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Abstract

Age-specific life-table death counts observed over time are examples of densities. Non-
negativity and summability are two constraints that prevent the direct implementation
of standard linear statistical methods. Compositional data analysis presents a one-to-one
mapping from constrained to unconstrained space to rectify the constraints. We introduce a
weighted compositional data analysis for modeling and forecasting life-table death counts.
Our extension assigns higher weights to more recent data and provides a modeling scheme
that is easily adapted to allow for constraints. We illustrate our method using age-specific
Swedish life-table death counts from 1751 to 2020 and show that the weighted compositional
data analytic method improves short-term forecast accuracy compared to their unweighted
counterparts.
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1 Introduction

Actuaries and demographers have long been interested in developing mortality modeling

and forecasting methods. In the literature on human mortality, three functions are widely

considered: hazard, survival, and probability density functions. Although these functions

are complementary (Preston et al. 2001, Dickson et al. 2009), most attention was given to new

approaches for forecasting age-specific hazard function (see, e.g., Booth 2006, Booth & Tickle

2008, for reviews). Instead of modeling central mortality rates, we consider modeling the

life-table death distribution (Basellini et al. 2020). Observed over a period, we could model

and forecast a redistribution of the density of life-table death counts, where deaths at younger

ages are shifted gradually towards older ages. The period life-table death counts represent the

mortality conditions, which reflect a longevity trend in recent years. Apart from providing an

informative description of the mortality experience of a population, the life-table death counts

yield readily available information on ‘central longevity indicators’ (see, e.g., Cheung et al.

2005, Canudas-Romo 2010), and lifespan variability (see, e.g., Robine 2001, Vaupel et al. 2011,

Horiuchi et al. 2013, van Raalte & Caswell 2013, van Raalte et al. 2014, Aburto & van Raalte

2018, Aburto et al. 2020).

In demography, Oeppen (2008), Bergeron-Boucher et al. (2017) and Bergeron-Boucher et al.

(2018) treat life-table death counts as compositional data and use compositional data analysis

(CoDa) to model and forecast age distribution of death counts. The data are constrained to vary

between two limits (e.g., 0 and a constant upper bound), which in turn imposes constraints

upon the variance-covariance structure of the original data. To remove the non-negativity and

summability constraints, a transformation can be deployed before applying standard linear

techniques to the transformed data. Arguably, the most popular transformation is the centered

log-ratio transformation (Aitchison & Shen 1980, Aitchison 1982, 1986). Shang & Haberman

(2020) applied the centered log-ratio transformation within the CoDa framework to model and

forecast life-table death counts.

We extend the CoDa by assigning a set of geometrically decaying weights to estimate the

geometric mean function and estimated principal components. As described in Section 3, our

extension assigns higher weights to relatively more recent data to improve short-term forecast

accuracy (see also Hyndman & Shang 2009). This is particularly important in demography,

where we can have over 200 years of data, and data from the 18th and 19th centuries may not be
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so helpful in determining the recent trend for forecasting.

Using Swedish life-table death counts from 1751 to 2020 in Section 2, we highlight the

difference between the weighted and standard compositional data analytic methods in Sections 3

and 4 and evaluate and compare forecast accuracy in Section 5. The conclusion is presented in

Section 6, along with some ideas on how the methodology can be further extended.

2 Swedish age distribution of death counts

We consider age- and sex-specific life-table death counts from 1751 to 2020 in Sweden obtained

from the Human Mortality Database (2021). We study life-table death counts, where the life table

radix (i.e., a population experiencing 100,000 births annually) is fixed at 100,000 at age 0 for each

year. For the life-table death counts, there are 111 ages, and these are ages 0, 1, . . . , 109, 110+.

Due to rounding, there are zero counts for age 110+ at some years, which may create an issue

when taking log-ratio transformation. To rectify this problem, we prefer to use the probability

of dying and the life-table radix to recalculate our estimated death counts (up to 6 decimal

places). In doing so, we obtain more precise death counts than the ones reported in the Human

Mortality Database (2021). To some extent, the probability of dying relies on smooth rates (see

the Human Mortality Database 2021, protocol for detail).

To understand the features of the data, Figure 1 presents rainbow plots of the female and

male age-specific period life-table death counts in Sweden from 1751 to 2020 in a single year.
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Figure 1 Rainbow plots of age-specific period life-table death count from 1751 to 2020 in a
single-year group in Sweden. Curves are ordered chronologically according to the
colors of the rainbow. The oldest years are displayed in red, with the most recent years
shown in violet.
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Both sub-figures demonstrate a decreasing trend in infant death counts, and a typical

negatively skewed distribution for the life-table death counts, where the peaks shift to higher

ages for both females and males. This shift is a primary driver of the longevity risk, which is a

major issue for insurers and pension funds, especially in the selling and risk management of

annuity products (see Denuit et al. 2007, for a discussion).

The re-distribution of life-table death counts indicates lifespan variability across age. A

decrease in variability over time can be observed. This variability can be measured, for example,

with the interquartile range of life-table death counts, Drewnowski’s index, or the Gini coeffi-

cient (for comprehensive reviews, see Wilmoth & Horiuchi 1999, Shkolnikov et al. 2003, van

Raalte & Caswell 2013, Debón et al. 2017, Aburto et al. 2022). Via the Gini coefficient, Figure 2

presents an example where the life-table death counts provide essential insights on longevity

and lifespan variability that cannot be grasped directly from an examination of the central

mortality rate or the survival function. We also include graphs of the trend in life expectancy at

age zero, denoted by e(0), over time.
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Figure 2 Gini coefficients and e(0) for Swedish period female and male life-table death counts
from 1751 to 2020.
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The Gini coefficient can be viewed as a measure of age-at-death inequality. When the

coefficient equals 0, it expresses maximal age-at-death inequality. Inversely, when the coefficient

equals 1, equality occurs for all ages. From Figure 2, the effects of the cholera epidemic in 1834

are apparent for the Swedish female and male data (Larsson 2020). In 1918, there was a sudden

drop in the Gini coefficient related to the Spanish flu.

3 Geometrically weighted compositional data analytic approach

Density functions are non-negative functions that integrate into one. They share features

with compositional data (see, e.g., Aitchison 1986, Pawlowsky-Glahn et al. 2015). Composi-

tional data arise in many scientific fields, such as geology (geochemical elements), economics

(income/expenditure distribution), medicine (body composition), the food industry (food com-

position), chemistry (chemical composition), agriculture (nutrient balance bionomics), environ-

mental science (soil contamination), ecology (abundance of different species) and demography

(life-table death counts).

In statistics, Scealy et al. (2017) use CoDa to study the concentration of chemical elements in

sediment. Scealy & Welsh (2017) apply CoDa to analyze total weekly expenditure on food and

housing costs for households. Delicado (2011), Kokoszka et al. (2019) and Shang & Haberman

(2020) use CoDa to analyze density functions and implement principal component analysis on

the unconstrained space. In demography, Oeppen (2008) and Bergeron-Boucher et al. (2017)

introduce a principal component analysis approach to forecast life-table death counts within a

CoDa framework.

For a given year t, compositional data are defined as a random vector of I non-negative

components, [Xt(u1), . . . ,Xt(uI)], whose sum is a specified constant, such as one (portion), 100

(percentage), 105 (radix) in life-table death counts, and 106 (parts per million) in geochemical

trace element compositions (Aitchison 1986, p.1). Between the non-negativity and summability

constraints, the sample space of compositional data is a simplex

S I =

{
[Xt(u1), . . . ,Xt(uI)]

⊤, Xt(ui) > 0,
I

∑
i=1

Xt(ui) = c

}
, t = 1, . . . , n,

where u denotes a continuum, such as age, S denotes a simplex, c is a fixed constant, ⊤ denotes

vector transpose, and the simplex sample space is a I − 1 dimensional subset of real-valued space
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RI . The restriction of shares to the unit simplex leads to the lack of an interpretable covariance

structure, which has been recognized by researchers in many fields (see, e.g., Aitchison 1986,

Barceló et al. 1996, Fry et al. 1996).

In the CoDa framework, intuition involves rectifying the summability and non-negativity

constraints via a transformation of the raw data. The transformation preserves one-to-one

mapping between constrained and unconstrained spaces. In the unconstrained space, standard

statistical techniques can be directly applied. Among many suitable transformations, the

centered log-ratio transformation is widely used (Aitchison & Shen 1980, Aitchison 1982, 1986).

The algorithm for implementing the CoDa method consists of the following steps:

1) De-centering the data. Compute the geometric mean function with geometrically decaying

weights. The mean function µ(u) can be estimated by a weighted average

αn(u) = exp

{
n

∑
t=1

wt ln[Xt(u)]

}
,

where wt = κ(1 − κ)n−t is a set of geometrically decaying weights with 0 < κ < 1 and

∑n
t=1 wt = 1, and ln(·) denotes natural logarithm. These weights are to improve the

estimation of the mean function.

In Figure 3, we display a set of geometrically decaying weights when the weight parameter

κ = 0.05 or 0.95, respectively. When κ = 0.05, forecasts depend on more distant-past

observations. When κ = 0.95, forecasts rely on the most recent observations.
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Figure 3 Geometrically decaying weights when κ = 0.05 and 0.95, respectively.
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We treat age as a continuum u ∈ [0, 110] although age is observed at discrete points, and

set

st(u) =
Xt(u)
αn(u)

.

2) Apply the centered log-ratio transformation given by

βt(u) = ln[st(u)]. (1)

The log transformation in (1) removes the constraints on Xt(u). For a given population,

β(u) = [β1(u), . . . , βn(u)] can be viewed as an unconstrained functional time series.

To study its patterns, we estimate its variance and consider a variance-decomposition

approach.

3) Implement a weighted functional principal component analysis. Functional principal compo-

nent analysis has been extensively studied as a powerful dimension reduction tool to

summarize infinite-dimensional functional objects by a few sets of orthonormal functional

principal components and their associated scores. Survey articles on functional principal

component analysis are presented in Shang (2014) and Wang et al. (2016).

We extend the functional principal component analysis by incorporating geometrically

decaying weights (see, e.g., Hyndman & Shang 2009, Lam & Wang 2022). Compute

eigenvalues and eigenfunctions of the weighted unconstrained functional time series: Let

w = diagonal(w1, . . . , wn). The weighted curve time series is given as β∗(u) = wβ(u).

These weights are to improve the estimations of the functional principal components and

their associated scores.

Applying eigen-decomposition to β∗(u) gives

β∗
t (u) =

n

∑
k=1

γ̂t,kϕ̂k(u) =
K

∑
k=1

γ̂t,kϕ̂k(u) + ωt(u),

where ϕ̂k(u) is the kth orthonormal eigen-function (i.e., functional principal components),

γ̂t,k = ⟨βt(u), ϕ̂k(u)⟩ is the kth principal component score at time t, and ωt(u) denotes

model residual function for age u in year t.

We determine K via an eigenvalue ratio criterion (see Li et al. 2020). The estimated value

of K is chosen as the integer minimizing ratios of two adjacent empirical eigenvalues
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given by

K = argmin
1≤k≤kmax

{
λ̂k+1

λ̂k
× 1

( λ̂k

λ̂1
≥ θ

)
+ 1

( λ̂k

λ̂1
< θ

)}
,

where kmax is a pre-specified positive integer, θ = 1/ ln[max(λ̂1, n)] is a pre-specified

small positive number penalizing those relatively smaller empirical eigenvalues, and 1(·)

is the binary indicator function. Without any prior information, we set kmax = #{k|λ̂k ≥

∑n
k=1 λ̂k/n, k ≥ 1} (Ahn & Horenstein 2013).

4) Transform back to the compositional data. We take the inverse centered log-ratio transforma-

tion given by

ŝn+h|n(u) =

[
expβ̂n+h|n(u1)

∑111
i=1 expβ̂n+h|n(ui)

,
expβ̂n+h|n(u2)

∑111
i=1 expβ̂n+h|n(ui)

, · · · ,
expβ̂n+h|n(u111)

∑111
i=1 expβ̂n+h|n(ui)

]
,

where β̂n+h|n(ui) denotes the forecasts in Step 3).

5) We add back the geometric means to obtain the forecasts of the life-table death counts

X n+h(u),

X̂ n+h|n(u) =

[
ŝn+h|n(u1)× α1

∑111
i=1 ŝn+h|n(ui)× αi

,
ŝn+h|n(u2)× α2

∑111
i=1 ŝn+h|n(ui)× αi

, · · · ,
ŝn+h|n(u111)× α111

∑111
i=1 ŝn+h|n(ui)× αi

]

where αi is the weighted geometric mean given in Step 1).

4 Selection of the geometrically decaying weight parameter

4.1 Point forecast error criteria

Since the age-specific life-table death counts can be considered a probability density function,

we measure goodness-of-fit through several density evaluation metrics. These metrics can

evaluate if our model accurately forecasts holdout data in the form of a probability density

function. The metrics considered include discrete Kullback-Leibler divergence (Kullback &

Leibler 1951) and the square root of the Jensen-Shannon divergence (Shannon 1948, Fuglede &

Topsoe 2004).

The Kullback-Leibler divergence is intended to measure the information loss by replacing

unknown density with approximation. For two probability density functions, denoted by
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Xn+ξ(u) and X̂n+ξ|n(u), the discrete Kullback-Leibler divergence for each horizon h is defined

as

KLD(h) =DKL[Xn+ξ(ui)||X̂n+ξ|n(ui)] + DKL[X̂n+ξ|n(ui)||Xn+ξ(ui)]

=
1

111 × (11 − h)

10

∑
ξ=h

111

∑
i=1

Xn+ξ(ui) · [lnXn+ξ(ui)− ln X̂n+ξ|n(ui)]+

1
111 × (11 − h)

10

∑
ξ=h

111

∑
i=1

X̂n+ξ|n(ui) · [ln X̂n+ξ|n(ui)− lnXn+ξ(ui)],

which is symmetric and non-negative. The forecast horizon can take integer values from one to

ten. When h = 1, there are 10 years of data in the validation or testing samples. When h = 10,

there is only one year of data.

An alternative is given by the Jensen-Shannon divergence, defined by

JSD(h) =
1
2

DKL[Xn+ξ(ui)||δn+ξ(ui)] +
1
2

DKL[X̂n+ξ|n(ui)||δn+ξ(ui)],

where δn+ξ(ui) measures a common quantity between Xn+ξ(ui) and X̂n+ξ|n(ui). We consider

simple or geometric mean

δn+ξ(ui) =
1
2
[Xn+ξ(ui) + X̂n+ξ|n(ui)]

δn+ξ(ui) =
√
Xn+ξ(ui)X̂n+ξ|n(ui).

We denote JSDs(h) for the Jensen-Shannon divergence with the simple mean, and JSDg(h) for

the Jensen-Shannon divergence with the geometric mean.

4.2 Expanding window scheme

An expanding window scheme of a time series model is commonly used to assess model and

parameter stability over time and the reliability of predictions. The expanding window analysis

determines the variability of the model’s parameters by computing parameter estimates and

their resultant forecasts over an expanding window. We divide the entire data into a training

sample consisting of data from 1751 to 2000, a validation sample consisting of data from 2001 to

2010, and a testing sample consisting of data from 2011 to 2020. The selections of validation and

testing samples are arbitrary, each has 10 years of data.
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Using the first 250 observations from 1751 to 2000 in the life-table death counts, we produce

one- to 10-step-ahead forecasts. Through an expanding window approach, we re-estimate the

parameters using the first 251 observations from 1751 to 2001. Forecasts from the estimated

models are then produced for one- to nine-step-ahead forecasts. We iterated this process by

increasing the sample size by one year until we reached the data in 2010. This process produces

10 one-step-ahead forecasts, 9 two-step-ahead forecasts, . . . , and one 10-step-ahead forecast.

We evaluate and compare these forecasts with the validation samples from 2001 to 2010 to

determine the optimal weight parameter for each forecast horizon. In Figure 4, we tabulate

the estimated geometrically decaying weight parameter in the weighted CoDa method under

various evaluation metrics.
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Figure 4 Estimated geometrically decaying weight parameter in the weighted CoDa method
under various evaluation metrics.

4.3 Model fitting

We apply the standard and weighted CoDa methods to the female and male data. Via the

eigenvalue ratio criterion, the retained numbers of components are determined as one. From

the observed life-table death counts from 1751 to 2019 (i.e., 278 observations), we present

the weighted geometric means of the female and male life-table death counts in Figures 5a

and 5b. Via functional principal component analysis, we display the first functional principal

component in Figures 5c and 5d. The estimated functions for the standard CoDa method are

shown in red, while those for the weighted CoDa method are displayed in blue. For producing

one-step-ahead forecasts, the weight parameter κ = 0.054 and 0.079 based on the KLD. From

the one-step-ahead point forecasts of life-table death counts in 2020, the weighted CoDa method

produces one-step-ahead forecasts that are closer to the holdout data in Figures 5e and 5f.
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Figure 5 Elements of the CoDa methods for modeling and forecasting the Swedish female and
male life-table death counts. The estimated functions for the standard CoDa method
are shown in red, while the estimated functions for the weighted CoDa method are
displayed in blue. The weight parameter values are selected as 0.054 and 0.079 for the
female and male data, respectively.
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5 Comparison of point forecast accuracy

Using the first 260 observations from 1751 to 2010, we produce one- to 10-step-ahead forecasts

via an expanding window approach. We evaluate and compare forecast accuracy by comparing

the forecasts with the holdout data from 2011 to 2020.

In Tables 1 and 2, we present three evaluation metrics between standard and geometrically

decaying weighted CoDa methods. For the weighted CoDa methods, the estimated weight

parameters for different horizons are displayed in Figure 4. We consider the autoregressive

integrated moving average (ARIMA) and random-walk with drift (RWD) methods for forecast-

ing principal component scores. We present two criteria for selecting the number of retained

principal components. The first criterion uses the eigenvalue ratio, while the second one chooses

K = 6 (see also Hyndman et al. 2013). For forecasting the Swedish female life-table death counts,

we observe

1) the weighted CoDa method produces more accurate forecasts than the ones from the

standard CoDa method;

2) fixing K = 6 reduces the point forecast error for the standard CoDa method, but not so

for our weighted CoDa method; and

3) the weighted CoDa works well with both ARIMA and RWD methods.

Table 1 Comparison of point forecast errors (×100) between the CoDa and its weighted variant
for forecasting the age-specific Swedish female data. For selecting the number of
retained components K, we consider the eigenvalue ratio criterion and K = 6. For
the ARIMA method, the optimal parameters are selected automatically based on the
corrected Akaike information criterion (AICc).

Eigenvalue ratio criterion K = 6

CoDa Weighted CoDa CoDa Weighted CoDa
h KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg

ARIMA
1 1.287 0.316 0.318 0.162 0.037 0.037 0.272 0.065 0.065 0.180 0.041 0.042
2 1.358 0.334 0.335 0.161 0.037 0.037 0.326 0.078 0.079 0.162 0.043 0.043
3 1.458 0.359 0.360 0.170 0.039 0.039 0.397 0.096 0.097 0.167 0.038 0.039
4 1.537 0.378 0.380 0.183 0.042 0.043 0.456 0.111 0.111 0.184 0.042 0.049
5 1.549 0.381 0.383 0.308 0.072 0.073 0.532 0.129 0.130 0.205 0.053 0.054
6 1.609 0.396 0.398 0.211 0.050 0.050 0.593 0.145 0.146 0.251 0.059 0.060
7 1.672 0.412 0.414 0.225 0.053 0.054 0.653 0.160 0.161 0.226 0.053 0.054
8 1.801 0.443 0.446 0.251 0.060 0.059 0.803 0.197 0.198 0.246 0.059 0.059
9 1.876 0.462 0.465 0.309 0.074 0.074 0.871 0.214 0.215 0.319 0.074 0.078

Continued on next page
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h KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg

10 1.184 0.291 0.292 0.218 0.051 0.051 0.529 0.129 0.130 0.223 0.049 0.056

Mean 1.533 0.377 0.379 0.220 0.051 0.052 0.543 0.133 0.133 0.216 0.051 0.053

RWD
1 1.278 0.314 0.315 0.185 0.043 0.043 0.282 0.067 0.067 0.248 0.057 0.057
2 1.353 0.333 0.334 0.162 0.037 0.037 0.309 0.073 0.074 0.232 0.052 0.052
3 1.448 0.356 0.358 0.171 0.039 0.040 0.324 0.078 0.078 0.206 0.045 0.049
4 1.519 0.373 0.375 0.163 0.036 0.037 0.362 0.087 0.087 0.229 0.051 0.052
5 1.519 0.373 0.375 0.206 0.047 0.048 0.373 0.089 0.089 0.230 0.050 0.051
6 1.585 0.390 0.392 0.210 0.050 0.050 0.458 0.111 0.112 0.270 0.069 0.069
7 1.683 0.414 0.417 0.226 0.053 0.053 0.615 0.150 0.151 0.316 0.074 0.074
8 1.835 0.452 0.455 0.265 0.062 0.063 0.645 0.158 0.158 0.281 0.065 0.065
9 1.886 0.464 0.468 0.299 0.070 0.071 0.655 0.160 0.161 0.365 0.084 0.085
10 1.170 0.288 0.289 0.220 0.051 0.051 0.300 0.072 0.072 0.215 0.086 0.088

Mean 1.527 0.376 0.378 0.211 0.049 0.049 0.432 0.104 0.105 0.259 0.063 0.064

For forecasting the Swedish male life-table death counts, we observe

1) fixing K = 6 reduces the point forecast error for the standard CoDa method, but not so

for our weighted CoDa method;

2) when the eigenvalue ratio criterion determines the number of components, the weighted

CoDa method is preferred; when the number of components is fixed K = 6, the standard CoDa

method produces the smallest errors; and

3) the weighted CoDa method works better with the RWD method than the ARIMA method.

Table 2 Comparison of point forecast errors (×100) between the CoDa and its weighted variant
for forecasting the age-specific Swedish male data. For selecting the number of retained
components K, we consider the eigenvalue ratio criterion and K = 6. For the ARIMA
method, the optimal parameters are selected automatically based on the AICc criterion.

Eigenvalue ratio criterion K = 6

CoDa Weighted CoDa CoDa Weighted CoDa
h KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg

ARIMA
1 1.490 0.368 0.369 0.288 0.073 0.071 0.283 0.068 0.068 0.296 0.070 0.070
2 1.746 0.432 0.433 0.426 0.104 0.101 0.440 0.107 0.108 0.390 0.102 0.104
3 1.954 0.483 0.485 0.528 0.139 0.133 0.631 0.155 0.155 0.504 0.129 0.130
4 2.139 0.529 0.531 0.662 0.160 0.161 0.832 0.205 0.205 0.645 0.156 0.156
5 2.286 0.566 0.568 0.782 0.178 0.161 1.040 0.257 0.257 0.764 0.161 0.172
6 2.508 0.620 0.623 0.877 0.215 0.231 1.323 0.327 0.328 0.855 0.212 0.229
7 2.697 0.667 0.670 1.003 0.247 0.247 1.616 0.399 0.401 1.028 0.252 0.248
8 2.788 0.689 0.692 1.110 0.273 0.267 1.860 0.460 0.462 1.064 0.277 0.244

Continued on next page
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h KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg

9 2.938 0.725 0.729 1.296 0.318 0.320 2.193 0.542 0.544 1.252 0.310 0.314
10 1.994 0.493 0.494 0.671 0.170 0.165 1.564 0.387 0.388 0.693 0.170 0.170

Mean 2.254 0.557 0.559 0.764 0.188 0.186 1.178 0.291 0.292 0.749 0.184 0.184

RWD
1 1.246 0.308 0.309 0.242 0.057 0.058 0.231 0.055 0.055 0.233 0.054 0.053
2 1.392 0.344 0.345 0.228 0.054 0.054 0.241 0.057 0.058 0.220 0.051 0.051
3 1.510 0.374 0.375 0.214 0.050 0.051 0.203 0.048 0.048 0.260 0.059 0.059
4 1.632 0.403 0.405 0.301 0.071 0.072 0.262 0.062 0.063 0.331 0.077 0.078
5 1.719 0.425 0.427 0.265 0.063 0.063 0.269 0.064 0.065 0.322 0.077 0.074
6 1.908 0.472 0.474 0.410 0.098 0.098 0.355 0.085 0.086 0.480 0.114 0.114
7 2.112 0.523 0.525 0.470 0.114 0.114 0.420 0.102 0.102 0.506 0.121 0.122
8 2.115 0.524 0.526 0.434 0.105 0.105 0.401 0.097 0.098 0.518 0.124 0.125
9 2.077 0.514 0.516 0.454 0.109 0.109 0.438 0.106 0.106 0.653 0.155 0.156
10 1.250 0.309 0.309 0.187 0.044 0.044 0.223 0.053 0.053 0.288 0.067 0.067

Mean 1.696 0.419 0.421 0.321 0.076 0.077 0.304 0.073 0.073 0.381 0.090 0.090

6 Conclusion

We present an extension of the CoDa method by incorporating geometrically decaying weights

to estimate mean function and functional principal components. We select the estimated weight

parameter to minimize various point forecast errors using a set of validation data. We compare

the point forecast errors between the standard and weighted CoDa method in the testing data

with the estimated weight parameter. The weighted CoDa method improves accuracy more

than its standard counterpart when the eigenvalue ratio criterion selects the number of retained

components for forecasting the Swedish female and male life-table death counts. We also

compute the forecast errors by fixing the number of retained components to six. Including more

components helps reduce the forecast errors for the standard CoDa method, but not so for our

weighted CoDa extension. From the viewpoint of model parsimony and forecast accuracy, we

recommend implementing the weighted CoDa method.

There are a few ways in which the present paper can be further extended, and we briefly

mention two: 1) We could also compare interval forecast accuracy between the standard

and weighted CoDa methods. 2) Centered log-ratio transformation is one of many possible

transformations. We may also study additive log-ratio transformation in Aitchison (1986) or

square-root transformation in Scealy & Welsh (2011).
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van Raalte, A. A., Martikainen, P. & Myrskylä, M. (2014), ‘Lifespan variation by occupational

class: Compression or stagnation over time?’, Demography 51, 73–95.

Vaupel, J. W., Zhang, Z. & van Raalte, A. A. (2011), ‘Life expectancy and disparity: An interna-

tional comparison of life table data’, BMJ Open 1(1), e000128.

Wang, J.-L., Chiou, J.-M. & Müller, H.-G. (2016), ‘Functional Data Analysis’, Annual Review of

Statistics and Its Application 3, 257–295.

19



Wilmoth, J. R. & Horiuchi, S. (1999), ‘Rectangularization revisited: Variability of age at death

within human populations’, Demography 36(4), 475–495.

20



  3 

 

Copyright © 2023 Society of Actuaries Research Institute 

About The Society of Actuaries Research Institute 

Serving as the research arm of the Society of Actuaries (SOA), the SOA Research Institute provides objective, data-

driven research bringing together tried and true practices and future-focused approaches to address societal 

challenges and your business needs. The Institute provides trusted knowledge, extensive experience and new 

technologies to help effectively identify, predict and manage risks. 

Representing the thousands of actuaries who help conduct critical research, the SOA Research Institute provides 

clarity and solutions on risks and societal challenges. The Institute connects actuaries, academics, employers, the 

insurance industry, regulators, research partners, foundations and research institutions, sponsors and non-

governmental organizations, building an effective network which provides support, knowledge and expertise 

regarding the management of risk to benefit the industry and the public. 

Managed by experienced actuaries and research experts from a broad range of industries, the SOA Research 

Institute creates, funds, develops and distributes research to elevate actuaries as leaders in measuring and 

managing risk. These efforts include studies, essay collections, webcasts, research papers, survey reports, and 

original research on topics impacting society. 

Harnessing its peer-reviewed research, leading-edge technologies, new data tools and innovative practices, the 

Institute seeks to understand the underlying causes of risk and the possible outcomes. The Institute develops 

objective research spanning a variety of topics with its strategic research programs: aging and retirement; actuarial 

innovation and technology; mortality and longevity; diversity, equity and inclusion; health care cost trends; and 

catastrophe and climate risk. The Institute has a large volume of topical research available, including an expanding 

collection of international and market-specific research, experience studies, models and timely research. 

 

 

Society of Actuaries Research Institute 

475 N. Martingale Road, Suite 600 

Schaumburg, Illinois 60173 

www.SOA.org 

https://www.soa.org/programs/strategic-research-program/
https://www.soa.org/research/research-topic-list/
http://www.soa.org/

	Introduction
	Swedish age distribution of death counts
	Geometrically weighted compositional data analytic approach
	Selection of the geometrically decaying weight parameter
	Point forecast error criteria
	Expanding window scheme
	Model fitting

	Comparison of point forecast accuracy
	Conclusion

