

Article from
The Modeling Platform
November 2019
Issue 10

 NOVEMBER 2019 THE MODELING PLATFORM | 31

An R Package for
Experience Studies
By Matthew Caseres

Significant effort is required to transform actuarial data
from a raw format into a format that can be used for the
calculation of decrement rates or average premiums. The

expstudies R package was developed to aid in transforming raw
data into assumptions.

This package relies on dplyr, a popular R package with highly
optimized algorithms for data manipulation. Functions that had
no obvious dplyr implementation were written in C++ for high
performance. Using this package on a desktop computer, I have
been able to handle millions of rows of data without issue.

The package is open source and is available on GitHub and can
be installed using Comprehensive R Archive Network (CRAN)
with install.packages(’expstudies’). The package
is in version 0.0.5 so there are still improvements to make.
The official package documentation is at https:/actuarialanalyst.
github.io/expstudies/.

HOW TO READ THIS ARTICLE
There is some R code in this article, in grey boxes. If you don’t
read the grey boxes at all, everything will make sense from just
reading the non-code text so don’t worry if you don’t know R.
The table below the code displays the output from running the
code. In this case, “records” is a variable in our environment,
and we are displaying its value.

 records

Policy
Number

Issue
Date

Termination
Date

Issue
Age Gender

B10251C8 2010-04-10 2019-04-04 35 M
D68554D5 2005-01-01 2019-04-04 30 F

These records are used for demonstration purposes in this arti-
cle. We assume a data format with a unique policy number, issue
date, termination date, issue age and gender.

CREATING EXPOSURES
The raw data has a single row per policy. For calculations, we
would like multiple rows per policy where each row represents
an interval of time where the policy was in force. The addExpo-
sures function does this. By default, exposure rows are created
for each policy year.

 addExposures(records)

Policy
Number

Policy
Date

Start
Interval

End
Interval

B10251C8 1 2010-04-10 2011-04-09
B10251C8 2 2010-04-10 2011-04-09
B10251C8 3 2010-04-10 2011-04-09

 Note: Table has been truncated

ADDEXPOSURES() ARGUMENTS
To allow for greater user control, there are arguments that con-
trol the creation of the exposure data frame.

Type
We can partition experience by policy month using the type
argument with type = “PM”.

 addExposures(records, type = “PM”)

Policy
Number

Policy
Year

Policy
Month

Start
Interval End Interval

B10251C8 1 1 2010-04-10 2010-05-09
B10251C8 1 2 2010-05-10 2010-06-09
B10251C8 1 3 2010-06-10 2010-07-09

 Note: Table has been truncated

Policy years cross multiple calendar years and we might need to
do an analysis filtering by both exact calendar year and policy
year. This can be accomplished using type = “PYCY”.

 addExposures(records, type = "PYCY")

Policy
Number

Policy
Year

Start
Interval

End
Interval

B10251C8 1 2010-04-10 2010-12-31

B10251C8 1 2011-01-01 2011-04-09

B10251C8 2 2011-04-10 2011-12-31

 Note: Table has been truncated

There are also options for policy year with calendar month, pol-
icy month with calendar year, and policy month with calendar
month. The following table shows output for policy month with
calendar year.

32 | NOVEMBER 2019 THE MODELING PLATFORM

An R Package for Experience Studies

 addExposures(records, type = "PMCY")

Policy
Number

Policy
Year

Policy
Month

Start
Interval

End
Interval

 Note: Table has been truncated

B10251C8 1 8 2010-11-10 2010-12-09

B10251C8 1 9 2010-12-10 2010-12-31

B10251C8 1 9 2011-01-01 2011-01-09

B10251C8 1 10 2011-01-10 2011-02-09

 Note: Table has been truncated

Lower_Year
The lower_year argument allows for left truncation by calendar
year. Exposure rows will only be created if the interval contains
no dates from years below the lower_year argument. This can
reduce computation time and memory use.

addExposures(records,type="PY",lower_year=2017)

Policy
Number

Policy
Year

Start
Interval

End
Interval

B10251C8 8 2017-04-10 2018-04-09

B10251C8 9 2018-04-10 2019-04-04

D68554D5 13 2017-01-01 2017-12-31

D68554D5 14 2018-01-01 2018-12-31

D68554D5 15 2019-01-01 2019-04-04

Determine Output Size Before Calling addExposures()
Using expSize()
The expSize function calculates an upper bound for the number
of rows created by a call to addExposures but doesn’t create the
exposures. The expSize function runs faster and uses less mem-
ory than addExposures for large outputs so it can be useful.

 expSize(records, type = "PY")

Upper Bound on
Output Size

25

Joining Additional Information to Exposures
The call to addExposures removed the issue age and gender
fields. We add these fields back by joining our original records
to the created exposures using the policy number as the join
criterion. In the next section, we discuss how to join by both a
policy number and date.

Policy
Number

Policy
Year

Start
Interval

End
Interval

Issue
Age Gender

B10251C8 1 2010-04-10 2011-04-09 35 M

B10251C8 2 2011-04-10 2012-04-09 35 M

B10251C8 3 2012-04-10 2013-04-09 35 M
 Note: Table has been truncated

PREMIUM PATTERN
Suppose we would like to analyze premium pattern by policy
month for some transaction data.

 trans

Policy
Number

Transaction
Date Amount

B10251C8 2012-12-04 199
B10251C8 2013-12-28 197
B10251C8 2015-12-30 177

 Note: Table has been truncated

We create monthly exposures called exposures_PM using the
addExposures function. Later we join aggregated transaction
data to these exposures.

exposures_PM<-addExposures(records,type="PM")

exposures_PM

Policy
Number

Policy
Year

Policy
Month

Start
Interval

End
Interval

B10251C8 1 1 2010-04-10 2010-05-09
B10251C8 1 2 2010-05-10 2010-06-09
B10251C8 1 3 2010-06-10 2010-07-09

 Note: Table has been truncated

Allocating Transactions
The addStart function adds a start interval column to the trans-
action data that corresponds to the correct start interval from
the exposure data frame. The start interval and policy number
columns specify what row of the exposures_PM data frame a
transaction should be allocated to.

trans_with_interval <- addStart(trans,exposures_PM)

trans_with_interval

Start
Interval

Policy
Number

Transaction
Date Amount

2010-05-10 B10251C8 2010-05-28 190
2010-06-10 B10251C8 2010-07-04 189
2010-11-10 B10251C8 2010-11-21 179

 Note: Table has been truncated

 NOVEMBER 2019 THE MODELING PLATFORM | 33

We can group and aggregate transactions by policy num-
ber and issue date to get transaction totals for intervals in
exposures_PM.

 trans_to_join <- trans_with_interval %>%

 group_by(̀ Start Interval̀ , `Policy Number̀) %>%

 summarise(̀ Total Amount` = sum(Amount))

 trans_to_join

Start
Interval

Policy
Number

Total
Amount

2005-06-01 D68554D5 97
2005-10-01 D68554D5 169
2005-12-01 D68554D5 96

 Note: Table has been truncated

Then we can left join the aggregated transactions to the exposures
data frame with join criteria of policy number and start interval.

Policy
Number

Policy
Year

Policy
Month

Start
Interval

End
Interval

Total
Amount

B10251C8 1 1 2010-04-10 2010-05-09 NA

B10251C8 1 2 2010-05-10 2010-06-09 190

B10251C8 1 3 2010-06-10 2010-07-09 189

B10251C8 1 4 2010-07-10 2010-08-09 NA
 Note: Table has been truncated

We then fill in NA values with zero.

Policy
Number

Policy
Year

Policy
Month

Start
Interval

End
Interval

Total
Amount

B10251C8 1 1 2010-04-10 2010-05-09 0

B10251C8 1 2 2010-05-10 2010-06-09 190

B10251C8 1 3 2010-06-10 2010-07-09 189

B10251C8 1 4 2010-07-10 2010-08-09 0

 Note: Table has been truncated

Now we are done with the data wrangling; from here it is not
hard to calculate things like average premium per policy year
or policy month. We can even export this data as a .csv to
make dashboards in a business intelligence tool.

Other Uses for addStart()
Suppose we were interested in the last non-zero monthly
premium paid by a policy. We left join the aggregated pre-
miums to the exposure frame as we did before. This time
we fill in NA values with the previous paid premium instead
of 0. The first interval is NA because there are no prior
premiums.

Policy
Number

Policy
Year

Policy
Month

Start
Interval

End
Interval

Total
Amount

B10251C8 1 1 2010-04-10 2010-05-09 NA

B10251C8 1 2 2010-05-10 2010-06-09 190

B10251C8 1 3 2010-06-10 2010-07-09 189

B10251C8 1 4 2010-07-10 2010-08-09 189

B10251C8 1 5 2010-08-10 2010-09-09 189

B10251C8 1 6 2010-09-10 2010-10-09 189

 Note: Table has been truncated

Data manipulations like this can engineer features for anything
varying with time like account values, guarantees or planned
premiums.

DECREMENT RATES
Calculating mortality and lapse rates is not difficult once we
have created the exposure data frame. In the following example,
we calculate the exposure as

(#Days in Interval)

365.25 .

34 | NOVEMBER 2019 THE MODELING PLATFORM

An R Package for Experience Studies

It is not difficult to add a death indicator and use a full exposure
in the year of death for performing a mortality study.

Policy
Number

Policy
Year

Start
Interval

End
Interval Exposure

Death
Count

 Note: Table has been truncated

D68554D5 12 2016-01-01 2016-12-31 1.002 0
D68554D5 13 2017-01-01 2017-12-31 0.9993 0
D68554D5 14 2018-01-01 2018-12-31 0.9993 0
D68554D5 15 2019-01-01 2019-04-04 1 1

We then aggregate by duration to calculate mortality rates.

 exposures_mort %>%

 group_by(̀ Policy Year̀) %>%

 summarise(q = sum(̀ Death Count)̀/

 sum(̀ Exposurè))

Policy Year q

Note: Table has been truncated
8 0
9 0.5002

10 0
11 0
12 0
13 0
14 0
15 1

Expected Mortality
Some mortality tables have been loaded to the package in
an easy-to-join format so that users can conduct an actual to
expected analysis.

expstudies::mortality_tables

mortality_tables

 AM92

 GAM1983

 UP1984

 VBT2015_SmokerDistinct_ALB

 CSO2017_Loaded_PreferredStructure_ALB

We view the AM92 Ultimate table.

 mortality_tables$AM92$AM92_Ultimate

Attained
Age q Ultimate

19 0.000587

20 0.000582

21 0.000577

22 0.000572

23 0.000569

Note: Table has been truncated

We can join the mortality table to a data frame using the
attained age as the join criterion for actual to expected analysis
of calculated rates.

OPPORTUNITIES
It would not be difficult to implement the methods in this pack-
age in Python using pandas. In R, Python or Apache Spark, there
is potential for running really large experience studies by paral-
lelizing calculations. It would be nice if there was a framework
for experience study calculations that has been reviewed by many
people so that others are comfortable relying on the framework.

There is a question I am curious about the answer to. For a
given data set and product specification, about would different
organizations produce materially different models? I don’t think
there is much room for difference in lapse/mortality rate imple-
mentations, but there are many approaches that can be taken for
something like premium pattern. Should we classify policies into
separate premium schedules based on some combination of char-
acteristics? Should we model future premiums as a percentage of
planned premium? I think it would be interesting to have some
sample data sets and people can produce and share simple univer-
sal life models in Excel or Python to compare different modeling
practices. I don’t think there is much research in the field that is
fully reproducible due to data privacy concerns and proprietary
modeling systems, so there is lots of work that can be done. In the
future maybe actuarial organizations will sponsor things like open
source economic scenario generators or open source models. ■

Matthew Caseres is an actuarial analyst at Ameritas.
He can be reached at matthew.caseres@ameritas.
com and on GitHub at github.com/ActuarialAnalyst.

