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An R Package for 
Experience Studies
By Matthew Caseres

Significant effort is required to transform actuarial data 
from a raw format into a format that can be used for the 
calculation of decrement rates or average premiums. The 

expstudies R package was developed to aid in transforming raw 
data into assumptions. 

This package relies on dplyr, a popular R package with highly 
optimized algorithms for data manipulation. Functions that had 
no obvious dplyr implementation were written in C++ for high 
performance. Using this package on a desktop computer, I have 
been able to handle millions of rows of data without issue. 

The package is open source and is available on GitHub and can 
be installed using Comprehensive R Archive Network (CRAN) 
with install.packages(’expstudies’). The package 
is in version 0.0.5 so there are still improvements to make. 
The official package documentation is at https:/actuarialanalyst.
github.io/expstudies/.

HOW TO READ THIS ARTICLE
There is some R code in this article, in grey boxes. If you don’t 
read the grey boxes at all, everything will make sense from just 
reading the non-code text so don’t worry if you don’t know R. 
The table below the code displays the output from running the 
code. In this case, “records” is a variable in our environment, 
and we are displaying its value.

 records

Policy 
Number

Issue  
Date

Termination 
Date

Issue  
Age Gender

B10251C8 2010-04-10 2019-04-04 35 M
D68554D5 2005-01-01 2019-04-04 30 F

These records are used for demonstration purposes in this arti-
cle. We assume a data format with a unique policy number, issue 
date, termination date, issue age and gender.

CREATING EXPOSURES
The raw data has a single row per policy. For calculations, we 
would like multiple rows per policy where each row represents 
an interval of time where the policy was in force. The addExpo-
sures function does this. By default, exposure rows are created 
for each policy year.

 addExposures(records)

Policy 
Number

Policy  
Date

Start 
Interval

End 
Interval

B10251C8 1 2010-04-10 2011-04-09
B10251C8 2 2010-04-10 2011-04-09
B10251C8 3 2010-04-10 2011-04-09

     Note: Table has been truncated

ADDEXPOSURES() ARGUMENTS
To allow for greater user control, there are arguments that con-
trol the creation of the exposure data frame.

Type
We can partition experience by policy month using the type 
argument with type = “PM”.

 addExposures(records, type = “PM”)

Policy 
Number

Policy 
Year

Policy 
Month

Start  
Interval End Interval

B10251C8 1 1 2010-04-10 2010-05-09
B10251C8 1 2 2010-05-10 2010-06-09
B10251C8 1 3 2010-06-10 2010-07-09

   Note: Table has been truncated

Policy years cross multiple calendar years and we might need to 
do an analysis filtering by both exact calendar year and policy 
year. This can be accomplished using type = “PYCY”.

 addExposures(records, type = "PYCY")

Policy 
Number

Policy 
Year

Start 
Interval

End 
Interval

B10251C8 1 2010-04-10 2010-12-31

B10251C8 1 2011-01-01 2011-04-09

B10251C8 2 2011-04-10 2011-12-31

    Note: Table has been truncated

There are also options for policy year with calendar month, pol-
icy month with calendar year, and policy month with calendar 
month. The following table shows output for policy month with 
calendar year.
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 addExposures(records, type = "PMCY")

Policy 
Number

Policy 
Year

Policy 
Month

Start  
Interval

End 
Interval

     Note: Table has been truncated

B10251C8 1 8 2010-11-10 2010-12-09

B10251C8 1 9 2010-12-10 2010-12-31

B10251C8 1 9 2011-01-01 2011-01-09

B10251C8 1 10 2011-01-10 2011-02-09

       Note: Table has been truncated

Lower_Year
The lower_year argument allows for left truncation by calendar 
year. Exposure rows will only be created if the interval contains 
no dates from years below the lower_year argument. This can 
reduce computation time and memory use. 

addExposures(records,type="PY",lower_year=2017)

Policy 
Number

Policy  
Year

Start  
Interval

End  
Interval

B10251C8 8 2017-04-10 2018-04-09

B10251C8 9 2018-04-10 2019-04-04

D68554D5 13 2017-01-01 2017-12-31

D68554D5 14 2018-01-01 2018-12-31

D68554D5 15 2019-01-01 2019-04-04

Determine Output Size Before Calling addExposures() 
Using expSize()
The expSize function calculates an upper bound for the number 
of rows created by a call to addExposures but doesn’t create the 
exposures. The expSize function runs faster and uses less mem-
ory than addExposures for large outputs so it can be useful.

 expSize(records, type = "PY")

Upper Bound on 
Output Size

25

Joining Additional Information to Exposures
The call to addExposures removed the issue age and gender 
fields. We add these fields back by joining our original records 
to the created exposures using the policy number as the join 
criterion. In the next section, we discuss how to join by both a 
policy number and date.

Policy 
Number

Policy 
Year

Start  
Interval

End 
Interval

Issue  
Age Gender

B10251C8 1 2010-04-10 2011-04-09 35 M

B10251C8 2 2011-04-10 2012-04-09 35 M

B10251C8 3 2012-04-10 2013-04-09 35 M
   Note: Table has been truncated

PREMIUM PATTERN
Suppose we would like to analyze premium pattern by policy 
month for some transaction data.

 trans

Policy 
Number

Transaction 
Date Amount

B10251C8 2012-12-04 199
B10251C8 2013-12-28 197
B10251C8 2015-12-30 177

      Note: Table has been truncated

We create monthly exposures called exposures_PM using the 
addExposures function. Later we join aggregated transaction 
data to these exposures.

exposures_PM<-addExposures(records,type="PM")

exposures_PM

Policy 
Number

Policy  
Year

Policy 
Month

Start  
Interval

End  
Interval

B10251C8 1 1 2010-04-10 2010-05-09
B10251C8 1 2 2010-05-10 2010-06-09
B10251C8 1 3 2010-06-10 2010-07-09

   Note: Table has been truncated

Allocating Transactions
The addStart function adds a start interval column to the trans-
action data that corresponds to the correct start interval from 
the exposure data frame. The start interval and policy number 
columns specify what row of the exposures_PM data frame a 
transaction should be allocated to.

trans_with_interval <- addStart(trans,exposures_PM)

trans_with_interval

Start  
Interval

Policy  
Number

Transaction 
Date Amount

2010-05-10 B10251C8 2010-05-28 190
2010-06-10 B10251C8 2010-07-04 189
2010-11-10 B10251C8 2010-11-21 179

    Note: Table has been truncated
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We can group and aggregate transactions by policy num-
ber and issue date to get transaction totals for intervals in 
exposures_PM.

 trans_to_join <- trans_with_interval %>%

   group_by(̀ Start Interval̀ , `Policy Number̀ ) %>%

   summarise(̀ Total Amount` = sum(Amount))

 trans_to_join

Start  
Interval

Policy  
Number

Total  
Amount

2005-06-01 D68554D5 97
2005-10-01 D68554D5 169
2005-12-01 D68554D5 96

      Note: Table has been truncated

Then we can left join the aggregated transactions to the exposures 
data frame with join criteria of policy number and start interval. 

Policy 
Number

Policy 
Year

Policy 
Month

Start 
Interval

End
Interval

Total 
Amount

B10251C8 1 1 2010-04-10 2010-05-09 NA

B10251C8 1 2 2010-05-10 2010-06-09 190

B10251C8 1 3 2010-06-10 2010-07-09 189

B10251C8 1 4 2010-07-10 2010-08-09 NA
   Note: Table has been truncated

We then fill in NA values with zero.

Policy 
Number

Policy 
Year

Policy 
Month

Start 
Interval

End
Interval

Total 
Amount

B10251C8 1 1 2010-04-10 2010-05-09 0

B10251C8 1 2 2010-05-10 2010-06-09 190

B10251C8 1 3 2010-06-10 2010-07-09 189

B10251C8 1 4 2010-07-10 2010-08-09 0

    Note: Table has been truncated

Now we are done with the data wrangling; from here it is not 
hard to calculate things like average premium per policy year 
or policy month. We can even export this data as a .csv to 
make dashboards in a business intelligence tool.

Other Uses for addStart()
Suppose we were interested in the last non-zero monthly 
premium paid by a policy. We left join the aggregated pre-
miums to the exposure frame as we did before. This time 
we fill in NA values with the previous paid premium instead 
of 0. The first interval is NA because there are no prior 
premiums.

Policy 
Number

Policy 
Year

Policy 
Month

Start 
Interval

End 
Interval

Total 
Amount

B10251C8 1 1 2010-04-10 2010-05-09 NA

B10251C8 1 2 2010-05-10 2010-06-09 190

B10251C8 1 3 2010-06-10 2010-07-09 189

B10251C8 1 4 2010-07-10 2010-08-09 189

B10251C8 1 5 2010-08-10 2010-09-09 189

B10251C8 1 6 2010-09-10 2010-10-09 189

   Note: Table has been truncated

Data manipulations like this can engineer features for anything 
varying with time like account values, guarantees or planned 
premiums.

DECREMENT RATES
Calculating mortality and lapse rates is not difficult once we 
have created the exposure data frame. In the following example, 
we calculate the exposure as 

 
(#Days in Interval)

365.25 .
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It is not difficult to add a death indicator and use a full exposure 
in the year of death for performing a mortality study.

Policy 
Number

Policy 
Year

Start 
Interval

End 
Interval Exposure

Death 
Count

 Note: Table has been truncated

D68554D5 12 2016-01-01 2016-12-31 1.002 0
D68554D5 13 2017-01-01 2017-12-31 0.9993 0
D68554D5 14 2018-01-01 2018-12-31 0.9993 0
D68554D5 15 2019-01-01 2019-04-04 1 1

We then aggregate by duration to calculate mortality rates.

 exposures_mort %>%

   group_by(̀ Policy Year̀ ) %>%

   summarise(q = sum(̀ Death Count )̀/

   sum(̀ Exposurè ))

Policy Year q

Note: Table has been truncated
8 0
9 0.5002

10 0
11 0
12 0
13 0
14 0
15 1

Expected Mortality
Some mortality tables have been loaded to the package in 
an easy-to-join format so that users can conduct an actual to 
expected analysis.

expstudies::mortality_tables

mortality_tables

 AM92

 GAM1983

 UP1984

 VBT2015_SmokerDistinct_ALB

 CSO2017_Loaded_PreferredStructure_ALB

We view the AM92 Ultimate table.

 mortality_tables$AM92$AM92_Ultimate

Attained 
Age q Ultimate

19 0.000587

20 0.000582

21 0.000577

22 0.000572

23 0.000569

Note: Table has been truncated

We can join the mortality table to a data frame using the 
attained age as the join criterion for actual to expected analysis 
of calculated rates.

OPPORTUNITIES
It would not be difficult to implement the methods in this pack-
age in Python using pandas. In R, Python or Apache Spark, there 
is potential for running really large experience studies by paral-
lelizing calculations. It would be nice if there was a framework 
for experience study calculations that has been reviewed by many 
people so that others are comfortable relying on the framework.

There is a question I am curious about the answer to. For a 
given data set and product specification, about would different 
organizations produce materially different models? I don’t think 
there is much room for difference in lapse/mortality rate imple-
mentations, but there are many approaches that can be taken for 
something like premium pattern. Should we classify policies into 
separate premium schedules based on some combination of char-
acteristics? Should we model future premiums as a percentage of 
planned premium? I think it would be interesting to have some 
sample data sets and people can produce and share simple univer-
sal life models in Excel or Python to compare different modeling 
practices. I don’t think there is much research in the field that is 
fully reproducible due to data privacy concerns and proprietary 
modeling systems, so there is lots of work that can be done. In the 
future maybe actuarial organizations will sponsor things like open 
source economic scenario generators or open source models. ■

Matthew Caseres is an actuarial analyst at Ameritas. 
He can be reached at matthew.caseres@ameritas.
com and on GitHub at github.com/ActuarialAnalyst.




