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Predictive Analysis: The Effects of Technology  
and Weather on Crop Yield  

Section 1: Introduction 

Crop insurance is often delivered in partnership with governments and private industry. In Canada, 10 provincial government 

crop insurance companies develop and deliver crop insurance, with the federal government’s oversight. The provincial and 

federal governments together subsidize the insurance premium by 60% and equally share in all administration costs. Each 

provincial government crop insurance company sets the premium rate, with the federal governments actuarial department’s 

approval. In the U.S., as a comparison, approved private insurance companies deliver crop insurance, with the governments 

Risk Management Agency developing and pricing the policies. The Standard Reinsurance Agreement governs the relationship 

between the government and insurance companies, with the government subsidizing approximately 62% of the actuarily fair 

premium and covering all administration costs. 

A necessary calculation in the crop insurance policy is establishing the Probable Yield (PY), which is typically based on the 

historical average yield at the farm or field level. The PY also sets the insured value (liability) by multiplying it by the selected 

coverage level and the average crop yield. Depending on the insurer, a time series of approximately 10 years is often used to 

calculate the PY, based on a simple average. In part, the decision on how much data to use depends on the availability and 

credibility of the data at the farm level, as well as program regulations. In agriculture, a particular challenge exists regarding 

data sparsity. In most regions, there is only one growing season each year and, hence, one data observation each year. Further, 

producers adapt crop rotations over time depending on commodity market price signals, soil conditions, etc. In some cases, 

crop types may be removed entirely from rotation, and this leaves gaps in the yield history to calculate the average crop yield. 

From a statistical inference point of view, there is a desire to utilize as much of the data as possible, but this is balanced against 

the need to ensure the data are representative of the current situation. This includes such considerations as changes due to 

programs, farming practices, biotechnology and weather experience, for example. As such, there is often a tradeoff between 

using a shorter time series and having a more responsive and representative PY or using a longer time series and having a more 

stable PY. In addition, actuaries also need to be very careful in using shorter time series, since if weather is treated as stochastic, 

shorter time series may not be representative. 

To help overcome this challenge, some research has focused on restatement methods to adjust older observations so they 

are more comparable to current technology and growing conditions. It is well documented that yields for many crop types are 

increasing through time (Sherrick et al., 2004a; Lobell et al., 2011). There may be several contributing factors to increasing 

crop yield over time, and one important factor is technology. Under the hypothesis that technology positively contributes to 

yield over time, not accounting for the impact of technology may result in a PY that is too low. In this case, a farmer would not 

be able to receive adequate risk protection (i.e., coverage would be too low) (Skees and Reed, 1986; Coble et al., 2013). For 

example, consider Figure 1, which shows a hypothetical canola grower. Each year, if the yield improves due to technology 

(assumed to be an improvement of 1 bushel per acre, or bu/acre, per year), the PY will underestimate the producers’ 

expected crop yield. In this example, the PY based on the simple average over 10 years using unadjusted yields is 37 bu/acre. 

However, if a linear trend is applied to the 10 years of historical data, then comparatively the trended PY is 42 bu/acre, 

resulting in a deficit of 5 bu/acre. This risk deficit is shown in Figure 1, and the yield deficit is shown in red. Similarly, in 

consideration of the belief that technology improvements are making crops more resilient, the risk profile of the restated 

losses may be reduced (Tack et al., 2012). If the yield trend is ignored in crop insurance, there may be negative welfare effects 

(Adhikari et al., 2012) and rating inefficiencies (Woodard et al., 2011).  
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Figure 1 

Canola Yield 10-Year Technical Change 

 

 

With a short yield history, it is difficult to determine the portion of yield gain attributable to technology and/or a positive 

weather trend over the period. Lobell and Asner (2003) investigated weather effects on yield trend for corn and soybeans in 

the U.S. over a 17-year period and reported that approximately 25% of corn yield trend and 32% of soybean yield trend can be 

explained by favorable temperature effects in the region of interest. Based on this finding, attributing 100 percent of yield gain 

due to technology over the period may result in an upward bias of insurable yields over the period. Some research has further 

studied the impact of specific weather variables on yield gains. For example, Tollenaar et al. (2017) showed that solar brightness 

over the period from 1980 to present has been increasing and that this increase, called a brightening effect, explains 27% of 

corn yield increase in the Midwestern U.S. This brightening effect may be linked to improved air-quality standards, resulting in 

less resistance in the atmosphere to incoming solar radiation over these growing regions. With a long history of yield data, much 

of these weather effects may balance out, but there may be some long-term prevailing changes that affect yield. These longer-

term effects are likely fairly crop and region specific. With a shorter yield history, it is necessary to manage the effects of weather 

on crop yield to approximate the yield trend. This can be done by directly modeling weather effects on yield so the technology 

yield trend can be estimated, or, alternatively, a statistical-based method can be used to reduce the noise in the data introduced 

by weather effects. Therefore, a longer time series of yield is preferred because yield variation caused by growing season 

weather conditions becomes less influential, and approximating the yield trend becomes less sensitive to extreme low or high 

yields caused by growing season weather conditions. 

In regard to premium ratemaking, researchers have attempted to evaluate whether the employed premium ratemaking 

methodology used for the federal crop insurance program in the U.S. is appropriate, given increasing crop yields (Woodard et 

al., 2011). They found that for the federal crop insurance program to provide unbiased rates, constant relative risk of crop yields 

must be assumed; however, some researchers believe as crop yields rise, crop risk decreases (Yu and Babcock, 2010; Woodard, 

2014). Recent studies have assessed the impact of sample period length on premium rate setting to evaluate whether shorter 

historical yield sample periods are more effective for rate setting over longer histories by using more recent yield histories that 
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better reflect current crop technologies at the expense of a less representative sample of weather events (Woodard, 2014). 

They found that the less representative sample, 30 years, of weather experience performed similarly to the more representative 

sample of weather events. Several methods have been proposed in literature for estimating yield trend; however, they are 

often designed based on approaches that use county level data or for several farms grouped together (Zhu et al., 2011; Ramirez 

et al., 2003; Just and Weninger, 1999; Finger, 2010; Goodwin and Mahul, 2004; Sherrick et al., 2004b; Ozaki et al., 2008; Ker 

and Goodwin, 2000). For crop insurance purposes, estimating the yield trend at an aggregate level may lead to inaccuracies, 

because high-technology adopting farms may receive a smaller yield trend adjustment compared to their actual yield trend, 

and low-technology adopting farms may receive a larger yield trend adjustment compared to their actual yield trend. 

Less research has focused on yield trend estimation for individual farms, which is important for calculating the insured value 

(liability) for crop insurance. This could partially be due to the sparsity of farm-level data, which can make using farm-level data 

more challenging. As well, more generally, the ratemaking method for crop insurance uses a loss cost ratio (LCR) approach, 

which refers to the ratio of indemnities to liabilities. This normalized LCR approach is less sensitive to trending yields. A challenge 

with farm-level yield trend estimation is that the yield series are highly sensitive to annual variability in growing conditions. 

Therefore, when relatively shorter yield histories are used, there can be concerns over the accuracy of the trend adjustment. 

In the U.S., the trend adjusted yield factor is offered as an endorsement for the actual production history program, which is free 

to elect and is available to producers in counties where average county yield is trending. Trends are estimated for the county, 

and producers can elect for their yield history to be adjusted relative to the estimated county trend. And yields are conditioned 

for weather effects to account for favorable or unfavorable weather effects in the county. A possible negative side effect of the 

yield trend endorsement may be the fact that yield trends are estimated at the county level, rather than the farm level. This is 

because there may be a risk of adverse selection, because producers who are early adopters of technology may subsidize the 

slow technology adopting producers. However, the benefit of adopting a yield trend endorsement may far outweigh the added 

risk. In Canada, the actuarial ratemaking methodology is not publicly reported; however, discussions with the Agriculture and 

Agri-Food Canada revealed that each provincial government crop insurance agency is able to apply a trend factor to it PY 

method. However, a cap (maximum trend) is applied to each crop type in each region, which is approximately 2.5%. 

The objective of this study is to propose a methodology to isolate crop yield improvement due to technological change, as well 

as crop yield improvement due to favorable and unfavorable weather. Two decomposition frameworks are presented here, 

including a fixed-effect approach and a relative effect approach. The findings of this study may be particularly useful for crop 

insurance and may be used to improve crop insurance by providing a procedure to adjust producers’ PY for positive trends. The 

proposed methodology may help to isolate the influence of technological change from weather effects on crop yield over the 

sample period and may be useful for crop insurance in Canada, the U.S. and other countries.  
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Section 2: Motivation: Why Does the Effect of Technology on Crop Yield Matter? 
To illustrate the empirical exercise, the authors present some motivation for the importance of technology and weather 

decomposition on crop yield using a simplified framework. Consider an agricultural loss random variable in year t, Xt, which has 

the following decomposition: 

𝑋𝑡 = 𝑊𝑡−𝜂𝑡+𝜀𝑡,       (1) 

where 𝑊𝑡 is the impact from weather variables, which has a distribution with mean �̅� and variance 𝜎𝑤
2  ; 𝜂𝑡 is the technological 

impact/shock in year t, with mean 𝜂�̅� and variance 𝜎2; and 𝜀𝑡 is the idiosyncratic risk in year t, with mean 0 and variance 𝜎2, 

that cannot be explained by either the weather effect or technology shock. The impact from a technology shock usually includes 

an adoption of some new technology, improvement in farming practice, introduction of new seed varieties, etc. As a result, it 

is reasonable to assume that the effect of technology will always reduce agricultural losses, and hence there is a negative sign 

in the decomposition in Equation (1). The authors also assume that 𝑊𝑡, 𝜂𝑡, and 𝜀𝑡  are orthogonal with each other. 

Now consider the wealth of an individual farmer, who is faced with agricultural loss. In the uninsured condition, the terminal 

wealth is 𝜔𝑡 = 𝜔0 − 𝑋𝑡, where 𝜔0 is the initial wealth level. Now suppose the farmer purchases θ units of insurance with price 

π. Then the insured wealth becomes 𝜔𝑡 = 𝜔0 − 𝑋𝑡 + 𝜃(𝑋𝑡 − 𝜋) = 𝜔0 − (1 − 𝜃)𝑋𝑡 − 𝜃𝜋. 

The information asymmetry enters when the insurer is determining the contract price π. Usually the farmer has better 

information than the insurer. In the case of technological adoption, the farmer knows the level of the technological impact 𝜂𝑡, 

while the insurer usually does not have detailed information with respect to this. Now assume that the insurer prices the 

insurance contract following the most conservative assumption, that is, all farmers in the insurer’s risk pool do not adopt any 

new technology. Hence, in such a conservative assumption, the insurer has a risk decomposition model 𝑋𝑡 = 𝑊𝑡+𝜀𝑡 , and the 

insurance policy has price π = E (𝑋𝑡) = �̅� . 

With this insurance contract available, the farmer needs to make the decision about how much insurance to purchase, i.e., to 

determine θ. Suppose the utility function of the representative farmer at wealth level ω is U (ω), then the farmer needs to 

maximize the following expected utility function: 

arg max
0≤𝜃≤1

𝐸[𝑈(𝜔𝑡)] = arg max
0≤𝜃≤1

𝐸[𝑈(𝜔0 − (1 − 𝜃)(𝑊𝑡−𝜂𝑡+𝜀𝑡) − 𝜃�̅�)].  (2) 

With a few steps of simple derivation, the calculation becomes:  

U′(�̅�)�̅� = −(1 − 𝜃∗) · (𝜎𝑤
2 + 𝜎𝜂

2 + 𝜎𝜀
2) · U ′′(�̅�).    (3) 

For a strict concave utility function, that is, U ′′(ω)  <  0 for all ω, the coefficient of risk tolerance 𝜏(𝜔) = −
𝑈′(𝜔)

𝑈′′(𝜔)
 under the 

optimal condition can be expressed as  

𝜏(𝜔) = 
(1 − θ∗)(𝜎𝑤

2 + 𝜎𝜂
2 + 𝜎𝜀

2) 

�̅� 
 .    (4)  

There are a few interesting implications from Equation (4): 

• 𝜃∗decreases as 𝜏(𝜔) increases. More specifically, when information asymmetry exists, the more risk tolerant the farmer, 

the less insurance the farmer will purchase. 
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• For each fixed level of risk tolerance, 𝜃∗decreases with �̅�. This implies that farmers who adopt more advanced technology 

tend to purchase less insurance contracts under the information asymmetry. Due to this effect, in the long run, quick 

technology adopters will eventually leave the contract, and the insurer’s risk pool will become unbalanced. 

• For each fixed level of risk tolerance, 𝜃∗increases with Var(𝑋𝑡) = 𝜎𝑤
2 + 𝜎𝜂

2  +  𝜎𝜀
2. This is intuitive, because the number of 

insurance contracts purchased increases with the total underlying risk. 

• Finally, since the 𝑈 ′(𝜔)  <  0 and 𝑈 ′′(𝜔)  <  0, 𝜃∗  =  1 if and only if �̅� = 0. This result indicates that in the existence of 

information asymmetry, only those farmers who do not adopt any new technology will choose full insurance coverage. This 

result is important in the sense that the insurer can make use of the purchasing behavior of farmers to differentiate them 

with respect to their technology adoption. 

The analysis of the above decomposition model illustrates that it is important to isolate crop yield improvement due to technical 

change from crop yield improvement due to weather. 
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Section 3: Proposed Methodology 

Empirical models use underlying variables to estimate crop yield, and—if specified adequately—they can be extended to model 

the underlying technological trend. Crop yields likely depend on several factors, such as precipitation, temperature, solar 

radiation, soil effects, management, and technology. The influence of technology on crop yield may be geographically 

dependent, because some areas are early adopters of new technology and other areas adopt more slowly. Technology can be 

defined as any form of potential yield improvement and can be influenced by factors such as improved seeds, crop genetics, 

management practices, and precision agriculture improvements. This study attempts to separate the effects of weather and 

technology from the overall yield gain. This section discusses the proposed methodology. First, two decomposition frameworks 

are presented to separate technological gain from weather gain. This includes a fixed-effect approach and a relative effect 

approach. Second, the authors describe the data and processing.  

3.1 DECOMPOSITION FRAMEWORK I: FIXED-EFFECT APPROACH 

The first decomposition framework controls for heterogeneity between different geographical levels (such as farms, 

EcoDistricts, EcoRegions or counties) by estimating the fixed effects or separate intercept terms for each farm. Motivated by 

the method in Lobell et al. (2011), the weather effects are separated from the technology-related yield gain, by first controlling 

for the heterogeneity between groups and then modeling the weather and technology components. The model is specified 

below.  

 𝑦 =  𝑋𝛽 +  𝐷𝛼 +  𝜀,      (5) 

where X is a matrix of weather proxy variables; 𝑋0 is the intercept, 𝑋1 is the linear technology time trend with a polynomial time 

trend; and D is a dummy variable matrix composed of indicator variables identifying the geographical locations. This model is 

estimated by least squares methods. The least squares dummy variable model (LSDV) is more specifically described as follows,  

𝑦𝑖𝑡 = 𝛽1𝑋1𝑖𝑡 + 𝛽2𝑋2𝑖𝑡 + ⋯ + 𝛽𝑘𝑋𝑘𝑖𝑡 + ∅(𝑡) + Diα𝑖 + 𝑢it   (6) 

𝑦𝑖𝑡 represents the crop yield at farm/EcoDistrict/county i in year t, 

• 𝑋𝑖𝑡 represents weather proxy variables. 

• φ(t), in the form φ(1) + φ(t) + φ(𝑡2) + . . . ... + φ(𝑡𝑝) where p is the degree of the polynomial, and may be specified as the 

polynomial technology time trend. In this study, the trend variable is specified as p = 1 i.e., a linear technology trend. 

α𝑖 + 𝑢it where α𝑖  is the farm, EcoDistrict, EcoRegion or county specific unobserved heterogeneity, and 𝑢it is the idiosyncratic 

error. 

At the aggregate level, each of the weather proxy variables are estimated in a LSDV model. This model controls for heterogeneity 

between different geographic levels, indicated by the dummy variables, and adds a technology time trend to estimate the 

technological trend over the time period. Also, robust MM estimation is calculated. Finger (2013) suggested this method as an 

alternative to ordinary least squares (OLS) regression for yield trend estimation, because it may help to reduce the variance of 

the yield trend estimates. In this study, the authors estimate at the aggregate level a total of six models. The weather variables 

are expected to capture the effect of weather, and the technology trend captures the technological yield gains, such as 

improved genetics or improvements in management practices. The technology time trend is specified as a linear first-degree 

polynomial. 

In addition to the aggregate level estimation, the models are fit at different levels of aggregation and at the farm level. For 

example, at the farm-level, separate regressions are estimated for each farm based on its yield history. Similarly, for the other 

levels of aggregation, including EcoDistrict, and EcoRegion (which the authors discuss in more detail in Section 4), the trends 
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are separately regressed. Similarly, MM estimation is tested for each series at the various aggregation levels. These results are 

available in the Appendix and were conducted as robustness checks. 

3.2 DECOMPOSITION FRAMEWORK II: RELATIVE EFFECT APPROACH 

The second decomposition framework focuses on decomposing the weather and technological effect into two orthogonal parts 

as follows: 

𝑦𝑖,𝑡 = 𝑓(𝑊𝑖,𝑡) + 𝜂𝑖,𝑡 + 𝜀𝑖,      (7) 

where 𝑦𝑖,𝑡 denotes the yield production in each year t at each geographic location i; 𝑊𝑖,𝑡 is a vector of weather variables; ηi,t is 

a random variable that represents the technology improvement at each location i; and 𝜀𝑖 is an i.i.d.random variable representing 

the idiosyncratic residual. In this decomposition framework, there are two important assumptions: (1) the three components, 

f(𝑊𝑖,𝑡), 𝜂𝑖,𝑡, ∈𝑖, which are orthogonal with each other; and (2) ∈𝑖  is an i.i.d. random variable that does not depend on time. 

Given the decomposition model in equation (7), estimating the corresponding technological effect 𝜂𝑖,𝑡 for each location is still 

a challenging task. This is because it is difficult to find a good proxy of the technology effect for crop yield with available data. 

This is the reason why—in the first decomposition framework in this research, as well as in other current literature—polynomial 

functions of time are used as a technology effect proxy. Due to this difficulty, the framework proposed in this section considers 

a relative effect decomposition. For a certain estimated weather model 𝑓(𝑊𝑖,𝑡), it is easy to estimate the residuals 𝜀�̂�,𝑡 = 𝑦𝑖,𝑡 −

𝑓(𝑊𝑖,𝑡) = 𝜂𝑖,𝑡 +∈𝑖 , but it is challenging to further identify 𝜂𝑖,𝑡  and ∈𝑖  individually. Note that 𝜂𝑖,𝑡  = 𝜀�̂�,𝑡  − ∈𝑖 , and taking the 

average of this equation over the sample period t = 1, . . . , T gives 

1

𝑇
∑ 𝜂𝑖,𝑡 ≡ 𝜂�̅� =𝑇

𝑡=1
1

𝑇
∑ 𝜀�̂�,𝑡

𝑇
𝑡=1 −∈𝑖≡ 𝜀�̅� −∈𝑖.    (8) 

Therefore, removing equation (8) from 𝜂𝑖,𝑡 = 𝜀�̂�,𝑡 −∈𝑖  gives 

𝜂𝑖,𝑡 − 𝜂�̅� = 𝜀�̂�,𝑡 − 𝜂�̅�, 𝑡 = 1,2, … , 𝑇.     (9) 

It is nice to have equation (9), because the idiosyncratic residuals disappears. Equation (9) leads to modeling the technology 

effect on a relative scale, by comparing to the historical average level of each location. Therefore, by demeaning equation (7) 

on both sides, the authors propose the following decomposition:  

𝑦𝑖,𝑡 − 𝑦�̅� = [𝑓(𝑊𝑖,𝑡) − 𝑓(𝑊𝑖,𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅] + [𝜂𝑖,𝑡 − 𝜂�̅�],  (10) 

where 𝑦�̅� =
1

𝑇
∑ 𝑦𝑖,𝑡

𝑇
𝑡=1  is the historical normal level of crop yields;  𝑓(𝑊𝑖,𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅=

1

𝑇
∑ 𝑓(𝑊𝑖,𝑡)𝑇

𝑡=1  is the historical normal level of 

weather effects; and 𝜂�̅� =
1

𝑇
∑ 𝜂𝑖,𝑡

𝑇
𝑡=1 . The decomposition framework II proposed in this section includes the following three 

parts: 

a) Total gain (𝑦𝑖,𝑡 −𝑦�̅�): total production gain relative to the historical normal production level of location i. 

b) Technology gain (𝜂𝑖,𝑡 − 𝜂�̅�): production gain from the technology effect relative to the historical normal technological level 

of location i. 

c) Weather gain (𝑓(𝑊𝑖,𝑡) − 𝑓(𝑊𝑖,𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅): production gain from weather effects relative to the historical normal weather level of 

location i. 

A decomposition example following from equation (10) is displayed in Figure 2. 
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Figure 2 

RELATIVE EFFECT APPROACH: A DECOMPOSITION EXAMPLE 

 

The horizontal black line is the zero total gain line, representing a production level equal to the historical average. Years above 

the line indicate a positive total gain compared to the historical level and vice versa. For example, for the year 2011, the total 

gain is positive and equal to 162.19 kg/acre, which means 2011 is performing better than the historical average, among which 

24.19 kg/acre is due to the technology effect (technology gain), and 138.00 kg/acre is due to the weather effect (weather gain). 

In contrast, for the year 2010, the total gain is negative and equal to −7.15 kg/acre, which means 2010 is performing worse than 

the historical average level. Within the 7.15 kg/acre negative gain, 78.15 kg/acre is due to the negative weather gain (weather 

conditions worse than historical normal level), and 71.01 kg/acre is due to the positive technology gain (technology 

improvement better than historical average). 

Figure 3 

PUBLIC AGRICULTURAL R&D FUNDING INPUTS (IN BILLION USD) WITH TECHNOLOGY GAIN 

 

Dashed black lines are smoothing line with simple polynomials. 
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To help support the above decomposition framework, the authors compare the resulting technology gain to some technology 

improvement proxy. They consider the annual total public agricultural research and development funding inputs (AgRD) as a 

good proxy for the technological trend in the U.S., which they obtained from the Economic Research Service from the U.S. 

Department of Agriculture (USDA). Plotting the two series together, displayed in Figure 3, the technology gain shares much of 

the same pattern as the AgRD, and this provides some support for the authors’ proposed decomposition framework. The next 

challenge to achieve an effective decomposition framework is to accurately and sufficiently model the weather component. In 

the empirical analysis of this research, the authors propose several machine-learning-based (likely nonlinear) predictive models 

to estimate 𝑓(𝑊𝑖,𝑡). 
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Section 4: Data and Processing 

In this research, the authors created two datasets for the empirical analysis. The first one is a county-level corn yield dataset 

from Iowa in the U.S., spanning 37 growing seasons from 1982 to 2018 for 99 counties, which gives a total of 3,663 yield 

observations. Weather proxy indices are then extracted for the corresponding counties and linked to yields. The second dataset 

is field-level canola yield data from the province of Alberta, Canada, spanning 16 years from 2002 to 2017. This amounts to 

591,430 field-level yield observations corresponding to geo-located quarter sections for a total of 1,293 representative farms 

that have 16 years of canola history. Weather variables are extracted at the corresponding quarter section and then weighted 

to the farm-level. The dataset is an unbalanced panel; and due to farm crop rotation and changes in planting decisions, many 

producers do not produce canola each year.  

For quality control of the extracted weather variables, the authors only considered for analysis field units greater than 150 

acres. As a result, the number of producers who planted at least one canola field over 150 acres each year over the 16 growing 

seasons is reduced from 1,293 producers to 78 producers. The amount of producers with 10 years of canola production history 

with a field over 150 acres is 389, and at least five years of canola production history with a field over 150 acres is 883. A 

sensitivity analysis is conducted on the full 1,293 representative farms to compare the results of the quality controlled sample 

of 78 farms with the full dataset of 1,293 farms. 

4.1 IOWA CORN DATASET 

The first dataset includes county level yield data downloaded from the USDA’s National Agricultural Statistics Service database 

for 99 counties in Iowa from 1982 to 2018 for a total of 37 years. These county yields, which are measured in bu/acre, are then 

joined with the weather proxy indices, weather variables, vegetation indices and biophysical indices. The weather variables, 

including minimum and maximum temperatures, precipitation and shortwave solar radiation are extracted from the University 

of Idaho Gridded Surface Meteorological Dataset weather grid, which is an interpolated weather grid that uses information 

from ground weather stations and ancillary information to provide estimates of weather variables over the continuous U.S. at 

a 4km-by-4km resolution grid. The weather variables of interest are extracted for each county for each day of the year and 

averaged over the county. This results in 365 weather observations for each variable for each respective county each year. 

These weather variables are aggregated to eight-day periods by averaging and are then compressed into a lower-dimensional 

dataset by using principal component analysis (PCA). This transforms the weather variables into orthogonal components that 

describe most of the information contained in the weather variables but with less dimensionality. These principal components 

(PCs) are saved for further analysis. The first 10 principal components described approximately 70% to 80% of the variation in 

weather observed in the multiple weather variables. Table 1 displays some descriptive statistics of the county corn yields.  

Table 1  

SUMMARY STATISTICS OF IOWA CORN YIELDS 

Statistic 

N
 

Mean St. Dev. Min Pctl (25) Pctl (75) Max 

Yield∗ 3,645a

 1
44.669 

35.420 
19.100 

123.500 
171.000 

226.000 

*Yield is the county level corn yield; a 3845 observation from 99 counties × 37 years 
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4.2 ALBERTA CANOLA DATASET 

The next dataset is the field-level canola yield dataset from Alberta, Canada, spanning 16 years from 2002 to 2017. This amounts 

to 591,430 field-level yield observations corresponding to geolocated quarter sections for a total of 1,293 representative farms. 

The dataset is an unbalanced panel; and due to farm crop rotation and changes in planting decisions, many producers do not 

produce canola each year. For quality control of the extracted weather variables, the authors only considered for analysis field 

units greater than 150 acres. As a result, the number of producers who planted at least one canola field over 150 acres each 

year over the 16 growing seasons is reduced from 1,293 producers to 78 producers. The amount of producers with at least 10 

years of canola production history with a field over 150 acres is 389 and those with at least five years of canola production 

history with a field over 150 acres is 883. The yield values are averaged at the farm-level and are not measured at the field unit. 

For example, a farmer in 2015 may have three canola fields, but there is only one yield value, which is downscaled to the field 

unit (i.e., the yields have been averaged over the three parcels and are not stored at the field unit). However, the weather and 

remote sensing indices are measured and extracted at the field level and then averaged based on the field unit acreage size 

proportionate to the total number of acres of canola grown on the farm for the year. As a result, the measurements for the 

weather variables are directly linked to the actual quarter section locations, which provides a higher degree of accuracy. Table 

2 displays some descriptive statistics for canola yields. 

Table 2  

SUMMARY STATISTICS OF ALBERTA CANOLA YIELDS AND FARM SIZE 

 

 

 
 
 

Table 2 displays canola yield summary statistics of the 78 farms in Alberta, Canada. *Total Acres represents the total amount of canola acres 

insured. **Yield is canola yield averaged over the field units to the farm-level. a 1248 observations of 78 farms × 16 years.  

 

Table 3  

WEATHER VARIABLE DESCRIPTIONS 

Variable Units Description 

Min-temperature C◦ Daily minimum 2-meter air temperature. 

Max-temperature C◦ Daily maximum 2-meter air temperature. 

Shortwave radiation 
W/m2 

Incident shortwave radiation flux density, 
taken as an average over the daylight period of the day. 

Precipitation 
mm 

Daily total precipitation, 
sum of all forms converted to water-equivalent. 

 

The authors collected weather variables from NASA’s Daymet weather grid, which provides global daily weather variable 

measurement, derived from weather station and ancillary data, at a 1km-by-1km resolution grid. The weather variables, 

including minimum and maximum temperatures, precipitation and shortwave solar radiation are extracted for each field unit 

for each day of the year. Each of the 591,430 unique field units has 365 observations of each weather variable. These 

observations are then weighted based on the proportion of the farm’s total acreage to the farm-level. The weather variables 

are then compressed using the same PCA procedure employed for the Iowa data. The first 10 principal components are used 

for analysis. Descriptions of the weather variables are available in Table 3. 

Statistic N Mean St. Dev. Min 
Pctl 
(25) 

Pctl (75) Max 

Total 
Acres∗ 

Yield** 

1,248a 
1,248 

1,497.21
1 

720.83
6 

1,989.75
0 

317.83
5 

152 
0.000 

320 
483.765 

1,810.2 
942.557 

19,870 
1,624.05

9 
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The normalized difference vegetation index (NDVI) is derived from NASA’s Moderate Resolution Spectral Radiometer (MODIS) 

using the MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m product (Vermote, 2015). This product provides 

eight-day best pixel composite surface reflectance values that the authors then use to calculate NDVI. NDVI values are measured 

at a resolution of 500 meters and then extracted at the field unit level. These values are then smoothed and integrated to get 

the INDVI at each field unit location and then weighted proportionately to the farm level. 

The leaf area index (LAI) and fraction of absorbed photosynthetic radiation (FAPAR) biophysical parameter indices are collected 

and aggregated in the same way as the NDVI vegetation index, however, they include additional spectral band information in 

their calculation. These indices are calculated and then weighted proportionately to the farm-level. Descriptions of the remote 

sensing variables are available in Table 4. 

Table 4  

REMOTE SENSING VARIABLE DESCRIPTIONS 

Variable Min Max Description 

NDVI −1 1 Normalized difference vegetation index 

LAI 
0 

100 
The one-sided green leaf area per unit of ground area 

FAPAR 
0 

100 
The FAPAR absorbed by the vegetation canopy 

 

4.3 LEVELS OF AGGREGATION 

Estimating farm level trends is sensitive to the sampled weather over the time period at those field units and may need to be 

aggregated further to consistently estimate the yield trend. As a result, the field unit canola yields from Alberta are aggregated 

to three different levels, from highest aggregation to the lowest: (1) EcoRegion, (2) EcoDistrict and (3) farm, respectively. The 

farm-level aggregation stage was discussed above, and the weather variables measured at the field units were aggregated to 

this farm level. The farm locations are joined with the Canadian Ecological Framework consisting of a nested hierarchy classifying 

Canada into EcoZones, EcoRegions and EcoDistricts characterized by distinctive landform, relief, surficial geologic material, soil, 

water bodies, vegetation and land uses.  

EcoDistricts are the most detailed in the ecological hierarchy and are used to group the farms. In Alberta, there are more than 

1,000 distinct EcoDistricts, and approximately 100 of these regions have canola grown in them. The EcoDistricts that have canola 

acres continuously over the period are kept for analysis for a total of 59 EcoDistricts. The mean canola yield across EcoDistricts 

are displayed in Figure 4. The figure shows that the average canola yield in these distinct EcoDistricts is likely heterogenous, 

which has been documented in the literature (See, for example, Barnett et al. (2005); Woodard et al. (2012); Zhu et al. (2015)). 

Producers management styles may vary between EcoDistricts to manage the distinct growing conditions. The heterogeneity of 

growing conditions across EcoDistricts is likely the cause of much of the yield differences across EcoDistricts. 
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Figure 4  

HETEROGENEITY OF MEAN CANOLA YIELD ACROSS ECODISTRICTS  

The x-axis displays the EcoDistrict ID number; the y-axis displays the EcoDistrict average canola yield. 

EcoRegions are the next step in the hierarchy of land classification and are larger than EcoDistricts and generally are defined by 

a distinctive feature of the area. These regions aggregate the farms in a smaller set of regions than the EcoDistricts and may still 

represent the differences in production and yield described above. When grouped by EcoRegions, the farms are grouped into 

five subgroups that can be further analyzed. The number of farms grouped by EcoDistrict and EcoRegion are displayed in Figure 

5 in Section 5. 
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Section 5: Empirical Analysis Results 

In this section, the authors empirically evaluate the two proposed decomposition frameworks using the two datasets introduced 

in Section 4. Subsections 5.1 and 5.2 introduce the trend estimation results based on framework I and II, respectively.  

5.1 EMPIRICAL RESULTS OF DECOMPOSITION FRAMEWORK I 

Farm-level yield trend estimation can be sensitive to high and low yields and data sparsity. As a result, the estimated farm-level 

yield trends can be highly varied between farms, and this variability in the estimated trend coefficients can be assessed by the 

standard deviation of the estimated trends and the range of trend values. For crop insurance, trend values estimated at the 

farm level may be too variable to warrant a trend adjustment, and trend adjustment may be better conducted at an aggregated 

level. 

Figure 5 

ECODISTRICT AND ECOREGION AGGREGATION LEVEL OF THE ALBERTA CANOLA DATA 

 

 

5.1.1 IOWA CORN DATASET  
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For the Iowa county-level corn yields dataset, the trend is first estimated at the state level using a LSDV regression. Next the 

state-level trend is estimated using the MM robust estimator using dummy variables and a linear time trend. More specifically, 

the following six LSDV regression models are estimated: 

a) Model A: baseline model with a linear time trend estimated by OLS 

b) Model B: model with a linear time trend estimated by MM robust estimation 

c) Model C: integrated NDVI and a linear time trend 

d) Model D: integrated LAI and a linear time trend 

e) Model E: integrated FAPAR and a linear time trend 

f) Model F: weather-variable principal components (minimum and maximum temperatures, precipitation, short-wave 

radiation) with a linear time trend 

Once the models are estimated, the technology trend can be interpreted. The linear coefficient fitted to the technology trend 

variable can be interpreted to distinguish whether the effect is negative or positive, and the magnitude of technological change 

can be evaluated. The technology time trend captures the rate of technological change over the time period for corn yields. 

The estimated yield trend for the six fixed effects regression models for the Iowa data set are displayed in Table 5. The baseline 

trend is used as a reference to approximate the weather effect over the period. The weather effect is defined as the baseline 

max technology minus the compared model technology. 

In Table 5, Model A reports the baseline linear trend model estimated by OLS, and has an estimated technology trend of 2.420 

bu/acre. That translates to a yield increase over the 37 years of 2.420 ∗ 37 = 89.54 bu/acre. Model B is a robust regression using 

MM estimation with a linear time trend, and the estimated yield trend is 2.382 bu/acre, which is slightly less than the baseline 

trend. This implies a slightly positive weather effect of 2.420 − 2.382 = 0.038 bu/acre over the period. Model C, the linear time 

trend and NDVI model has a technology trend of 2.375 bu/acre, which is similar to the baseline trend and the robust regression 

model. The weather effect is 0.045 bu/acre over the period, translating to 0.045 ∗ 37 = 1.665 bu/acre gained due to favorable 

weather conditions over the time period. 

Table 5  

AGGREGATE REGRESSION RESULTS FOR THE IOWA CORN DATASET 
 

Model Description Tech Trend Weather Trend %Tech Trend % Weather Trend 

A y∼f(time) 2.420 – – – 

B y∼f(time) MM 2.382 0.038 98.43% 1.57% 

C y∼f(time, NDVI) 2.375 0.045 98.14% 1.86% 

D y∼f(time, LAI) 0.934 1.486 38.60% 61.40% 

E y∼f(time, FAPAR) 1.476 0.944 60.99% 39.01% 

F y∼f(time, PCs) 1.950 0.47 80.58% 19.42% 

Note: Yields and trends are measured in bu/acre. 

 
Similarly, for the LAI model (Model D) and the FAPAR model (Model E), the technology trends are 0.934 and 1.476, respectively. 

Last, the weather principal component model (Model F) measures a technology trend of 1.950 bu/acre per year and a weather 
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effect of 0.47 compared relative to Model A. Figure 6 shows the estimated trends for Model A to Model F based on using the 

Iowa dataset. 

If the assumption is that weather has not significantly changed in the growing region over the time period, then the technology 

trend should converge to the long-term trend. Assuming that 37 years is a sufficiently long crop yield history to meet this long-

term convergence and assuming weather has not drastically changed in the region, then the baseline model’s estimated 

technology trend should be the effect of technology over the period. From this, the authors can establish the negative bias of 

technology that the model with NDVI has when estimating the technology trend due to the amount of technological change 

captured by NDVI over the period. This effect is measured by 2.420 − 2.375 = 0.45 bu/acre, or if using the robust regression, 

Model B, as the baseline true effect of technology over the period, then the amount of technological change captured by NDVI 

over the period is 2.382 − 2.375 = 0.007 bu/acre, which is a marginal amount over the period and likely of little economic 

significance. 

Figure 6 

ESTIMATED AGGREGATE TECHNOLOGY TRENDS FOR IOWA DATASET 

5.1.2 ALBERTA CANOLA DATASET  

Next, the authors use the Alberta farm-level canola yield dataset to estimate the LSDV model and then the provincial level trend 

using the MM robust estimator using dummy variables and a linear time trend. More specifically, the following four LSDV 

regression models are estimated1: 

a) Model A: baseline model with a linear time trend estimated by OLS 

b) Model B: baseline model with a linear time trend estimated by MM robust estimation 

c) Model C: integrated NDVI and a linear time trend 

                                                
1 Given the results from the Iowa Data, the LAI and FAPAR models were not estimated because they were found to capture a large amount of technological change. 
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d) Model D: weather-variable principal components derived from minimum and maximum temperatures, precipitation and 

short-wave radiation, with a linear time trend 

Average canola yield over the period from 2002 to 2017 for the 591,430 canola fields displayed large yield increases and 

heterogeneity over the period2. Figure 7 shows the heterogeneity of cross-section average canola yield for each year over the 

time period. This yield trend is sometimes ascribed to improvements in crop technology, including enhanced seeds, improved 

farm management practices, etc. However, some of this yield increase may be attributed to favorable weather over the period. 

Since crop yields are observed only once per year, a biased pattern of subsequent highly favorable weather growing seasons 

may occur, and this pattern may increase average yield for a time before converging to a true mean yield. 

Figure 7 

HETEROGENEITY ACROSS YEARS FOR THE ALBERTA DATA  

 

The x-axis displays the year, and the y-axis displays the provincial average canola yield.Table 6 displays the estimated technology and weather 

trends for the Alberta canola data. Model A has an estimated technology trend of 17.563 kg/acre, which is a large increase per 

year. This estimated technology trend translates to a 17.563 × 17 = 298.571 kg/acre increase over the period. Converted to 

bu/acre using a factor of 1/44 (approximate kg/acre to bu/acre approximation factor) results in a bu/acre increase over the 

period of 6.786 bu/acre.  

Table 6  

DATASET 2, CANOLA YIELDS, ALBERTA, CANADA 

Model 
Description
  Tech Trend Weather Trend % Tech Trend % Weather Trend 

A y∼f(time) 17.563 – – – 

B y∼f(time) MM 11.540 6.023 65.71% 34.29% 

C y∼f(time, NDVI) 10.410 7.153 59.27% 40.73% 

                                                
2 Note that 2002–2003 was a drought year. This may impact the results. 
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D y∼f(time, PC) 6.118 11.445 34.83% 65.17% 

Note: All yields and trends are measured in kilograms per acre (kg/acre). 

Model B has a technology trend of 11.540 kg/acre, significantly less than the technology rate estimated by Model A. Model B is 

less influenced by yields, which are outside of the prevailing trend. Model A may be influenced by the beginning year 2001, 

which was a large crop-loss year. The technology gain over the 16 years estimated by Model B is 11.540 × 17 = 196.18 or 4.459 

bu/acre. Model C has a technology trend of 10.410 kg/acre, which translates to a technology yield gain over the period of 10.410 

× 17 = 176.970 or 4.022 bu/acre. Given that the amount of technology captured by NDVI in the Iowa dataset, Model C was 

economically not significant; and assuming that the same result holds for canola, then the NDVI model shows a yield increase 

due to technology of 4.022 bu/acre versus the baseline of 6.322 bu/acre for the period. This indicates that favorable weather 

may have improved canola yields by 6.786 − 4.022 = 2.764 bu/acre over the 16 years. Model D has a technology trend of 6.118 

kg/acre, which is much lower than the other model results. Figure 8 shows the estimated trends for Model A to Model D. 

Figure 8 

ESTIMATED AGGREGATE TECHNOLOGY TRENDS FOR ALBTERTA DATASET 

 

5.1.3 AGGREGATION RESULTS 

For the Alberta farm-level canola yields, the effect of aggregation was tested on the crop yield trends. Technology may be 

adopted at different rates among farms, and by aggregating farms together for yield-trend estimation, some of this 

information may be lost. To test this hypothesis and to examine further the issues of aggregation, the authors use a Chow test 

procedure. This is motivated by Skees and Reed (1986), where a Chow test procedure is used to test different levels of 

aggregation (pooling of farms) to determine whether the yield trends observed on the farms are structurally different than 

the trends estimated at the aggregate level. Three aggregation levels are tested relative to the farm level trends, which 

includes the province level (highest), the EcoRegion level (medium) and the EcoDistrict level (lowest). With higher levels of 

aggregation, the technology and weather trends can be estimated with less uncertainty. A summary of the results are 

provided in Table 7. Note: Despite being a much higher level of aggregation, the EcoRegion (medium) level results are similar 

to the much lower EcoDistricts (lowest) aggregation level. 
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Table 7  

CHOW TEST RESULTS, CANOLA YIELDS, ALBERTA, CANADA 

Province Level1 

% Structural Difference 44.87% or 33/78 farms 

EcoRegion Level2 

% Structurally Different 37.18% or 29/78 farms 

EcoDistrict Level3 

% Structurally Different 32.05% or 25/78 farms 

1 Farm yields are aggregated in one group. 2 Farm yields are aggregated into five groups. 3 Farm yields are aggregated into 59 groups. 

 
Table 7 shows the Chow test results for each tested level of aggregation. There is a balance between capturing the farm-specific 

rates of technology adoption while having enough data to accurately decompose the technology trend estimate from the overall 

trend. The results suggest that compared to the other levels of aggregation, the EcoRegion level may provide a good balance. 

For example, comparing the amount of farms that are structurally different from the aggregate trend of the EcoRegion level 

and the EcoDistrict level, the EcoRegion level has 29/78 farms, and the EcoDistrict level has 25/78 farms. The increase of four 

farms relative to the large increase in aggregation, 59 groups to five groups, may be an acceptable trade-off. In Appendix A, a 

full description of aggregation results is shown, including trend estimates at each level of aggregation for each respective model. 

5.2 EMPIRICAL ANALYSIS RESULTS OF DECOMPOSITION FRAMEWORK II 

This subsection summarizes the results of the second decomposition framework. Recall that the objective of this decomposition 

framework in equation (10) is to estimate the relative technology gain (𝜂𝑖,𝑡 − 𝜂�̅�) through reducing the weather gain (𝑓(𝑊𝑖,𝑡) −

𝑓(𝑊𝑖,𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅) from the total gain (𝑦𝑖,𝑡 − 𝑦�̅�). As a result, the key task becomes how to model the weather gain as accurately as 

possible. Given the availability of weather proxy indices and other weather variables, in this research, the authors propose using 

some machine-learning-based (linear or nonlinear) models to estimate and predict the weather effect and, hence, estimate the 

technology effect. Those models are Principal Component Regression (PCR), Partial Least Square (PLS), Ridge Regression, Lasso 

Regression and Neural Network (NN). The remainder of this subsection briefly describes the five models the authors utilized in 

this research. For a more detailed introduction of the models, refer to, for example, Friedman et al. (2001) and James et al. 

(2013). 

PRINCIPAL COMPONENT REGRESSION MODEL 

The PCR approach involves constructing the first m principal components, where m can be much smaller than the original 

number of regressors and then using these components as the predictors in a linear regression model. More specifically, PCR 

uses Z = (𝑍1, … , 𝑍𝑚), a set of linear combination of the original p-dimensional feature space, to construct the linear regression 

model: 

𝑍𝑘 = ∑ ∅𝑗𝑘𝑋𝑗
𝑝
𝑗=1       (11) 

Then the linear regression model is fitted with n realizations of Z using OLS: 

𝑦𝑖 = 𝜃0 + ∑ 𝜃𝑘
𝑚
𝑘=1 𝑧𝑖𝑘 +∈𝑖 , i = 1, . . . , n.   (12) 

The key advantages of the PCR are twofold: 
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1. Dimension reduction—often a small number of principal components are sufficient to explain most of the variability 

in the data, as well as the relationship with the response. 

2. New feature space is orthogonal. Due to the way the principal components are constructed, they are uncorrelated 

with each other, which is very helpful to address the problem of collinearity. 

PARTIAL LEAST SQUARE MODEL 

PCR identifies linear combinations that best represent the original predictors 𝑋1, … , 𝑋𝑝  in an unsupervised way, where the 

response variable is not used to help determine the principal components while performing the regression. Comparatively, PLS 

identifies new feature variables 𝑍1, … , 𝑍𝑚 through a supervised way, which makes use of the response variable Y to identify 

new features that not only approximate the old features well but also the most related to the response variable. 

More specifically, PLS obtains the first PLS component for predicting the response variable Y following two steps: 

1. Compute ∅𝑗1 by fitting a simple linear model Y = 𝛽𝑗0 + ∅𝑗1𝑋𝑗 +∈𝑗 , j = 1, . . . , p. 

2. Construct the derived first PLS component 𝑍1 = ∑ ∅𝑗1𝑋𝑗
𝑝
𝑗=1 .  

Subsequent PLS components are found by taking residuals and then repeating the above steps. Since ∅𝑗1 are proportional to 

the correlation between Y and 𝑋𝑗, PLS places the highest weight on the variables that are most strongly related to the response 

variables. As a result, for PCR, there is no guarantee that the directions that best explain the predictors will also be the best 

directions to use in predicting the response variables. This potential drawback may be addressed by PLS through using the 

response variable to supervise the identification of the linear combinations. 

RIDGE REGRESSION MODEL 

The Ridge Regression model is a shrinkage method that constrains the coefficient estimates toward zero. The idea of shrinking 

the coefficients can significantly reduce the model variance and, hence, improve the model’s predictive ability. The Ridge 

Regression estimates coefficients by solving the following problem: 

𝛽𝑅 = argmin
𝛽

𝑅𝑆𝑆 = argmin
𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑗
𝑝
𝑗=1 )

2𝑛
𝑖=1 ,   (13) 

Subject to: ∑ 𝛽𝑗
2 ≤ 𝑠,

𝑝
𝑗=1        

where s is the tuning parameter, which serves to control the relative impact of the constraint on the regression coefficient 

estimates. Usually a cross-validation method is used to search for the optimal tuning parameter. 

LASSO REGRESSION MODEL 

Another shrinkage method is the Lasso. The Lasso estimates the coefficients by solving the problem: 

    𝑎𝑟𝑔𝑚𝑖𝑛𝛽{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑗
𝑝
𝑗=1 )2𝑛

𝑖=1 }   (14) 

Subject to: ∑ |𝛽𝑗| ≤ 𝑠,
𝑝
𝑗=1   
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where s, similar to the Ridge, is the tuning parameter, which serves to control the relative impact of the constraint on the 

regression coefficient estimates. As in Ridge Regression, selecting a good tuning parameter is important, and cross-validation 

method can be used. 

Lasso has a penalty function that forces some of the coefficient estimates to be exactly zero when the tuning parameter is 

sufficiently large. Hence, the Lasso yields sparse models that involve only a subset of the variables, which gives an idea of the 

most important variables in explaining and predicting each factor. 

NEURAL NETWORK MODEL 

NN encompasses a wide range of models and learning methods. NN are popular in the computer science literature and have 

been investigated for application in many areas. In particular, NNs have played an important role in pattern recognition and 

time series modeling (Ripley, 1993; Cheng and Titterington, 1994). In time-series forecasting with additional explanatory 

variables (regressors or features), future outcomes are predicted with some function of past observations, known as nonlinear 

(auto)regressive with external input. One key advantage of the NN method is that the predicting function does not need to be 

linear, which can be very important when compared to current most commonly used predictive methods in the literature. The 

architecture of a typical NN is displayed in Figure 9. This is a NN with one hidden layer of two neurons. The output layer (the 

forecast) is predicted through past observations in the input layer of 𝑦1, . . . , 𝑦𝑇  . 

Figure 9 

AN ILLUSTRATION OF THE ARCHITECTURE OF A TYPICAL NN WITH ONE HIDDEN LAYER TWO NEURONS 

 

5.2.1 IOWA DATASET 

The estimated technology gains and weather gains (in both absolute magnitudes and percentage) for the five machine-

learning-based models for the Iowa dataset are displayed in Table 8. The percentage technology (weather) gains are 

calculated relative to the baseline model with a linear time trend estimated by OLS, similar to the decomposition framework 

in Subsection 5.1. 

Table 8  
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ESTIMATED AGGREGATE TECHNOLOGY TRENDS FOR IOWA DATASET  

Model Description Tech Gains 
Weather 

Gains % Tech Gains 
% Weather 

Gains 

A PCR 53.01 23.34 69.43% 30.57% 

B PLS 64.98 28.53 69.49% 30.51% 

C Ridge 72.80 31.31 69.93% 30.07% 

D Lasso 63.21 36.81 63.20% 36.80% 

E NN 71.91 43.96 62.06% 37.94% 

Note: Yields and trends are measured in bu/acre. 

The technology gains on average estimated from the five models are quite stable, around 50 to 70 bu/acre. Take the results 

from Model A, the PCR model, as an example. The estimated average technology gains is 53.01 bu/acre compared to the 

historical yield average, or equivalently 69.43% relative to the baseline linear trend model. The decomposition results for the 

first models are very close.  

Figure 10 shows the histogram plots of the decomposition with the Iowa dataset based on five weather models for all the 

counties of the Iowa dataset. Model A to Model D—i.e., PCR, PLS, Ridge and Lasso—display heavy tail properties for the 

estimated technology gains, while the NN produces technology gains with a more symmetric distribution. For the 

decomposed weather gains, it is interesting to note that all of the five models show a two-peak distribution pattern (i.e., a 

bimodal distribution). This finding indicates that from the 37-year period, the decomposition models identify two (good and 

bad) weather regimes. Figure 11 shows plots of the time series of the decomposition (in percentage) with the Iowa dataset 

based on the weather five models. 
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Figure 10  

HISTOGRAM PLOTS OF THE DECOMPOSITION WITH THE IOWA DATASET BASED ON FIVE WEATHER MODELS 
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Figure 10: Histogram plots of the decomposit ion with the Iowa data set based on five
weather models, PCR, PLS, Ridge, Lasso and NN.
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5.2.2 ALBERTA DATASET 

The estimated technology gains and weather gains (in both absolute magnitudes and percentage) for the five machine-

learning-based models for the Alberta dataset are displayed in Table 9. The technology gains on average estimated from the 

five models are quite stable, around 160 to 240 kg/acre. For example, according to the PCR model, the estimated average 

technology gain is 212.87kg/acre (or equivalently, 4.8 bu/acre) compared to the historical yield average, or equivalently 

75.03% relative to the baseline linear trend model. Note that for the Alberta dataset, the NN model has a trend 

decomposition that is quite different from the other weather models. 

Figure 12 shows the histogram plots of the decomposition with the Alberta dataset. The distribution of technology gains for 

the Alberta data are less asymmetric compared to the Iowa results. However, some heavy tail evidence from all of the models 

is still observed. For the decomposed weather gains, there is now bimodal pattern as with the Iowa data. One possible 

explanation is that the 16-year time series for the Alberta dataset is not sufficiently long to identify historical weather 

patterns. It is also possible, however, that the Alberta dataset does not contain the similar two-weather regimes observed 

with the Iowa dataset. 

Table 9  

ESTIMATED AGGREGATE TECHNOLOGY TRENDS FOR ALBTERTA DATASET 

Model Description 

Tech 

Gains 

Weather 

Gains % Tech Gains %Weather Gains 

A PCR 212.87 70.86 75.03% 24.97% 

B PLS 231.07 77.54 74.87% 25.13% 

C Ridge 237.76 71.00 77.00% 23.00% 

D Lasso 239.80 73.87 76.45% 23.55% 

E NN 163.98 82.05 66.65% 33.35% 
Note: Yields and trends are measured in kg/acre. 
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Figure 12 

HISTOGRAM PLOTS OF THE DECOMPOSITION WITH THE ALBERTA DATASET BASED ON FIVE WEATHER MODELS  

Technology G
ains

W
eather G

ains

-500 0 500

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

Weight(kg)

D
en

si
ty

Histogram Plot of Decomposition (Alberta Data, PCR)

Technology G
ains

W
eather G

ains

-750 -500 -250 0 250 500

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

Weight(kg)

D
en

si
ty

Histogram Plot of Decomposition (Alberta Data, PLS)

Technology G
ains

W
eather G

ains

-500 0

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

Weight(kg)

D
en

si
ty

Histogram Plot of Decomposition (Alberta Data, Ridge)

Technology G
ains

W
eather G

ains

-500 -250 0 250 500

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

Weight(kg)

D
en

si
ty

Histogram Plot of Decomposition (Alberta Data, Lasso)

Technology G
ains

W
eather G

ains

-300 0 300 600

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

Weight(kg)

D
en

si
ty

Histogram Plot of Decomposition (Alberta Data, NN)

Figure 12: Histogram plots of the decomposit ion with the Alberta data set based on five
weather models, PCR, PLS, Ridge, Lasso and NN.
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6 Sensit iv i t y A nalysis

A sensit ivity analysis is conducted to compare results derived from the quality controlled

Alberta farm level data set containing 78 farms, and the larger unfiltered data set with 1293

farms. The 1293 farms were filtered down to 78 farms on the condit ion that they grew

at least one 150 acre field of canola over the past 16 years. This was done to ensure the

geolocated weather variables were properly extracted from the field locat ions. We use the

full Alberta farm-level canola yields data set here to est imate the LSDV model, and then the

provincial level t rend is est imated using the MM robust est imator using dummy variables

and a linear t ime trend. The est imated models are as follows:

(a) Model A: Baseline model with a linear t ime trend est imated by OLS.

(b) Model B: Baseline model with a linear t ime trend est imated by MM robust est imat ion.

(c) Model C: Integrated NDVI and a linear t ime trend.

(d) Model D: Weather-variable principal components derived from min and max temper-

atures, precipitat ion, short -wave radiat ion, with a linear t ime trend.

Table 10 Dataset 2, Canola Yields, Alberta, Canada

Model Descript ion Tech Trend Weather Trend % Tech Trend % Weather Trend

A y∼f(t ime) 28.386 - - -
B y∼f(t ime) MM 26.555 1.831 93.55% 6.45%
C y∼f(t ime, ndvi) 19.370 9.016 68.24% 31.76%
D y∼f(t ime, PC) 11.204 17.182 39.47% 60.53%

Note: All yields and trends are measured in kilograms per acre (kg/ acre)

Table 10 shows the yield t rends est imated using the full data set . The magnitudes of the

coefficients in general are larger, and this might bedue to sampling bias. For example, the78

farms in theanalysisabovehad a lower averagecanola yield compared to thefull sample. The

results are similar to the 78 farm sample, with the except ion of the MM est imat ion est imate

40
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Section 6: Sensitivity Analysis 

A sensitivity analysis is conducted to compare results derived from the quality-controlled Alberta farm-level dataset 

containing 78 farms and the larger unfiltered dataset with 1,293 farms. The 1,293 farms were filtered down to 78 farms on 

the condition that they grew at least one 150-acre field of canola over the past 16 years. This was done to ensure the 

geolocated weather variables were properly extracted from the field locations. The authors use the full Alberta farm-level 

canola yields dataset here to estimate the LSDV model and then estimate the provincial level trend using the MM robust 

estimator using dummy variables and a linear time trend. The estimated models are as follows: 

a) Model A: baseline model with a linear time trend estimated by OLS 

b) Model B: baseline model with a linear time trend estimated by MM robust estimation 

c) Model C: integrated NDVI and a linear time trend 

d) Model D: weather-variable principal components derived from minimum and maximum temperatures, precipitation, 

short-wave radiation, with a linear time trend 

Table 10 shows the yield trends estimated using the full dataset. The magnitudes of the coefficients in general are larger, and 

this may be due to sampling bias. For example, the 78 farms in the analysis above had a lower average canola yield compared 

to the full sample. The results are similar to the 78 farm sample, with the exception of the MM estimate being more similar to 

the estimate of the baseline OLS model. This could be because, as the sample increases, the outlier yields become less 

influential and the MM estimation method becomes more similar to OLS. For the NDVI model, there are similar results as the 

previous analysis, and the weather PC model gives similar results as well. The authors also analyzed log transformed yields as 

a robustness check. 

Table 10  

DATASET 2, CANOLA YIELDS, ALBERTA, CANADA 

Model Description  Tech Trend Weather Trend % Tech Trend % Weather Trend 

A y∼f(time) 28.386 – – – 

B y∼f(time) MM 26.555 1.831 93.55% 6.45% 

C y∼f(time, NDVI) 19.370 9.016 68.24% 31.76% 

D y∼f(time, PC) 11.204 17.182 39.47% 60.53% 

Note: All yields and trends are measured in kg/acre. 

Table 11 shows the estimated trend coefficients for the log transformed yield estimation models using the full sample of 

farms. The noticeable difference between the log transformed models and the level yield models shown in Table 10 is that the 

MM model gives a lower technology trend and also the PC model gives a lower technology trend. This could be related to the 

transformation not being appropriate because the sample increases and the influence of the zero values and extreme yield 

values begins to decrease. 
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Table 11  

DATASET 2, LOG CANOLA YIELDS, ALBERTA, CANADA 

Model Description  Tech Trend Weather Trend % Tech Trend % Weather Trend 

A y∼f(time) 0.084 – – – 

B y∼f(time) MM 0.024 0.06 28.57% 71.43% 

C y∼f(time, NDVI) 0.041 0.043 48.81% 51.19% 

D y∼f(time, PC) 0.002 0.082 2.38% 97.62% 

Note: All yields and trends are measured in kg/acre. 
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Section 7: Conclusion and Additional Remarks 

7.1 SUMMARY 

A necessary component of the crop insurance policy is determining producers’ average crop yield, which is central to calculating 

the probable yield (PY). The PY multiplied by the coverage level sets the insured value (liability) of the insurance policy. The PY 

is typically calculated using an average of approximately 10 years of crop yield data for each farm or field. Some producers may 

desire to use a shorter yield history to compute their PYs, because the result may be more current and representative of their 

expected production for the current season from a technology gain perspective. However, when a shorter yield time series is 

used, the PY can be less stable, and rates and coverage levels may vary substantially from year to year. Another concern with 

using a shorter yield history is that concurrent years of favorable (or unfavorable) weather can occur and may lead to inflated 

crop yields over the period. When producers observe crop yield increases, they may put pressure on insurers to make crop yield 

trend adjustments to increase their PY and ultimately their coverage level. However, the observed yield trend may need to be 

first decomposed into the weather and technology effects to control for favorable or unfavorable weather conditions over the 

period. 

This study’s objective was to propose a methodology to isolate crop yield improvement due to technological change from crop 

yield improvement due to favorable and unfavorable weather at the farm level. Two decomposition frameworks were proposed, 

including a fixed-effect model and relative effect model. Several weather proxy variables were proposed that could be used to 

approximate the weather effects over the period and used to isolate the crop yield gain relative to the technological 

improvement. The proposed decomposition frameworks are empirically tested using two datasets, including (1) 37 years of 

county-level corn yield data for 99 counties in Iowa and (2) 16 years of farm-level canola yield in Alberta. These datasets were 

merged with large geospatial datasets, which were geolocated at the county and field level. Collected variables included daily 

values of minimum and maximum temperatures, precipitation, short wave radiation, and satellite remote sensing information. 

For the first decomposition framework, six models were proposed: a baseline model estimated by OLS with a linear time trend, 

a robust regression using MM estimation with a linear time trend, a linear time trend and NDVI model, a linear time trend and 

LAI model, a linear time trend and FAPAR model, and a linear time trend and weather principal components model. For the 

second decomposition framework, five machine-learning-based models were used to model the weather effect: PCR, PLS, Ridge 

Regression, Lasso Regression, and NN. Further, the effects of aggregation were tested, and Chow tests were used as a 

robustness check to determine whether farm-level yield technology trends were structurally different than the aggregate trend. 

These robustness tests showed the proportion of farms that exhibit yield trends that are different from the aggregate-level 

trend. This may be useful for determining the level of aggregation technology trends should be estimated at for use in crop 

insurance. The main findings from the two decomposition frameworks are described next. 

In general, the results of this study showed that the larger number of years of data used in the trend analysis, the more stable 

the trend calculation. Based on the empirical analysis presented here, it seems that with the greater number of years utilized, 

more of the trend is due to technology, while a smaller number of years often means more of the trend is due to weather. 

Another observation is that when the trend for a larger geographic regions is calculated, the trend is more stable. As well, while 

the trend could vary from farm to farm, in practice it would be difficult to calculate a trend for each farm due to missing data 

and the length of data that is required to establish a trend for each farm. Finally, another issue with trying to calculate a trend 

at the farm level is that at times you get a negative trend. This would present several challenges in practice, because it would 

be difficult to explain to producers. 

7.1.1 FIXED EFFECTS APPROACH 

More specifically, the empirical results using the first decomposition method (fixed-effects approach) for the first dataset—the 

county corn yields in Iowa—showed that the OLS method with a linear trend had a corn yield trend of 2.420 bu/acre per year. 

The robust MM estimation method, which is less sensitive to yields that fall outside the main trend, and the NDVI method, 
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which uses the NDVI vegetation index to control for weather conditions, resulted in similar yield trends of 2.382 and 2.375, 

respectively. The weather trend over the 37 years that these models indicated was marginal. According to the NDVI model, 

technology increased corn yields in Iowa by 87.875 bu/acre, and weather was marginally favorable, contributing to an increase 

in yields of 1.665 bu/acre. A possible explanation for this is that the 37 years of crop history is a large enough sample of yields, 

and over time the affect of weather on corn yields begins to stabilize. However, these models may have failed to capture the 

affect of weather on corn yields. The weather principal component model had a technology trend of 1.950, which was lower 

than the other models, including the NDVI model. This implied that the weather effect was larger compared to the NDVI model 

over the period and accounted for approximately 20% of yield increase over the period. Results from the second dataset showed 

that the baseline OLS linear trend model had a technology trend of 17.563 kgs/acre per year, and the other models— robust 

MM regression, NDVI model and weather principal components—had a technology trend of 11.540, 10.410 and 6.118, 

respectively. According to these models, over the 16-year time period, the weather was favorable for canola yields, and 

approximately 40% of the yield gain can be attributed to favorable weather. The baseline OLS model showed a yield increase 

due to technology of 281 kg/acre, or 6.39 bu/acre. From the NDVI model, the increase in canola yields due to technology was 

166.56 kg/acre, or approximately 3.79 bu/acre, and weather contributed to 114.45 kg/acre, or 2.601 bu/acre. 

7.1.2 RELATIVE EFFECTS APPROACH 

The empirical results using the second decomposition method (relative effects approach) for the first dataset, the county corn 

yields in Iowa, using several different machine-learning approaches to model weather found that weather contributed more to 

crop yield gain than the first decomposition indicated. According to the model results, positive weather over the 37-year time 

period contributed between 30% to 38% of relative corn yield gain over the period, and technology contributed between 62% 

to 69% of corn yield gain. These models used minimum and maximum temperatures, precipitation and short wave radiation to 

model the weather component and its effect on crop yields in a linear and nonlinear way. Research has attributed approximately 

20% of corn yield gain in Iowa to a solar brightening effect. Due to less aerosols in the atmosphere over the past several decades, 

short wave solar radiation is able to reach corn canopies at greater intensity, and this increases crop yield. These models used 

in decomposition two, due to the flexibility they provide in modeling weathers effects on crop yield, may be capturing this 

brightening effect. However, caution should be applied to these results, because there are two components to the brightening 

effect. First, there is the actual increase in the availability of short wave radiation during critical periods of corn growth, which 

is exogenous to technology. Second, there is the adaptation of the crop to increase the day length of the stage of crop 

development in which additional short wave radiation is most beneficial. This is a component of plant technology. These models 

may not distinguish between these two separate effects and, as a result, may be capturing the changes in crop technology and 

ascribing their effects on yield to weather instead of technology. Results from the second dataset, Alberta canola yield data, 

showed that weather contributed approximately 23% to 33%, and technology contributed between 70% to 82% of canola yield 

gain over the 16 years. This result indicated that weather was favorable for the 16 years over Alberta for canola production. 

The findings of this study may be particularly useful for crop insurance and may be used to improve crop insurance by providing 

more accurate PY calculations, which serve as the foundation for setting coverage levels and insurance liabilities. The proposed 

methodology may help isolate the influence of technological change from weather effects on crop yield over the sample period 

and may be useful for crop insurance in Canada, the U.S. and other countries. 
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7.2 RECOMMENDATIONS 

In this subsection, the authors make practical recommendations for use in crop insurance based on the results obtained in this 

study. They first provide a detailed summary of the advantages and limitations of each proposed model, followed by the 

recommendations of applying each method in practice. 

Decomposition 1: Advantages and Limitations 

For the first decomposition framework, four models were evaluated: the full yield trend estimated by OLS; the full yield trend 

estimated by MM estimation; a robust estimation technique, a yield trend and NDVI model that used the normalized difference 

vegetation index (NDVI) as a weather proxy variable intended to capture the effects of weather on crop yield; and a yield trend 

model with weather PCs that are derived through principal component analysis on daily minimum and maximum temperature, 

precipitation and short wave radiation. Further models were testing including models that used other remote-sensing-derived 

indices as weather proxies; these included the LAI and FAPAR models. After evaluation on the first dataset, the authors 

determined those were unfit for use as weather proxies, because they seem to capture too much crop technology; as a result, 

the authors did not describe or test them further. The advantages and limitations of each model are summarized in Table 12. 

Table 12 

ADVANTAGES AND DISADVANTAGES OF DECOMPOSITION 1 YIELD TREND ESTIMATION METHODS 

 

Model A: y∼f(time) OLS 

 

 
Advantages 

Provides good estimates of yield trend with a long yield history. 
May be an appropriate estimation method when yield history is long 
or when aggregation is high. 

 
 
 
Disadvantages 

Does not control for weather. Give poor estimates with short histories and 
may be sensitive to outliers. 
 
Trend estimates are highly variable at the farm-level. Estimates at 
the aggregate level may still be affected by favorable/unfavorable 
weather over the time period. 

Model B: y∼f(time) MM 

 
Advantages Estimation procedure is more robust to influential yield values than OLS, but still requires a long yield 

history to establish yield trend. 

 

 
Disadvantages 

Does not model the weather effect and simply reduces the influence 
of weather for estimating the yield trend. 

Trend estimates are still highly variable at the farm-level. 
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Model C: y∼f(time, NDVI) 

 
 
 

Advantages 

NDVI provides a proxy for weathers affect on crop yield, high NDVI over the growing season indicates favorable 
growing conditions, and low NDVI indicates unfavorable growing conditions. 
 
This method may control for the weather effects so that the maximum technology yield trend can be 
approximated. 

Disadvantages 

NDVI may capture some of the technology related yield gain over the period. However, as shown using the 
Iowa data, corn yields in Iowa, NDVI captures only a small amount of the technological change. This may not 
hold for other crops, and more research is needed to determine the level of technology that is implicit in NDVI. 
This approach worked well and gave similar results to Model C, the robust MM estimation. Similar to the other 
models 

Model D: y∼f(time, PC) 

 
 

 
Advantages 

Weather derived principal components are a useful way to model the effect of 
weather on yield, and unlike NDVI the weather derived PCs are independent 
from crop technology. 

 
 
 
 
 

 
Disadvantages 

Principal components analysis (PCA) reduced the high dimensional weather variable dataset, but 
after this reduction the number of PCs used to explain the variation in weather remained high. 
 
At the farm-level, with less observations per farm, the results were quite different than the other models and is 
likely a failure of estimating the model.  
 
An out of sample cross validation set may be necessary, however due to the scarcity of yield history, simpler 
approaches may be preferred. 
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Decomposition 2: Advantages and Limitations 

For the second decomposition framework, the authors evaluated five models: PCR, PLS, Ridge Regression, Lasso regression, 

and NN model. The advantages and limitations of each model are summarized in Table 13. 

Table 13 

ADVANTAGES AND DISADVANTAGES OF DECOMPOSITION 2 YIELD TREND ESTIMATION METHODS 

Model A: PCR 

 
 
 

Advantages 

Provides good estimates of yield trend with a long yield history. 

May be an appropriate estimation method when yield history is long or when aggregation is high. It is an 
effective dimension reduction method, which can also solve the problem of colinearity. 

 
 
 
 

Disadvantages 

Principal components regression (PCR) identifies linear PC’s in an unsupervised way, in 
the sense that the response variable  (i.e., the crop yield) is not used to help determine 
the principal components while performing the regression. 

There is no guarantee that the  selected  PC’s are also the best to use in predicting the 
yields. 
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Aggregation 

Farm-level yield trend estimation can be sensitive to high and low yields and data sparsity. Aggregation can be used 

to reduce the variability of the crop yields. Pooling the farm yields reduces much of the weather variability because 

each farm, although spatially related, observes different weather. The farms were pooling into three different levels 

based on their location in reference to the Canadian ecological hierarchy. The farms were classified into three 

aggregation levels: provincial (highest), EcoRegion (medium) and EcoDistrict (lowest). Next, Chow tests were used to 

compare the aggregate yield trend relative to the farm-level yield trend to determine whether there was a structural 

difference. Results suggested that, compared to the other aggregation levels, the EcoRegion-level aggregation 

provided detailed geographic information of where yield trends differed while maintaining much of the unique farm-

specific information. Other aggregation levels could be explored, and Alberta’s crop risk zones should be investigated 

and compared to the EcoRegion aggregation level. 

Recommendation 

For crop insurance yield trend adjustment, the context must be considered before determining which yield trend 

adjustment method is appropriate. Two applications should be considered separately: actual production history trend 

adjustment for liability calculation and trend adjustment for premium calculation. 

For liability calculation, which uses the actual production history (LTAY) with or without a trend adjustment times the 

producer’s elected coverage level, LTAY +trend adjustment× coverage level, adjusting the farmers LTAY based solely 

on their yield history is challenging due to the high variability in crop yields. Aggregating the farms to the EcoRegion 

reduces the effect of weather on crop yields while maintaining much of the individual farm specific trends. For 

decomposing the crop yield trend, several methods produced similar results. The methods that seemed most effective 

were Model B; the robust MM estimator, which helps reduce the effect of weather in the yield series; Model C that 

used the NDVI as a weather proxy variable to capture the effect of weather on crop yield; and Model D, a yield trend 

model with weather PCs that are derived through principal component analysis on daily minimum and maximum 

temperature, precipitation, and short wave radiation. It is favorable to examine each of these methods, but for 

simplicity, the NDVI model seems to provide stable results. 

For premium pricing, the second decomposition model is preferred. In general, the premium of insurance loss X can 

be in general expressed as Π(X)  =  E(X)(1 + ΘΠ(X)), where 𝛩𝛱  (𝑋) is the risk loading (Zhu, et al, 2019). The 

relative decomposition framework provides a very convenient way to adjust for technological effect in ΘΠ. In this 

study, several methods were evaluated, including PCR, PLS, Ridge Regression, Lasso regression, and NN models. Each 

seem to provide relatively similar results with the exception of the NN method. In the situation when data are very 

limited (the Alberta case), the NN model provides very volatile results that are a far way from the other models. This 

indicates that due to the scarcity of yield history, alternative models may be preferred than NNs.  
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Appendix A: Robustness Checks for Levels of Aggregation 

Farm-level yield trend estimation can be sensitive to high and low yields and data sparsity. Therefore, in this section, 

several models of different levels of aggregation are tested, and Chow tests are conducted to determine whether the 

farm-level yield is structurally different from the yield trend estimated at the aggregate level. 

A.1. IOWA CORN DATASET 

Following the state-level regressions in Subsection 5.1, the individual county series are regressed to establish the 

trend values for each county. These individual county trends are tested using a Chow test to determine whether they 

are structurally different from the overall state trend estimated using the LSDV model. These individual county trends 

are evaluated by examining the minimum and maximum estimated trends, the standard deviation, and the magnitude  

of the linear trend coefficient. Further, each weather proxy is separately estimated in this way and evaluated. There 

are 99 individual counties, and each is regressed individually using the same six models without the county indicator 

variable. The results are summarized in Table 14. Chow tests are conducted by testing whether the maximum 

technology trend of the baseline model estimated separately for each county is structurally different than the trend 

estimated at the state level using the LSDV regression baseline model. 

Table 14 

INDIVIDUAL COUNTY REGRESSIONS, IOWA DATASET. 

 

At the county level with 37 years of corn yield history, the yield trends estimated from models A through D are quite 

stable. For example, the baseline Model A has a mean technology trend of 2.4165, a minimum of 1.8559, and a 

maximum of 3.0816. Also, the standard deviation of trend estimates is 0.2986. This is quite a narrow range of trend 

estimates. The Chow tests showed that 36/99 counties or 36.36% of counties exhibit a trend that is different from the 

State trend. In this case, if a yield trend adjustment was made for Iowa corn based on the aggregate-level trend shown 

in Table 14, then 36 counties would have either too high or too low of a trend adjustment. 

A.2 ALBERTA CANOLA DATASET 

Using the Alberta farm-level canola yields, varying degrees of aggregation are estimated and tested relative to this 

provincial trend. Individual trends grouped by EcoRegion and estimated by OLS and MM estimation are evaluated by 

examining the standard deviation, minimum trend, and maximum trend values. Further, each weather proxy is 

separately estimated in this way and evaluated. The EcoRegion trend values are then tested using the Chow procedure 

to determine whether they differ from the aggregate provincial level trend. Next, the EcoDistrict grouped trends and 

the farm-level grouped trends are estimated and evaluated using this same procedure. 
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EcoRegion Aggregation 

Table 15 shows the yield trends estimated for farms grouped by EcoRegion, and farms are segregated into five groups 

and estimated. Model A, the baseline linear trend model estimated by OLS, has an estimated technology trend of 

19.7967 kg/acre. This estimated technology trend translates to a 19.7967 × 17 = 336.5439 kg/acre increase over the 

period. Converted to bu/acre by a factor of 1/44 (approximate kg/acre to bu/acre approximation factor) results in a 

bu/acre increase over the period of 7.6487 bu/acre. 

Table 15 

ALBERTA DATASET GROUPED BY ECOREGION 

 

Table 16 shows the trends when estimated using the log transformation for yield. Model A has a technology yield 

trend of approximately 5.683% per year; this is much higher than the other models. The technology yield trend of 

Model B is 2% per year; and for Model C, the NDVI model, it is 2.175% per year. 

Table 16 

ALBERTA DATASET GROUPED BY ECOREGION WITH LOG-TRANSFORMED CANOLA YIELD

 

Table 17 shows the technology yield trend estimated for each EcoRegion group for each model. The level yields and 

log-transformed yields are displayed. EcoRegions 156, 158 and 157, are exhibiting large maximum technology trends 

with 28.82, 26.61, and 29.79 for the baseline model, respectively. Robust regression trend estimates are similar to 

the baseline model when nontransformed (level) yields are used. The NDVI model seems to result in lower trend 

estimates, and the PC model is similar. When yields are log-transformed, the robust estimator model gives more 

similar results to the NDVI model. 

 

 



   42 

 

 Copyright © 2019 Society of Actuaries 

 

 

Table 17  

TECHNOLOGY TREND VALUES FOR EACH ECOREGION, ALBERTA DATA 

 

EcoDistrict Aggregation 

The farm-level yields are grouped by 29 EcoDistricts, and 25 of these EcoDistricts had more than one farm located 

within the EcoDistrict boundaries. Table 18 shows the yield trends estimated for each EcoDistrict group. Model A has 

a higher maximum technology yield trend of 20.34281 compared to the other models. Model B gives similar results. 

Model C and Model D, the NDVI and the PC models, result in lower estimated yield trends. 

Table 18  

ALBERTA DATASET GROUPED BY ECODISTRICT. 

 

Table 19 shows the technology yield trends estimated using the log-transformed canola yield data for the EcoDistrict 

groups. Similar to Table 18, the maximum technology yield trend is highest for Model A, the baseline model. Model B 

has a lower trend compared to when the nontransformed level yields are used. 

Table 19 

ALBERTA DATASET GROUPED BY ECODISTRICT WITH LOG-TRANSFORMED CANOLA YIELD 
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Table 20 shows the estimated technology yield trends estimated at the EcoDistrict grouping level using each proposed 

method. The level yields and the log-transformed technology yield trends are displayed. The 25 EcoDistricts that had 

two or more farms located within them are shown. Despite the aggregation, the maximum technology yield trends 

widely vary, with some trends being large and positive and others being large and negative. A higher degree of 

aggregation may be necessary to estimate the technology yield trends. 

Table 20  
TECHNOLOGY TREND VALUES FOR EACH ECODISTRICT, ALBERTA DATA. 

 

For the EcoRegion and the EcoDistrict aggregation levels the yield trends are plotted geographically in Figure 14 so 

the spatial relationship between maximum technology yield trend can be visually inspected. Figure 14 shows the 
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EcoDistrict and EcoRegion level yield trends estimated for each grouping. The highest yield trends is shown to be in 

the southern growing region of Alberta and the Northern growing region seems to show lower levels of trend. The 

EcoRegion level grouping seems to capture the spatial relationship of trend well and the spatial differences between 

the EcoDistrict and EcoRegion trends visually appear to be marginal. The higher level of aggregation the EcoRegion 

grouping seems to be appropriate. 

Figure 14  
ECODISTRICT AND ECOREGION LEVEL CANOLA YIELD 
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Farm-level Aggregation 

There is a total of 78 farms that have continuous histories of canola production over the past 16 years. These farms 

are estimated separately and their trends examined. Table 21 shows the farm-level yield trends. A sensitivity analysis 

by estimating the different models with various levels of trend was conducted to show the difficulty of estimating 

farm-level yield trend when there is not a long yield history and results are displayed. As the number of years used for 

estimation decreases, the standard deviation of the yield trend increases and the trend estimates become unreliable. 

Aggregation helps reduce this effect. 

Table 21  

FARM-LEVEL TECHNOLOGY TREND FOR ALBERTA DATASET 

 

Table 22 shows the farm-level yield trends estimated with the log-transformed canola yields. A sensitivity analysis by 

estimating the different models with various levels of trend was conducted to show the difficulty of estimating farm-

level yield trend when there is not a long yield history. As the number of years used for estimation decreases, the 

standard deviation of the yield trend increases, and the trend estimates become unreliable. Aggregation helps reduce 

this effect. Further aggregation or longer yield history may be needed to provide stable trend estimates. 

Table 22  
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LOG-TRANSFORMED FARM-LEVEL TECHNOLOGY TREND FOR ALBERTA DATASET 

 

Chow Test Results 

Chow tests are conducted to determine whether the farm-level maximum technology trends are structurally different 

from the trends estimated at the more aggregated levels: 1) the province, 2) the EcoRegion and 3) the EcoDistrict. 

Each individual farm-level trend was tested against the trend for the province, the EcoRegion the farm is located and 

the EcoDistrict the farm is located. These tests may help determine the appropriate level of aggregation that should 

be used for crop insurance yield trend adjustment. The level of aggregation could be chosen relative to the stability 

of the maximum technology estimates, and also the level that the aggregate yield trend reflects producers’ trends, 

determined by the Chow test. 

Table 23 shows that as aggregation decreases the percentage of farms that have structurally different maximum 

technological yield trend decreases. However, results show that despite the provincial and EcoRegion level being more 

aggregated than the EcoDistrict level, the percentage of farms that structurally differ from the aggregate level 

maximum technology trend is similar. This may indicate that aggregating may be appropriate. 

Table 23  

DATASET 2, CHOW TEST RESULTS, CANOLA YIELDS, ALBERTA, CANADA 
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Appendix B: Individual Farm Technology Effect Estimates 

The individual estimated farm technology yield trends are summarized in this section. Each of the 78 farms estimated 

technology canola yield trends estimated using the full yield history are displayed in Table 24. The results are highly 

variable between farms, with some farms having large magnitude yield trend values and others having negative values. 

  



   48 

 

 Copyright © 2019 Society of Actuaries 

 

Table 24  

DATA SET 2, GROUPED BY FARMS, MAX TECHNOLOGY TREND VALUES 

Level Yields Log Transformed Yields 

Farm Baseline Robust NDVI PC Baseline Robust NDVI PC 

1 11.60 24.44 −6.69 −14.74 0.0283 0.0214 0.0003 −0.0087 

2 31.65 27.02 18.77 23.80 0.0577 0.0192 0.0331 0.0414 

3 17.47 15.80 15.79 5.03 0.0310 0.0167 0.0270 0.0132 

4 47.26 49.71 23.32 12.20 0.2386 0.0487 0.0409 0.1028 

5 42.15 43.94 36.83 26.77 0.0965 0.0376 0.0770 0.0680 

6 20.12 −1.20 −3.58 −16.50 0.0774 −0.0027 0.0093 0.0116 

7 19.25 19.56 14.68 9.22 0.0888 0.0490 0.0550 0.0400 

8 46.29 47.82 37.73 7.41 0.2478 0.0640 0.0737 0.0859 

9 33.43 33.44 25.53 13.75 0.0349 0.0237 0.0232 0.0125 

10 37.95 30.02 34.20 9.41 0.0546 0.0224 0.0451 0.0016 

11 12.15 9.91 2.52 −4.12 0.0699 0.0008 0.0136 0.0153 

12 13.19 15.60 3.08 12.36 0.0127 0.0210 −0.0046 0.0121 

13 22.57 23.63 16.95 18.24 0.0527 0.0531 0.0403 0.0372 

14 0.25 0.33 −8.22 −1.41 −0.0006 0.0001 −0.0121 −0.0023 

15 −22.51 −18.72 −28.00 −20.98 −0.0546 −0.0516 −0.0652 −0.0555 

16 25.38 24.72 25.65 29.54 0.0359 0.0362 0.0362 0.0423 

17 18.10 18.13 11.84 22.44 0.0258 0.0252 0.0166 0.0341 

18 30.41 30.68 31.87 10.91 0.0433 0.0431 0.0456 0.0108 

19 −10.71 −10.91 −12.75 -7.35 −0.0210 -0.0202 -0.0245 −0.0124 

20 −0.20 −2.00 −5.67 −8.26 −0.0036 −0.0044 −0.0123 −0.0154 

21 −8.34 −12.30 −8.13 −7.54 −0.0179 −0.0245 −0.0174 −0.0172 

22 −15.26 −15.47 −21.37 −26.01 −0.0253 −0.0247 −0.0355 −0.0394 

23 7.06 5.88 7.19 −7.58 0.0071 0.0059 0.0072 −0.0068 
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Table 24  

DATA SET 2, GROUPED BY FARMS, MAX TECHNOLOGY TREND VALUES (CON’D) 

Level Yields Log Transformed Yields 

Farm Baseline Robust NDVI PC Baseline Robust NDVI PC 

24 32.05 28.18 17.29 2.27 0.0420 0.0136 0.0199 0.0041 

25 4.56 5.88 2.74 −0.18 0.0096 0.0109 0.0060 0.0014 

26 9.63 10.77 3.57 6.28 0.0102 0.0111 0.0039 0.0069 

27 −16.88 −15.50 −16.18 −20.78 −0.0253 −0.0245 −0.0243 −0.0291 

28 −9.01 −8.33 −8.93 −1.21 −0.0152 −0.0159 −0.0153 −0.0045 

29 −6.28 −7.66 −6.28 5.67 −0.0091 −0.0100 −0.0091 0.0056 

30 5.64 2.13 −6.21 −3.99 0.0223 −0.0069 −0.0039 0.0026 

31 50.47 52.35 38.60 23.50 0.2337 0.0494 0.1035 0.0975 

32 29.20 26.16 20.28 20.93 0.2168 0.0346 0.0516 0.1135 

33 35.50 14.01 17.70 17.65 0.0566 0.0118 0.0233 0.0270 

34 70.59 70.31 64.56 56.31 0.2686 0.0904 0.1409 0.1429 

35 14.75 13.76 15.20 7.92 0.0228 0.0216 0.0224 0.0140 

36 25.78 9.30 8.25 −13.24 0.0726 0.0045 0.0229 −0.0047 

37 24.22 19.23 11.41 −1.89 0.0800 0.0174 0.0288 0.0173 

38 32.17 13.28 19.05 2.02 0.2134 0.0130 0.0999 0.0928 

39 55.79 35.68 31.85 22.33 0.1322 0.0321 0.0487 0.0569 

40 56.53 55.20 52.28 47.39 0.0591 0.0425 0.0517 0.0476 

41 26.30 23.46 17.42 −1.22 0.0732 0.0168 0.0437 0.0126 

42 32.07 30.34 22.28 8.22 0.2299 0.0412 0.1036 0.0547 

43 21.43 17.32 3.19 −10.11 0.2044 0.0071 0.0397 0.0568 

44 35.06 35.25 22.43 9.02 0.0749 0.0576 0.0422 0.0200 

45 19.67 17.52 9.63 −2.12 0.0491 0.0179 0.0209 −0.0007 

46 0.91 1.11 −1.92 −11.50 0.0002 0.0015 −0.0041 −0.0230 
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Table 24  
DATA SET 2, GROUPED BY FARMS, MAX TECHNOLOGY TREND VALUES (CON’D) 

Level Yields Log Transformed Yields 

Farm Baseline Robust NDVI PC Baseline Robust NDVI PC 

47 25.86 22.22 18.08 12.85 0.0308 0.0052 0.0220 0.0174 

48 11.04 11.30 10.26 −10.78 0.0080 0.0082 0.0072 −0.0117 

49 2.37 3.60 −2.96 −8.89 0.0123 0.0051 0.0003 −0.0133 

50 13.00 12.55 1.61 −1.98 0.0307 0.0285 0.0072 −0.0025 

51 -4.13 −2.75 −9.69 −8.06 −0.0087 -0.0064 −0.0192 −0.0100 

52 −12.05 −11.77 −10.68 −29.97 −0.0114 −0.0102 −0.0100 −0.0279 

53 1.80 6.37 −6.54 −6.71 0.0062 0.0103 -0.0106 -0.0109 

54 8.72 9.30 5.68 1.79 0.0169 0.0162 0.0100 -0.0035 

55 36.68 35.78 19.60 −0.96 0.0991 0.0202 0.0265 0.0257 

56 1.32 −13.33 −1.60 −0.33 -0.0021 -0.0163 −0.0056 −0.0044 

57 4.47 −1.95 −0.33 17.89 0.0055 0.0002 −0.0004 0.0269 

58 30.22 26.96 21.98 29.83 0.0486 0.0487 0.0352 0.0496 

59 14.58 14.63 3.68 16.62 0.0227 0.0226 0.0065 0.0291 

60 5.63 5.11 4.91 4.25 0.0101 0.0112 0.0086 0.0077 

61 15.37 15.31 10.91 6.39 0.0197 0.0197 0.0135 0.0077 

62 8.10 4.57 3.91 8.56 0.0130 0.0107 0.0044 0.0155 

63 21.25 20.90 16.61 6.67 0.0281 0.0246 0.0205 0.0035 

64 12.96 22.33 3.09 5.82 0.0235 0.0445 0.0037 0.0078 

65 27.57 27.65 7.88 1.77 0.0397 0.0156 0.0040 -0.0075 

66 37.36 35.38 23.41 7.14 0.2222 0.0283 0.0795 0.0906 

67 18.44 5.73 10.99 1.40 0.0206 0.0045 0.0119 0.0022 

68 34.39 33.26 26.66 27.37 0.0881 0.0296 0.0596 0.0684 

69 15.50 18.98 7.75 5.13 0.0274 0.0310 0.0150 0.0132 
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Table 24  
DATA SET 2, GROUPED BY FARMS, MAX TECHNOLOGY TREND VALUES (CON’D) 

Level Yields Log Transformed Yields 

Farm Baseline Robust NDVI PC Baseline Robust NDVI PC 

70 −1.23 −0.59 −7.04 −7.48 −0.0021 −0.0012 −0.0152 −0.0151 

71 1.90 3.51 −2.39 −3.29 0.0026 0.0103 −0.0082 −0.0103 

72 20.46 12.55 12.22 6.19 0.2102 0.0282 0.0492 0.0707 

73 16.02 12.42 3.61 9.94 0.1008 0.0129 0.0642 0.1249 

74 9.18 15.31 10.43 10.29 0.0197 0.0308 0.0210 0.0174 

75 30.52 26.90 5.12 19.70 0.2158 0.0223 0.0066 0.1106 

76 4.17 −14.00 1.85 9.59 −0.0010 −0.0250 −0.0049 0.0072 

77 18.71 18.53 16.38 10.67 0.0443 0.0304 0.0390 0.0263 

78 10.37 9.69 9.10 7.58 0.0269 0.0136 0.0241 0.0200 
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