

Article from
Actuary of the Future
October 2020

ACTUARIAL TECHNOLOGY TODAY | 9Copyright © 2020 Society of Actuaries. All rights reserved.

 OCTOBER 2020
ACTUARIAL TECHNOLOGY TODAY

Julia for Actuaries
By Alec Loudenback

I have suggested that actuaries who are competent coders will
differentiate both themselves and the companies they work
for. Coding ability will be useful no matter what tools you

utilize every day (e.g., Python/R/C++/etc. and associated pack-
ages) and all of those tools and communities contribute to mov-
ing actuarial processes out of the “Spreadsheet Age.”

There’s a newer programming language called Julia, and in this
article, I’d like to state why Julia is worth considering for actu-
arial work.

JULIA OVERVIEW
Julia is relatively new1, and it shows. It is evident in its prag-
matic, productivity-focused design choices, pleasant syntax, rich
ecosystem, thriving communities, and its ability to be both very
general purpose and power cutting edge computing.

With Julia: math-heavy code looks like math; it’s easy to pick
up, and quick-to-prototype. Packages are well-integrated, with
excellent visualization libraries and pragmatic design choices.

Julia’s popularity continues to grow across many fields and
there’s a growing body of online references and tutorials, videos,
and print media to learn from.

Large financial services companies have already started realizing
gains: BlackRock’s Aladdin portfolio modeling, the Federal Re-
serve’s economic simulations, and Aviva’s Solvency II-compliant
modeling. The last of these has a great talk on YouTube by Avi-
va’s Tim Thornham, which showcases an on-the-ground view
of what difference the right choice of technology and program-
ming language can make. Moving from their vendor-supplied
modeling solution was 1000x faster, took 1/10 the amount of
code, and was implemented 10x faster.2

The language is not just great for data science—but also model-
ing, ETL, visualizations, package control/version management,

machine learning, string manipulation, web-backends, and many
other use cases.

FOR THE ACTUARY
Julia is well suited for actuarial work: easy to read and write and
very performant for large amounts of data/modeling.

Expressiveness and Syntax
Expressiveness is the manner in which and scope of ideas and
concepts that can be represented in a programming language.
Syntax refers to how the code looks on the screen and its read-
ability.

In a language with high expressiveness and pleasant syntax, you:

• Go from idea in your head to final product faster.
• Encapsulate concepts naturally and write concise functions.
• Compose functions and data naturally.
• Focus on the end-goal instead of fighting the tools.

Expressiveness can be hard to explain, but perhaps two short ex-
amples will illustrate.

TECHNOLOGY
SECTION

https://www.youtube.com/watch?v=__gMirBBNXY

ACTUARIAL TECHNOLOGY TODAY | 10Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

Example: Retention Analysis
This is a really simple example relating Cessions, Policys, and
Lives to do simple retention analysis.

First, let’s define our data:

Define our data structures
struct Life
 policies
end

struct Policy
 face
 cessions
 end

struct Cession
 ceded
end

Now to calculate amounts retained. First, let’s say what
retention means for a Policy:

define retention
function retained(pol::Policy)
 pol.face - sum(cession.ceded for
 cession in pol.cessions)
end

And then what retention means for a Life:

function retained(l::Life)
 sum(retained(policy) for policy in
life.policies)
end

It’s almost exactly how you’d specify it in English. No joins, no
boilerplate, no fiddling with complicated syntax. You can express
ideas and concepts the way that you think of them, not, for ex-
ample, as a series of dataframe joins or as row/column coordi-
nates on a spreadsheet.

We defined retained and adapted it to mean related, but
different things depending on the specific context. That is, we
didn’t have to define retained_life(...) and retained_
pol(...) because Julia can be dispatched based on what you
give it. This is, as some would call it, unreasonably effective.

Let’s use the above code in practice then.

The julia> syntax indicates that we’ve moved into Julia’s interac-
tive mode (REPL mode):

create two policies with two and one
cessions respectively
julia> pol_1 = Policy(1000, [
Cession(100), Cession(500)])

julia> pol_2 = Policy(2500, [
Cession(1000)])

create a life, which has the two
policies
julia> life = Life([pol_1, pol_2])

julia> retained(pol_1)
400

julia> retained(life)
1900

And for the last trick, something called “broadcasting,” which
automatically vectorizes any function you write, no need to
write loops or create if statements to handle a single versus re-
peated case:

julia> retained.(life.policies) # re-
tained amount for each policy
[400 , 1500]

Example: Random Sampling
As another motivating example showcasing multiple dispatch,
here’s random sampling in Julia, R, and Python.

We generate 100:
• Uniform random numbers
• standard normal random numbers
• Bernoulli random number
• Random samples with a given set

https://juliaactuary.org/blog/julia-actuaries/#example_retention_analysis
https://www.youtube.com/watch?v=kc9HwsxE1OY

ACTUARIAL TECHNOLOGY TODAY | 11Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

Julia R Python

using Distributions

rand(100)

rand(Normal(), 100)

rand(Bernoulli(0.5), 100)

rand([“Preferred”,

”Standard”],100)

runif(100)

rnorm(100)

rbern(100,0.5)

sample(c(“Preferred”,

”Standard”), 100,

replace=TRUE)

import scipy.stats as sps

import numpy as np

sps.uniform.rvs(size=100)

sps.norm.rvs(size=100)

sps.bernoulli.rvs(p=0.5,size=100)

np.random.choice

([“Preferred”,”Standard”],size=100)

By understanding the different types of things passed to rand(), it maintains the same syntax across a variety of different scenar-
ios. We could define rand(Cession) and have it generate a random Cession like we used above.

Julia packages you are using are almost always written in pure
Julia: you can see what’s going on, learn from them, or even con-
tribute a package of your own!

More of Julia’s Benefits
Julia is easy to write, learn, and be productive in:

• It’s free and open-source
 » Very permissive licenses, facilitating the use in com-

mercial environments (same with most packages)
• Large and growing set of available packages
• Write how you like because it’s multi-paradigm: vectoriz-

able (R), object-oriented (Python), functional (Lisp), or de-
tail-oriented (C)

• Built-in package manager, documentation, and testing-li-
brary

• Jupyter Notebook support (it’s in the name! Julia-Python-R)
• Many small, nice things that add up:

 » Unicode characters like α or β
 » Nice display of arrays
 » Simple anonymous function syntax
 » Wide range of text editor support
 » First-class support for missing values across the entire

language
 » Literate programming support (like R-Markdown)

• Built-in Dates package that makes working with dates
pleasant

• Ability to directly call and use R and Python code/packages
with the PyCall and RCall packages

• Error messages are helpful and tell you what line the error
came from, not just the type of error

• Debugger functionality so you can step through your code
line by line

For power-users, advanced features are easily accessible: paral-
lel programming, broadcasting, types, interfaces, metaprogram-
ming, and more.

These are some of the things that make Julia one of the world’s
most loved languages on the StackOverflow Developer Survey.

The Speed
Julia is also fast. As the journal Nature said, “Come for the Syn-
tax, Stay for the Speed.”

Recall the Solvency II compliance that ran 1000x faster than the
prior vendor solution mentioned earlier: what does it mean to
be 1000x faster at something? It’s the difference between some-
thing taking 10 seconds instead of three hours—or one hour
instead of 42 days.

What analysis would you like to do if it took less time? A
stochastic analysis of life-level claims? Machine learning
with your experience data? Daily valuation instead of quar-
terly?

Speaking from experience, speed is not just great for production
time improvements. During development, it’s really helpful too.
When building something, I can see that I messed something up
in a couple of seconds instead of 20 minutes. The build, test, fix,
iteration cycle goes faster this way.

Admittedly, most workflows don’t see a 1000x speedup, but 10x
to 1000x is a very common range of speed differences versus R
or Python or MATLAB.

Sometimes you will see less of a speed difference; R and Python
have already circumvented this and written much core code
in low-level languages. This is an example of what’s called the
“two-language” problem where the language productive to write
in isn’t very fast. For example, more than half of R packages use
C/C++/Fortran and core packages in Python like Pandas, Py-
Torch, NumPy, SciPy, etc., do this too.

Within the bounds of the optimized R/Python libraries, you can
leverage this work. Extending it can be difficult: what if you have
a custom retention management system running on millions of
policies every night?

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages
https://www.nature.com/articles/d41586-019-02310-3
https://developer.r-project.org/Blog/public/2019/03/28/use-of-c---in-packages/
https://developer.r-project.org/Blog/public/2019/03/28/use-of-c---in-packages/

ACTUARIAL TECHNOLOGY TODAY | 12Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

For those who are enterprise-minded: in addition to the liber-
al licensing mentioned above, there are professional products
from organizations like Julia Computing that provide hands-on
support, training, IT governance solutions, behind-the-firewall
package management, and deployment/scaling assistance.

The Tradeoff
Julia is fast because it’s compiled, unlike R and Python where
(loosely speaking) the computer just reads one line at a time.
Julia compiles code “just-in-time”: right before you use a func-
tion for the first time, it will take a moment to pre-process the
code section for the machine. Subsequent calls don’t need to be
re-compiled and are very fast.

A hypothetical example: running 10,000 stochastic projections
where Julia needs to precompile but then runs each 10x faster:

• Julia runs in two minutes: the first projection takes one sec-
ond to compile and run, but each 9,999 remaining projec-
tions only take 10ms.

• Python runs in 17 minutes: 100ms of a second for each
computation.

Typically, the compilation is very fast (milliseconds), but in the
most complicated cases it can be several seconds. One of these
is the “time-to-first-plot” issue because it’s the most common
one users encounter: super-flexible plotting libraries have a lot
of things to pre-compile. So, in the case of plotting, it can take
several seconds to display the first plot after starting Julia, but
then it’s remarkably quick and easy to create an animation of
your model results. The time-to-first plot is a solvable problem
that’s receiving a lot of attention from the core developers and
will get better with future Julia releases.

For users working with a lot of data or complex calculations (like
actuaries!), the runtime speedup is worth a few seconds at the start.

Package Ecosystem
Using packages as dependencies in your project is assisted by
Julia’s bundled package manager.

For each project, you can track the exact set of dependencies
and replicate the code/process on another machine or another
time. In R or Python, dependency management is notoriously
difficult and it’s one of the things that the Julia creators wanted
to fix from the start.

Packages can be one of the thousands of publicly available, or
private packages hosted internally behind a firewall.

Another powerful aspect of the package ecosystem is that due
to the language design, packages can be combined/extended in
ways that are difficult for other common languages. This means

that Julia packages often interop without any additional coordi-
nation.

For example, packages that operate on data tables work without
issue together in Julia. In R/Python, many features tend to come
bundled in a giant singular package like Python’s Pandas which
has Input/Output, date manipulation, plotting, resampling, and
more. There’s a new Consortium for Python Data API Stan-
dards that seeks to harmonize the different packages in Python
to make them more consistent (R’s Tidyverse plays a similar role
in coordinating their subset of the package ecosystem).

In Julia, packages tend to be more plug-and-play. For example,
every time you want to load a CSV you might not want to trans-
form the data into a dataframe (maybe you want a matrix or a
plot instead). To load data into a dataframe, in Julia the prac-
tice is to use both the CSV and DataFrames packages, which
help separate concerns. Some users may prefer the Python/R
approach of less modular but more all-inclusive packages.

Some highlighted/recommended packages:

• Actuarial Specific (part of the JuliaActuary.org umbrella3)
 » MortalityTables—Common tables and parametric

models with survivorship calculations
 » ActuaryUtilities—Robust and fast calculations for

common functions
 » LifeContingencies—Insurance, annuity, premium,

and reserve maths.
• Data Science and Statistics

 » DataFrames—Work with datasets; similar to R’s data.
table and able to handle much larger datasets than Py-
thon’s Pandas4

 » Distributions—Common and exotic statistical distri-
butions

 » GLM—Generalized Linear Models
 » Turing—Bayesian statistics like STAN
 » Gen—Probabilistic programming
 » OnlineStats—Single-pass algorithms for real-time/

large data
 » CSV—The fastest CSV reader
 » ODBC—Database Connections
 » Dates—Robust date types and functions

• Machine Learning
 » Flux—Elegant, GPU-powered ML
 » Knet—Deep learning framework
 » MLJ—ML models

• Notebooks
 » IJulia—the Julia kernel for Jupyter notebooks
 » Pluto—reactive/interactive notebooks that address

some of the biggest complaints with Jupyter
• Visualization

 » Plots—Powerful but user-friendly plots and animations
 » Queryverse—Tidyverse-like data manipulation and

plotting

https://juliacomputing.com/
http://JuliaActuary.org

ACTUARIAL TECHNOLOGY TODAY | 13Copyright © 2020 Society of Actuaries. All rights reserved.

Julia for Actuaries

• Dashboards
 » Plot.ly Dash

• Miscellaneous
 » Optim—Uni/Multivariate function optimization
 » LinearAlgebra—Built-in library for working with ar-

rays/matrices
 » JuMP—Linear, Nonlinear, and other advanced optimi-

zation
 » CUDA—GPU programming made easier
 » Revise—Edit code while you work on it

• Interoperability
 » PyCall—use existing Python code/libraries inside Julia
 » RCall—use existing R code/libraries inside Julia

• Web
 » HTTP—Core web utilities
 » Genie—Full application framework
 » Franklin—Flexible Static Site Generator

• Documentation
 » Weave/Literate—Literate programming like RMark-

down
 » Documenter—Write your documentation as com-

ments to your code and produce full docpages

And finally, some general resources to get started:

• JuliaLang.org, the home site with the downloads to get
started and links to learning resources.

• JuliaHub indexes open-source Julia packages and makes the
entire ecosystem and documentation searchable from one
place.

• JuliaAcademy, which has free short courses in Data Science,
Introduction to Julia, DataFrames.jl, Machine Learning,
and more.

• Data Wrangling with DataFrames Cheat Sheet

• Learn Julia in Y minutes, a great quick-start if you are al-
ready comfortable with coding.

• Think Julia, a free e-book (or paid print edition) that intro-
duces programming from the start and teaches you valuable
ways of thinking.

• Design Patterns and Best Practices, a book that will help
you as you transition from smaller, one-off scripts to de-
signing larger packages and projects.

CONCLUSION
Looking at other great tools like R and Python, it can be difficult
to summarize a single reason to motivate a switch to Julia, but
hopefully this article piqued an interest to try it for your next
project.

In an earlier article, I talked about becoming a 10x Actuary
which meant being proficient in the language of computers so
that you could build and implement great things. In a large way,
the choice of tools and paradigms shape your focus. Productivity
is one aspect, expressiveness is another, speed one more. There
are many reasons to think about what tools you use and trying
out different ones is probably the best way to find what works
best for you.

It is said that you cannot fully conceptualize something unless
your language has a word for it. Similar to spoken language, you
may find that breaking out of spreadsheet coordinates (and even
a dataframe-centric view of the world) reveals different ques-
tions to ask and enables innovated ways to solve problems. In
this way, you reward your intellect while building more mean-
ingful and relevant models and analysis. ■

ENDNOTES

1 Python first appeared in 1990. R is an implementation of S, which was created in
1976, though depending on when you want to place the start of an independent R
project varies (1993, 1995, and 2000 are alternate dates). The history of these lan-
guages is long and substantial changes have occurred since these dates.

2 Julia Computing. (2017). Aviva Solvency II Compliance. Retrieved June 04, 2020, from
https://juliacomputing.com/case-studies/aviva.html

3 The author of this article contributes to JuliaActuary.

4 H20 AI. (2020). Database-like ops benchmark. Retrieved October 04, 2020, from
https://h2oai.github.io/db-benchmark/

Alec Loudenback, FSA, MAAA, is an actuary for the Kuvare family of
companies. He can be reached at alec.loudenback@lbl.com.

http://JuliaLang.org
https://juliahub.com/ui/Home
https://juliaacademy.com/courses
https://ahsmart.com/pub/data-wrangling-with-data-frames-jl-cheat-sheet/
https://learnxinyminutes.com/docs/julia/
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://www.packtpub.com/product/hands-on-design-patterns-and-best-practices-with-julia/9781838648817
https://juliacomputing.com/case-studies/aviva.html
https://h2oai.github.io/db-benchmark/
mailto:alec.loudenback%40lbl.com?subject=

	Julia for ActuariesBy Alec Loudenback

