

Article from

The Modeling Platform

November 2020

THE MODELING PLATFORM | 6Copyright © 2020 Society of Actuaries. All rights reserved.

 NOVEMBER 2020
THE MODELING PLATFORM

MODELING
SECTION

The Importance of
Centralization of Actuarial
Modeling Functions, Part 4
DevOps and Automated Model
Governance
By Bryon Robidoux

This is the fourth and last article dedicated to providing
guidance and a road map for centralizing modeling with-
in the organization. This series shows how simple over-

looked behaviors, which appear harmless at the lowest level of
the corporation, are causing tons of organizational complexity,
time and money when aggregated across the organization.

In Part 1 of this article, software engineering principles were
used to show that decentralizing models comes with extremely
high cost. It showed that centralization of a modeling depart-
ment is a step in the correct direction, but it is not enough. The
key to running a smaller, better, faster and cheaper modeling
department is to focus on modularity and work-product reuse
according to software engineering principles. Part 2 introduced
the reader to the major components of DevOps and how it is
the basis for actuarial modernization. Part 3 explained how to
build a data-driven Axis model for the most amount of data reuse
and automation possible. Lastly, this article addresses how to use
DevOps with the Formula Table code within Axis to increase
the quality of the models and the throughput of new enhance-
ments to help overcome the monolithic-system problem. It will
do so by focusing on the tools used to implement a full stack of
DevOps for Axis model code.

Even though specific tools are mentioned in this article, it is
not an endorsement. These are tools that I have used in the past
and am familiar with. It also makes the explanation less abstract
to use actual tools as examples. It is highly recommended that
readers research other tools before jumping on board with the

tools mentioned. Your IT department is probably already using
these types of tools and should be consulted.

PUTTING IT ALL TOGETHER
Let us step back and look at the big picture on what these arti-
cles have been trying to accomplish. A colleague explained that
there are two types of models: thick and thin. A thick model is
when all the work is performed and stored inside the model. A
thin model is created when all work is performed and stored ex-
ternal to the model. Furthermore, only at the last possible min-
ute before runtime is the model assembled and executed.

The thick model is the root cause of the monolithic-system
problem. These previous articles explained that current actuarial
modeling practices create models that are as thick and dense as
the Messier 87 black hole.

Event Horizon Telescope Collaboration. Photo courtesy NASA/JPL-Caltech.

The real goal should be to create models that are razor thin.
Thin models promote building reusable components so that
the organization can achieve economies of scale by maximiz-
ing work-product reuse and using Agile project management.
Therefore, they promote the consolidation of the modeling
function.

Thin models are important because they allow actuaries to
use the best tools for the job so they can efficiently build ro-
bust processes and models. They allow the modeling platform
vendors to stay concentrated on building software, where they
have a competitive advantage. Modeling vendors should strive
to make third-party DevOps tools as easy as possible for actu-
aries to use so that their work products seamlessly plug into the

https://sections.soa.org/publication/?m=59904&i=629391&view=articleBrowser&article_id=3514489
https://sections.soa.org/publication/?m=59904&i=657359&view=articleBrowser&article_id=3652590
http://digitaleditions.walsworthprintgroup.com/publication/?i=662792&article_id=3692369&view=articleBrowser&ver=html5

THE MODELING PLATFORM | 7Copyright © 2020 Society of Actuaries. All rights reserved.

The Importance of Centralization of Actuarial Modeling Functions, Part 4

ceptance tests (UAT) that can be performed and the more stable
the model will be to change. (For a more detailed article on how
to clean up formula tables while data is being extracted, read
“Building a Modularized and Reusable Formula Table Code in
Moody’s Axis Using Formula Link.”)

SETTING UP THE IDE
Each Visual Studio solution should be divided into two proj-
ects. One is for the API library that Axis will call. The other is
a unit-testing project that references a unit-testing framework
such as NUnit. NUnit is available to all developers through Vi-
sual Studio’s NuGet Package Manager. NuGet Package Manag-
er allows users to easily manage all their references to both in-
ternal and external libraries. Within the unit-testing framework,
there should exist both unit test and UAT to facilitate automa-
tion for continuous testing.

CONTINUOUS TESTING
NUnit allows the developer to write automated tests that can be
run in and out of the IDE all external of Axis; once the code is
in the Axis model, it becomes much harder and time consuming
to test and find problems. By testing in the IDE using Axis, the
developer can get feedback in milliseconds instead of minutes,
hours or days.

Actuaries should strive to perform test-driven development
(TDD). TDD requires that the developers, testing team and
stakeholders supply data and tests that the developer must pass
before the code can be developed for and released to the Axis
model. The test becomes part of the design process at the be-
ginning of the project instead of an afterthought on the back
side after development is complete. This greatly speeds up the
development cycle because stakeholders cannot produce a list of
impossible requirements. They must provide the tests for vali-
dating requirements, which leads to a conversation about fea-
sibility. Further, this forces the model design to be modular, so
that all functionality can be easily tested. This mode of working
works nicely within an Agile project management framework.
Once the testing team receives the library, it can focus on inte-
gration testing to make sure the model and libraries are working
together properly.

To better perform model life cycle practices and testing, it is
recommended to use SpecFlow with NUnit for behavior-driven
development (BDD). BDD aims to create a shared understand-
ing of how an application should behave by discovering new
features based on concrete examples. Key examples are then
formalized with natural language, called Gherkin, following a
given/when/then structure. SpecFlow helps teams bind automa-
tion to feature files and share the resulting examples as living
documentation across the team and stakeholders. To produce
nice-looking testing documentation, Pickles can be used along
with SpecFlow. Pickles is a living documentation generator: it
takes your specifications (written in Gherkin, with Markdown
descriptions) and turns them into an always up-to-date docu-

IT infrastructure. This will give actuaries and IT the ability to
work harmoniously together to achieve new levels of efficiency.
This will promote the entire organization to implement contin-
uous testing, integration, development, deployment and other
DevOps practices. An organization that could pull this off would
dominate the industry because it could make more informed de-
cisions and execute faster.

AXIS BACKGROUND
Non-Axis users may need a frame of reference for its two ma-
jor components: E-Link and the dataset. E-Link’s main goal is
to manage the collection of the organization’s models and or-
chestrate their execution. It has a very Windows Explorer feel.
E-Link can be automated with scripts to externally manipulate
datasets and customize orchestration using Axis Jobs and E-Link
scripts, respectively. One of the most important enhancements
to E-Link in the past three years or so is Formula Link. This
extension allows users to create reusable libraries that can be
shared among multiple models and E-Link scripts.

Formula Link was a necessary enhancement that allows the out-
side world’s libraries to be referenced from within the Axis world
and shared among all datasets. I highly prefer Axis because all its
customization uses the Microsoft .NET language. This opens a
whole new world of possibilities because a plethora of DevOps
tools become immediately available once the code is extracted
and then referenced through Formula Link. With a little cre-
ativity and planning, it is possible to make a thin model.

There are two types of custom code in an Axis: code that heavi-
ly interfaces with Axis and mostly stand-alone calculation code.
The former should stay in code snippets in Formula Link for
maximum reuse and is beyond the scope of this article. The lat-
ter is where this article is targeting because it can be transformed
into external reusable libraries. These libraries can use the full
stack of DevOps tools that IT uses.

CODE EXTRACTION
The first step of thinning the model is externalizing all the for-
mula table code to a Dynamic Link Library (DLL) with an inte-
grated development environment (IDE), such as Visual Studio,
outside of the model and Moody’s environment. DLLs are no
harder to write than a code snippet in the Axis dataset. Given
that Axis uses VB.NET as its preferred language, the formula
tables can be moved over to Visual Studio library solution with
ease. It all depends on how much the calculations are tied to
functions on the Input, Output and Common tabs of the formu-
la table in Axis.

The code remaining in the formula table should be only what
is defined as pump-and-dump code. It should be the minimal
amount of code possible to pump data out of the formula table
input variables, shove into the external library or libraries and
dump back into Axis output variables. The less code that exists in
the formula tables, the more automated unit testing and user ac-

http://digitaleditions.walsworthprintgroup.com/publication/?i=667935&article_id=3750009&view=articleBrowser&ver=html5
http://digitaleditions.walsworthprintgroup.com/publication/?i=667935&article_id=3750009&view=articleBrowser&ver=html5

THE MODELING PLATFORM | 8Copyright © 2020 Society of Actuaries. All rights reserved.

The Importance of Centralization of Actuarial Modeling Functions, Part 4

mentation of the current state of your model or software and in
a variety of formats. Results produced by Pickles become docu-
mentation and communication to auditors, controllers and vali-
dators on how each unit of the model must behave.

REFACTORING
Now that testing is set up, it is time to clean up the code! Jet-
Brains Resharper is a Visual Studio plug-in for refactoring code
and making it easier to read, abstract and organize. Refactoring
should never be done as a separate project. It should be done
every time the code is touched. Now that the unit tests are avail-
able, the developer can move around code and change the model
without worrying about changing results. Code and models are
just like bushes: They need to be constantly pruned and main-
tained in order stay looking their best. Otherwise, they will get
unruly and it will require a large job to get back in order.

AUTOMATED STANDARDS ENFORCEMENT
All aspects of the model should have standards that are followed.
Standards enforcement and code review are very manual and te-
dious processes inside the Axis model. Visual Studio has another
plug-in called SonarLint, which statically analyzes code for stan-
dards compliance and coding styles that will potentially cause
bugs. It will enforce that the actuaries’ code is written to the
corporate IT standards. This plug-in boils a one- or two-week
code review process down to one minute! This also makes sure
that standards are uniformly applied across the organization.
This reduces the slower manual standards enforcement process-
es to the bigger-picture architecture issues and avoids manual
standards on the high-velocity minutiae.

DOCUMENTATION
Now that the code is better, cleaner, tested and up to standards,
it is important to document it. This is where a plug-in like VS-
docman will come in handy. In Visual Studio, if you use three
comment characters in a row, it will generate XML tags catego-
rized by common types of documentation. VSdocman will use
these XML tags to generate professional-looking documenta-
tion that resembles Microsoft’s code documentation. There is
even a switch to allow the actuary to include the code with the
documentation, so the library calculations are completely trans-
parent. (These documentation XML tags are also available in
Formula Link, but there is no utility like VSdocman within Axis
to export them, unfortunately.) VSdocman has a stand-alone
application that accepts command-line parameters, so it can be
called independently of Visual Studio to generate documenta-
tion and export to a wiki.

Now that the code is cleaned up and documented, it needs to be
version controlled.

VERSION CONTROL
Git and GitHub were created so open-source developers could
collaborate on writing code, regardless of location. GitHub is
the graphical user interface that sits on top of Git to make it

more user friendly. Git handles the versioning and pushing and
pulling changes to the server. It has everything an actuary could
want for controlling code and tracking changes in repositories.
All modern IDEs will have plug-ins to make Git easy to use for
the most common tasks. Git has built-in model steward func-
tionality, called a pull request, to sign off and approve changes
to a development branch before it can be merged to the master
branch. The changes can be annotated so everyone can get a
clear understanding of their purpose.

TRACKING WORK
JIRA allows all members of the modeling team to track the
progress of a project and its development tasks. They have many
canned reports, which makes adopting Agile project manage-
ment much easier. The actuary can put any files, comments, de-
cisions or other information that are relevant to the task into a
ticket. This ties together the evolution of the code with the evo-
lution of the task that created it. It is very handy to go back and
look at the JIRA to find all the details on why a set of changes
occurred in the code and how ambiguities in requirements were
resolved.

CONTINUOUS INTEGRATION
Now it is time to integrate the DLL library with the model. All
the Visual Studio plug-ins I explained earlier, except Resharper,
can be executed in a server environment in a DevOps pipeline,
such as Jenkins Pipeline. Jenkins Pipeline—with the execution
of a script—will:

• download the library’s repository from GitHub,
• compile it,
• version it,
• execute the review with SonarLint’s companion SonarQube,

and
• run all unit tests and UAT.

These are the same unit tests built into the Visual Studio project.
Once the code passes all the automated review and automated
tests, the pipeline will:

• generate the documentation with VSdocman and update
the wiki,

• store the DLL in a work product repository like Artifactory,
which in turn makes them available in NuGet Package
Manager,

• move the DLL from the insurance organization to the
Moody’s environment,

• use an E-Link script to import the DLL into a Formula
Link library, and

• use E-Link to import the Formula Link library into a
dataset.

This will make using the external DLL library as seamless as if
it were a code snippet created in Axis. To link external libraries
through Formula Link, there is a little setup required.

THE MODELING PLATFORM | 9Copyright © 2020 Society of Actuaries. All rights reserved.

The Importance of Centralization of Actuarial Modeling Functions, Part 4

1. The DLL and its dependencies must be stored within a
folder within the Formula Link library.

2. The AssemblyInfoAndReferences file inside the Formula
Link library must be modified with the following comment-
ed line ‘REFERENCE_DST folder\your.DLL, where

 REFERENCE_DST is an Axis keyword,
 folder is the name of the folder in the Formula Link

 library, and
 your.DLL is the name of DLL to be called from the

 Formula Link library.

The AssemblyInfoAndReference file is what makes this article pos-
sible. It is the most valuable feature of Formula Link!

CONTINUOUS DEPLOYMENT
When deploying changes, there needs to be:

• user-based privileges in Jenkins,
• landing locations in the Moody’s environment and
• Formula Link libraries for each development, QA and pro-

duction environment.

For example, if a developer built a development branch of a li-
brary in Jenkins, it would land in a development folder in the
Moody’s environment, be loaded into the development Formula
Link library and be loaded to a development dataset. A tester
would have the same process, but the library would be moved
to the equivalent QA instances. Once QA is finished, only the
head model steward can approve the pull request into the master
GitHub branch and build the master branch on Jenkins. The
library would then land in the production folder in the Moody’s
environment, be placed in the production Formula Link library
and be loaded into the master dataset. There needs to be a For-
mula Link library for each environment; otherwise, all the de-
velopment, QA and production changes would be stacked on
top of each other. This is annoying to maintain and does not
scale well.

CONCLUSION
It is important to externalize the code and build libraries to
eliminate the monolithic-system problem. But once there is an
effort to do this, as the article demonstrates, the massive quan-
tity of software engineering tools at the actuary’s disposal will

make development much easier by automating unit tests, UAT,
refactoring, documentation, enforcement of standards, inte-
gration and deployment of code into the Axis dataset. All these
enhancements will speed up throughput of model features, im-
mensely improve model governance and make the development
way more agile.

The third-party tools mentioned in this article are used by mil-
lions of developers, so they are robust and easy to use. They are
constantly enhanced to improve the efficiency of developers. It
is important that actuaries have the same access to these tools to
make them as efficient as possible. Somewhere, somehow and
someway, actuaries have diverged from using software engineer-
ing tools. It is imperative that we close this gap sooner rather
than later to manage the changes instigated by competition and
regulation. n

Bryon Robidoux, FSA, CERA, is an actuary at The
Standard. He can be reached at bryon.robidoux@
standard.com.

TECHNOLOGY WEBSITES

Artifactory. https://jfrog.com/artifactory/.

Confluence. https://www.atlassian.com/software/confluence.

Git. https://git-scm.com/.

GitHub. https://github.com/.

Jenkins Pipelines. https://jenkins.io/doc/book/pipeline/.

JIRA. https://www.atlassian.com/software/jira.

NuGet Package Manager. https://www.nuget.org/.

NUnit. https://nunit.org/.

Pickles. http://www.picklesdoc.com/.

Resharper. https://www.jetbrains.com/resharper/?fromMenu.

SonarLint. https://www.sonarlint.org/.

SonarQube. https://www.sonarqube.org/.

SpecFlow. https://specflow.org/.

Visual Studio. https://visualstudio.microsoft.com/free-developer-offers/.

VSdocman. https://www.helixoft.com/vsdocman/overview.html.

mailto:bryon.robidoux%40standard.com?subject=
mailto:bryon.robidoux%40standard.com?subject=
https://jfrog.com/artifactory/
https://www.atlassian.com/software/confluence
https://git-scm.com/
https://github.com/
https://jenkins.io/doc/book/pipeline/
https://www.atlassian.com/software/jira
https://www.nuget.org/
https://nunit.org/
http://www.picklesdoc.com/
https://www.jetbrains.com/resharper/?fromMenu
https://www.sonarlint.org/
https://www.sonarqube.org/
https://specflow.org/
https://visualstudio.microsoft.com/free-developer-offers/
https://www.helixoft.com/vsdocman/overview.html

	Insights Into Life PBRModeling PracticesBy Haley Jeorgesen and Dylan Strother
	Five Surprising Benefitsof Actuarial ModelConversionBy Stephan Mathys
	The Importance ofCentralization of ActuarialModeling Functions, Part 4DevOps and Automated ModelGovernanceBy Bryon Robidoux

