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ABSTRACT

Much like the all-cause mortality, cause-specific mortality rates in countries with simi-
lar socio-economic characteristics are likely to follow comparable development patterns.
They are also not expected to substantially diverge in the future. We propose to assess
the coherence of the past country-specific experiences by the means of the cointegration
analysis applied to the mortality time trends extracted by country and cause of death.
Indeed, should the time trends of two countries be cointegrated, this would indicate there
existed a long-run stationary relation between them, and so, the mortality patterns of
these countries were linked to each other in their long-term development. We analyze the
data from five developed Western European countries (France, Italy, Netherlands, Spain,
and England and Wales), two sexes, and split the mortality rates into five main groups of
causes of death (Infectious&Parasitic, Cancer, Circulatory diseases, Respiratory diseases,
and External causes). We observe that while in many cases the cause-specific time trends
are indeed cointegrated, this is not always the case in spite of the closeness of the studied
countries. Further, once we include the countries having the cointegrated time trends in
a multipopulational context, such as the Li-Lee mortality model, the forecast results are
improved in comparison with the basic Lee-Carter approach.
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1 Introduction

The difficulty to project the mortality rates due to the ongoing increases of life expectancy
and the uncertainty related to these increases is a well-known topic in actuarial science.
Due to its importance for pension providers and social security systems, this question
has attracted a lot of attention from researchers and practitioners alike. A review of the
existing models can be found, for example, in Booth and Tickle (2008) including their
references. Still, new approaches continue to be developed with an objective to improve
our understanding of the mortality rates’ evolution as well as the quality of their forecasts.

Among the stochastic mortality models, the Lee-Carter model (Lee and Carter, 1992)
together with its various extensions is possibly one of the most widely known and used.
Initially applied to the all-cause mortality in a single population context, it was enhanced
by different authors to take into account the cohort effects as well as to incorporate
multiple populations: an impressive genealogy of the models is provided in Cairns (2013)
and an overview of the multipopulational extensions in Villegas et al. (2017).

Originally, modelling efforts concerned the all-cause mortality for the simple reason
that these were the only data at hand. As the amount of available statistics grew with
time, modelling the cause-specific mortality rates became possible. In this regard, there
are two aspects to consider. On the one hand, it seems a natural step to disaggregate the
total mortality by causes of death when one knows that the cause-specific mortality rates
had vastly different development patterns in the past. Also, as mentioned in Tabeau et al.
(1999), while it is practically impossible to make empirically valid assumptions for the
total mortality due to the extremely large number of the mortality determinants, trends
in the cause-specific mortality can be linked with the risk factors of diseases. Further,
as the prevalence of diseases heavily depends on age, aggregate mortality rates forecasts
for a specific age group may not be complete. Overall, as Gutterman and Vanderhoof
(1998) put it, “we must be able to decompose past trends and recognize their causes to
help us feel our way to the future” which is not possible if one works with the aggregate
mortality rates. On the other hand, the disaggregated approach has its practical and
theoretical drawbacks: the effects of misclassification of deaths by cause, limited length
of the available time series, inferior data quality and the dependence structure between
the causes are cited among reasons that did not permit to obtain forecasts superior to
those obtained for the aggregated mortality rates (Wilmoth, 1995; Booth and Tickle,
2008).

However, the forecasts of the cause-specific mortality rates are needed not only as a
path leading to the aggregate mortality, but also in their own value for many purposes such
as estimation of the health care and disability costs in the ageing populations (Tabeau
et al., 1999). While remaining conscious of the difficulties the cause-specific approach
entails, we align with the view that analyzing and modelling the cause-specific mortality
rates can improve our understanding of the past and improve our forecasts for the future.

To overcome the problem of the limited and sometimes volatile number of observa-
tions by sex, age, and cause, we propose to apply the multipopulational approach in
a context of the cause-specific mortality rates. Lyu et al. (2020) note that the cause-
specific mortality rates have not yet been modelled in a multipopulational setup to the
same extent as this has been the case for the all-cause mortality rates. We believe that
the multipopulational modelling for the cause-specific mortality rates could be justified
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for two reasons. First, one could expect that similar to the all-cause mortality, there will
be resemblance in the development patterns of the cause-specific mortality rates between
countries having comparable socioeconomic conditions, medical advances quickly spread-
ing across the developed countries. Second, the multipopulation approach ensures that
the forecasts built for the countries included into the group are converging. As there is no
reason to expect that the future mortality rates from cancer will be substantially different
between France and Spain, for example, the country- and cause-specific mortality rates
should not be diverging in the long term, and the multipopulational modelling is a way
to ensure the coherence of the forecasts.

The question is then how to choose the countries to be included into the group or, in
other words, what can serve as a measure of the sufficient coherence between the experi-
ences of two countries? If certain countries have similar experience in the past, then they
should be modelled together in a multipopulational context. Li and Lee (2005) define
an explanation ratio for the augmented common factor model. They suggest including
countries in the group if the corresponding ratios are “large enough” while stressing that
this criteria is left intentionally vague and should be tempered by judgment. In Lyu et al.
(2020) the authors are confronted with a similar task of comparing cause-specific experi-
ences of three countries that they propose to solve by using a beta-convergence test from
the growth literature. This test verifies whether the cause-specific mortality rates in dif-
ferent countries tend to the same level and improve at the same speed. Both approaches
arrive at simple “yes/no” answers that summarize several decades of age-specific observa-
tions, and as such, are necessarily simplistic. We propose a complementary approach that
consists in using the cointegration analysis to assess if the cause-specific mortality rates
in different countries exhibited coherent development in the past. Indeed, should the
cancer mortality rates from France and Spain, for example, be cointegrated, this would
mean that they were linked in their development in the past and are not expected to
wander from each other or diverge in the long run. Should a common development pat-
tern be revealed between these two countries, this would justify using the cause-specific
mortality rates in a multipopulational model that explicitly imposes a common trend on
the country-specific rates, such as the one proposed by Li and Lee (2005). Specifically,
we will analyze the cause-specific mortality experience of several countries by applying
the cointegration analysis to the country-specific mortality time trends by cause of death.
We believe that this new angle will provide additional evidence whether countries should
be modelled together on the cause-specific level or not. For the future, finding a more
nuanced answer to the difficult question of comparing country-specific mortality experi-
ences expressed in vast matrices of observations seems to be an interesting and promising
research topic.

At the second stage, we verify if the Li-Lee model built for the countries having the
cointegrated cause-specific mortality rates allows improving the forecasts in comparison
with a benchmark approach, that is the Lee-Carter model. Indeed, we observe that for
the male as well as for the female cause-specific mortality rates the Li-Lee model helps to
improve the forecasts for most of the countries included in our study. The cointegration
analysis can hence deliver a helpful answer to the question regarding the countries to be
included into a multipopulational model for the cause-specific mortality rates.

The paper is organized as follows: in Section 2 we briefly present the data used in the
study regarding causes and countries chosen for the study. A brief theoretical review of
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the mortality models that will be used as well as of the cointegration analysis is exposed
in Section 3. The results of the cointegration tests along with the comparison of the
forecasts are presented in Section 4. Section 5 concludes.

2 Data

Below we briefly present the main steps of the data preparation process that follows a
path similar to the one described in Arnold and Sherris (2016):

� The data comes from the WHO Mortality Database (World Health Organization,
2020) that collects the mid-year population and the death numbers by country,
year, sex, age group, and cause of death since its creation in 1950.

� As the WHO database splits the death numbers according to the primary cause of
death, we will ignore the potential presence of the secondary cause, third cause etc.
Also, we would have to signigicanlty change our approach in order to incorporate
the information on the secondary cause of death, for example. For this reason, our
results would not hold in presense of several causes leading to death.

� In order to limit the extent to which countries’ experiences differ due to the social-
economic factors, we chose the five most populated Western European countries
participating in the database from its onset: France, Italy, Netherlands, Spain, and
England and Wales, subsequently shortened to FR (1), IT (2), NL (3), SP (4), and
EW (5) respectively. In contrast to Arnold and Glushko (2021a, 2021b) where the
authors wanted to have a variety of experiences, in the present work we want the
countries’ conditions be as close as possible.

� We are going to build a model involving the data from different countries and for
this reason, we are obliged to cut the observations for all countries at the shortest
available observation window. This corresponded to the time period 1952-2014 at
the moment when the data were retrieved (October 2020).

� WHO Mortality database provides the data for the age groups: “deaths at 0 years”,
“at 1”, “at 2”, “at 3”, “at 4”, “5-9 years”, ..., “90-94 years”, and finally “deaths at
95 years and above”. To deal with the age groups, we, first, created two new age
groups by grouping together the ages from 1 to 4 and 85 and above. Second, we
distributed the number of deaths at unspecified age proportionally among the all
known age groups.

� Causes of death are clustered into five main groups: infectious and parasitic diseases,
cancer, diseases of the circulatory system, diseases of the respiratory system, and
external causes. We define these groups of causes of death under the different
versions of the International Classification of Diseases (ICD) as shown in Table 1.
Naturally, there is more than one way to perform such grouping, and for the sake of
comparability with earlier studies (Arnold and Sherris, 2016; Arnold and Glushko,
2021a), we keep these five groups of causes of death. Cause-specific mortality rates
for selected years are shown on Figure A1 in the Appendix.
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Table 1: Main groups of causes of death according to the versions of the International Classification of
Diseases.

Causes of death ICD 7 ICD 8 ICD 9 ICD 10
IP 001-138 001-136 001-139 A00-B99
Cancer 140-239 140-239 140-239 C00-D48
Circulatory 400-468 390-458 390-437 I00-I99
Respiratory 470-527 460-519 460-519 J00-J98
External E810-E999 E810-E999 E800-E999 V00-Y89

� We calculate the cause-specific central death (mortality) rates as the number of
deaths by age, sex, and cause divided by the mid-year population by age and sex:

md,s,c
x,t = dd,s,cx,t /l

s,c
x,t,

with

dd,s,cx,t = number of deaths at age x, in year t, for cause of death d,

gender s and country c;

ls,cx,t = mid-year population at age x, in year t, gender s and country c;

md,s,c
x,t = central death rate at age x, in year t, for cause of death d,

gender s and country c.

� We apply the comparability ratios to ensure the comparability between the ob-
servations under the different versions of the ICD. In this way, the discontinuities
between the observation periods are removed. Indeed, a comparability ratio makes
the average mortality rates of the last two years of a classification equal to the
average mortality rates of the first two years of the following classification. Once
the mortality rates in every classification are divided by the comparability ratio(s)
linking this classification to the previous one(s), observations become comparable
across the different versions of the ICD. Further details on the data preparation
process involving comparability ratios can be found in Arnold and Sherris (2015).

� For our analysis, we will use the data for the age groups 20 years and older as
the cause-specific data for the younger age groups are known to be sparse. Similar
approach was taken in Lyu et al. (2020).

� All equations were estimated for the natural logarithms of the cause-specific mor-
tality rates:

ln(md,s,c
x,t ),

where
x ∈ {20−24, 25−29, ..., 80−84, 85+}, t ∈ {1952−2014}, d ∈ {IP,Canc, Circ,Resp,Ext},
s ∈ {Males, Females}, c ∈ {FR, IT,NL, SP,EW}.
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3 Theoretical framework

3.1 Lee-Carter model for the cause-specific mortality rates

As already mentioned, the Lee-Carter model or simply LC (Lee and Carter, 1992) is
possibly the most widely used model for the mortality rates and for this reason, it often
serves as a comparison point in studies aiming to improve the quality of a forecast. With
this objective in mind, we apply the Lee-Carter model to the mortality rates separately
for each cause, sex, and country :

ln(md,s,c
x,t ) = αd,s,c

x + βd,s,c
x kd,s,ct + εd,s,cx (t) (1)

To ease the notation in what follows, we will sometimes omit the indexes d, s, c.
Following the approach proposed by Brouhns et al. (2002), we estimate the parameters
αx, βx and kt by maximizing the log-likelihood based on the Poisson model for the number
of deaths:

L(α,β,k) =
∑
x,t

(dx,t(αx + βxkt)− lx,texp(αx + βxkt)) + constant, (2)

and applying the constrains
∑

x β̂x = 1,
∑

t k̂t = 0.

The Box-Jenkins methodology is used to generate the appropriate ARIMA time series
model and project kt.

3.2 Li-Lee model for the cause-specific mortality rates

As an extension of the Lee-Carter model, Li and Lee (2005) proposed the augmented
common factor model for the multi-population context:

ln(md,s,c
x,t ) = αd,s,c

x +Bd,s
x Kd,s

t + βd,s,c
x kd,s,ct + εd,s,cx (t), (3)

where Bd,s
x Kd,s

t is the common factor and βd,s,c
x kd,s,ct is the population-specific factor.

Like the Lee-Carter model, the αd,s,c
x are obtained as the average mortality rates, in

this case, by cause:

αd,s,c
x =

∑
t ln(md,s,c

x,t )

T
(4)

The remaining model parameters are defined in two steps. First, the Bd,s
x and Kd,s

t are
obtained from applying the ordinary LC model to the aggregate group mortality rates.
In this way, the common trend of mortality change is identified. Second, the population-
specific factor is obtained from the residual matrix ln(md,s,c

x,t )−αd,s,c
x −Bd,s

x Kd,s
t to which

the strategy of the ordinary LC model is applied. Li and Lee (2005) suggest to assess the
performance of this model for a particular population by constructing the explanation
ratio as follows:

R(c) = 1−
∑

x,t(ln(md,s,c
x,t )− αd,s,c

x −Bd,s
x Kd,s

t − βd,s,c
x kd,s,ct )2∑

x,t(ln(md,s,c
x,t )− αd,s,c

x )2
. (5)
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The authors propose to include the population c to the studied group if the expla-
nation ratio R(c) is “large enough”, leaving the criteria intentionally vague as other
considerations may play a role. For example, a country may not be a part of the group
in the past, but its mortality can be expected to follow a similar path in the future. In
the current study, we propose to use the cointegration analysis which we briefly present
below to assess if two countries should be modelled together using the Li-Lee approach.

Like the Lee-Carter model, we use the Box-Jenkins methodology to generate the
appropriate ARIMA time series model and build the forecasts for the Kt and kct .

3.3 Cointegration analysis as a measure of coherence

According to Engle and Granger (1987), the time series yt that consist of the n non-
stationary variables (y1t, y2t, ...ynt)

′ with t = 1, ..., T are said to be cointegrated of order
1 or I(1) when there exists a linear combination of its elements β′yt that is stationary or
I(0):

β1y1t + β2y2t + ...+ β2ynt = zt, (6)

where zt is a stationary variable of stochastic deviations. Then β′ = (β1, β2, ..., βn) is said
to be a cointegrating vector and β′yt is a cointegration relation.

Should such a linear combination exist, this means that non-stationary variables re-
main linked to each other in their long-term development. It is also possible that there
is more than one cointegrating vector, so that β becomes a matrix. Each cointegration
relation is then linearly independent from the others.

Arnold and Sherris (2015, 2016) studied the age-standardized cause-specific mortality
rates within different countries:

yt,s,c =


ln(mIP

t,s,c)
ln(mCanc

t,s,c )
ln(mCirc

t,s,c )

ln(mResp
t,s,c )

ln(mExt
t,s,c)


and showed that they were non-stationary. They also demonstrated that at least one
cointegration relation existed between the variables. This means that the long-term
equilibrium relation(s) existed between mortality rates corresponding to different causes
inside of a particular country. For this reason, it was possible to build a Vector Error
Correction Model (VECM) describing the joint development of the cause-specific mor-
tality rates within every country included into the study. Supposing that there are r
cointegration relations, i.e. that there exists a matrix β of rank r such that β′yt is I(0),
the corresponding VECM has then the following form:

∆yt = c + dt+ αβ′yt−1 +
l∑

i=1

ξi∆yt−i + εt, t = 1...T (7)

where

� c and d are (n× 1) vectors of constants;

� ξi is a (n× n) matrix of autoregressive coefficients for i = 1, 2, ..., l;
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� l is number of lags;

� β is a (n×r) matrix containing r vectors each representing a cointegration relation;

� α is a (n × r) loading matrix that indicates how a particular variable is impacted
by the cointegration relation;

� εt is a (n× 1) vector of white noise errors.

More details on the VECM can be found in such extensive references on the subject
as Hamilton (1994) and Lütkepohl (2005).

For our part, we would like to apply the cointegration analysis from a different perspec-
tive by studying the possible cointegration relations between the cause-specific mortality
rates corresponding to the same causes, but coming from different countries. For this, we
will study all possible pairwise combination of countries. At the same time, age-specific
mortality time series present a challenge from a modelling perspective, because to the best
of our knowledge, the cointegration tests have been developed for the time series with di-
mension n less than 12 (Osterwald-Lenum 1992). For this reason, the cointegration tests
cannot be applied to the age-specific mortality time series directly. In Arnold and Sherris
(2015, 2016) the authors overcame this difficulty by using the age-standardized mortality
rates. In the present study we want to apply an alternative approach and study the
cointegration between the time trends extracted from the cause-specific mortality rates,
kd,s,ct as defined in (1). So, we will test if the following time series are cointegrated:

yt,s,d =

(
kd,s,c1t

kd,s,c2t

)
,

where c1 6= c2 and c1, c2 ∈ {FR, IT,NL, SP,EW}.
To achieve this, we use the trace and the maximum eigenvalue tests developed by

Johansen (1995) and test for the existence of the cointegration relation for yt,s,d, i.e. that
Πyt,s,d = αβ′yt,s,d is stationary. Should this be the case, we proceed with testing for the
form of the deterministic terms in (7), also developed by Johansen, and at the later stage,
with assessing the quality of the fit for every identified VECM using the usual residuals
tests. In this way, we verify, first, if the cointegration relation exists, and, second, that
the resulting VECM has a good fit.

As suggested by Johansen (1995), we will consider the following cases where d =
αρ + α⊥γ and αα⊥ = 0 to distinguish between the possible forms of the deterministic
elements in the VECM:

� NT: no trend in the VECM, but a linear trend in the levels of the variables: c 6=
0, ρ = 0, γ = 0, hence d = 0,

� TC: linear trend in the cointegration relation combined with a linear trend in the
levels of the variables (i.e., no linear trend in the differenced variables): c 6= 0, ρ 6=
0, γ = 0, hence d = αρ,

� QT: linear trend in the differenced variables, thus a quadratic trend in the levels of
the variables : c 6= 0, ρ 6= 0, γ 6= 0, hence d = αρ+ α⊥γ.
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In what follows, we will use the abbreviations NT, TC and QT to describe the VECM
that was chosen, if any, for every tested pair of countries.

Should it be possible to identify a cointegration relation (here at most 1) as well
as a VECM having normally distributed and non-correlated residuals, then this would
mean that the particular cause-specific mortality rates from two countries experienced a
similar development in the past. This observation may then justify the creation of the
corresponding group of the countries to be included into the Li-Lee model. By comparing
with the historical mortality rates (backtesting) we will be able to see if the existence
of the cointegration relation between the time trends extracted from the cause-specific
mortality rates of two countries can improve the forecasts of the corresponding cause-
specific mortality rates.

4 Application

4.1 Cointegration relations in cause-specific mortality experi-
ences

To decide if cause-specific experiences of two countries are close enough, as a first step,
we extract the country-, cause- and sex-specific time trends kd,s,ct from the model (1). The
time trends corresponding to the Infectious&Parasitic diseases for males in five countries
are shown on Figure 1. The charts for the rest of the causes can be found on Figures
A2-A10 in the Appendix. As we can see, on the one hand, there is a general pattern
to which all countries tend to. On the other hand, certain differences can be observed
between the countries. Hence, we need a formal procedure that could allow us to judge
whether the experiences of two countries are close enough to justify the application of
the Li-Lee model, i.e. a measure of coherence between the country-specific experiences.

-10

0

10

20

1950 1960 1970 1980 1990 2000
Year

FR

IT

NL

SP

EW

Figure 1: Time trends by country for the IP diseases, males.

For this, we check if the time trends corresponding to a particular cause are coin-

9



tegrated between a pair of countries. If yes, this is an indication that the information
contained in the cause-specific mortality rates of one country can enrich the model and
improve the forecast of the second country from the pair and vice versa.

To achieve this, we apply the Johansen test and show the number of cointegration
relations and the resulting VECM, if any, in the Table 2 below for males. We see that
for the Infectious&Parasitic diseases the country-specific time trends are cointegrated in
7 pairs (out of 10). Similar observations hold for the Cancer and the Respiratory diseases
(6 out of 10 pairs). The External causes happen slightly less often to be cointegrated
(in 5 out 10 pairs), but the cointegration is observed more frequently for the Circulatory
diseases (in 9 out of 10 pairs).

The corresponding results for the female country-specific time trends are shown in
Table A1 in the Appendix. Similar to the male time series, the female time trends for
the Infectious&Parasitic diseases are cointegrated in 8 pairs out of 10, in 5 out of 10
pairs for the Cancer, the Circulatory and the Respiratory diseases, and only in 3 pairs
out of 10 for the External causes. The detailed results of the maximum eigenvalue and
trace tests as well as of the tests for the form of the deterministic elements are available
from the authors upon request. Then, the quality of the model fit was assessed using the
autocorrelation and the normality tests and the results are shown in Tables A2 and A3
of the Appendix.

Table 2: Number of cointegration relation and the form of the VECM, if any, describing the relation
between the country-specific time trends, males.

Countries IP Canc Circ Resp Ext

1 & 2
1 CR, QT

l=1
1 CR, NT

l=1
0 CR

1 CR, TC
l=0

1 CR, NT
l=0

1 & 3
1 CR, QT

l=0
0 CR

1 CR, TC
l=0

1 CR, TC
l=1

0 CR

1 & 4 0 CR
1 CR, NT

l=1
1 CR, NT

l=0
0 CR 0 CR

1 & 5
1 CR, NT

l=1
1 CR, QT

l=1
1 CR, NT

l=1
0 CR

1 CR, QT
l=0

2 & 3
1 CR, QT

l=1
0 CR

1 CR, QT
l=0

1 CR, TC
l=0

1 CR, TC
l=1

2 & 4 0 CR 0 CR
1 CR, NT

l=0
1 CR, TC

l=1
0 CR

2 & 5 0 CR
1 CR, NT

l=1
1 CR, QT

l=1
0 CR

1 CR, NT
l=0

3 & 4
1 CR, NT

l=0
0 CR

1 CR, QT
l=0

1 CR, TC
l=0

0 CR

3 & 5
1 CR, QT

l=1
1 CR, QT

l=1
1 CR, NT

l=1
1 CR, NT

l=0
0 CR

4 & 5
1 CR, NT

l=0
1 CR, NT

l=1
1 CR, QT

l=0
0 CR

1 CR
TC, l=0

Note: CR = cointegration relation; QT = quadratic trend in the levels of the variables;
TC = linear trend in the cointegration relation; NT = no trend; l = number of lags.

As mentioned in the introduction, our approach that consists in measuring the simi-
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larity between country-specific experiences using cointegration analysis is complementary
to those proposed by Lyu et al. (2020) and Li and Lee (2005). In the former study the
authors analyze the cause-specific experiences in France, Netherlands and Belgium. The
first two countries are included in our study as well (countries 1 and 3 in the Table 2).
Lyu et al. (2020) arrive at the conclusion that there was no diverging pattern in the
cause-specific mortality among all countries and for all causes analysed in their study.
Our results cannot be directly compared with those in Lyu et al. (2020) due to a diverg-
ing definition of causes of death and a different observation period. Still, we see that the
experiences of France and Netherlands can be called similar in terms of the cointegration
analysis for three causes of death (IP, Circulatory and Respiratory) for male as well for
female datasets (Tables 2 and A1). Our study thus reveals that there are causes for which
the experiences of these two countries have not been as close as one could think.

To follow the approach proposed by Li and Lee (2005), we calculated the explanation
ratios for mortality rates by cause and country as per the Li-Lee model (3) that we
applied to every pair of countries mentioned in the Table 2. The explanation ratios for
males are shown in the Table 3 and for the females in the Table A4 in the Appendix. We
can see that apart from the External cause in some cases (e.g., the country 4 in the pairs
1&4, 2&4 and 3&4 and 4&5 for males), the application of the Li-Lee model to the rest
of the cause- and country-specific mortality rates results in a “large enough” explanation
ratios. This observation suggests that all pairs of countries should be modelled together
in a multipopulational setting according to the Li and Lee (2005) approach whereas the
cointegration analysis delivers a more nuanced answer.

Cointegration in the set of three countries

It should be also noted that the cointegration analysis can be applied to the systems
having three or more variables. In the case of the cause-specific mortality rates, once
the countries have been analyzed in a pairwise manner, we can conduct an additional
scenario of putting together observation coming from three countries. To illustrate the
idea, we will use the results for the Cancer mortality rates as shown in the Table 2. We
see that for males, the countries 1 (FR), 2 (IT) and 5 (EW) as well as 1 (FR), 4 (SP) and
5 (EW) can built two groups of three countries each in which every two countries have
cointegrated country-specific time trends: 1&2&5 and 1&4&5. Simultaneous modelling
of the cause-specific mortality rates for these countries is then justified by the fact that
every pair of the country-specific time trends shares some stochastic trends, and so,
there may exist a trend shared together by all three countries. We do not analyze the
combination 2&3&5, for example, because the countries 2 and 3 do not have cointegrated
time trends, and so, there is less reason to believe that modelling three countries together
can bring an additional benefit in comparison with the two-country model already built.
It is even more so for a combination like 1&2&3 in which only the countries 1 and 2
have cointegrated time trends. The cointegration relation present between them will
still exist in the three-variable system, but the three-country modelling will hardly bring
any additional benefit in comparison with the two-country case. For the females, there
is only one three-country combination for Cancer in which every two countries have
cointegrated country-specific time trends (2&4&5). For the sake of completeness, we
apply the cointegration analysis to the identified three-country combinations and show
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Table 3: Country-specific explanation ratios by cause, males

Countries I&P Canc Circ Resp Ext

1 & 2
0.9663 0.7383 0.9612 0.9502 0.9242
0.9547 0.8188 0.9701 0.9552 0.9271

1 & 3
0.9762 0.8702 0.9610 0.9588 0.9386
0.7939 0.7271 0.7795 0.7051 0.8530

1 & 4
0.9645 0.8602 0.9623 0.9506 0.8687
0.9567 0.8492 0.9550 0.9256 0.5690

1 & 5
0.9587 0.8418 0.9545 0.9518 0.8613
0.9181 0.8739 0.9647 0.9322 0.9495

2 & 3
0.9709 0.9343 0.9737 0.9617 0.9507
0.7617 0.7737 0.7945 0.7052 0.8404

2 & 4
0.9568 0.9328 0.9623 0.9220 0.8942
0.9493 0.8561 0.9422 0.9204 0.5597

2 & 5
0.9522 0.9379 0.9628 0.9308 0.9305
0.9463 0.9208 0.9580 0.9189 0.9407

3 & 4
0.7944 0.7930 0.7249 0.7055 0.8720
0.9665 0.8759 0.9554 0.9401 0.5469

3 & 5
0.8002 0.7801 0.8126 0.7285 0.8320
0.9534 0.9469 0.9717 0.9509 0.9622

4 & 5
0.9391 0.8839 0.9236 0.9196 0.4792
0.9180 0.8945 0.9479 0.9276 0.9568

Upper number in the cell corresponds to the explanation

ratio for the left country in the pair.
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the results in the Table 4. Unsurprisingly, the three-country combinations of the country-
specific time trends remain cointegrated.

Table 4: p values for the null hypotheses of no autocorrelation and normality of the residuals of the
VECM fitted to the country-specific time trends, Cancer.

Autocorrelation Normality
Sex Countries Model 15 lags 25 lags 35 lags Skewness Kurtosis Both

Males 1 & 2 & 5 l=1, NT, 1 CR 0.8139 0.4927 0.3739 0.2952 0.5610 0.4506
Males 1 & 4 & 5 l=0, NT, 2 CR 0.4338 0.3434 0.1086 0.9902 0.7094 0.9597

Females 2 & 4 & 5 l=1, TC, 1 CR 0.3614 0.8633 0.9841 0.0453 0.1735 0.0428

A null hypothesis is accepted at a α% significance level when the p value is higher than α%.

4.2 Cause-specific forecasts for countries having similar experi-
ences

In cases where the country- and cause-specific time trends are cointegrated and assuming
that the observed coherence between the experiences of two countries continues in the fu-
ture, we expect that the Li-Lee model built for this pair of countries will deliver improved
forecasts of the cause-specific mortality rates in comparison with the basic Lee-Carter ap-
proach. To check this, we use the data for 1952-2004 to estimate the parameters of the
Li-Lee and the Lee-Carter models, project the time trends using the ARIMA framework
for the 2005-2014, retrieve the projected cause-specific mortality rates and compare with
values observed in 2005-2014 on the basis of the mean absolute average percentage error
(MAPE). First, the country-, sex- and cause-specific absolute percentage error values
(APE) were calculated for each age group x and the projection year t :

APE(x, t) =
abs(ln(mobserved

x,t )− ln(mprojected
x,t ))

ln(mobserved
x,t )

(8)

At the second stage, the individual APE(x, t) corresponding to the countries included
in the pair were averaged across the pair taking into account the population numbers of
each country and then again averaged for all x and t. In this way, we obtained the MAPE
values averaged over two countries. The results of these calculations are shown in the
Table 5. We observe that indeed, for the male rates, the Li-Lee model allows obtaining
better forecasts for five pairs of countries out of seven pairs that have cointegrated time
trends for the Infectious&Parasitic diseases, for every pair of countries that has cointe-
grated time trends for the Cancer diseases, for six out of nine pairs of countries for the
Circulatory diseases, for five out of six pairs of countries for the Respiratory diseases, and
for two out of five pairs of countries for the External causes.

Similar observations hold for the female mortality rates: for the Infectious&Parasitic
diseases, the Li-Lee model permits to obtain more precise forecasts for seven out of eight
pairs of countries that have the cointegrated time trends; for four out of five pairs of
countries for the Cancer diseases; for every pair of countries that has the cointegrated
time trend for the Circulatory diseases; for three out of five pairs of countries for the
Respiratory diseases, and for two out of three pairs of countries for the External causes.
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Both the Lee-Carter and Li-Lee model give age-specific forecasts for each year in
2005-2014. These forecasts are in fact point estimates. The incertainty related to the
estimates is best described using the confidence intervals, but comparing the intervals is a
more challenging task that would probably not deliver clear-cut results. For this reason,
we will limit our analysis to comparing the point estimates produced by both models.

Table 5: Cause-specific MAPE averaged over two countries.

Males Females
Cause Countries LC Li-Lee diff Cause Countries LC Li-Lee diff

IP 1 & 2 0.0281 0.0297 -0.0016 IP 1 & 2 0.0411 0.0409 0.0002
IP 1 & 3 0.0251 0.0216 0.0034 IP 1 & 3 0.0249 0.0207 0.0042
IP 1 & 5 0.0258 0.0383 -0.0125 IP 1 & 4 0.0360 0.0336 0.0024
IP 2 & 3 0.0383 0.0350 0.0033 IP 1 & 5 0.0297 0.0326 -0.0029
IP 3 & 4 0.0644 0.0437 0.0207 IP 2 & 4 0.0506 0.0453 0.0053
IP 3 & 5 0.0369 0.0299 0.0070 IP 3 & 4 0.0542 0.0396 0.0146
IP 4 & 5 0.0407 0.0209 0.0198 IP 3 & 5 0.0454 0.0376 0.0078

IP 4 & 5 0.0381 0.0175 0.0205

Canc 1 & 2 0.0440 0.0159 0.0281 Canc 1 & 5 0.0121 0.0132 -0.0010
Canc 1 & 4 0.0397 0.0233 0.0165 Canc 2 & 4 0.0205 0.0158 0.0047
Canc 1 & 5 0.0264 0.0156 0.0108 Canc 2 & 5 0.0145 0.0117 0.0028
Canc 2 & 5 0.0339 0.0117 0.0222 Canc 3 & 5 0.0113 0.0106 0.0007
Canc 3 & 5 0.0220 0.0126 0.0094 Canc 4 & 5 0.0218 0.0169 0.0050
Canc 4 & 5 0.0279 0.0151 0.0128

Circ 1 & 3 0.0126 0.0110 0.0016 Circ 1 & 3 0.0174 0.0124 0.0050
Circ 1 & 4 0.0202 0.0168 0.0034 Circ 2 & 3 0.0339 0.0189 0.0149
Circ 1 & 5 0.0219 0.0194 0.0025 Circ 2 & 4 0.0361 0.0186 0.0175
Circ 2 & 3 0.0147 0.0158 -0.0011 Circ 2 & 5 0.0344 0.0222 0.0122
Circ 2 & 4 0.0164 0.0131 0.0033 Circ 4 & 5 0.0382 0.0286 0.0096
Circ 2 & 5 0.0181 0.0170 0.0011
Circ 3 & 4 0.0214 0.0269 -0.0055
Circ 3 & 5 0.0245 0.0275 -0.0029
Circ 4 & 5 0.0234 0.0185 0.0049

Resp 1 & 2 0.0276 0.0231 0.0046 Resp 1 & 2 0.0245 0.0273 -0.0027
Resp 1 & 3 0.0129 0.0144 -0.0015 Resp 1 & 3 0.0162 0.0201 -0.0039
Resp 2 & 3 0.0391 0.0295 0.0096 Resp 2 & 4 0.0288 0.0250 0.0038
Resp 2 & 4 0.0336 0.0254 0.0082 Resp 3 & 4 0.0325 0.0243 0.0083
Resp 3 & 4 0.0282 0.0264 0.0018 Resp 4 & 5 0.0359 0.0197 0.0161
Resp 3 & 5 0.0282 0.0273 0.0009

Ext 1 & 2 0.0205 0.0160 0.0045 Ext 1 & 2 0.0172 0.0132 0.0040
Ext 1 & 5 0.0216 0.0285 -0.0069 Ext 2 & 5 0.0165 0.0182 -0.0018
Ext 2 & 3 0.0182 0.0163 0.0019 Ext 4 & 5 0.0336 0.0307 0.0029
Ext 2 & 5 0.0178 0.0244 -0.0066
Ext 4 & 5 0.0335 0.0375 -0.0040
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Forecasts for the set of three countries

The comparison of the forecasts for the Lee-Carter and the Li-Lee model built for three
countries is shown in the Table 6. We can see that the Li-Lee model substantially improves
the quality of the cause-specific forecast for the males whereas the improvement is less
pronounced for the females.

Table 6: Cause-specific MAPE averaged over three countries, Cancer.

Males Females
Countries LC model Li-Lee model diff Countries LC model Li-Lee model diff

1 & 2 & 5 0.0350 0.0184 0.0166 2 & 4 & 5 0.0189 0.0143 0.0046
1 & 4 & 5 0.0313 0.0156 0.0158

5 Discussion and conclusion

We live in a world that becomes more and more interconnected, globalized, and in many
regards less diversified. For some time now, this trend found its reflection in the converg-
ing mortality levels around the world (Wilson, 2011). So it seems less and less adequate
to forecast mortality rates for individual countries without considering their future de-
velopment in a larger picture. Also, it has been noted that individual application of the
Lee-Carter model to the G7 countries leads to an increase of the largest gap in the life
expectancy from about 4 to 8 years over a 50 year forecast horizon (Tuljapurkar et al.,
2000). Such results enter in contradiction with the converging pattern of the mortality
rates around the world. These considerations have lead Li and Lee (2005) to propose a
model that takes into account the membership of the countries in a group by identifying
the central tendencies proper to all countries and letting the weight of each country’s
particularities diminish in the long run.

There is no reason why what is true for the all-cause mortality would not be true
for the cause-specific mortality rates. Even more so: as it may be easier to identify the
driving factors of the cause-specific mortality than those of the all-cause mortality, it may
also be easier to establish the coherence on the cause-specific level (Lyu et al., 2020).

Then the question arises: how to “measure” the coherence of the experiences of several
countries, when each experience is contained in a large-scale matrix of observations by
age and year? We suggest using the cointegration analysis that allows us precisely to
say if two (or more) nonstationary vectors remain close enough to each other over a long
period of time to build a stationary linear combination. To reduce the dimensionality of
the mortality data we propose to apply the cointegration analysis to the mortality trends
extracted by the Lee-Carter model.

We chose five most populated Western European countries to increase our chances
to find the coherence between their respective cause-specific experiences. And indeed,
looking at the countries in a pairwise manner, we see that very often their cause-specific
time trends are cointegrated. At the same time, one needs to be cautious because not in
all cases the cointegration was found. This means that even such similar countries may
not have coherent experience for all considered causes of death. At the same time, should
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one apply the approaches proposed by Lyu et al. (2020) and Li and Lee (2005), this
would lead to the conclusion that the county- and cause-specific mortality experiences
are to a large extent comparable and so, the corresponding countries should be modelled
together. Hence, the cointegration analysis delivers a more nuanced answer.

Once the countries having the cointegrated cause-specific time trends were included
together in a augmented common factor model proposed by Li and Lee (2005), in many
cases this allowed improving the forecasting results in comparison with the basic cause-
specific Lee-Carter approach. Additionally to ensuring the convergence of the forecasts,
the Li-Lee model helps to enrich the experience of one country with the observations from
another which can be beneficial in case of limited or volatile data as the country-specific
noise is levelled out by the information from the similar countries. In cases when for some
causes and combinations of countries no improvement was found, this can probably be
explained by the fact that the coherence stated in the past did not continue during the
forecast horizon. This is particularly true for such an independent cause as the External
causes of death. Indeed, as this cause represents such random events as transport and
other accidents (falls, poisoning, accidental fire, drowning), suicides, homicides, and war
injuries, there are less reasons to expect that the experiences of any two countries have
been following a similar path in the past. At the same time, should this have been the
case, it is less probable that the observed similarity of experiences will be stable enough
to continue into the future.

If one takes into account the proper character of each cause, the cointegration analysis
proves to be a useful tool to assess the similarities between the experiences of two countries
and so, helps building more accurate forecasts for the cause-specific mortality rates.
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APPENDIX
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Figure A1: Log-death cause-specific rates by cause and year, males.

19



some text

-10

0

10

20

1950 1960 1970 1980 1990 2000
Year

FR

IT

NL

SP

EW

Figure A2: Time trends by country for the IP diseases, females.
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Figure A3: Time trends by country for the Cancer diseases, males.
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Figure A4: Time trends by country for the Cancer diseases, females.
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Figure A5: Time trends by country for the Circulatory diseases, males.
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Figure A6: Time trends by country for the Circulatory diseases, females.
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Figure A7: Time trends by country for the Respiratory diseases, males.
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Figure A8: Time trends by country for the Respiratory diseases, females.
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Figure A9: Time trends by country for the External causes, males.
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Figure A10: Time trends by country for the External causes, females.
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Table A1: Number of cointegration relations and the form of the VECM, if any, describing the
relation between the country-specific time trends, females.

Countries IP Canc Circ Resp Ext

1 & 2
1 CR, NT

l=1
0 CR 0 CR

1 CR, QT
l=1

1 CR, TC
l=1

1 & 3
1 CR, NT

l=1
0 CR

1 CR, TC
l=1

1 CR, TC
l=0

0 CR

1 & 4
1 CR, NT

l=1
0 CR 0 CR 0 CR 0 CR

1 & 5
1 CR, NT

l=0
1 CR, TC

l=0
0 CR 0 CR 0 CR

2 & 3 0 CR 0 CR
1 CR, TC

l=0
0 CR 0 CR

2 & 4
1 CR, TC

l=1
1 CR, TC

l=0
1 CR, NT

l=0
1 CR, TC

l=1
0 CR

2 & 5 0 CR
1 CR, NT

l=1
1 CR, NT

l=0
0 CR

1 CR, TC
l=0

3 & 4
1 CR, QT

l=0
0 CR 0 CR

1 CR, TC
l=0

0 CR

3 & 5
1 CR, NT

l=1
1 CR, NT

l=1
0 CR 0 CR 0 CR

4 & 5
1 CR, NT

l=1
1 CR, NT

l=1
1 CR, QT

l=1
1 CR, TC

l=0
1 CR, TC

l=0
Note: CR = cointegration relation; QT = quadratic trend in the levels of the variables;

TC = linear trend in the cointegration relation; NT = no trend; l = number of lags.

23



Table A2: p values for the null hypotheses of no autocorrelation and normality of the residuals of the
VECM fitted to the country-specific time trends, males.

Autocorrelation Normality
Cause Countries Model 15 lags 25 lags 35 lags Skewness Kurtosis Both

IP 1 & 2 l=1, QT, 1 CR 0.2052 0.3892 0.3008 0.8439 0.2416 0.5281
IP 1 & 3 l=0, QT, 1 CR 0.0669 0.1547 0.1042 0.7046 0.3638 0.6053
IP 1 & 5 l=1, NT, 1 CR 0.4658 0.2906 0.3003 0.4232 0.6015 0.6028
IP 2 & 3 l=1, QT, 1 CR 0.0473 0.3001 0.1290 0.4920 0.1830 0.3068
IP 3 & 4 l=0, NT, 1 CR 0.3759 0.3559 0.4575 0.2122 0.1155 0.1154
IP 3 & 5 l=1, QT, 1 CR 0.3760 0.4781 0.4088 0.0228 0.0987 0.0159
IP 4 & 5 l=0, NT, 1 CR 0.1868 0.3197 0.5076 0.0547 0.6239 0.1495

Canc 1 & 2 l=1, NT, 1 CR 0.2768 0.2467 0.2858 0.5839 0.1612 0.3165
Canc 1 & 4 l=1, NT, 1 CR 0.1564 0.1765 0.6300 0.9285 0.5085 0.8264
Canc 1 & 5 l=1, QT, 1 CR 0.9500 0.8273 0.6646 0.4136 0.7251 0.6611
Canc 2 & 5 l=1, NT, 1 CR 0.7074 0.8131 0.6609 0.2328 0.1005 0.1113
Canc 3 & 5 l=1, QT, 1 CR 0.5439 0.8769 0.8575 0.9339 0.1563 0.4269
Canc 4 & 5 l=1, NT, 1 CR 0.8490 0.7211 0.0938 0.3727 0.5019 0.5007

Circ 1 & 3 l=0, TC, 1 CR 0.1088 0.2020 0.2628 0.4921 0.3433 0.4693
Circ 1 & 4 l=0, NT, 1 CR 0.5027 0.7622 0.6161 0.1131 0.7013 0.2804
Circ 1 & 5 l=1, NT, 1 CR 0.1926 0.4667 0.3768 0.9295 0.5091 0.8272
Circ 2 & 3 l=0, QT, 1 CR 0.7329 0.8532 0.8850 0.1252 0.9719 0.3781
Circ 2 & 4 l=0, NT, 1 CR 0.3959 0.6746 0.8418 0.1476 0.7491 0.3541
Circ 2 & 5 l=1, QT, 1 CR 0.4580 0.8213 0.6247 0.3805 0.7720 0.6536
Circ 3 & 4 l=0, QT, 1 CR 0.6637 0.6956 0.5042 0.8488 0.7402 0.9203
Circ 3 & 5 l=1, NT, 1 CR 0.7050 0.8905 0.6391 0.0412 0.0586 0.0170
Circ 4 & 5 l=0, QT, 1 CR 0.7879 0.9135 0.9558 0.6435 0.7234 0.8214

Resp 1 & 2 l=0, TC, 1 CR 0.2234 0.3956 0.8512 0.8326 0.7200 0.9062
Resp 1 & 3 l=1, TC, 1 CR 0.4658 0.4705 0.1625 0.9059 0.3891 0.7201
Resp 2 & 3 l=0, TC, 1 CR 0.0928 0.1988 0.1980 0.7266 0.6841 0.8445
Resp 2 & 4 l=1, TC, 1 CR 0.6321 0.7747 0.8087 0.1622 0.1049 0.0864
Resp 3 & 4 l=0, TC, 1 CR 0.5709 0.1923 0.2564 0.4238 0.8656 0.7348
Resp 3 & 5 l=0, NT, 1 CR 0.1114 0.0228 0.0163 0.4340 0.5995 0.6105

Ext 1 & 2 l=0, NT, 1 CR 0.6169 0.9758 0.9817 0.1146 0.7351 0.2926
Ext 1 & 5 l=0, QT, 1 CR 0.4720 0.4658 0.7119 0.0480 0.5109 0.1154
Ext 2 & 3 l=1, TC, 1 CR 0.2407 0.2370 0.2027 0.6203 0.1282 0.2809
Ext 2 & 5 l=0, NT, 1 CR 0.1402 0.2740 0.4255 0.7726 0.2176 0.4679
Ext 4 & 5 l=0, TC, 1 CR 0.3539 0.3563 0.6735 0.1618 0.3120 0.2012

A null hypothesis is accepted at a α% significance level when the p value is higher than α%.
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Table A3: p values for the null hypotheses of no autocorrelation and normality of the residuals of the
VECM fitted to the country-specific time trends, females.

Autocorrelation Normality
Cause Countries Model 15 lags 25 lags 35 lags Skewness Kurtosis Both

IP 1 & 2 l=1, NT, 1 CR 0.5333 0.6791 0.5972 0.9612 0.5131 0.8418
IP 1 & 3 l=1, NT, 1 CR 0.0399 0.3974 0.4287 0.8135 0.5242 0.7899
IP 1 & 4 l=1, NT, 1 CR 0.3530 0.1626 0.3574 0.7525 0.1424 0.3465
IP 1 & 5 l=0, NT, 1 CR 0.4699 0.4436 0.6921 0.9372 0.1842 0.4758
IP 2 & 4 l=1, TC, 1 CR 0.1839 0.1525 0.3068 0.7851 0.1887 0.4311
IP 3 & 4 l=0, QT, 1 CR 0.2559 0.1389 0.1941 0.7811 0.2086 0.4586
IP 3 & 5 l=1, NT, 1 CR 0.7933 0.8437 0.8806 0.9556 0.2385 0.5649
IP 4 & 5 l=1, NT, 1 CR 0.5775 0.2677 0.3877 0.9402 0.0798 0.2694

Canc 1 & 5 l=0, TC, 1 CR 0.5170 0.7723 0.6811 0.9433 0.2615 0.5919
Canc 2 & 4 l=0, TC, 1 CR 0.5663 0.4804 0.5546 0.0180 0.1735 0.0212
Canc 2 & 5 l=1, NT, 1 CR 0.6308 0.6110 0.8195 0.5690 0.2874 0.4596
Canc 3 & 5 l=1, NT, 1 CR 0.6758 0.3139 0.0809 0.1784 0.3895 0.2548
Canc 4 & 5 l=1, NT, 1 CR 0.1455 0.5899 0.8862 0.0148 0.0225 0.0030

Circ 1 & 3 l=1, TC, 1 CR 0.3867 0.5658 0.7723 0.8762 0.7271 0.9243
Circ 2 & 3 l=0, TC, 1 CR 0.4389 0.3220 0.2340 0.1342 0.6330 0.2944
Circ 2 & 4 l=0, NT, 1 CR 0.9101 0.9757 0.9749 0.4050 0.2932 0.3718
Circ 2 & 5 l=0, NT, 1 CR 0.2280 0.7746 0.7418 0.2993 0.6775 0.5264
Circ 4 & 5 l=1, QT, 1 CR 0.7526 0.8769 0.9453 0.8221 0.7101 0.8980

Resp 1 & 2 l=1, QT, 1 CR 0.0376 0.1869 0.5414 0.8165 0.8554 0.9491
Resp 1 & 3 l=0, TC, 1 CR 0.0011 0.0140 0.0411 0.6019 0.7309 0.8012
Resp 2 & 4 l=1, TC, 1 CR 0.8012 0.4841 0.6196 0.1026 0.2862 0.1330
Resp 3 & 4 l=0, TC, 1 CR 0.1099 0.0362 0.1729 0.0198 0.5736 0.0623
Resp 4 & 5 l=0, TC, 1 CR 0.1805 0.0316 0.0353 0.9974 0.3537 0.7203

Ext 1 & 2 l=1, TC, 1 CR 0.1989 0.3484 0.0206 0.1574 0.6173 0.3237
Ext 2 & 5 l=0, TC, 1 CR 0.1562 0.1251 0.1811 0.6831 0.2083 0.4197
Ext 4 & 5 l=0, TC, 1 CR 0.3593 0.4089 0.4226 0.5324 0.4532 0.5844

A null hypothesis is accepted at a α% significance level when the p value is higher than α%.
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Table A4: Country-specific explanation ratios by cause, females.

Countries I&P Canc Circ Resp Ext

1 & 2
0.9487 0.8176 0.9710 0.9386 0.8788
0.9378 0.9146 0.9851 0.9653 0.8726

1 & 3
0.9632 0.8817 0.9615 0.9447 0.8901
0.6074 0.8630 0.7723 0.6747 0.7933

1 & 4
0.9550 0.8387 0.9670 0.9340 0.8767
0.9415 0.7440 0.9781 0.9579 0.5017

1 & 5
0.9542 0.8081 0.9529 0.9033 0.7996
0.9151 0.8402 0.9621 0.9103 0.9130

2 & 3
0.9640 0.9239 0.9830 0.9692 0.9071
0.6371 0.8349 0.7865 0.6785 0.7656

2 & 4
0.9355 0.8977 0.9794 0.9649 0.8372
0.9387 0.6621 0.9816 0.9607 0.5117

2 & 5
0.9307 0.9123 0.9684 0.9647 0.8820
0.9003 0.8427 0.9273 0.9047 0.9427

3 & 4
0.6275 0.8430 0.7928 0.6544 0.7034
0.9523 0.7760 0.9760 0.9617 0.6082

3 & 5
0.6701 0.8381 0.7887 0.6471 0.8156
0.9328 0.8815 0.9706 0.9269 0.9645

4 & 5
0.9347 0.6697 0.9776 0.9416 0.5685
0.9155 0.8422 0.9246 0.9097 0.9378

Upper number in the cell corresponds to the explanation

ratio for the left country in the pair.
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