into your data.

This list isn’t comprehensive, and some benefits are subtle—
when you are code-oriented instead of spreadsheet-orient-
ed, you tend to want to structure your data in a portable and
shareable way. For example, relying more on data warehouses
instead of email attachments. This, in turn, enables data discov-
ery and insights that otherwise wouldn’t be there. Investing in a
code-oriented workflow is playing the long-game.

ACTUARIAL TECHNOLOGY TODAY | 8Copyright © 2020 Society of Actuaries. All rights reserved.

Coding the Future

Nor is the skillset described here limiting in any other aspect of
career development any more than mathematical ability, project
collaboration, or financial acumen—just to name a few.

OUTLOOK
It will increasingly be essential for companies to modernize
to remain competitive. That modernization isn’t built with
big black-box software packages; it will be with domain ex-
perts who can translate the expertise into new forms of anal-
ysis—doing it faster and more robustly than the competition.

SpaceX doesn’t just hire rocket scientists—they hire rocket sci-
entists who code.

Be an actuary who codes. ■

RISK GOVERNANCE
Code-based workflows are highly conducive to risk governance
frameworks as well. If a modern software project has all of the
following benefits, then why not a modern insurance product
and associated processes?

• Benefits of Modern Risk Governance
• Access control and approval processes.
• Version control, version management, and reproducibility.
• Continuous testing and validation of results.
• Open and transparent design.
• Minimization of manual overrides, intervention, and op-

portunity for user error.
• Automated trending analysis, system metrics, and summary

statistics.
• Continuously updated, integrated, and self-generating doc-

umentation.
• Integration with other business processes through a formal

boundary (e.g., via an API).
• Tools to manage collaboration in parallel and in sequence.

MANAGING AND LEADING THE TRANSFORMATION
The ability to understand the concepts, capabilities, challenges,
and lingo is not a dichotomy, it’s a spectrum. Most actuaries,
even at fairly high levels, are still often involved in analytical
work. Still above that, it’s difficult to lead something that you
don’t understand.

Conversely, the skill and practice of coding enhances managerial
capabilities. When you are really skilled at pulling apart a prob-
lem or process into its constituent parts and designing optimal
solutions, that’s a core attribute of leadership: Having the vision
of where the organization should be instead of thinking about
where it is now.

Alec Loudenback, FSA, MAAA, is an actuary for the Kuvare family of
companies. He can be reached at alec.loudenback@lbl.com.

ENDNOTES

1 Yates, J. (1993). Co-evolution of Information Processing Technology and Use: Interac-
tion Between the Life Insurance and Tabulating Industries [Scholarly project]. In Sloan
School of Management.

2 Yates, J. (1993). From Tabulators to Early Computers in the U.S. Life Insurance Industry:
Co-evolution and Continuities [Scholarly project]. In Sloan School of Management.

3 Mason, R. (2017, August 25). Have you had your Bezos moment? What you can learn
from Amazon. Retrieved 2020, from https://www.cio.com/article/3218667/have-you-
had-your-bezos-moment-what-you-can-learn-from-amazon.html

4 Brikman, Y. (2013, September 29). The 10x developer is NOT a myth. Retrieved 2020,
from https://www.ybrikman.com/writing/2013/09/29/the-10x-developer-is-not-myth/

mailto:alec.loudenback%40lbl.com?subject=
https://www.cio.com/article/3218667/have-you-had-your-bezos-moment-what-you-can-learn-from-amazon.html
https://www.cio.com/article/3218667/have-you-had-your-bezos-moment-what-you-can-learn-from-amazon.html
https://www.ybrikman.com/writing/2013/09/29/the-10x-developer-is-not-myth/

ACTUARIAL TECHNOLOGY TODAY | 9Copyright © 2020 Society of Actuaries. All rights reserved.

 OCTOBER 2020
ACTUARIAL TECHNOLOGY TODAY

Julia for Actuaries
By Alec Loudenback

I have suggested that actuaries who are competent coders will
differentiate both themselves and the companies they work
for. Coding ability will be useful no matter what tools you

utilize every day (e.g., Python/R/C++/etc. and associated pack-
ages) and all of those tools and communities contribute to mov-
ing actuarial processes out of the “Spreadsheet Age.”

There’s a newer programming language called Julia, and in this
article, I’d like to state why Julia is worth considering for actu-
arial work.

JULIA OVERVIEW
Julia is relatively new1, and it shows. It is evident in its prag-
matic, productivity-focused design choices, pleasant syntax, rich
ecosystem, thriving communities, and its ability to be both very
general purpose and power cutting edge computing.

With Julia: math-heavy code looks like math; it’s easy to pick
up, and quick-to-prototype. Packages are well-integrated, with
excellent visualization libraries and pragmatic design choices.

Julia’s popularity continues to grow across many fields and
there’s a growing body of online references and tutorials, videos,
and print media to learn from.

Large financial services companies have already started realizing
gains: BlackRock’s Aladdin portfolio modeling, the Federal Re-
serve’s economic simulations, and Aviva’s Solvency II-compliant
modeling. The last of these has a great talk on YouTube by Avi-
va’s Tim Thornham, which showcases an on-the-ground view
of what difference the right choice of technology and program-
ming language can make. Moving from their vendor-supplied
modeling solution was 1000x faster, took 1/10 the amount of
code, and was implemented 10x faster.2

The language is not just great for data science—but also model-
ing, ETL, visualizations, package control/version management,

machine learning, string manipulation, web-backends, and many
other use cases.

FOR THE ACTUARY
Julia is well suited for actuarial work: easy to read and write and
very performant for large amounts of data/modeling.

Expressiveness and Syntax
Expressiveness is the manner in which and scope of ideas and
concepts that can be represented in a programming language.
Syntax refers to how the code looks on the screen and its read-
ability.

In a language with high expressiveness and pleasant syntax, you:

• Go from idea in your head to final product faster.
• Encapsulate concepts naturally and write concise functions.
• Compose functions and data naturally.
• Focus on the end-goal instead of fighting the tools.

Expressiveness can be hard to explain, but perhaps two short ex-
amples will illustrate.

TECHNOLOGY
SECTION

https://www.youtube.com/watch?v=__gMirBBNXY

ACTUARIAL TECHNOLOGY TODAY | 10Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

Example: Retention Analysis
This is a really simple example relating Cessions, Policys, and
Lives to do simple retention analysis.

First, let’s define our data:

Define our data structures
struct Life
 policies
end

struct Policy
 face
 cessions
 end

struct Cession
 ceded
end

Now to calculate amounts retained. First, let’s say what
retention means for a Policy:

define retention
function retained(pol::Policy)
 pol.face - sum(cession.ceded for
 cession in pol.cessions)
end

And then what retention means for a Life:

function retained(l::Life)
 sum(retained(policy) for policy in
life.policies)
end

It’s almost exactly how you’d specify it in English. No joins, no
boilerplate, no fiddling with complicated syntax. You can express
ideas and concepts the way that you think of them, not, for ex-
ample, as a series of dataframe joins or as row/column coordi-
nates on a spreadsheet.

We defined retained and adapted it to mean related, but
different things depending on the specific context. That is, we
didn’t have to define retained_life(...) and retained_
pol(...) because Julia can be dispatched based on what you
give it. This is, as some would call it, unreasonably effective.

Let’s use the above code in practice then.

The julia> syntax indicates that we’ve moved into Julia’s interac-
tive mode (REPL mode):

create two policies with two and one
cessions respectively
julia> pol_1 = Policy(1000, [
Cession(100), Cession(500)])

julia> pol_2 = Policy(2500, [
Cession(1000)])

create a life, which has the two
policies
julia> life = Life([pol_1, pol_2])

julia> retained(pol_1)
400

julia> retained(life)
1900

And for the last trick, something called “broadcasting,” which
automatically vectorizes any function you write, no need to
write loops or create if statements to handle a single versus re-
peated case:

julia> retained.(life.policies) # re-
tained amount for each policy
[400 , 1500]

Example: Random Sampling
As another motivating example showcasing multiple dispatch,
here’s random sampling in Julia, R, and Python.

We generate 100:
• Uniform random numbers
• standard normal random numbers
• Bernoulli random number
• Random samples with a given set

https://juliaactuary.org/blog/julia-actuaries/#example_retention_analysis
https://www.youtube.com/watch?v=kc9HwsxE1OY

ACTUARIAL TECHNOLOGY TODAY | 11Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

Julia R Python

using Distributions

rand(100)

rand(Normal(), 100)

rand(Bernoulli(0.5), 100)

rand([“Preferred”,

”Standard”],100)

runif(100)

rnorm(100)

rbern(100,0.5)

sample(c(“Preferred”,

”Standard”), 100,

replace=TRUE)

import scipy.stats as sps

import numpy as np

sps.uniform.rvs(size=100)

sps.norm.rvs(size=100)

sps.bernoulli.rvs(p=0.5,size=100)

np.random.choice

([“Preferred”,”Standard”],size=100)

By understanding the different types of things passed to rand(), it maintains the same syntax across a variety of different scenar-
ios. We could define rand(Cession) and have it generate a random Cession like we used above.

Julia packages you are using are almost always written in pure
Julia: you can see what’s going on, learn from them, or even con-
tribute a package of your own!

More of Julia’s Benefits
Julia is easy to write, learn, and be productive in:

• It’s free and open-source
 » Very permissive licenses, facilitating the use in com-

mercial environments (same with most packages)
• Large and growing set of available packages
• Write how you like because it’s multi-paradigm: vectoriz-

able (R), object-oriented (Python), functional (Lisp), or de-
tail-oriented (C)

• Built-in package manager, documentation, and testing-li-
brary

• Jupyter Notebook support (it’s in the name! Julia-Python-R)
• Many small, nice things that add up:

 » Unicode characters like α or β
 » Nice display of arrays
 » Simple anonymous function syntax
 » Wide range of text editor support
 » First-class support for missing values across the entire

language
 » Literate programming support (like R-Markdown)

• Built-in Dates package that makes working with dates
pleasant

• Ability to directly call and use R and Python code/packages
with the PyCall and RCall packages

• Error messages are helpful and tell you what line the error
came from, not just the type of error

• Debugger functionality so you can step through your code
line by line

For power-users, advanced features are easily accessible: paral-
lel programming, broadcasting, types, interfaces, metaprogram-
ming, and more.

These are some of the things that make Julia one of the world’s
most loved languages on the StackOverflow Developer Survey.

The Speed
Julia is also fast. As the journal Nature said, “Come for the Syn-
tax, Stay for the Speed.”

Recall the Solvency II compliance that ran 1000x faster than the
prior vendor solution mentioned earlier: what does it mean to
be 1000x faster at something? It’s the difference between some-
thing taking 10 seconds instead of three hours—or one hour
instead of 42 days.

What analysis would you like to do if it took less time? A
stochastic analysis of life-level claims? Machine learning
with your experience data? Daily valuation instead of quar-
terly?

Speaking from experience, speed is not just great for production
time improvements. During development, it’s really helpful too.
When building something, I can see that I messed something up
in a couple of seconds instead of 20 minutes. The build, test, fix,
iteration cycle goes faster this way.

Admittedly, most workflows don’t see a 1000x speedup, but 10x
to 1000x is a very common range of speed differences versus R
or Python or MATLAB.

Sometimes you will see less of a speed difference; R and Python
have already circumvented this and written much core code
in low-level languages. This is an example of what’s called the
“two-language” problem where the language productive to write
in isn’t very fast. For example, more than half of R packages use
C/C++/Fortran and core packages in Python like Pandas, Py-
Torch, NumPy, SciPy, etc., do this too.

Within the bounds of the optimized R/Python libraries, you can
leverage this work. Extending it can be difficult: what if you have
a custom retention management system running on millions of
policies every night?

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages
https://www.nature.com/articles/d41586-019-02310-3
https://developer.r-project.org/Blog/public/2019/03/28/use-of-c---in-packages/
https://developer.r-project.org/Blog/public/2019/03/28/use-of-c---in-packages/

ACTUARIAL TECHNOLOGY TODAY | 12Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

For those who are enterprise-minded: in addition to the liber-
al licensing mentioned above, there are professional products
from organizations like Julia Computing that provide hands-on
support, training, IT governance solutions, behind-the-firewall
package management, and deployment/scaling assistance.

The Tradeoff
Julia is fast because it’s compiled, unlike R and Python where
(loosely speaking) the computer just reads one line at a time.
Julia compiles code “just-in-time”: right before you use a func-
tion for the first time, it will take a moment to pre-process the
code section for the machine. Subsequent calls don’t need to be
re-compiled and are very fast.

A hypothetical example: running 10,000 stochastic projections
where Julia needs to precompile but then runs each 10x faster:

• Julia runs in two minutes: the first projection takes one sec-
ond to compile and run, but each 9,999 remaining projec-
tions only take 10ms.

• Python runs in 17 minutes: 100ms of a second for each
computation.

Typically, the compilation is very fast (milliseconds), but in the
most complicated cases it can be several seconds. One of these
is the “time-to-first-plot” issue because it’s the most common
one users encounter: super-flexible plotting libraries have a lot
of things to pre-compile. So, in the case of plotting, it can take
several seconds to display the first plot after starting Julia, but
then it’s remarkably quick and easy to create an animation of
your model results. The time-to-first plot is a solvable problem
that’s receiving a lot of attention from the core developers and
will get better with future Julia releases.

For users working with a lot of data or complex calculations (like
actuaries!), the runtime speedup is worth a few seconds at the start.

Package Ecosystem
Using packages as dependencies in your project is assisted by
Julia’s bundled package manager.

For each project, you can track the exact set of dependencies
and replicate the code/process on another machine or another
time. In R or Python, dependency management is notoriously
difficult and it’s one of the things that the Julia creators wanted
to fix from the start.

Packages can be one of the thousands of publicly available, or
private packages hosted internally behind a firewall.

Another powerful aspect of the package ecosystem is that due
to the language design, packages can be combined/extended in
ways that are difficult for other common languages. This means

that Julia packages often interop without any additional coordi-
nation.

For example, packages that operate on data tables work without
issue together in Julia. In R/Python, many features tend to come
bundled in a giant singular package like Python’s Pandas which
has Input/Output, date manipulation, plotting, resampling, and
more. There’s a new Consortium for Python Data API Stan-
dards that seeks to harmonize the different packages in Python
to make them more consistent (R’s Tidyverse plays a similar role
in coordinating their subset of the package ecosystem).

In Julia, packages tend to be more plug-and-play. For example,
every time you want to load a CSV you might not want to trans-
form the data into a dataframe (maybe you want a matrix or a
plot instead). To load data into a dataframe, in Julia the prac-
tice is to use both the CSV and DataFrames packages, which
help separate concerns. Some users may prefer the Python/R
approach of less modular but more all-inclusive packages.

Some highlighted/recommended packages:

• Actuarial Specific (part of the JuliaActuary.org umbrella3)
 » MortalityTables—Common tables and parametric

models with survivorship calculations
 » ActuaryUtilities—Robust and fast calculations for

common functions
 » LifeContingencies—Insurance, annuity, premium,

and reserve maths.
• Data Science and Statistics

 » DataFrames—Work with datasets; similar to R’s data.
table and able to handle much larger datasets than Py-
thon’s Pandas4

 » Distributions—Common and exotic statistical distri-
butions

 » GLM—Generalized Linear Models
 » Turing—Bayesian statistics like STAN
 » Gen—Probabilistic programming
 » OnlineStats—Single-pass algorithms for real-time/

large data
 » CSV—The fastest CSV reader
 » ODBC—Database Connections
 » Dates—Robust date types and functions

• Machine Learning
 » Flux—Elegant, GPU-powered ML
 » Knet—Deep learning framework
 » MLJ—ML models

• Notebooks
 » IJulia—the Julia kernel for Jupyter notebooks
 » Pluto—reactive/interactive notebooks that address

some of the biggest complaints with Jupyter
• Visualization

 » Plots—Powerful but user-friendly plots and animations
 » Queryverse—Tidyverse-like data manipulation and

plotting

https://juliacomputing.com/
http://JuliaActuary.org

ACTUARIAL TECHNOLOGY TODAY | 13Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

• Dashboards
 » Plot.ly Dash

• Miscellaneous
 » Optim—Uni/Multivariate function optimization
 » LinearAlgebra—Built-in library for working with ar-

rays/matrices
 » JuMP—Linear, Nonlinear, and other advanced optimi-

zation
 » CUDA—GPU programming made easier
 » Revise—Edit code while you work on it

• Interoperability
 » PyCall—use existing Python code/libraries inside Julia
 » RCall—use existing R code/libraries inside Julia

• Web
 » HTTP—Core web utilities
 » Genie—Full application framework
 » Franklin—Flexible Static Site Generator

• Documentation
 » Weave/Literate—Literate programming like RMark-

down
 » Documenter—Write your documentation as com-

ments to your code and produce full docpages

And finally, some general resources to get started:

• JuliaLang.org, the home site with the downloads to get
started and links to learning resources.

• JuliaHub indexes open-source Julia packages and makes the
entire ecosystem and documentation searchable from one
place.

• JuliaAcademy, which has free short courses in Data Science,
Introduction to Julia, DataFrames.jl, Machine Learning,
and more.

• Data Wrangling with DataFrames Cheat Sheet

• Learn Julia in Y minutes, a great quick-start if you are al-
ready comfortable with coding.

• Think Julia, a free e-book (or paid print edition) that intro-
duces programming from the start and teaches you valuable
ways of thinking.

• Design Patterns and Best Practices, a book that will help
you as you transition from smaller, one-off scripts to de-
signing larger packages and projects.

CONCLUSION
Looking at other great tools like R and Python, it can be difficult
to summarize a single reason to motivate a switch to Julia, but
hopefully this article piqued an interest to try it for your next
project.

In an earlier article, I talked about becoming a 10x Actuary
which meant being proficient in the language of computers so
that you could build and implement great things. In a large way,
the choice of tools and paradigms shape your focus. Productivity
is one aspect, expressiveness is another, speed one more. There
are many reasons to think about what tools you use and trying
out different ones is probably the best way to find what works
best for you.

It is said that you cannot fully conceptualize something unless
your language has a word for it. Similar to spoken language, you
may find that breaking out of spreadsheet coordinates (and even
a dataframe-centric view of the world) reveals different ques-
tions to ask and enables innovated ways to solve problems. In
this way, you reward your intellect while building more mean-
ingful and relevant models and analysis. ■

ENDNOTES

1 Python first appeared in 1990. R is an implementation of S, which was created in
1976, though depending on when you want to place the start of an independent R
project varies (1993, 1995, and 2000 are alternate dates). The history of these lan-
guages is long and substantial changes have occurred since these dates.

2 Julia Computing. (2017). Aviva Solvency II Compliance. Retrieved June 04, 2020, from
https://juliacomputing.com/case-studies/aviva.html

3 The author of this article contributes to JuliaActuary.

4 H20 AI. (2020). Database-like ops benchmark. Retrieved October 04, 2020, from
https://h2oai.github.io/db-benchmark/

Alec Loudenback, FSA, MAAA, is an actuary for the Kuvare family of
companies. He can be reached at alec.loudenback@lbl.com.

http://JuliaLang.org
https://juliahub.com/ui/Home
https://juliaacademy.com/courses
https://ahsmart.com/pub/data-wrangling-with-data-frames-jl-cheat-sheet/
https://learnxinyminutes.com/docs/julia/
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://www.packtpub.com/product/hands-on-design-patterns-and-best-practices-with-julia/9781838648817
https://juliacomputing.com/case-studies/aviva.html
https://h2oai.github.io/db-benchmark/
mailto:alec.loudenback%40lbl.com?subject=

	What’s in a Number?Considerations forMapping the COVID-19PandemicBy Phil Ellenberg and Kelsie Gosser
	Coding the FutureBy Alec Loudenback
	Julia for ActuariesBy Alec Loudenback

