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How did COVID-19 change the dependence structure
across major causes of death?

Abstract

Two years into the pandemic, COVID-19 continues to be one of the biggest killers
with a current global toll over 6 million, exceeding that of cancer or malaria. At the same
time, deaths from certain causes (such as dementia and diabetes) have increased while
deaths from others (such as respiratory diseases) have decreased. To anticipate the impact
of COVID-19 on future life expectancy, we need to carefully analyze the dependence
structure across major causes of death, both pre and post pandemic. This paper quantifies
and visualizes the joint dynamics across six major causes of death including circulatory,
dementia, diabetes, influenza, malignant, and (chronic) respiratory, via the cutting-edge
vine copula-based modeling. The empirical results are based on US weekly mortality
data from January 2015 to March 2022. We find that the dependence structure across
major causes of death does not change before and after the pandemic. On the other hand,
we observe an increase in the overall dependence, which could help explain the extreme
mortality levels experienced during the pandemic.

Keywords: COVID-19 pandemic; Dependence modeling; Cause-of-death mortality;
Vine copulas.
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1 Introduction

Cause-specific mortality modeling can provide valuable insights on how future mortality is likely
to evolve (Alai et al., 2018; Li et al., 2019; Diaconu et al., 2020). Under the current pandemic
situation, without knowing how different causes interact with each other, it is challenging to
understand the overall impact of COVID-19 on mortality, and to conduct scenario-based pre-
diction on life expectancy.

It has been widely acknowledged that causes of death are not independent of each other, nor
should they be considered in isolation. As a result of the pandemic, we have observed an
increase in death counts from causes such as diabetes and circulatory diseases potentially at-
tributed to common risk factors. On the other hand, lockdown restrictions and border closures
reduced the spread of respiratory diseases and thus have led to lower number of deaths from
influenza and other respiratory-related conditions.

In the paper, we quantify and visualize the dependence structure across 5 major causes of
deaths, namely circulatory, dementia, diabetes, influenza, malignant, and (chronic) respira-
tory. Given the fact that these causes reacted to the COVID-19 pandemic differently and the
magnitude, direction, and tail behaviour of dependence across the causes are also different, a
flexible modeling framework is needed. We propose a vine copula-based approach to model the
dependence across different causes of death both pre and post pandemic, while controlling the
impact of COVID-19. We find that COVID-19 death count is a significant predictor for deaths
from circulatory, dementia, diabetes and influenza. The estimated correlation is positive for
circulatory, dementia, and diabetes, and negative for influenza, which is consistent with our
observations.

US weekly death count data published by the Centers for Disease Control and Prevention
(CDC) via its “COVID-19 Death Data and Resources” is considered for the empirical studies.
We collect cause-specific death data for the period Jan 2015 - Mar 2022 including those from
COVID-19. As a first step we remove seasonality and series correlations in the death counts
data using time series models. The vine copula model is then fitted to the pre-pandemic data
(2015–2019) as well as the post-pandemic data (2020–2022), and we compare the differences
between the two selected vine structures.

We find no change in the overall dependence structure before and after the pandemic: cir-
culatory remains a center-piece and a key “hub” connecting other causes of death. In the
pre-pandemic era, it exhibits relatively strong positive association with all other causes expect
for influenza. However, the copula model based on the pandemic experience shows a noticeable
increase in the dependence level between circulatory and dementia, diabetes, and influenza. On
the other hand, there has been a decrease in the pairwise dependence between circulatory and
malignant. Finally, the dependence between circulatory and respiratory remains at a similar
level before and after the pandemic.

The rest of the paper is organized as follows. In Section 2, we describe and visualize the
US cause-specific death data during Jan 2015 - Mar 2022. We model these death counts
using a time series approach in Section 3. Section 4 introduces the vine copula model for the
dependence structure across different causes of death. We then analyze and discuss results from
the empirical studies in Section 5. Finally, Section 6 concludes.
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2 Data

Our empirical studies are conducted using the US cause-specific death counts from January 2015
to March 2022 at a weekly frequency. We collect death data from the CDC National Center
for Health Statistics (NCHS) via the “COVID-19 Death Data and Resources”1. Weekly death
counts from circulatory diseases (circulatory), Alzheimer disease and dementia (dementia),
diabetes (diabetes), influenza and pneumonia (influenza), malignant neoplasms (malignant),
and chronic lower respiratory diseases (respiratory) are considered. These causes are selected
based on the CDC analyses of most common co-morbid conditions reported on death certificates
where COVID-19 was listed. The International Classification of Diseases 10th Revision (ICD-
10) is used by the NCHS. We provide detailed codifications of the six aforementioned causes of
death in Table 1.

Cause of death ICD-10 codes

dementia G30, G31, F01, F03
circulatory I00–I99
diabetes E10–E14
influenza J09–J18
malignant C00–C97
respiratory J40–J47

Table 1: Codification of the 6 major causes of death
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Figure 1: Weekly death counts from 6 selected causes

1The data can be downloaded at https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm.
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In Figure 1, we plot the US weekly death counts during 2015–2022. It can be seen that mor-
tality rates from the six causes of death differ considerably in sizes and seasonal patterns.
Unsurprisingly, circulatory is the number one leading cause-of-death, followed by malignant
and dementia. For all six causes, we see that peaks in death counts usually happen in winter
months, particularly for influenza and respiratory. On the other hand, malignant shows the
weakest seasonality of mortality compared to other causes. We plot a vertical line at Week 1,
2020 to illustrate the potential change in mortality experience before and after the pandemic.
There has been a spike in death counts around March/April 2020 from dementia, circulatory,
and diabetes. The death counts remain relatively high for these causes especially during major
COVID waves. It is also worth noting that, since mid-2020, deaths from influenza and respi-
ratory have been very low in the US, likely attributed to the social-distancing and lock-down
measures in placed.

To better visualize the underlying trends in the death data, we plot the de-seasonalized death
counts in Figure 2.2 We can see that before the pandemic, there has been slight upward trends in
death counts from dementia, circulatory, and diabetes. Since the number of deaths is determined
by both population exposure and mortality rates, with population growth and rapid aging over
the last decade, death counts can be increasing over time even with decreasing/unchanged
mortality rates in the US. After 2020, there has been a apparent structure break in the death
count from all causes except for malignant.
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Figure 2: De-seasonalized weekly death counts from 6 selected causes

2The de-seasonalization was performed by subtracting weekly average death counts during 2015–2019 for
each cause of death.
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3 Time series models

To capture the serial correlations, in this section we adopt ARIMA time series models to fit the
de-seasonalized death data described in Section 2. First, we consider the pre-pandemic data
only and use the selected ARIMA model to predict cause-specific death counts assuming there
had been no pandemic. We then propose a new ARIMA model incorporating COVID-19 deaths
as an exogeneous regressor in the model. The obvious structural breaks shown in Figures 1
and 2 indicate that, to fit the full data from 2015 to 2022, the standard ARIMA models are no
longer adequate and we need to control for the impact of COVID deaths on other related deaths.

The general form of ARIMA models can be expressed as follows:

(1− ϕ1B − . . .− ϕpB
p)(1−B)dyt = c+ (1 + θ1B + . . .+ θqB

q)ϵt, (1)

where B is the backward operator such that (1−B)yt = yt− yt−1. p, d, and q denote the order
of the AR model, the order of differencing, and the order of the MA model, respectively. ϵt is
the error term and {c, ϕ, θ} are coefficients to be estimated.

The Akaike information criterion (AIC) is used to select the optimal ARIMA model for each
de-seasonalized death series. Based on these models, we project death count levels for Jan
2020–Mar 2022, assuming no COVID and the trend in 2015–2019 continues into the future.
We plot the cause-specific forecasts in Figure 3, where the blue lines represent the predictions
based on the 2015–2019 experience. Note that the forecasts are presented on the original scale
after adding the seasonal components for each week.
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Figure 3: Predicted weekly death counts from 6 selected causes from Jan 2020 to Mar 2022
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From Figure 3, again we see that mortality experience from all 6 causes have been affected
by the pandemic to different extents. Excess deaths are observed from dementia, circulatory,
and diabetes. Regarding the increase in diabetes deaths, research has found diabetes to be one
of the most common comorbidities present in patients with COVID-19. This is likely to be a
contributing factor that has led to higher deaths counts from diabetes during the pandemic.
On the other hand, lower-than-expected number of deaths is observed from influenza and respi-
ratory. It should be noted that during the COVID-19 pandemic, the fall in respiratory-related
deaths has not only been observed in the US, but also been observed in other countries such
as Australia. COVID may have acted as a competing cause for respiratory diseases, and this
is a potential explanation behind this phenomenon. Consistent with the previous discussions,
malignant is the least affected cause among the six causes, where forecasts based on 2015–2019
experience are quite close to the observed values in 2020–2022.

To model the full dataset from 2015 to 2022, we propose a new ARIMA model as follows:

(1− ϕ1B − . . .− ϕpB
p)(1−B)dyt = c+ β × dCOVID + (1 + θ1B + . . .+ θqB

q)ϵt, (2)

where dCOVID is the number of COVID deaths and β is the associated coefficient.
We present the estimated values of β in Table 2, as well as the standardized errors and their
corresponding p-values. Based on the table, it can be seen that dementia, circulatory, and
diabetes are positively correlated with COVID deaths, while influenza and respiratory are neg-
atively correlated with COVID deaths. The impact of COVID on malignant deaths is very
small and not significant with a p-value of 0.501.

Estimate Std. Error p-value

dementia 0.054 0.006 0.000
circulatory 0.113 0.013 0.000
diabetes 0.021 0.002 0.000
influenza -0.016 0.005 0.001
malignant -0.002 0.004 0.501
respiratory -0.020 0.008 0.010

Table 2: Estimated β values for each cause-of-death

For each selected ARIMA model, we obtain an approximate i.i.d. residual time series ϵt, which
will then be used to fit the vine copulas to model the cross-sectional dependence. We conduct
the Ljung–Box test on ϵt to detect any auto-correlation in the residuals. For all causes of death,
the p-value of the test is found to be greater than 0.05, which means that the null hypothesis
of zero auto-correlation cannot be rejected at 5% level of significance.

Before fitting the vine copulas, we adopt a kernel smoothing approach to transform ϵt from the
z-scale to the uniform interval [0, 1] giving rise to copula data.3 Kernel density estimation is
one of the most widely used nonparametric methods which does not require any assumption
on the distribution of the data. Let {x1, x2, . . . , xn} be a sample of i.i.d. observations from a
univariate distribution FX(x), the conventional kernel density estimator is defined as

f̂X(x) =
1

nh

n∑
i=1

K(
x− xi

h
), (3)

3The kernel density estimation is implemented by R package kde1d (Nagler et al., 2019).
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where K is the kernel function, and h is the bandwidth parameter which controls the amount
of smoothness imposed in the estimation.

4 A vine copula-based approach

The key idea behind vine copulas is to construct a flexible dependence structure across variables
using pair-copulas as bivariate building blocks (Aas et al., 2009; Joe, 2014). Unlike multivariate
Archimedean copulas, vine copulas allow for a different direction and magnitude of dependence
for each pair of variables, which is especially suitable for cause-of-death modeling. Unlike Gaus-
sian and t copulas, vine copulas can assign a different type of dependence in each pair of causes
and allow for asymmetric tail dependence between causes. Under the vine copula framework,
we aim to quantify and visualize the interaction and joint dynamics across different causes,
both before and after the pandemic.

We illustrate the construction of vine copulas using a simplified example with three variables.
Let X = {XA, XB, XC} be a random vector of dimension 3 with joint probability density
f(xA, xB, xC), which can be factorized as follows

f(xA, xB, xC) = fC|AB(xC |xA, xB)fB|A(xB|xA)fA(xA). (4)

According to Sklar’s Theorem (Sklar, 1959), fC|AB(xC |xA, xB) can be re-expressed as

fC|AB(xC |xA, xB) =
fAC|B(xA, xC |xB)

fA|B(xA, xB)
= cAC|B

(
FA|B(xA|xB), FC|B(xC |xB)

)
fC|B(xC |xB) (5)

= cAC|B
(
FA|B(xA|xB), FC|B(xC |xB)

)
cBC

(
FB(xB), FC(xC)

)
fC(xC), (6)

where c represents the copula function. Similarly, fB|A(xB|xA) can be re-written as

fB|A(xB|xA) = cAB

(
FA(xA), FB(xB)

)
fB(xB). (7)

Therefore, we obtain a pair copula decomposition in three dimensions as follows

f(xA, xB, xC) =cAC|B
(
FA|B(xA|xB), FC|B(xC |xB)

)
cBC

(
FB(xB)FC(xC)× (8)

cAB

(
FA(xA), FB(xB)

)
fC(xC)fB(xB)fA(xA). (9)

As such, the joint density is broken down into a product of bivariate copulas and marginal
densities. This paper will consider the most general class of vines that provides a valid density
without further restrictions on the vine tree sequence, namely the R-vine.

Figure 4 shows an example of an R-vine tree sequence on three variables. The nodes in the
first tree represent the three causes A, B, and C. The edges are identified with bivariate pair-
copulas, which describe the dependence between each pair of variables. In the second tree, the
nodes are the edges of the first tree. The edges describe the dependence between node AB and
BC conditional on C. The full flexibility of vine allows for a different direction and magnitude
of dependence in each pair of variables.
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Figure 4: Example of an R-vine tree sequence

Following the same factorization procedure, we can construct pair-copulas in d dimensions. The
joint probability distribution in dimension n can be expressed as:

f(x1, . . . , xd) =
( d∏
k=2

f(xk|x1, . . . , xk−1)
)
f1(x1) (10)

=
d−1∏
i=1

∏
e∈Ei

cje,ke|De(Fje|De(xje|xDe), Fke|De(xke|xDe))
d∏

k=1

fk(xk), (11)

where Ei is the set of all possible edges in Tree i, and e = {je, ke} ∈ Ei. De is the conditioning
set associated with edge e, and xDe = {xi | i ∈ De}.

There are three key components in a vine copula-based model, namely the vine structure (i.e.
trees), copula families, and copula parameters. It is important to note that the construction
of pair copula densities in Equation (11) is not unique, which could lead to a large number of
possible vine tree sequences. As the dimension of the vine distribution increases, the number
of possible tree sequences could be enormous. In this paper, the automated selection algorithm
proposed by Dissmann et al. (2013) will be employed which jointly searches for the vine tree
sequence, the pair-copula families and the parameter values of the chosen pair-copula fam-
ilies. The method aims to maximize dependence on higher order trees and is also referred
to as the “sequential treewise approach”. The pair-copula families are selected based on the
Bayesian Information Criterion (BIC), and the corresponding parameter(s) are estimated using
the sequential Maximum Likelihood Estimation method.4

5 Empirical study

We present the empirical results based on the US weekly cause-specific data described in Section
2. Vine copula models are fitted to the residual terms for both pre and post pandemic periods,
based on the ARIMA models in Section 2. We first show pairs plot of the copula data, together
with estimated Kendall’s τ (valued between 0 and 1) to illustrate the level of ordinal association
between two causes. The vine tree structure, parameter estimates, as well as the tree sequences
will then be presented and discussed.

4R packages “VineCopula” (Schepsmeier et al., 2015) and “rvinecopulib” (Nagler and Vatter, 2018) are
used to perform model selection and estimation.
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5.1 Dependence structure during 2015–2019

Figure 5 illustrates the pairwise dependence structure across 6 causes of death for the pre-
pandemic period during 2015–2019. The histograms presented in the diagonal show that the
copula data is reasonably close to uniform distribution on [0, 1].

From the upper triangle, we can see that the highest Kendall’s τ (0.32) lies between circulatory
and malignant. circulatory and dementia also have a relatively strong ordinal association
with a Kendall’s τ of 0.26. The third highest Kendall’s τ is found between circulatory and
respiratory. Overall, circulatory exhibits relatively strong dependence with all other causes
except for influenza. On the other hand, in many cases the estimated Kendall’s τ is close to 0
which means that the dependence between those paired causes is very weak. This result is not
surprising as not all causes are exposed to common risk factors or external events. It is also
worth noting that all of the pairwise Kendall’s τ are positive. In the lower triangle, we plot
the empirical contour plots of the normalized copula data which is the marginal transformed
copula data using the inverse of the standard normal distribution function. Elliptical shapes
indicate that the bivariate Gaussian copula might give a good fit.
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Figure 5: Pairwise copula data for 2015–2019. Upper triangle: scatter plots of copula data with
estimated Kendall’s τ ; Diagonal: marginal histograms of copula data; Lower triangle: empirical
contour plots of normalized copula data.

Table 3 presents the selected R-vine tree structure and sequential parameter estimates. In fact,
the selected structure is a C-vine which has one node in each tree having a maximum number
of edges attaching to it. In this case, circulatory is the hub connecting all other causes. The
tree structure is truncated at level 2 as the first two trees have fully captured the dependence
across different causes. Higher order trees have 0 Kendall’s τ and involve independence copulas
only.
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Tree Edge Conditioning Family Kendall’s τ Tail dependence

1 diabetes, circulatory - Gumbel 0.166 Upper tail
1 influenza, circulatory - t 0.094 Upper & Lower tail
1 malignant, circulatory - Gumbel 0.308 Upper tail
1 dementia, circulatory - Gaussian 0.276 -
1 respiratory, circulatory - Gaussian 0.258 -

2 diabetes, dementia circulatory Independence 0 -
2 influenza, dementia circulatory Joe 0.070 Upper tail
2 malignant, dementia circulatory Gumbel 0.098 Upper tail
2 respiratory, dementia circulatory Frank 0.102 -

Table 3: Vine tree structure and sequential parameter estimates for 2015–2019

During the vine construction, we consider bivariate pair copulas including the Gaussian and t
copulas, as well as Archimedean copulas (including Gumbel, Clayton, Frank, and Joe copulas).5

On the first tree, it is worth noting that circulatory exhibits upper tail dependence with malig-
nant and diabetes, which means that large excess deaths from these causes are likely to occur
simultaneously. The dependence captured on the second tree is much weaker compared to the
first tree, due to the sequential treewise selection algorithm (Dissmann et al., 2013) adopted in
this analysis. Followed the work by Bedford and Cooke (2001), we present a graphical view of
Tree 1 and Tree 2 sequence in Figure 6.

(a) Tree 1 (b) Tree 2

Figure 6: Graphical view of vine copula tree sequence: 2015–2019

5.2 Dependence structure during 2020–2022

In this section, we present the vine copula model based on cause-of-death data during 2020–
2022. We also compare the selected copula structure with the pre-pandemic structure shown

5For detailed specifications of the copulas shown in the table, refer to Brechmann and Schepsmeier (2013).
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in the previous section. Figure 7 illustrates the pairwise dependence structure for the post-
pandemic period. The histograms of copula data show that the transformed copula data based
on the marginal models is still close to Uniform(0,1), in view of a much smaller sample size
compared to 2015–2019.

From the upper triangles, we can see that overall, there has been an increase in the dependence
level across 6 causes. The increase is most noticeable for respiratory, which now has much
higher values of τ with other causes compared to the pre-pandemic structure. Stronger pairwise
association means that unexpected large excess deaths are more likely to occur simultaneously
across multiple causes, which is consistent with the mortality experience during 2020–2022.
The lower triangles in Figure 7 show more variations in shapes, indicating potential deviations
from elliptical copulas, as well as tail dependence behaviour.
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Figure 7: Pairwise copula data for 2020–2022. Upper triangle: scatter plots of copula data with
estimated Kendall’s τ ; Diagonal: marginal histograms of copula data; Lower triangle: empirical
contour plots of normalized copula data.

We present the selected vine tree structure and sequential parameter estimates in Table 4.
It is important to note that the selected vine structure remains a C-Vine, where circulatory
is the center-piece. In Tree 1, four Archimedean copulas are selected, where three of them
exhibit upper tail dependence. The strongest dependence is captured between dementia and
circulatory with the highest Kendall’s τ (0.348), and this is a substantial increase from 0.276
shown in Table 3. The dependence between influenza and circulatory also increased noticeably
from 0.094 in Table 3 to 0.168 in Table 4. On the other hand, there has been a decrease in the
pairwise dependence between circulatory and malignant from 0.308 to 0.190. The dependence
between circulatory and respiratory remains at a similar level before and after the pandemic.
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Tree Edge Conditioning Family Kendall’s τ Tail dependence

1 diabetes, circulatory - Gaussian 0.278 -
1 influenza, circulatory - Joe 0.168 Upper tail
1 malignant, circulatory - Joe 0.190 Upper tail
1 dementia, circulatory - Frank 0.348 -
1 respiratory, circulatory - Gumbel 0.272 Upper tail

2 diabetes, dementia circulatory Frank 0.289 -
2 influenza, dementia circulatory Independence 0 -
2 malignant, dementia circulatory Independence 0 -
2 respiratory, dementia circulatory t 0.215 Upper & Lower tail

Table 4: Vine tree structure and sequential parameter estimates for 2020–2022

In Figures 8, we provide graphical representations of the selected tree sequence. We can see
that the overall dependence structure remains unchanged during 2020–2022 but the depen-
dence across causes have increased which means that extreme mortality events are more likely
to happen during the pandemic.

(a) Tree 1 (b) Tree 2

Figure 8: Graphical view of vine copula tree sequence: 2020–2022

5.3 Limitations of the study

For readers of this paper, it is important to understand the potential limitations of the research.
First, the death-count data collected in this study are based on the “underlying” cause-of-death
definition, which does not take into account information on “multiple causes of death”. For
example, a death is recorded under vascular if vascular disease is the underlying condition
that led to the death. However, information on other significant conditions that may have
contributed to the death are not considered. Therefore, data on “underlying” cause-of-death
alone could not provide us with a complete picture on cause-specific death experience of the
population. Second, our investigation period is from January 2015 to March 2022, while the
pandemic mortality experience is still unfolding, so it is difficult to perform statistical testing on
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the current results. Once more data are collected and become available, further investigations
can be conducted to test our hypothesis, and to see if the increased levels of dependence continue
in the post-pandemic era.

6 Conclusions

In this paper, we investigate the dependence structure across 6 major causes for time periods
both before and post pandemic. The vine copula model adopted in our analysis ensures great
flexibility in the dependence modeling, via pair copula constructions. We apply the proposed
approach to the US cause-specific weekly death counts during 2015–2022, and find that the
dependence structure remains unchanged before and after the pandemic, with circulatory be-
ing the key hub connecting other causes. However, we also observe an increase in the general
dependence level across these major causes of death. It is concluded that besides the surge in
death counts due to the COVID-19 pandemic, the positive correlation between COVID deaths
and other causes, together with an increase in the dependence level across major causes, are
likely to trigger more frequent extreme mortality events during the pandemic.

From the perspective of insurance and health care industries, the impact of COVID-19 on
population mortality and health experience should be carefully considered and taken into ac-
count during risk assessment and evaluation. Beyond this research, it is important to further
investigate whether the increased level of dependency across major causes of death during the
pandemic was partially due to stretched health care services, and whether different socioeco-
nomic groups were affected differently in mortality and health experience during the pandemic.
Answers to these questions will help insurance companies, health care professions, and govern-
ment agencies be better prepared for future mortality risk.
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