
 

 
 

Article from 
Risk Management 
September 2019 
Issue 45 



  SEPTEMBER 2019 RISK MANAGEMENT  |  9

Wavelet-Based Equity 
VaR Estimation
By Kailan Shang

Editor’s note: This article is adapted from the research paper Wavelet-
Based Equity VaR Estimation, part of the 2019 Enterprise Risk 
Management Symposium call for papers. It was awarded the Actu-
arial Foundation’s ERM Research Excellence Award in Memory of 
Hubert Mueller for Best Overall Paper. The full report is available at 
www.ermsymposium.org/wp-content/uploads/2019/05/Shang​
_Actuarial-Foundation-Prizewinner.pdf.

Economic risk is an important risk for insurers offering 
long-term products with guaranteed benefits. When esti-
mating the magnitude of economic risk, historical data are 

usually used. However, an implicit assumption of this method 
is that the risk is time invariant. In reality, equity market vol-
atility varies by time. It is caused by either economic cycles or 

economic structural changes. Figure  1 shows the annualized 
volatility using daily S&P 500 index return from 1990 to 2017. 
Assuming a time-invariant (constant) volatility, the annualized 
volatility is 17.7 percent. If calculating the annualized volatility 
on a yearly basis, the volatility could go above 40 percent, as 
evidenced during the 2008 financial crisis.

Another complication is the frequency of historical data to use. 
The annualized volatility calculated based on different frequencies 
varies a great deal. Table  1 shows the annualized volatility and 
empirical value at risk (VaR) of S&P 500 equity index return using 
daily, monthly and yearly data from 1990 to 2017. For simplicity, 
the calculation assumes that the volatility and VaR are time invari-
ant and that the equity index follows a geometric Brownian motion. 
Here VaR measures the negative return value in the left tail. For 
example, a 99.5 percent VaR of 15 percent means that there is a 0.5 
percent chance that the return will be less than –15 percent. It is 
the opposite of the negative return value in the left tail.

Historical equity index returns exhibit different risk levels by 
frequency. Annualized empirical VaR based on high-frequency 
data (daily and monthly) is higher than the VaR based on 
low-frequency data (quarterly and yearly). This phenomenon 
indicates the need to analyze the economic risk at different fre-
quencies to get a holistic view.

Figure 1 
S&P 500 Index Return Annualized Volatility (1990–2017)
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TIME SERIES MODEL
Time series models, such as generalized autoregressive condi-
tional heteroskedasticity (GARCH) and autoregressive moving 
average (ARMA), can be used to capture the time-variant fea-
ture of equity volatility. An ARMA-GARCH model is used to 
analyze historical S&P 500 index daily returns.
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rt = �S&P 500 index daily return. It is calculated as  
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( ),.
zt = i.i.d. with zero mean and unit variance.

The distribution of zt that can more flexibly capture skewness 
and heavy tails should be chosen. In this example, zt is assumed 
to follow to the skewed generalized error distribution (SGED). 
It has the following probability density function:
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μ = location parameter. It is zero for zt,

σ = scale parameter. It is one for zt,
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ARMA(3,3) and GARCH(2,2) with the SGED are used to ana-
lyze historical S&P 500 daily index returns from 1990 to 2017. 
The orders (p and q) are chosen based on Akaike information 
criterion (AIC).

Figure 2 shows the daily return and the conditional volatility σt  
based on the ARMA-GARCH model. The conditional volatility 
varies greatly, with the highest value observed during the 2008 
financial crisis.

With the fitted model, future daily VaR can be predicted. Fig-
ure 3 shows the results based on 1,000 simulations for the 251 
trading days from October 2017 to September 2018. Actual daily 
returns are compared with the projected ranges. While 10.4 
percent of actual returns fall out of the middle 90 percent range 
(5th percentile to 95th percentile), 1.6 percent of actual returns 
fall out of the middle 99 percent range (0.5th percentile to 
99.5th percentile). Although the SGED generates a better range 
prediction than the normal distribution, it still underestimates 
the probability of extreme returns for the projection period.

Table 1 
S&P 500 Index Return Volatility and VaR by Frequency

Frequency

Time-
Invariant 
Volatility

Annualized 
Volatility1

99.5% 
Empirical 

VaR

Annualized 
Empirical 

VaR2

Daily 1.1% 17.5% 3.9% 69.3%

Monthly 4.2% 14.5% 19.3% 75.3%

Quarterly3 7.9% 15.5% 26.9% 64.2%

Yearly 17.7% 17.5% 43.5% 43.5%
1 Annualized volatility = time-invariant volatility n  , where n equals 250/12/4/1 for daily/
monthly/quarterly/yearly frequency.
2 Annualized empirical VaR = (99.5% Empirical VaR – Mean return) n  – Mean return n.
3 Minimum value of quarterly and yearly return is used for 0.5% empirical VaR because the 
number of data points is less than 200.
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Figure 2 
S&P 500 Index Daily Return and Conditional Volatility
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Figure 3 
S&P 500 Index Daily Return Range Estimation
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Instead of using closed-form formulas, annual VaR can be esti-
mated based on simulated daily returns, as shown in Table 2. In 
this example, the SGED has a heavier left tail than the normal 
distribution.

Table 2 
S&P 500 Index Return Annual VaR Estimation

95% VaR 99.5% VaR
SGED 4.6% 24.2%

Normal distribution 5.0% 14.1%

WAVELET ANALYSIS
If the evolving of risk is driven by a few forces with different 
frequencies, a pure time series model may not be able to capture 
all the different patterns. When predicting the return and con-
ditional volatility, the ARMA-GARCH model reflects only the 
direct impact of returns and volatilities in the past three days. 
The model cannot effectively capture the impacts for medium- 
and long-term patterns. People may argue that less frequent 
(such as annual) data can be used to estimate annual VaR. How-
ever, historical data may not be sufficient for a credible estimate, 
and valuable information in high-frequency data is lost.

Wavelet analysis can be used to analyze the historical data from 
two dimensions (time and frequency) at the same time. Wavelet 
analysis can be considered a combination of time series analysis 
and Fourier transform. Fourier transform analyzes the data 
purely from the frequency domain, assuming that patterns are 
time invariant. As shown in Figure  4, wavelet analysis keeps 
more time information for high-frequency data and less time 
information for low-frequency data.

Maximal overlap discrete wavelet transform (MODWT) is 
used to illustrate enhanced risk analysis based on wavelets. 
The MODWT is chosen over many other wavelets because 
its decomposition at different scales can easily be compared 
with original time series. The MODWT is also less sensitive 
than other wavelet transforms to the starting point of a time 
series. This is helpful to understand the patterns at different 
frequencies: short term, medium term or long term. Following 
the definition of Percival and Walden (2000), the MODWT 
of a time series Xt , t = 1,2,…,N  to the jth level works as the 
following:

Wavelet coefficient	 Wj ,t =
l=0

L j 1

hj ,l X t l  MOD  N ,

Scale coefficient	 V j ,t =
l=0

L j 1

g j ,l X t l  MOD  N ,

where hj ,l = wavelet filter constructed by convolving j filters 
composed of gl and hl. It suffices the following conditions:

l=0

L 1

hl = 0     
l=0

L 1

hl
2 =

1
2

      
l=

hlhl+2n = 0 for all integers n > 0,

g j ,l = scale filter constructed by convolving j filters com-
posed of gl. It suffices the following conditions:

l=0

L 1

gl = 1     
l=0

L 1

gl
2 =

1
2

      
l=

gl gl+2n = 0 for all integers n > 0,

l=

glhl+2n = 0 for all integers n,

Lj = 2 j 1( ) L 1( ) +1. L is the width of the base level filter.

The maximum number of levels depends on the available data 
points. Table 3 lists the frequency of the first eight levels.

Figure 4 
Wavelet Analysis Concept
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Table 3 
Frequency of Decomposition Levels

Level ( j) Frequency Scale (1/Frequency)*
1 [1/4,1/2] 2–4 days

2 [1/8,1/4] 4–8 days

3 [1/16,1/8] 8–16 days

4 [1/32,1/16] 16–32 days

5 [1/64,1/32] 32–64 days

6 [1/128,1/64] 64–128 days

7 [1/256,1/128] 128–256 days

8 [1/512,1/256] 256–512 days

* The scale is measured in business days.

To analyze the equity risk, LA(8) (Daubechies least asymmetric 
filter with L = 8) is used to define hj ,l and g j ,l. Figure 5 shows the 
wavelet filters hj ,l and scale filters g j ,l for the first three levels. 
The wavelet dampens out with larger width as the level goes 
up. The same pattern applies when the level goes higher than 
level three.

The original time series (S&P 500 index daily return) is decom-
posed into eight levels. Figure 6 shows the wavelet coefficients 
(Wj ,t) for all eight levels and the scale coefficients (V j ,t) for the 
eighth level. The wavelet coefficients are smoother at a higher 
level, representing longer-term volatility. The scale coefficients 
at the highest level represent the volatility that is not explained 
by wavelet coefficients.

TIME-INVARIANT RISK ANALYSIS
Wavelet analysis can be used to attribute the total volatility to 
different levels. The total variance can be calculated as the sum 
of the variances at each level:

X
2 =

J=1

JM

X
2 j( ),

where

X
2  = total variance of the original time series,

X
2 j( ) = variance of the decomposition at level j,

JM = number of levels used in wavelet analysis.

Figure 5 
LA(8) Wavelet and Scale Filters for MODWT
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Figure 6 
MODWT Wavelet Coefficients and Scaling Coefficients

 
Note: T–i means that the series of the coefficients is shifted by i positions backward so that all series are on the same timeline.
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Also, X
2 j( ) has an unbiased estimator:

ˆ X
2 j( ) =

1
M j t=L j 1

N 1

Wj ,t
2 ,

where

M j = N Lj +1.

Skewness and kurtosis of each level can be estimated as well:

Skewness  ŜX j( ) =

1
M j

t=L j 1

N 1
Wj ,t

3

ˆ X
3 j( )

,

Kurtosis  K̂ X j( ) =

1
M j

t=L j 1

N 1
Wj ,t

4

ˆ X
4 j( ) .

Table 4 lists the mean, variance, skewness and kurtosis for each 
decomposition level and the original time series. Low levels 
(high frequency/short term) contribute most of the variance of 
the original return series. Skewness and kurtosis are quite dif-
ferent among the eight levels, which indicates that the patterns 
at different frequencies are different, and it may be beneficial to 
model them separately.

The empirical VaR of the original time series can be approxi-
mated by aggregating the VaR at each decomposition level as 
follows:

VaRAgg =
j=1

JM

VaR j
2 ,

where

VaRAgg = aggregated VaR,

VaR j = VaR at level j.

In this example, aggregated empirical VaR is 3.94 percent, com-
pared to 3.93 percent calculated directly from the original time 
series. The non-normality of the original time series is preserved 
well by the wavelet coefficients in this example.

TIME-VARIANT RISK ANALYSIS
The wavelet analysis in the previous section assumes a constant 
volatility. Time-variant risk analysis can be enhanced with 
wavelet analysis as well to reflect different patterns at each 
wavelet decomposition level. This section builds on the ARMA-
GARCH example to include analysis at each decomposition 
level. As shown in Figure  7, instead of modeling the original 
time series with one model, wavelet-enhanced time-dependent 
analysis studies wavelet coefficients at each level separately to 
understand the risk in different ranges of frequency. Wavelet 
coefficients are fitted into a GARCH model to get the volatility 
and VaR information. Scale coefficients at the highest level are 
fitted into ARMA and GARCH models to understand the trend 
of the time series. They are aggregated to get the predicted 
return, total volatility and VaR.

Following the simulation method used in the time series model 
to simulate future equity returns, wavelet coefficients can be 
simulated at each decomposition level. Conditional volatil-
ity and VaR can be projected for each level according to the 

Table 4 
Descriptive Statistics at Different Decomposition Levels

Mean Volatility
Variance 

Contribution Skewness Kurtosis
99.5% 

Empirical VaR
99.5% 

VaR (Normal)
Level 1 0.0000% 0.8% 53.5% 0.3 12.7 3.0% 2.1%

Level 2 0.0000% 0.6% 24.9% 0.2 11.3 2.0% 1.4%

Level 3 –0.0001% 0.4% 12.3% 0.1 7.6 1.2% 1.0%

Level 4 0.0000% 0.2% 5.0% –0.1 6.3 0.9% 0.6%

Level 5 –0.0001% 0.2% 2.3% 0.1 5.5 0.5% 0.4%

Level 6 –0.0002% 0.1% 1.2% 0.03 5.2 0.4% 0.3%

Level 7 0.0001% 0.1% 0.4% –0.2 3.7 0.2% 0.2%

Level 8 –0.0001% 0.1% 0.3% –0.3 6.4 0.2% 0.2%

Original 0.0274% 1.1% — –0.2 11.9 3.93% 2.84%
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calibrated GARCH model. They can be aggregated to predict 
the total VaR:

VaRAgg ,T+l =
j=1

JM

VaR j ,T+l
2 E rT+l( ),

VaR j ,T+l = j ,T+lSGEDj
1 1 p( ),

where

VaRAgg ,T+l = aggregated daily VaR at T + l, l periods ahead 
of T,

VaR j ,T+l = daily VaR at T + l at decomposition level j. The 
expected value of wavelet coefficients is zero and there-
fore is not included in the formula,

j ,T+l = projected conditional volatility of level j wavelet 
coefficient at T + l,

SGEDj
1 1 p( ) = the [100 × (1 – p)]th percentile of fitted 

SGED for level j wavelet coefficients.

Figure 8 shows the daily return range prediction based on 1,000 
simulations for 250 trading days from the beginning of October 
2017. Actual daily returns till September 2018 are compared 
with the projected ranges. While 10.2 percent of actual returns 
fall out of the middle 90 percent range (5th percentile to 95th 
percentile), 0.7 percent of actual returns fall out of the middle 

99 percent range (0.5th percentile to 99.5th percentile). Com-
pared to a pure time-dependent prediction, as in Figure  3, 
wavelet-enhanced prediction has a wider predicted range for 
extreme returns (0.5th percentile and 99.5th percentile).

Time-variant risk analysis can 
be enhanced with wavelet 
analysis to reflect different 
patterns at each wavelet 
decomposition level.

For decision makers with a longer time horizon, annual VaR is a 
better measure than daily VaR for risk assessment. Multiresolu-
tion analysis (MRA) based on MODWT can be used to construct 
daily returns from transformed coefficients that preserve the 
autocorrelation of daily returns. Annual returns are then cal-
culated based on simulated daily returns. Table 5 compares the 
annual VaR derived by different methods for the period from 
October 2017 to September 2018. Wavelet-enhanced time-
dependent analysis provides a much higher annual VaR than a 
pure time-dependent analysis given a low volatility environment 
in September 2017. Wavelet analysis has a longer memory and 
helps preserve the long-term pattern much better than the 
time-dependent analysis in this example. Wavelet-enhanced 
time-dependent analysis also reflects current market conditions 
to predict the future risk in a given time horizon.

Figure 7 
Wavelet-Enhanced Time-Dependent Analysis Structure



  SEPTEMBER 2019 RISK MANAGEMENT  |  17

Wavelet-Based Equity VaR Estimation

For VaR estimation at a high confidence level, wavelet-enhanced 
time-dependent analysis is the best option based on the back-
testing results at different volatility levels. In addition, this type 
of analysis can adjust itself based on new information in a timely 
manner.

CONCLUSION
Unlike time series analysis, wavelet analysis can be used to 
systematically analyze historical time series data by time and fre-
quency concurrently. Wavelet analysis provides a decomposition 
of the total risk and can tell whether short-, medium- or long-
term risk is dominating. It can better capture different patterns 
at different frequency levels to improve risk estimation. Risk 
measures such as volatility and VaR can be calculated directly 
using wavelet models.

Wavelet analysis is especially useful when time horizon has a 
significant impact on risk analysis. It can help refine assump-
tions such as volatility, tail heaviness and correlation according 
to the time horizon of risk analysis. n
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Figure 8 
Wavelet-Based S&P 500 Index Daily Return Range Estimation
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Table 5 
S&P 500 Index Return Annual VaR Estimation

Projection Type Model 95% VaR 99.5% VaR
Time-dependent analysis Conditional ARMA + GARCH 4.6% 24.2%

Wavelet-enhanced time-dependent analysis Conditional MODWT + MRA 17.6% 39.9%

Empirical analysis (Jan. 1990–Sept. 2017) Unconditional Statistical analysis 26.9% 43.5%
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