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Abstract: In this project, we study the issue of gender disparity in mortality improvement trends. We first
develop a statistical test to examine the extent of such disparity for different age groups, and then apply
the proposed test to mortality data from various Asia-Pacific countries. Our preliminary results indicate
that there exists a significant long-term divergence in mortality improvement trends between genders, and
the extent of such a divergence depends on age and geographical location. For example, in Japan gender
disparity is more significant at retirement ages, but in China working age groups are experiencing stronger
gender disparity. We further develop an adapted Lee-Carter model that captures the gender disparity found
in the statistical test. The proposed model is then used to investigate the impact of gender disparity in
mortality improvement trends on life insurers in the region, particularly that concerning gender-neutral
pricing of life insurance and annuity products.

Keywords: Gender disparity; Asia-Pacific countries; Mortality improvement trends; Gender-neutral pricing

1 Introduction

Gender is one important factor in life insurance pricing and valuation. Starting in 2013, life insurers in Eu-
ropean Union (EU) member states are prohibited to factor gender into life insurance and annuity premiums,
and need to charge the same price to male and female for the same insurance products.1 This rule is known
as gender-neutral pricing in insurance, and may have a number of implications on actuarial practices. For
example, a gender-neutral premium on a life insurance could cause female to pay a higher rate than male,
while the lower rate for male could make this life insurance more attractive to male, which in turn leads to ad-
verse selection. A similar gender-neutral pricing rule also exists in the auto insurance industry in California,
USA.2

Related to the practice of gender-neutral pricing, gender disparity in mortality rates and mortality im-
provement trends is another influential matter in life insurance pricing and valuation. It is well-known that
female tends to have a lower mortality rate than male at the same age. However, this difference in mortality

1Factsheet: EU rules on gender-neutral pricing in insurance
2California Prohibits Auto Insurance Companies From Considering Gender When Setting Prices
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rate between male and female might be changing over time, and more importantly the rate of change could
be age-dependent and population-specific. Consequently, life insurance products issued to different age
groups and populations might be affected differently by the practice of gender-neutral pricing. In this paper,
we study the implications of gender-neutral pricing and gender disparity in the Asia-Pacific life insurance
industries.

We aim to achieve three objectives. The first objective is to develop a method to test the statistical
significance of gender disparity in mortality improvement trends. Considering mortality data from various
Asia-Pacific countries, our preliminary results reveal that there exists a significant long-term divergence in
mortality improvement trends between genders, and the extent of such a divergence depends on age and
geographical location. The test results suggest that existing stochastic mortality models for forecasting
mortality of males and females simultaneously should be adapted; in particular, the usual assumption of
coherence (non-divergence) must be reconsidered.

The second objective is to construct a modified version of the Li-Lee model for gender-specific mortal-
ity modeling, on the basis of the gender disparity in mortality improvements that is identified through the
mentioned statistical test. We make the modeling framework flexible enough so that the projected mortal-
ity improvement trends for males and females can be diverging for some age groups but non-diverging for
the others. To achieve this goal, we will consider incorporating a piece-wise age function and estimate the
proposed model under the Bayesian paradigm.

The final objective is to investigate the impact of gender disparity in mortality improvement trends on the
life insurance market. Specifically, we considered six life insurance products with different age ranges, terms,
gender disparity and gender mixes. On the basis of a gender-neutral regulation scenario, we examined how
the funding position of various life insurance portfolios is affected by gender disparity and gender-neutral
pricing.

The rest of this paper is outlined as follows. Section 2 provides a visual analysis and a statistical analysis
to examine the existence and level of gender disparity in mortality. Section 3 develops a modified version of
the Li-Lee model for gender-specific mortality modeling along with the model’s estimation and projection
results. Section 4 provides a numerical analysis on the impact of gender-neutral pricing and gender disparity
in life insurance products. Section 5 concludes the paper.

2 Gender disparity in mortality

2.1 Visual analysis

The data used in this paper include three Asia-Pacific populations, namely, Mainland China, Taiwan and
Japan. Our goal is to explore the degree of disparity in the difference of mortality improvement trends
between genders. We start with visually examining the observed mortality rates of both genders of these
three populations in different years.

Figure 1 shows the log-scale central death rates of both genders, ages 0-99 and years 1981, 2000 and
2010 for the total population of China, Japan and Taiwan, respectively. We focus on years 1981, 2000 and
2010 because only these three years have full age range mortality data collected from Chinese censuses. We
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Figure 1: Observed log-scale central death rates of males (blue solid lines) and females (red dash lines) for
China (top row), Taiwan (middle row) and Japan (bottom row) in years 1981, 2000 and 2010.

can draw the following empirical conclusions from Figure 1:

• The width of the gap in central death rates between males and females are different in the three
years shown. For example, the difference in central death rates between males and females is not
significant in China in year 1981, whereas the same difference in year 2010 is very obvious. The
same observation of a widening gap can also be made for Japan and Taiwan. Thus, we say that gender
disparity in mortality experience is changing over time for the populations under consideration.

• The widening gap in central death rates between males and females is observed in different age ranges
among the three populations under consideration. In particular, the widening gap is more obviously
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observed in young ages (around ages 20-50) in China, middle ages (around ages 50-80) in Taiwan,
and old ages (around ages 80-100) in Japan. Thus, we conclude that gender disparity in mortality
experience depends on age.

• Based on the previous observation, we can also say that, depending on the population under consider-
ation, the extent of gender disparity in mortality experience might be varying for different age groups.
The young working class in China has been experiencing strong gender disparity in mortality experi-
ence in the recent decades, while the same situation is experienced in Taiwan by the old working class
and young retirees. For Japan, gender disparity in mortality experience exists mostly in very old ages.

To provide a better visual assessment of the above three observations, Figure 2 shows the difference in
log-scale death rates between males and females for Mainland China, Taiwan and Japan in years 1981, 2000
and 2010. The difference is calculated as the log-scale death rate of the males minus that of the females.
Because female death rates are in general lower than male death rates, we observed that most of the values
shown in Figure a2 are positive. If the values are becoming more positive (i.e., increasing) over time, then
we say that the difference in death rates between males and females is increasing or widening, and there
exists gender disparity in mortality experience.

In Figure 2, it is obvious that gender disparity in mortality experience exists, and more importantly,
depending on the age groups and population (geographical location), the level of gender disparity is different.
For some age groups in a certain population, the difference is widening over time, indicating that there
is gender disparity in mortality improvement trends. For example, in Japan, the difference is gradually
increasing over time for ages 80-100, while in China, the difference is dramatically increasing over time for
ages 20-50. These empirical results again suggest that there is clear gender disparity in the three population
but at different age groups. Furthermore, by comparing the changes of the difference over time, it is doubtful
that the diverging mortality improvement trend has ever slowed down. In term of the coherent modeling
assumption, it is hard to believe that this difference in death rates between genders for all ages should be
modeled by a stationary process, as in, for example, the original Li and Lee model (Li and Lee, 2005).

We thus conclude in this subsection that there exists a significant level of gender disparity in mortality
improvement experiences, and the extent of such disparity depends on age and geographical location in
the Asia-Pacific region. To verify this empirical conjecture, we develop a statistical method to test the
significance of gender disparity in mortality improvement experiences in the next subsection. Lastly, we
remark that in many existing mortality modeling studies for Asia-Pacific populations, the idea of “borrowing
information" from a more developed country (e.g., Japan) to aid the mortality forecasts of a less developed
country (e.g., China) is not supported by our empirical findings here.

2.2 Statistical analysis

2.2.1 Setup

To establish a foundation for the statistical method to be used for verifying gender disparity, let us first
consider the common factor model proposed in Li and Lee (2005) for jointly modeling the central death
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Figure 2: Difference in the observed log death rates between males and females for Mainland China (top
panel), Taiwan (middle panel) and Japan (bottom panel) for years 1981, 2000 and 2010. The difference is
calculated as the log-scale death rate of the males minus that of the females.

rates of both males (denoted by mx,t,m) and females (denoted by mx,t,f ):

lnmx,t,m = αx,m +BxKt + εx,t,m

lnmx,t,f = αx,f +BxKt + εx,t,f

where αx,m and αx,f are the gender-specific age effect, Bx is the common age effect, Kt is the common
period effect, and εx,t,m and εx,t,f are the gender-specific residuals. Since mx,t,m and mx,t,f might be
obtained from different sample sizes (exposures) at different age x and time t (especially for China where
the mortality data could be collected from census, 1% sampling survey, or 0.1% sampling survey), we assume
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that εx,t,g = σx,t,gzx,t,g, g = {m, f}, and zx,t,g follows a i.i.d. standard normal distribution for all x, t and
g. We discuss how σx,t,g can be estimated in Section 2.2.3.

To capture any short-term deviation from the common trend BxKt, Li and Lee (2005) further proposed
the augmented common factor model, which is specified as

lnmx,t,m = αx,m +BxKt + βx,mκt,m + εx,t,m

lnmx,t,f = αx,f +BxKt + βx,fκt,f + εx,t,f ,

where βx,f and βx,f are two additional gender-specific age effects, κt,m and κt,f are two gender-specific
period effects, and the remaining model parameters maintain their original definition. To ensure that the dif-
ference in central death rates between male and female does not diverge indefinitely over time (i.e., maintain
coherence in gender-specific mortality forecasting), it is assumed that Kt follows a random walk with drift,
while κt,m and κt,f follow two independent stationary AR(1) processes.

The empirical results analyzed in the previous subsection suggest that the gender difference in central
death rates might be widening and hence diverging over time. Our goal is to test whether this empirical
finding is statistically sound. To do so, we first define the the gender difference in central death rates as

ηx,t := lnmx,t,m − lnmx,t,f

= (α,m − αx,f ) + (βx,mκt,m − βx,fκt,f ) + (εx,t,m − εx,t,f )

and further denote that
ζx,t := βx,mκt,m − βx,fκt,f .

It can be shown that if κt,m and κt,f follow two independent stationary AR(1) processes, then, for each x,
ζx,t follows a stationary ARMA(2,1) process and ηx,t follows a stationary ARMA(2,2) process.3

3Assume that κt,f and κt,m follow two independent stationary AR(1) processes. For g = {m, f}, let us denote
κx,t,g := βx,gκt,g = θg +φgκx,t−1,g +ωt,g , where we omitted x in the subscript of process parameters for simplicity.
Then, we have

ζx,t = κx,t,m − κx,t,f
= θm − θf − θmφf + θfφm + (φm + φf )ζx,t−1 − φmφfζx,t−2 + ωt,m − ωt,f − φfωt−1,m + φmωt−1,f

= θ̃ + φ̃1ζx,t−1 + φ̃2ζx,t−2 + ω̃t

which is an ARMA(2,1) process. We also have

ηx,t = (αx,m − αx,f ) + ζx,t + (εx,t,m − εx,t,f )

= α̃x + ζx,t + ε̃x,t

= α̃x(1− φ̃1 − φ̃2) + ε̃x,t − φ̃1ε̃x,t−1 − φ̃2ε̃x,t−2 + φ̃1ηx,t−1 + φ̃2ηx,t−2 + ω̃t

which is an ARMA(2,2) process.
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2.2.2 Our testing procedure

To verify whether ηx,t follows a stationary process, we conduct the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test for each x.4 We begin with our initial belief that the gender differences will converge (ηx,t is a
stationary process) for all ages, unless strong evidence against our null hypothesis.

KPSS Test

Durbin-Watson
Test

Non-stationary
Random walk with positive drift

Random walk with negative drift

White noise

Stationary process

Classify ηx,t

accept

reject

accept
reject

Figure 3: Workflow of our testing procedure

Aside from the previous setup on a mortality model, the KPSS test is conducted by assuming that for
each age x, the process of ηx,t is

ηx,t = ux,t + δx × t+ ex,t

ux,t = ux,t−1 + σxεx,t

where εx,t is a white noise and ex,t is a stationary process. The KPSS test tests over the null H0 : σx = 0

versus the alternative Ha : σx > 0. If we have significant evidence against the stationary null for a particular
age x, then ηx,t is non-stationary, and we will assume it follows a random walk with drift. We need to be
careful about the sign of the drift, as a positive drift represents a diverging trend whereas a negative drift
represents an initial converging trend until the mortality rates, lnmx,t,m and lnmx,t,f , have a cross-over.
If there is insufficient evidence to reject the null hypothesis, then we are further interested in whether the
gender difference has already reached its converged state. Therefore, the Durbin-Watson test is performed
to verify if ηx,t is simply a white noise. If we have sufficient evidence to reject the Durbin-Watson test, then
ηx,t will be modeled by an AR(1) process. The entire testing procedure is displayed in Figure 3.

2.2.3 Adjustment for time and age effects

Because of the age- and time-varying sample sizes of the observed death rates, we have previously assumed
that the residuals εx,t,m and εx,t,f have age- and time-dependent variance, that is εx,t,g = σx,t,gzx,t,g for
g = {m, f}. It follows that the residuals of ηx,t (i.e., εx,t,m − εx,t,f ) will also have age- and time-dependent

4Other stationary tests, such as the ADF test, Hadri-Larsson test, and Levin-Lin test, can also be considered.
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variance, which we denote as σ2x,t. Consequently, we cannot directly apply the KPSS test to ηx,t, but instead
need to perform adjustments first.

In developed countries, σ2 is often assumed to be both age- and time-independent. However, for devel-
oping countries, this assumption can not hold as the data may obtained from different sources. For example,
depending on the sample year t, the Chinese mortality data could be collected from either census, 1% sam-
pling survey, or 0.1% sampling survey. In addition, due to limited data for Asia-Pacific countries, we will
aggregate σ2x,t on the age-dimension, such that σ2x,t = σ2t , and σ2t can take three different values depending
on year t.

To empirically estimate σ2t , we need to remove the time and age effects first. The time effect is captured
by defining η̄t as

η̄t =
1

|Xt|
∑
x∈Xt

ηx,t,

where Xt as the set of ages with data at time t (due to missing data), and | · | is the cardinality of the set (i.e.,
the number of elements). η̄t measures the overall gender disparity at time t. Next, the age effect is captured
by defining η̄x as

η̄x =
1∑

t∈T 1x∈Xt

∑
t∈T

1x∈Xt × (ηx,t − η̄t) ,

where T is the set contains all years. Then, we may define the adjusted residuals η̂x,t such that both age and
time effects are removed,

η̂x,t = ηx,t − η̄t − η̄x.

Now, let G1, G2 and G3 be three groups of sample years that contain mortality data collected from census
year, 1% survey year, and 0.1% survey year, respectively. The empirical variance can be estimated via η̂x,t
as

σ̂2x,t = σ̂2t =
1∑

s∈Gi |Xs| − 1

∑
s∈Gi

∑
y∈Xs

η̂2y,s, t ∈ Gi.

The standardized residuals η̂x,t
σ̂x,t

are approximately white noises with variance of one. To retain the same
overall volatility of the original residuals, we define the empirical standard deviation for all residuals σ̂2 as

σ̂2 =
1∑

s∈T |Xs| − 1

∑
s∈T

∑
y∈Xs

η̂2y,s,

and the transformed residuals η̂x,t
σ̂x,t
× σ̂ will preserve approximately same overall volatility as the original

ηx,t. Next, by adding back the age and time effects to the transformed residuals, we are able to construct a
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new process η̃x,t that retains the same age and time effects as in the original ηx,t,

η̃x,t =
η̂x,t
σ̂x,t
× σ̂ + η̄t + η̄x.

Since the residuals of η̃x,t are white noises, the stationary tests can be directly applied.

2.2.4 Test results

We now apply the KPSS test to η̃x,t, the standardized gender difference in central death rates, to verify
whether it is stationary and to determine whether gender disparity exists for a particular age x over time.
To focus on insurance applications, we shorten the age range from 0-99 to 30-90 and use all available data
after year 1981 (the first data available year of China). We also add the population of Hong Kong into our
statistical analysis here, which has mortality data from year 1986 and onward. The standardization process
of ηx,t for Hong Kong is similar to that of Japan and Taiwan but with a shorter sample period.

Figure 4 summarizes the test results from applying the KPSS test to η̃x,t for Japan, Taiwan, Hong Kong
and Mainland China. The KPSS test is individually applied to η̃x,t for each age x, for x = 30, . . . , 90, over
the sample period. The test result is either a value of 1 indicating a rejection of the null hypothesis at a
significance level of 5%, or a value of 0 indicating the opposite. So, if the test result reported in Figure 4 is
1 for a certain age x and population, then we say that η̃x,t is non-stationary and gender disparity is present.
Furthermore, if the KPSS test rejects the null hypothesis, then we use a symbol of 5 to indicate that the
gender difference is getting larger, and use a symbol of4 to represent that the gender difference is becoming
smaller.

If there is not enough evidence to reject the stationary null hypothesis, then we additionally perform
the Durbin-Watson test to check whether the standardized gender difference η̃x,t follows an autoregressive
process or simply a white noise without drift. The null hypothesis of the Durbin-Watson test assumes that
η̃x,t is a serially uncorrelated process. We use a symbol of © to indicate that the null hypothesis of the
Durbin-Watson test is rejected and η̃x,t has autocorrelation at lag 1, and a symbol of ⊗ to indicate that there
is not enough evidence to reject the null hypothesis.

We can observe from Figure 4 that different populations produce different test results. For Japan, ages
higher than 60 unanimously show 5, indicating that the gender difference is getting larger over time for
these ages. This conclusion coincides with the empirical observations made in the previous subsection, for
example, in Figure 2. For ages between 40 and 60, the KPSS test indicates that the gender difference is
mostly getting smaller, while for ages lower than 40, a rejection of the stationary null hypothesis cannot be
made for some ages.

For Taiwan, almost all ages between 30 and 90 show5 indicating that gender difference is widening for
the entire insurance age range. For Hong Kong, gender disparity is getting larger for ages higher than 65,
while for the other ages, the test result varies among the four cases (5,4,© and ⊗).

Finally, for China, a situation that is unlike the other three populations is observed. For ages younger
than 60, we see that a test result of 5 is produced for most ages, while for ages older than 60, a test result
of © is mostly observed. The conclusion that ages higher than 60 in China are not experiencing gender

9
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Figure 4: Test results from applying the KPSS test to the standardized gender difference in central death
rates η̃x,t, x = 30, . . . , 90, for Japan, Taiwan, Hong Kong and Mainland China. Note: 5 indicates that
gender difference is widening, 4 indicates that gender difference is narrowing, © indicates that gender
difference is stationary with autocorrelation, and ⊗ indicates that gender difference is stationary with no
autocorrelation.

disparity is unique compared to the other three populations. For ages lower than 60, gender disparity is
present for China in most ages, which is similar to Taiwan but different than Japan and Hong Kong.

In conclusion, the KPSS test results confirm our previous conjecture that there exists a significant level of
gender disparity in mortality improvement trends, and more importantly the extent of such disparity depends
on age and geographical location in the Asia-Pacific region. Moreover, when gender disparity is not present,
there may or may not be a need to use an autoregressive process to capture any short-term gender differences
as in the Li and Lee model.

3 Modeling mortality with gender disparity

The conclusions made in the previous section will have implications for an life insurer who is practicing
gender-neutral pricing. To properly capture this age-varying phenomenon of gender disparity in mortality
forecasts and other relevant actuarial practices, one needs a tailor-made stochastic mortality model. We
develop in this section a tailored stochastic mortality model based on the original Li and Lee model for
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incorporating age-specific gender disparity. We estimate the proposed model using the Bayesian method
to not only address the uncertain indication of gender disparity over the age range, but also solve the data-
related issues of Asia-Pacific populations. At the end, we apply the proposed model and estimation method
to the gender-specific mortality data sets of Japan, Taiwan, Hong Kong and Mainland China, and analyze the
estimation results.

3.1 The modified Li and Lee model

Both empirical and statistical results from the previous section suggest that the level and type of gender
disparity vary among different ages. Recall that the gender difference in central death rates from the original
Li and Lee model is specified as

ηx,t = (αx,m − αx,f ) + (βx,mκt,m − βx,fκt,f ) + (εx,t,m − εx,t,f ),

where the two stochastic components κt,m and κt,f are both stationary and age-independent. Thus, as an ‘all-
age’ coherent mortality model, the original Li and Lee model is unable to capture this behavior in mortality
modeling and forecasting.

To address the issue of age-dependent gender disparity, we consider an age-dependent stochastic com-
ponent to replace the term βx,mκt,m−βx,fκt,f in the original Li and Lee model. It is obviously infeasible to
assume one stochastic process for each single age (i.e., simply considering an age- and time-specific period
effect). However, as observed in Figure 4 from the previous section, adjacent ages in a population may share
the same type of gender disparity. We thus propose a piece-wise structure for the age-dependent stochastic
component, and cluster the individual ages into four groups, in which the gender disparity is assumed to be
widening (non-stationary), diminishing (non-stationary), auto-regressive (stationary) and stable (stationary).

Denote

• D1 as the set of ages with non-stationary ηx,t and widening gender disparity,

• D2 as the set of ages with non-stationary ηx,t and diminishing gender disparity,

• D3 as the set of ages with stationary ηx,t following an AR(1) process, and

• D4 as the set of ages with stationary ηx,t following a white noise process.

It is reasonable to assume that an individual age must belong to one and only one of the above four sets. In
other words, we assume that D1, D2, D3 and D4 are disjoint sets and the union of D1, D2, D3 and D4 is the
full age range under consideration. We further denote that D = D1 ∪ D2 as the set of all ages, where ηx,t
follows a non-stationary process.

The proposed stochastic component for capturing the age-dependent gender disparity (which replaces
the term ζx,t = βx,mκt,m − βx,fκt,f in the original Li and Lee model) is specified as

ζx,t = βx × 1
′
x × κt,
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where βx is an age-specific parameter capturing the sensitivity of gender disparity to κt,

1x =

1x∈D1

1x∈D2

1x∈D3

 and κt =

κ
D1
t

κD2
t

κD3
t

 .

Since D1, D2 and D3 are disjoint, only one of the indicator functions in 1x will produce a value of 1,
indicating which of the period effects in κt should be used. If an age below to D4 (i.e., ηx,t follows a white
noise process), then no period effect is needed in modeling gender disparity and we have 1x becoming a
vector of zeros.

To model gender disparity with the right age-dependent features, we consider the following stochastic
process for κt: κ

D1
t

κD2
t

κD3
t

 =

θD1

θD2

θD3

+

1 0 0

0 1 0

0 0 φ


κ
D1
t−1
κD2
t−1
κD3
t−1

+

ω
D1
t

ωD2
t

ωD3
t


where θD1 , θD2 and θD3 are the drift/offset terms, φ is the AR coefficient, and ωD1

t , ωD2
t and ωD3

t are the
innovations at time t following a normal distribution with a mean of zero and a variance of σ2D1

, σ2D2
and

σ2D3
, respectively. To capture the widening gender disparity, we should have θD1 > 0 (the gender difference

is continuing to drift upward and becoming more positive), while to the diminishing gender disparity, we
should have θD2 < 0 (the gender difference is approaching zero). Lastly, to have a stationary process for
ηx,t, we should have 0 < φ < 1.

For the common period effect Kt, we continue to assume that it follows a random walk with drift as in
the original Li and Lee model; that is,

Kt = Kt−1 + θ + ωt,

where θ is the constant drift term, and ωt is the innovation at time t following a normal distribution with a
mean of zero and a variance of σ2.

The original Li and Lee model is subject to identifiability issues. The modification made in this section
inherits the problem, and thus needs model constraints in the estimation process. We consider the following
set of constraints for the modified Li and Lee model:∑

x

Bx = 1,
∑
x∈D1

βx = 1,
∑
x∈D2

βx = 1,
∑
x∈D3

βx = 1

Kt0 = 0, κD1
t0

= 0, κD2
t0

= 0, κD3
t0

= 0

where t0 is the first year of the sample period.

3.2 Model estimation

To estimate the proposed model, we follow the Bayesian estimation work of Pedroza (2006) and Li et al.
(2019), who used Gibbs sampling methods to obtain the joint posterior distribution of all model parameters
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with parameter uncertainty taken into account.
Let na and ny denote the number of ages and years in the data set, respectively. The number of parame-

ters in the modified Li and Lee model can be calculated by

np = 3na + |D1|+ |D2|+ |D3|+ (1 + 1|D1|>0 + 1|D2|>0 + 1|D3|>0)(ny + 2) + 4 + 1|D3|>0.

If the Chinese population is being modeled, we have four additional parameters for different sampling uncer-
tainties. Denote Θ as the set of all of the parameters in the proposed model, and use Θ−θj , j = 1, · · · , θnp

to represent Θ excluding its jthe entry. In each iteration of Gibbs sampling, a sample of θj is drawn from its
full conditional, and the process is repeated after a large number of iterations. For the state variables (Kt and
κDi
t for i = 1, 2, 3), the full conditionals are obtained with sequential Kalman Filter (Koopman and Durbin

(2000)). For all of the model parameters, improper prior distributions are assumed.
We summarize the estimation details of each parameter as follows:

• To apply Kalman Filter directly, we rewrite the model in a more compact state-space form:

observation equation: yt = α̃+ B̃ × K̃t + ε̃t, ε̃t ∼ MVN(0,Σy)

state equation: K̃t = θ̃ + Φ̃× K̃t−1 + ω̃t, ω̃t ∼ MVN(0,ΣK)

where

yt = (lnmx0,t,m, · · · , lnmx0+na−1,t,m, lnmx0,t,f , · · · , lnmx0+na−1,t,f )T ,

α̃ = (αx0,m, · · · , αx0+na−1,m, αx0,f , · · · , αx0+na−1,f )T ,

B̃ = ((Bx0 , · · · , Bx0+na−1, Bx0 , · · · , Bx0+na−1)
T , β̃),

β̃ =
[
β̃
]
ij

=

{
βi × 1i∈Dj i = 1, · · · , na, j = 1, 2, 3

0 i = na + 1, · · · , 2× na, j = 1, 2, 3,

K̃t = (Kt, κ
D1
t , κD2

t , κD3
t )T ,

θ̃ = (θ, θD1 , θD2 , θD3)T ,

Φ̃ = diag(1, 1, 1, φ),

Σy = diag(s2t,m, · · · , s2t,m, s2t,f , · · · , s2t,f ),

ΣK = diag(σ2, σ2D1
, σ2D2

, σ2D3
).

The model constraints on K̃t0 are incorporated by setting E[K̃t0 ] = (0, 0, 0, 0)T and Cov(K̃t0) =

diag(0, 0, 0, 0). Based on the above state-space form, the filtering process and the smoothing process
are then used to draw samples for the state variable K̃t. We refer the interested reader to Li et al.
(2019) for the technical detail.

13



• The full conditional of αx,g is N(µα,Σα), where

µα = Σα ×

(∑
t∈T lnmx,t,g −Bx ×Kt − βx × 1′x × κt

s2t,g

)
,

Σα =

(∑
t∈T

1

s2t,g

)−1
.

• The model constraints on B̃ (i.e., the sum on Bx and βx) are incorporated into their priors. Using Bx
as an example, notice that the constraint can be written as Bx0 = 1 −

∑
x>x0

Bx. Let B−x0 be the
vector of Bx except x0. Then, the full conditional ofB−x0 is MVN(µB,ΣB), where

µB = ΣB ×

 ∑
g∈{m,f}

∑
t∈T

HT
B × ỹt,g ×Kt

s2t,g


ΣB =

 ∑
g∈{m,f}

∑
t∈T

HT
B ×HB ×K2

t

s2t,g

−1

with

ỹt,g = (lnmx0,t,g−αx0,g−βx01′x0κt, · · · , lnmx0+na−1,t,g−αx0+na−1,g−βx0+na−11
′
x0+na−1κt)

T ,

HB =

(
−1× 1Tna−1
Ina−1

)
, 1na−1 is a (na− 1)× 1 vector of ones, and Ina−1 is an (na− 1)× (na− 1)

identity matrix. The full conditional for βx can be derived similarly by dividing ages into different
age groups according to Di, i = 1, 2, 3, and replacing Kt by κDi

t .

• The full conditional of s2t,g, for all t ∈ Gi, is an inverse gamma with a shape parameter of as and a rate
parameter of bs, where

as =

∑
t∈Gi |Xt|

2
,

bs =

∑
t∈Gi

∑
x∈Xt

(lnmx,t,g − αx,g −Bx ×Kt − βx × 1x × κt)
2

.

• The full conditional of σ2 is an inverse gamma with a shape parameter aσ and a rate parameter of bσ,
where

aσ =
|T | − 1

2
,

bσ =

∑
t∈T \t0(Kt − θ −Kt−1)

2

2
.

The full conditional of σ2Di
can be derived by replacingK with κDi

t and θ with θDi . The only exception
is σ2D3

where the numerator of bσ is modified to subtracting φ× κD3
t−1 instead of κD3

t−1.
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• The full conditional of θ is N(µθ,Σθ), where

µθ =

∑
t∈T \t0 Kt − θ −Kt−1

|T | − 1
,

Σθ =
σ2

|T | − 1
.

The same modification for σ2 can be adopted to get the full conditionals for θDi .

• For parameter φ, using a prior of π(φ) ∼ U(0, 1), the full conditional of φ is N(µφ,Σφ) truncated
between (0, 1), where

µφ =

 ∑
t∈T \t0

(
κD3
t−1

)2−1 ×
 ∑
t∈T \t0

(κD3
t − θD3)× κD3

t−1

 ,

Σφ =
σ2Dt∑

t∈T \t0

(
κD3
t−1

)2 .
It is well known that samples drawn from Gibbs sampling exhibit auto-correlation, and hence thinning

must be applied to avoid bias in assessing the posterior distribution. We use the method of Effective Sample
Size (ESS) to decide the number of effective samples for our final Bayesian analysis. In addition, both the
single-chain convergence test (Geweke (1991)) and the multi-chain convergence test (Gelman and Rubin
(1992)) are applied to verify the convergence of the effective samples.

3.3 Estimation results

In this subsection, we present the empirical posterior distribution of the model parameters from fitting the
modified Li and Lee model proposed in Section 3.1 using the Bayesian method described in Section 3.2.
We considered mortality data from the four populations, namely, Japan, Taiwan, Hong Kong and Mainland
China, which we have analyzed in Section 2. To initialize the Bayesian estimation procedure, we need to
first decide the age groups, D1, D2, D3 and D4, for each population under consideration. We admit that
this modeling component of grouping ages is not a trivial task, and may require subjective knowledge and
judgment. The statistical tests conducted in Section 2.2 can help us to somewhat facilitate this subjective
modeling component.

Based on the test results reported in Figure 4, we choose to group individual ages of each population as
follows. For Japan, there are three age groups for the different types of gender disparity. For ages 30-40,
gender disparity is not diverging but has short-term effect, and thus the gender difference follows an AR(1)
process (i.e.,D3). For ages 41-60, gender disparity is diminishing over time (i.e.,D2), while gender disparity
is widening over time (i.e., D1) for ages 61-90. For Taiwan, most ages have gender disparity widening over
time (i.e., D1). For only ages 30-34, there is no gender disparity (i.e., D4). For Hong Kong and Mainland
China, there are two age groups, namely D1 and D4, but the age range is different for them. For Hong Kong,
old ages 65-90 will have a widening gender difference (i.e., D1), whereas the same type of gender disparity
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happens to young ages 30-60 in Mainland China. The rest of the individual ages of these two population will
have no gender disparity (i.e., D4). The above description is summarized in Table 1.

Population D1 D2 D3 D4

Japan {61, . . . , 90} {41, . . . , 60} {30, . . . , 40} ∅
Taiwan {35, . . . , 90} ∅ ∅ {30, . . . , 34}

Hong Kong {65, . . . , 90} ∅ ∅ {30, . . . , 64}
China {30, . . . , 60} ∅ ∅ {61, . . . , 90}

Table 1: Age grouping results for Japan, Taiwan, Hong Kong and Mainland China.

Using the age groups shown in Table 1, we fit the gender-specific mortality data of each population to
the modified Li and Lee model using the Bayesian estimation method. We focus on analyzing the estimation
results of Japan and China, and report the empirical posterior distribution of model parameters for Japan and
China in Figures 5 and 6, respectively.

Figure 5 shows the empirical posterior distribution of model parameters obtained for Japan. We first
focus on parameters αx,g, Kt and Bx, shown in the first row of Figure 5. The age- and gender-specific
parameter αx,g, as the average log central death rate for age x and gender g, is showing a clear gap between
the two genders and reflecting the difference in the level of death rates between genders. The common time-
varying parameter Kt is showing a clear downward trend reflecting the persistent mortality improvement
rate of both genders over, while the common age-specific parameter Bx is measuring the sensitivity of death
rates to Kt for both genders. Since the mortality data of Japan is complete and large in exposure size, the
level of parameter uncertainty in these parameters is low, as reflected by the width of the fan charts.5

For Japan, we have used three age groups D1, D2 and D3, which in turn require three time-varying
parameters κD1

t , κD2
t and κD3

t , each following a different stochastic process. The empirical posterior dis-
tributions of these parameters are shown in the middle row of Figure 5. It is clear that κD1

t is following a
random walk with a positive drift, driving gender disparity to be more severe over time for old ages. For κD2

t ,
we see a gradual downward trend over time, especially in the recent years, indicating that gender disparity is
diminishing for middle ages. Lastly, κD3

t follows an AR(1) process capturing the short-term gender disparity
for young ages. The AR coefficient φ is displayed in the left middle panel of Figure 5, while parameter βx
for capturing the age-specific sensitivity is shown in the right middle panel of Figure 5.

The bottom row of Figure 5 shows parameters s2, θ and σ2. The means of the empirical posterior
distribution of the drift/offset term θ vary significantly among age groups (and thus gender disparity types).
We can clearly observe that for group D1 the mean is positive and its confidence interval does not include
zero, suggesting a very strong force of widening gender disparity, while for group D2, the mean is negative
and include zero indicating a weaker force of diminishing gender disparity. For D3, the offset term θ for the
AR(1) process is centered around, indicating that in the long-term gender difference is converging to zero.6

The empirical posterior distribution of the variance of the error term s2, shown in the left bottom panel of

5Each fan chart shows the 10% confidence interval with the heaviest shading, surrounded by the 20%, 30%, . . . ,
90% confidence intervals with progressively lighter shadings.

6Note that we used constraint κD3
t0 = 0 and assume an AR(1) process to κD3

t . It is thus reasonable to have an
empirical posterior distribution of θ centered around zero.
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Figure 5: The empirical posterior distribution of model parameters obtained for Japan.

Figure 5, varies between the two genders, while the empirical posterior distribution of the variance of the
innovation term σ2 is also different among the three age groups.

Figure 6 shows the empirical posterior distribution of model parameters obtained for China. For αx,g,Kt

and Bx, the observations are similar to that for Japan. However, because Chinese mortality data are subject
to missing values and inconsistent exposure sizes, the obtained empirical posterior distributions, as shown
by fan charts, are jagged over both ages and years. For years that have no data points, the width of the fan
charts is significant, reflecting a higher level of parameter uncertainty. We refer the interested reader to Li
et al. (2019) for a more detailed analysis of the data-related problems and modeling solutions for China.

Because we do not assume an AR(1) process to any period effect for China (i.e., there is no age group
D3), there is no parameter φ to report in Figure 6. However, since we have ages 35-60 belonging to D1 for
China (i.e., gender disparity is widening for the working ages in China), we have one time-varying period
effect κD1

t capturing the dynamics of gender difference for ages 30-60 over time, while the age-specific
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Figure 6: The empirical posterior distribution of model parameters obtained for China.

parameter βx captures the sensitivity to κD1
t for each age from 30 to 60. It is clear from the middle row of

Figure 6 that κD1
t has a upward trend over time indicating a diverging gender disparity for ages 30-60 in

China.
The diverging gender disparity is confirmed by the empirical posterior distribution of θD1 shown in the

bottom row of Figure 6, which has a mean around 0.5 and low density for negative values. The empirical
posterior distributions of s2 and σ2 are also reported in the bottom row of Figure 6, but are both unremarkable.

3.4 Projection results

We now discuss the mortality projection results produced by our Bayesian estimated modified Li and Lee
model for Japan and Mainland China.

Figure 7 shows the predictive intervals of log-scaled central death rates for both genders in Japan from
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three different age groups. In particular, the left panel shows the mean forecast and 95% predictive interval
for age 75, which is from Group D1 (widening gender difference) for Japan. We can observe that the mean
forecasts over time for male and female death rates are diverging over time. The gender difference in death
rates (in log scale) is less than 1 unit in 2019, while the difference increases to more than 1.5 units in 2065.

The middle panel shows the mean forecast and 95% predictive interval for age 55, which is from Group
D1 (diminishing gender difference). It is clear that the mean forecasts between the two genders are approach-
ing each other over time. Note that, as the gender difference diminishing over time, even at the end of the
forecast period (year 2068), the relationship that females have lower mortality rates remain to hold.

The right panel shows the mean forecast and 95% predictive interval for age 35, which is from Group
D3 (short-term stationary gender difference). We can observe that, in the long run, the death rates from the
two genders are coherent over time, while in the short run, there is a short-term trend in gender difference
governed by the estimated AR(1) process for κD3

t . Overall, it is clear that our proposed model is able to
produce different types of gender disparity that were detected in our empirical and statistical analyses.
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Figure 7: Predictive intervals of central death rates for both genders at ages 75 (Group D1), 55 (Group D2)
and 35 (Group D3) in Japan.

Figure 8 shows the predictive intervals of log-scaled central death rates for both genders in Mainland
China. We have assumed only two age groups for China, namely, Group D1 and Group D4. The left panel
shows the mean forecast and 95% predictive interval for age 35 from GroupD1, while the right panels shows
the same results for age 75 from GroupD4. For age 35, it is clear that the mean forecasts for the two genders
are diverging over time. The gender difference in log-scaled death rates increases from 1 unit in year 2020
to about 2 units in year 2069. For age 75, since Group D4 has stable gender difference and no additional
period effect is used, we see that the gap between male and female death rates is a constant over time. In
other words, there is no gender disparity in mortality improvement trends for age 75 in China.

Lastly, we examine the projected period life expectancy at age 30 and 60 for both genders. Figure 9 and
Figure 10 show the predictive intervals of period life expectancy in Japan and Mainland China, respectively.
Although age groups from a population may have different underlying time-varying effects (κD1

t , κD2
t and

κD3
t ) driven a diverging or converging process, we observe from Figure 9 and Figure 10 that the projected

life expectancy at both ages seems to be coherent between the two genders. The values for male and female
are clearly converging in the long run, and the difference is slowly narrowing over time. Comparing Japan
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Figure 8: Predictive intervals of central death rates for both genders at ages 35 (Group D1) and 75 (Group
D4) in Mainland China.

and China, we see that the projected values for China have higher volatility because of the data problems in
Chinese mortality, while the mean values of Japan is clearly higher than that for China.
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Figure 9: Predictive intervals of period life expectancy for both genders at age 30 (left panel) and age 60
(right panel) in Japan.

4 Gender-neutral pricing

In this section, we investigate the impact of the gender disparity discovered in Section 2 and modeled in
Section 3. In particular, we considered both life insurance and life annuity products with various age, term
and gender settings, and examine the effect of gender-neutral pricing on the funding position of life insurance
portfolios. We illustrate our numerical results using the Japanese population, which has three different types
of gender disparity.
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Figure 10: Predictive intervals of period life expectancy for both genders at age 30 (left panel) and age 60
(right panel) in Mainland China.

4.1 Setup

The Bayesian estimated model in Section 3 has provided the mean forecasts of age-specific central death
rates with different gender disparity assumptions for both genders of a national population. We assume
that an equally weighted average of these mean forecasts between the two genders is used by the insurance
regulator of the population to create a gender-neutral life table. We further assume that the life insurer has to
use this gender-neutral life table to price their life insurance products regardless of the insured’s gender mix.

To explore the impact of gender-neutral pricing on the products of a life insurer with different gender
disparity, we consider the following three life insurance products:

• Insurance 1: A 10-year term life insurance issued to an individual age 30,

• Insurance 2: A 20-year term life insurance issued to an individual age 40,

• Insurance 3: A 30-year term life insurance issued to an individual age 60,

and three life annuity products:

• Annuity 1: A 10-year term life annuity issued to an individual age 30,

• Annuity 2: A 20-year term life annuity issued to an individual age 40,

• Annuity 3: A 30-year term life annuity issued to an individual age 60.

Note that the age and term of these products are selected to match the age groups of the three types of gender
disparity reported in Table 1 for Japan. For each of these products, we further consider a gender mix of

• Mix 1: 25% males and 75% females,

• Mix 2: 50% males and 50% females, and

• Mix 3: 75% males and 25% females.

In other words, we create three hypothetical portfolios (of one unit of the product) with a different gender
mix for each of the products under consideration.
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4.2 Baseline results

Figure 11 shows the projected survival probabilities for an individual aged 30, 40 and 60 for a survival
period of 10, 20 and 30 years, respectively. The survival probabilities for male and female are obtained
from our Bayesian estimated model, while the ones for the gender-neutral case are calculated using equal
weights on central death rates between the two genders. For the three ages considered, it is clear that the
survival probabilities for female are higher than that for male, while the gender-neutral ones roughly sits in
the middles of the male and females cases. Note that the gender-neutral values will be used to produce a
gender-neutral price for each of the three life insurance and three annuity products.
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Figure 11: Projected survival probabilities for an individual aged 30 (left panel), 40 (middle panel) and 60
(right panel) for a survival period of 10, 20 and 30 years, respectively, for male, female and the gender-neutral
case.

Figure 12 shows the empirical distribution of present values of the projected liability cash flows of each
of the six products under consideration. These present values are calculated using a constant discount rate of
3%, and obtained from the predictive distribution of the estimated model. Note that, without any assumption
on gender-neutral pricing, these values are directly derived from the projection results of the estimated model.
It is not surprising that for annuities, the actuarial present values for female are higher than that for male,
while the opposite is true for life insurances. In the next subsection, we will use these values to construct
portfolios with different gender mixes.

4.3 The impact of gender-neutral pricing

We now examine the impact of gender-neutral pricing on the liability position of the life insurance and
annuity portfolios. We assume that a gender-neutral premium is calculated using the gender-neutral life
table for each of the six products under consideration. Then, for each product, we use the projection results
shown in Figure 12 to form a portfolio using each of the assumed gender mixes. Lastly, the net liability
is obtained from subtracting the present value of the portfolio’s projected liabilities by the gender-neutral
premium. Here, the present values are randomly simulated by our estimated model, while the gender-neutral
premium is calculated using the model’s mean forecast.
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Figure 12: Empirical distributions of the present values of the six life products under consideration for both
genders.

Figure 13 shows the empirical distribution of the net liability position (in percentage of the gender-
neutral premium) for each of the three annuity products and three gender mixes. In Figure 13, the first,
second and third rows correspond to gender mix 1, 2 and 3, respectively, while the first, second and third
columns correspond to annuity 1, 2 and 3, respectively. Comparing the distributions in the first row with that
in the second row, we see that when there are more females in the portfolio (Mix 1), the net liability position
will be positive and centered above zero, indicating that the gender-neutral premium is not enough to cover
all projected liabilities. The opposite is true when we compare the third row (Mix 3), where there are more
males in the portfolio, with the second row (Mix 2). It is reasonable to observe these results because we
observe from Figure 12 that female annuities have a higher present value of liabilities than male annuities. A
gender-neutral premium is thus insufficient to cover liabilities when there are more females in the portfolio,
and is excessive when there are more males in the portfolio.

Comparing the distributions among the three columns, we find that the conclusion made regarding
gender-neutral pricing applies to all three annuities regardless the annuitant age, annuity term and gender
disparity type. However, the magnitude of the change in net liability position is very small for annuity 1
(10-year term life annuity for age 30), while the magnitude for annuity 3 (30-year term life annuity for age
60) is at most 5%. We will further examine the impact of gender disparity in the next subsection.

Figure 14 shows the empirical distribution of the net liability position (in percentage of the gender-
neutral premium) for each of the three insurance products and three gender mixes. The layout of Figure
14 is similar to Figure 13, where the first, second and third rows correspond to gender mix 1, 2 and 3, and
the first, second and third columns correspond to annuity 1, 2 and 3, respectively. However, the conclusion
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Figure 13: Empirical distribution of the net liabilities in percentage of the gender-neutral premium for nine
different annuity portfolios.

24



-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 1 - Mix 1

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 2 - Mix 1

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 3 - Mix 1

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 1 - Mix 2

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 2 - Mix 2

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

D
en

si
ty

Insurance 3 - Mix 2

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 1 - Mix 3

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 2 - Mix 3

-50 0 50

Change in percentage (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Insurance 3 - Mix 3

Figure 14: Empirical distribution of the net liabilities in percentage of the gender-neutral premium for nine
different insurance portfolios.
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regarding gender-neutral pricing on life insurance is reversed if compared with life annuity. Particularly, the
gender-neutral premium is excessive for an insurance portfolio when there are more females, but not enough
when there are more males in the portfolio. This result is expected because we know that life insurance
issued to female has a lower present value of liabilities than the same product issued to male. The magnitude
of the change in net liability position is also significant larger than that for annuities. We can thus say that
insurance products are more sensitive to gender-neutral pricing than annuity products.

4.4 The impact of gender disparity

To examine the impact of gender disparity, we generate a new set of projections without using the gender-
specific period effects in the estimated model. Without the gender-specific period effects, the resulting model
is similar to the common factor model (Li and Lee, 2005), which is an ‘all-age’ coherent mortality model.
We then compare the net liability positions between our model and the reduced model for all of the six
products and three genders mixes. The results for insurance and annuity are reported in Figure 15 and Figure
16, respectively.

For life insurance, we observe in Figure 15 that the impact of gender disparity is more significant to
insurance 3 (30-year term life insurance for age 60) than the other two insurance products. In particular, for
insurance 3 and mix 3 (75% males and 25% females), not accounting for gender disparity (widening between
genders for the underlying range group) will underestimate the effect of gender-neutral pricing on the liability
position. Here, the gender-neutral premium undercharges the portfolio and the gender disparity amplifies the
undercharging situation because the gender difference in mortality is widening over time. For insurance 2
and mix 3, where the underlying age group experiences diminishing gender disparity, the situation is reversed
and not accounting for gender disparity will overestimate the effect of gender-neutral pricing. This is because
the diminishing gender disparity will slightly alleviate the undercharging situation resulted from mix 3. For
insurance 1, where the age group is experiencing stationary gender disparity, the impact of gender disparity is
not very obvious. Lastly, for mix 1 (25% males and 75% females), the opposite results are observed because
the gender-neutral premium overcharges the portfolios.

For life annuity, we observe in Figure 16 that the impact of gender disparity is not very significant to
most annuities. For instance, under mix 1, although the gender-neutral premium undercharges the three
portfolios, the gender disparity is not substantially changing the undercharging situation.

5 Conclusion

In this paper, we studied gender disparity in mortality for Asia-Pacific populations. We first visually exam-
ined the difference in historical mortality rates between the two genders for three Asia-Pacific populations.
The empirical results revealed that the difference changes over time, and more importantly the rate of change
varies among age groups and populations. To verify this observation, we developed a statistical method to
test the significance of gender disparity in mortality. The test results suggest that existing stochastic mortality
models for forecasting mortality of males and females simultaneously should be adapted for the phenomenon
of gender disparity in mortality.
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Figure 15: Empirical distribution of the net liabilities in percentage of the gender-neutral premium for
nine different insurance portfolios under the proposed model (with gender disparity) and the reduced model
(without gender disparity).
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Figure 16: Empirical distribution of the net liabilities in percentage of the gender-neutral premium for
nine different annuity portfolios under the proposed model (with gender disparity) and the reduced model
(without gender disparity).
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To capture the gender disparity in mortality modeling and forecasting, we constructed a modified version
of the Li-Lee model. The proposed model allows the projected mortality rates for males and females to be
diverging for some age groups but non-diverging for the others. We estimate the proposed model using the
Bayesian method, which enable us to overcome some data problems in the mortality data of China. The
Bayesian estimated model can also produce stochastic projections of future mortality rates of both genders
simultaneously, while consider the age-specific gender disparity situation. We provided a detailed analysis
of the estimation and projection results of our proposed model.

Based on the projection results of the proposed model, we further studied the impact of gender disparity
in mortality on life insurance products. Specifically, we considered six different products with different
age ranges, duration, gender disparity and gender mixes. Lastly, on the basis of a gender-neutral regulation
scenario, we examined how the funding position of various life insurance portfolios is affected by gender
disparity and gender-neutral pricing.
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