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Strategies for Processing Large Weather 
Datasets 

Executive Summary 
Many weather datasets exceed 100 gigabytes, and some are much larger. While climate scientists have access to 

servers that can store and process massive weather datasets, actuaries and other risk analysts may lack this 

infrastructure. To analyze weather data, therefore, a risk analyst may be faced with the prospect of using a standard 

personal computer (PC). A PC rarely offers more than several hundred gigabytes of available storage space and 16 to 

32 gigabytes of RAM (active memory for running applications and programs). Given these constraints, a researcher 

using a PC will need a clever strategy for working with large weather datasets. This paper describes techniques for 

analyzing large weather datasets despite the memory and storage limitations imposed by a PC. 

To overcome a PC’s memory constraints, we present illustrative computer programs that iteratively loop through a 

large data file, processing the data in small chunks, analogous to eating a large meal in small bites. This technique 

can be programmed in many different languages, and this paper presents examples written in R, VBA, C++, and 

Python. Because the illustrative programs are short and simple, no prior programming experience is necessary to 

grasp the key ideas. 

To address the limited storage space available on a PC’s hard drive, we present a case study that involves the 

analysis of 1500 gigabyte weather dataset. Various techniques were used to make the data easier to store, including 

the following: jettisoning data for geographic regions that were not required for the analysis; restructuring the data 

to eliminate excessive temporal resolution; and rounding each observation to two decimal places to eliminate 

excess precision and reduce data storage requirements. 

The computer programs referenced in this paper can be downloaded from the same web page on which this paper 

is available. These programs are as follows: (1) “create_text_file.xlsm”, a VBA program that generates CSV and fixed-

width text files that contain synthetic precipitation data; (2) four programs which read and tabulate the synthetic 

data: “speed_text.xlsm” (written in VBA), “speed_test.r” (written in R), “speed_test.py” (written in Python), and 

“speed_test.cpp” (written in C++); and (3) “read_netcdf.r” (written in R), which demonstrates how to loop through a 

netCDF file, reading and processing the data in small “slices”, thereby placing little demand on a PC’s limited RAM. 
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1. How to Process a Large Data File in Small Chunks  

Due to limited RAM, one cannot load a large weather dataset in its entirety into a PC’s active memory. Instead, the 

data must be processed iteratively, one record at a time, or one block of records at a time. In a computer program, 

an iterative process can be performed using a “loop” that repeatedly runs a set of instructions until a stopping 

condition – such as reaching the end of a data file -- is met. 

Exhibit 1 

THE BASIC STRUCTURE OF A COMPUTER PROGRAM FOR LOOPING THROUGH A LARGE DATA FILE 

 

 

` 

 

 

 

 

 

 

 

 

 

For each iteration of the loop, a record (or block of records) is analyzed, the results are saved, and the record(s) are 

purged from RAM, thereby freeing up memory to read the next record (or record block).  

Weather data is typically stored as comma-delimited text files, fixed-width text files, or netCDF files1. Each of these 

three file types can be read and processed iteratively, one small chunk at a time, but the required computer 

programming syntax varies from one file type to another. In the pages that follow, we illustrate how to loop through 

each of these three file types. Because VBA is included with Excel, and because Excel is ubiquitous in the workplace, 

we use VBA to illustrate how to loop through text files. However, for illustrating how to read NetCDF files, VBA is a 

poor choice because it lacks a netCDF library. In contrast, R has an excellent netCDF library; therefore, we use R to 

illustrate how to loop through netCDF files. 

Obviously, syntax varies from one computer programming language to another. But there are key features – such as 

loops for repetitively executing a set of commands – that are common across most languages. Thus, an example 

presented in one programming language may be helpful even if your preference is to work in a different language.  

2. How to Iteratively Process a Comma-Delimited Text File Using VBA 

In a comma-delimited text file, data elements are separated by commas. This file type is sometimes referred to as 

“CSV” which stands for “comma separated values”. To illustrate how to read a CSV file using VBA, we will begin by 

creating synthetic precipitation data and storing it in CSV format. To generate the synthetic dataset, please 

download “Create_Text_File.xlsm” from the SOA’s weather guide home page. Open this Excel file, enable the 

macros, and go to the tab named “Create a Synthetic Dataset”. In cell B5, enter a name for the data file that will be 

 

 

1 NetCDF is a binary file format that is commonly used to store scientific data that has a repetitive structure involving several dimensions such as latitude, 
longitude, and time. 
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produced, such as “Synthetic_Data.csv”. Then press the button labeled “Generate File with Synthetic Precipitation 

Data”. This will execute a VBA macro that produces the synthetic data. If you wish to examine the macro, right-click 

on the “Generate File” button, left-click on “Assign Macro”, and left-click on “Edit”. 

By default, the macro’s input parameters are set to produce a 90-megabyte CSV data file consisting of one million 

monthly records, each with 30 daily precipitation observations. For the sake of simplicity, every month is assumed to 

have 30 days. A few of the synthetic records are presented in Exhibit 2: 

Exhibit 2 

SYNTHETIC DAILY PRECIPITATION DATA (INCHES) IN CSV FORMAT 
 

Station_ID,Year,Month,Day1,Day2,Day3,Day4,Day5 …. with additional fields up to Day30\r\n 
1437,1960,1,0,0,.45,0,.81,0,0,0,0,0,0,.3,0,0,.22,0,0,0,.18,0,.15,.3,0,.26,0,.84,0,.4,0,2.11\r\n 
1437,1960,2,0,0,0,0,.96,1.75,0,0,0,0,.34,0,.25,.08,0,0,0,0,0,1.24,.1,0,0,0,0,0,1.27,0,.37,0\r\n 
1437,1960,3,.03,.09,0,.36,0,0,.03,0,.35,0,0,.49,1,.38,.91,.21,0,0,.27,0,.48,0,.01,0,.41,0,.22,0,0,.98\r\n 
 

 

The first field of the synthetic data is the numerical ID of a fictional weather station, followed by the year and month 

of the precipitation observations. The remainder of each record contains 30 daily precipitation observations -- one 

observation for each day of the month -- separated from each other by commas. The character sequence “\r\n” 

appears at the end of each record. These characters – which are invisible if the file is opened in a text file editor such 

as “NotePad” – signify the end of a line of text or data. 

After generating the CSV file, go to the Excel worksheet named “Read the Data in Chunks”. This worksheet executes 

a VBA macro that loops through the data file, reading one record in each cycle of the loop. The parameter in cell B9 

indicates whether the program should simply read the data, or if it should both read the data and tabulate it, 

producing, as an output, a frequency distribution of daily precipitation amounts. On a typical PC, reading one million 

synthetic records takes only a couple of seconds, while both reading and tabulating one million records takes about 

20 seconds. All else equal, the more computations a computer program performs, the longer it will take to run. Go 

ahead and run the program, experimenting with different settings for cell B9. 

To view the VBA code that processes the synthetic dataset, right-click on the “Run” button, left-click on “Assign 

Macro”, and left-click on “Edit”. In Exhibit 3, a simplified version of the program is presented. In this program, 

“FileName” is a variable that stores the name of the file to be opened, such as “Synthetic_Data.csv”. In VBA, it is 

possible to open multiple files simultaneously. Each file must be assigned a unique number. The data file is opened 

and is assigned number “1”. Opening a file for “input” indicates that the computer program will read the data in the 

file, while opening a file for “output” indicates that the program will send information to the file.  

After opening the data file for input, a “do/while” loop is launched. The contents of the loop are repeatedly 

executed until the end of the data file is reached (“EOF” means “end of file”). In each cycle of the loop, another 

record is read using the command “Line Input #1, MonthlyRecord”. The “Line Input” command reads data until 

hitting the next “\r\n” character sequence, signifying that the end of a line has been reached. The line of data is 

stored in “MonthlyRecord” which is a “string” variable that can hold a sequence of letters, numbers, and/or other 

characters. A month’s worth of daily precipitation data is stored in “MonthlyRecord”.  

To process the synthetic precipitation data – for example, to compute a frequency distribution for daily precipitation 

amounts – each monthly data record needs to be split into separate daily observations. In VBA, a string variable 

loaded with CSV data can be divided into separate fields using the “split” command, with a comma specified as the 
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field delimiter2. In this example, the resulting data fields are stored in the “DailyData” array. Recall that the first 

three fields of the synthetic data are station id, year, and month. These fields are stored in DailyData(0), 

DailyData(1), and DailyData(2), respectively. The 30 days of precipitation data run from DailyData(3) to 

DailyData(32). 

After splitting the data into separate fields, a “for/next” loop is executed. This loop is embedded within the outer 

do/while loop. This inner loop cycles through each of the 30 days of data, counting those days on which there was 

non-zero precipitation.  

In each cycle of the outer loop, the next monthly record is read, the monthly data is split into daily data, and the 

daily data is tabulated. The variable “RecordCount” tracks the number of records that have been read, and the 

variable “DaysWithPrecip” tracks the number of days on which precipitation occurred. After reaching the end of the 

data file, the do/while loop is terminated and the tabulation results are output to the screen.  

Exhibit 3 

VBA CODE FOR READING AND TABULATING THE SYNTHETIC DATA IN CSV FORMAT 
 

Dim Header as string 
Dim MonthlyRecord as string  ‘a string variable holds a sequence of characters 

Dim DailyData as variant  ‘a variant is flexible variable that can be recast into an array that holds multiple values 
 

FileName = range(“B6”)  ‘get the name of the data file (the file name is stored in cell B6) 
Open FileName For Input As #1 ‘create connection to data file 
Line Input #1, Header  ‘read the file header which contains field names 
RecordCount = 0 
 

Do While EOF(1) = False  ‘initiate a do/while loop 
 

    RecordCount = RecordCount + 1 
     

    ‘read the next line of data and store it in the variable “MonthlyRecord” 

    Line Input #1, MonthlyRecord 
     

   ‘split the monthly record into separate data fields using commas as the field delimiter;  
    ‘as a result of the split, the variable “DailyData” is transformed into an array that holds each of the separate fields 
    DailyData = Split(MonthlyRecord, ",") 
 

    ‘loop through the 30 days of daily data and count days with zero precipitation 

    For d = 1 To 30 
        If DailyData(d+2) > 0 then DaysWithPrecip = DaysWithPrecip + 1 
    Next d 
 

Loop 
 

Close #1  ‘the data file has been fully processed, so close the connection 
 

TotalDays = RecordCount * 30 
PctWithPrcp = round(100*DaysWithPrecip / TotalDays, 2) 
 

‘output results 

Msgbox(“Total Monthly Records: “ & RecordCount) 
Msgbox(“% of Days With Precip: “ & PctWithPrecip) 
 

Computer code is in blue font and comments are in red font 

 

 

2 “Split” can also be applied to a data string that uses tabs or any other character as the field delimiter. For example, if semicolons were used as the field 
delimiter, then the data string could be split into separate fields as follows: DailyData = split(MonthlyRecord, “;”)   
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3. How to Iteratively Process a Fixed-Width Text File Using VBA 

The previous VBA example reads and processes a data file in CSV format. Another format for text files is “fixed 

width”. Under this format, field delimiters such as commas are unnecessary. Instead, each field spans a fixed 

number of characters; consequently, its location is consistent across all records. This consistency permits the data to 

be read and processed by a computer program without the need for field delimiters.  

Worksheet 1 of “Create_Text_File.xlsm” can generate a fixed-width data file by setting cell B8 to “Fixed Width” and 

then running the macro. The resulting file will have the format shown below: 

Exhibit 4 

SYNTHETIC DAILY PRECIPITATION DATA (INCHES) IN FIXED WIDTH FORMAT 
 

 
 

Fields D16 through D30 – corresponding to precipitation on days 16 through 30 of each month -- were omitted for sake of brevity 

In this example, columns 1 through 10 hold the station id, columns 12 through 15 hold the year, columns 17 and 18 

hold the month, columns 20 through 23 hold precipitation on day 1, columns 25 through 28 hold precipitation on 

day 2, etc. For clarity, an empty space was inserted between each of the fields; thus, in effect, this is a space-

delimited file in addition to being a fixed-width file. However, spaces are not needed in a fixed-width file; in fact, 

spaces might be viewed as wasteful, leading to an unnecessary increase in file size. In our example, however, spaces 

are a useful addition to make the data easier to visually decipher. 

Just like a CSV data file, a fixed-width data file can be read line-by-line using VBA’s “Line Input” function. However, 

splitting each line of data into separate fields cannot be performed with the “split” function; rather, a different 

approach is required. One option is to use VBA’s “mid” function which has the following syntax: 

extracted field = mid(string variable holding a fixed-width record, first column to extract, number of columns to extract) 
 

For example, in the synthetic data shown in Exhibit 4, the year field runs from column 12 to 15, and can be extracted 

using the following code: 
data_year = mid(MonthlyRecord, 12, 4) 

 

In the VBA program in Exhibit 5, the fixed-width synthetic precipitation data is read line-by-line, and each record is 

split into its component fields using the “mid” function. After reading a monthly record, the program loops through 

each day of the month. For each day, the “mid” function extracts the associated data, storing it in the “precip” 

variable. If daily precipitation greater than zero, the program increments the variable “DaysWithPrecip”. To move 

onward to the next day of data, the “col” variable is increased by 5, which corresponds to the width of each of the 

30 fields that store the daily precipitation data. 
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Exhibit 5 

VBA CODE FOR READING THE SYNTHETIC DATA IN FIXED-WIDTH FORMAT 
 

Dim precip as single   ‘this type of variable can store numbers that require decimal places 
 

Do While EOF(1) = False  ‘initiate a do/while loop 
 

    ‘read the next line of data and store it in the variable “MonthlyRecord” 

    Line Input #1, MonthlyRecord 
 

    station_id = mid(MonthlyRecord, 1, 10) 
    data_year = mid(MonthlyRecord, 12, 4) 
    data_month = mid(MonthlyRecord, 17, 2) 
     
    ‘loop through the 30 day period, extracting each day’s precipitation data 
     

    col = 20  ‘the first day of precipitation data begins in column 20  
    For d = 1 To 30 
        precip = mid(MonthlyData, col, 4) 
        If precip > 0 then DaysWithPrecip = DaysWithPrecip + 1 
        col = col + 5 ‘jump forward to the next day of data  
    Next d 
 

Loop 
 

TotalDays = RecordCount * 30 
PctWithPrcp = round(100*DaysWithPrecip / TotalDays, 2) 
 

‘output results 

Msgbox(“Total Monthly Records: “ & RecordCount) 
Msgbox(“% of Days Without Precip: “ & PctWithPrecip) 
 

4. How to Iteratively Process a NetCDF File Using R 

NetCDF files are binary; consequently, if a netCDF file is opened using a text editor (like “Notepad”) it will appear to 

be gibberish. While it is possible to write one’s own code to decipher netCDF files, it is far easier to use a library 

designed for this purpose. In the context of computer programming, a library is pre-written computer code that 

performs a particular task(s), thus saving a programmer the trouble of reinventing the wheel. “ncdf4” is an R library 

that can both create and read netCDF files. We rely upon this library in the example that follows. 

To learn how to use the ncdf4 library, please download the R program named “read_netcdf.r” (hereafter referred to 

simply as “the R program”). Save the program to a subdirectory on your PC, and then open the program. Before 

running the program, you will need to change the “subdir” variable such that it points to the subdirectory in which 

you placed “read_netcdf.r”. This program loads the ncdf4 library using the following two lines of code: 

install.packages("ncdf4") 

require("ncdf4") 

The library needs to be installed only one time; that is, you do not need to install it every time you run the program. 

Therefore, after running the program once, place a comment symbol (“#”) to the left of “install.packages” to 

remove this line of code from execution. The “require” statement, however, should remain uncommented, because 

it needs to be executed each time the program is run. 

A netCDF file is needed to illustrate how to use R’s ncdf4 library. To this end, when you run the program, a small 

netCDF file named “fake_data.nc” will be generated. This file will be saved in a subdirectory of your choice. In the 

program, please specify the desired subdirectory by editing the following line of code: 
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subdir = "C:/YourSubdirectory" 

Next, run the R program. The program will generate “fake_data.nc”, saving this file in the specified subdirectory. 

Like many gridded weather datasets, “fake_data.nc” is dimensioned by longitude, latitude, and time. But unlike 

most weather datasets, this dataset is quite small, consisting of only 48 data values that correspond to 4 longitudes, 

2 latitudes, and 6 time points (4 * 2 * 6 = 48): 

Exhibit 6  

THE DATASET IN FAKE_DATA.NC 

Longitude 
(Degrees E) 

Latitude 
(Degrees N) 

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

250 30 111 112 113 114 115 116 

255 30 211 212 213 214 215 216 

260 30 311 312 313 314 315 316 

265 30 411 412 413 414 415 416 

250 35 121 122 123 124 125 126 

255 35 221 222 223 224 225 226 

260 35 321 322 323 324 325 326 

265 35 421 422 423 424 425 426 

While a weather dataset contains observations – such as temperature measurements in degrees Fahrenheit – 

“fake_data.nc” contains numerical values that illustrate the rectangular dimensions of the data. Each of the 

dataset’s 48 values consists of 3 digits. The first digit – on the lefthand side of each 3-digit number – runs from 1 to 

4, corresponding to the dataset’s 4 longitudes. The second digit runs from 1 to 2, corresponding to the 2 latitudes. 

The third digit – on the righthand side of each 3-digit number – runs from 1 to 6, corresponding to the 6 different 

points in time. For example, the value “325” corresponds to the 3rd longitude, the 2nd latitude, and the 5th time 

point. This numbering system is helpful for demonstrating how to extract specific chunks or subsets of the data. The 

ability to iteratively extract chunks of data is critical when dealing with a netCDF file that is too large to load into a 

PC’s memory. On a typical PC, a netCDF file that is over 3 gigabytes will either fail to fully load or will cause the PC to 

perform sluggishly; therefore, such a file must be processed in small chunks. 

After generating “fake_data.nc”, the R program demonstrates how to open a connection to the file, extract the 

information in the file header, and extract various slices of data. When embarking on an analysis of a netCDF file, the 

logical starting point is to examine the header because it describes the data’s key features, including its rectangular 

dimensions. The following code creates a connection with the netCDF file and outputs the file’s header: 

nc <- nc_open(“fake_data.nc”)    

 print(nc)      

The header of “fake_data.nc” appears in Exhibit 7. The header indicates that the data has three dimensions: “lon” of 

size 4, measured in “degrees east”;  “lat” of size 2,  measured in “degrees north”; and “time” of size 6, measured in 

months. In the header, “size” indicates that the data contains 4 longitudes, 2 latitudes, and 6 points in time. The R 

program outputs the header to “header.txt” and outputs additional file metadata to “dimensions.txt”.  
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Exhibit 7 

THE FILE HEADER OF “FAKE_DATA.NC” 
 

   1 variables (excluding dimension variables): 
        float FakeData[lon,lat,time]    
            units: lon_lat_time 
            _FillValue: -999 
 

     3 dimensions: 
        lon  Size:4  
            units: degrees_east 
            long_name: lon 
        lat  Size:2  
            units: degrees_north 
            long_name: lat 
        time  Size:6  
            units: months 
            long_name: time 
 

 

After outputting the file header, the R program illustrates how to extract slices of the data. This is a critical 

technique for processing netCDF files that are too large to load into a PC’s active memory. The “ncdf4” library makes 

it easy to efficiently fetch user-defined slices of data. This is accomplished using the “ncvar_get” function:  

data_slice <- ncvar_get(nc, varName, start, count) 

There are several parameters that feed into “ncvar_get”: “nc” is the connection to the netCDF file; “varName” is the 

name of the variable you wish to extract (for example, “precipitation”); “start” is the location in the rectangular N-

dimensional dataset from which you wish to begin the extraction process, and “count” is an N-dimensional vector 

indicating the length of each dimension to be extracted.  

Suppose we wish to extract a data slice from “fake_data.nc” that contains all latitudes and longitudes for the first 

time point. This slice is obtained as follows: 

 slice <- ncvar_get(nc, “Fake_Data”, c(1,1,1), c(4,2,1)) 

c(1,1,1) corresponds to the dataset’s first longitude, the first latitude, and the first point in time, and can be 

visualized as the corner of a cube; c(4,2,1) stretches outward from this corner, spanning 4 longitudes, 2 latitudes, 

and 1 time point. Thus, this data slice captures the following 8 data values: 

Exhibit 8 

THE SLICE OF DATA (IN YELLOW) CAPTURED BY NCVAR_GET(NC, “FAKE_DATA”, C(1,1,1), C(4,2,1)) 

Longitude 
(Degrees E) 

Latitude 
(Degrees N) 

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

250 30 111 112 113 114 115 116 

255 30 211 212 213 214 215 216 

260 30 311 312 313 314 315 316 

265 30 411 412 413 414 415 416 

250 35 121 122 123 124 125 126 

255 35 221 222 223 224 225 226 

260 35 321 322 323 324 325 326 

265 35 421 422 423 424 425 426 
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An alternative syntax to capture the same slice of data is as follows: 

 
  slice <- ncvar_get(nc, “Fake_Data”, c(1,1,1), c(-1,-1,1)) 

In the statement above, “-1” indicates that the data should be extracted from the specified starting point up to the 

upper limit of a particular dimension. Keep in mind that the triplet of values “c(x,y,z)” corresponds to longitude, 

latitude, and time, respectively. The order of these dimensions is evident from an inspection of the header shown in 

Exhibit 7. Specifically, the statement “float FakeData[lon,lat,time]” indicates that longitude is the first dimension, 

latitude is the second, and time is the third. 

In the example in Exhibit 9,  the full time series of data is extracted for the geographic location corresponding to the 

third longitude (260E) and the second latitude (35N). In Exhibit 10, a different slice of data is extracted, consisting of 

3 longitudes, 1 latitude, and 4 points in time. Lastly, the R program provides additional examples that illustrate how 

to extract slices of netCDF data. 

Exhibit 9 

THE SLICE OF DATA (IN YELLOW) CAPTURED BY NCVAR_GET(NC, “FAKE_DATA”, C(3,2,1), C(1,1,-1)) 

Longitude 
(Degrees E) 

Latitude 
(Degrees N) 

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

250 30 111 112 113 114 115 116 

255 30 211 212 213 214 215 216 

260 30 311 312 313 314 315 316 

265 30 411 412 413 414 415 416 

250 35 121 122 123 124 125 126 

255 35 221 222 223 224 225 226 

260 35 321 322 323 324 325 326 

265 35 421 422 423 424 425 426 

 
Exhibit 10 

THE SLICE OF DATA (IN YELLOW) CAPTURED BY NCVAR_GET(NC, “FAKE_DATA”, C(2,1,2), C(3,1,4)) 

Longitude 
(Degrees E) 

Latitude 
(Degrees N) 

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

250 30 111 112 113 114 115 116 

255 30 211 212 213 214 215 216 

260 30 311 312 313 314 315 316 

265 30 411 412 413 414 415 416 

250 35 121 122 123 124 125 126 

255 35 221 222 223 224 225 226 

260 35 321 322 323 324 325 326 

265 35 421 422 423 424 425 426 

To iteratively process a large netCDF file, the ncvar_get function can be placed inside of a loop, as demonstrated in 

Exhibit 11. In each cycle of the loop, a slice of data is read and processed using ncvar_get. The loop continues to 

execute until the entire file has been processed. The program begins by establishing a connection with 

“fake_data.nc” and then loops across the data’s time dimension, which runs from 1 to 6. For each point in time, 

ncvar_get fetches the data for all longitudes and latitudes. Because there are 4 longitudes and 2 latitudes, 8 data 

values are fetched each time ncvar_get is executed. These values are loaded into the variable “slice” which 
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automatically adopts the form of a 2-dimesional array to match the shape of the extracted data. The data is then 

output to the screen, and the loop moves onward to the next point in time. 

In this example, notice that the starting location for ncvar_get is “c(1, 1, t)”, where “t” is the looping variable. In the 

first cycle of the loop, “t” is equal to “1”, and, consequently, the data for time point 1 is extracted. In the second 

cycle of the loop, “t” is equal to “2”, and the data for time point 2 is extracted. In each cycle of the loop, “t” 

increases by 1. This process continues until we reach the end of the data’s time dimension. 

Exhibit 11 

VBA CODE FOR ITERATIVELY READING SLICES OF FAKE_DATA.NC 
 

# open a connection to the netcdf file 

nc <- nc_open(“fake_data.nc”)    
 

# fetch the list of longitudes, latitudes and time points 

lons <- ncvar_get(nc, "lon") 
lats <- ncvar_get(nc, "lat") 
dates <- ncvar_get(nc, "time") 
 

# determine the number of time points in the dataset; by design, ndates will be equal to “6” 

ndates <- length(dates)    
 

# create longitude and latitude labels that we can use when outputting slices of the data  

labels_lon <- paste(lons, "E", sep="") 
labels_lat <- paste(lats, "N", sep="") 
 

# loop across all of the points in time 

for (t in 1:ndates) 
{ 
    # extract data for all longitudes and latitudes for this particular point in time 

    slice <- ncvar_get(nc, varName, c(1, 1, t), c( -1, -1, 1)) 
 

    # add row and column names to the 2D slice of data, and then output it to the screen 

    colnames(slice) <- labels_lat 
    row.names(slice) <- labels_lon 
    print(slice) 
 } 
 

nc_close(nc) 
  

 

When applying this technique to a large netCDF file, experimentation is necessary to find the most efficient 

approach for slicing the data. Generally, for most netCDF files dimensioned by longitude, latitude, and time, the 

fastest runtimes are achieved by slicing the data by time, as illustrated in Exhibit 11. In this approach, time is the 

looping variable, and, for each point in time, ncvar_get fetches data across all longitudes and latitudes. Of course, 

such an approach may be incompatible with some research tasks. Suppose, for example, that our goal is to estimate 

a linear rate of increase across 50 years of temperature data, separately for each geographic location in the dataset. 

Given this goal, one cannot slice the data by time; rather, for each longitude/latitude pair, we need the entire 50-

year time series. Therefore, the program will have to loop across longitude/latitude pairs, and, for each pair, fetch 

the associated time series and feed the data into a linear regression. 

5. A Speed Test Comparing VBA, R, C++, and Python 

The preceding examples use R and VBA, but these programming languages are by no means the only options for 

processing large weather datasets. Indeed, most programming languages can iteratively loop through large 

datasets. This raises the following questions: for processing large data files, are certain languages better than 

others? Is a single language sufficient to execute an entire research project? Or might it be advantageous to use one 
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language for looping through huge datasets and extracting the subset of data needed for a particular project, and a 

different language for performing statistical analyses of the extracted data?  

Comparing the capabilities and performance of different programming languages is a complex topic. For the sake of 

brevity, we will not attempt a comprehensive discussion of this topic. However, as food-for-thought, we share the 

results of one experiment in which we measured the performance of VBA, R, Python and C++ with respect to the 

following task: loop through one million fixed-width synthetic precipitation records, each containing a month’s 

worth of daily data, and calculate the percent of days on which precipitation was greater than zero. This task is by 

no means a perfect measuring rod for assessing a programming language’s power to process large weather 

databases, and it does not include any statistical analysis; nevertheless, it can provide insight into the relative 

speeds of different languages. 

For each of the four languages, we created a program with the same structure presented in Exhibit 5: an outer loop 

that cycles through the fixed-width text file reading it one monthly record at a time, and an inner loop that cycles 

through each monthly record one day at a time. These four programs are available for download on the SOA’s 

weather guide webpage3. 

We ran each of the four computer programs, tracking the time required to process one million monthly records. 

Exhibit 12 presents the results. C++ was the clear winner with a runtime of merely 6 seconds. R lagged far behind, 

with a runtime of 137 seconds (about 23 times the runtime of C++). VBA and Python performed much better than R, 

but not as well as C++.  

Exhibit 12 

TIME REQUIRED TO PROCESS A FIXED-WIDTH TEXT FILE WITH ONE MILLION MONTHLY RECORDS 

Programming  
Language 

Runtime  
in Seconds 

Runtime as % of 
C++ Runtime 

C++ 6.0 100% 

VBA 11.5 192% 

Python 22.0 367% 

R 137.5 2292% 

 

The large gap between the runtimes for C++ and R is due, in part, to the fact that C++ is a compiled language while R 

is an interpreted language. When a computer program is “compiled”, it is translated into an “exe” (executable) file 

that is written in machine language that can be executed directly by a computer’s CPU (central processing unit). In 

contrast, an interpreted language does not have a compiler. Instead, as the program runs, the code is “interpreted” 

on a line-by-line basis. This is an additional computational burden that is absent from compiled code; consequently, 

interpreted code is usually sluggish compared to compiled code. 

While neither VBA nor Python are compiled into machine language, they are compiled into intermediate languages 

that achieve some of the benefits of machine language. For this reason, VBA and Python tend to be slower than C++, 

but faster than R. 

The results in Exhibit 12 reflect unfavorably on R, but the speed with which a computer program can perform a 

particular task is not only a function of the language in which it is written, but also the ability and knowledge of the 

programmer. To optimize the performance of R, it is best to avoid loops that iteratively process small amounts of 

 

 

3 The programs are named “speed_test.r”, “speed_test.py”, “speed_test.cpp”, and “speed_test.xlsm”, corresponding to R, Python, C++ and VBA, 
respectively. 
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data. Indeed, it was this approach that was employed in our speed test. For the R language, a more efficient 

approach is to iteratively process larger chunks of data – for example, processing ten thousand records in a single 

loop cycle, as opposed to processing just one record. This technique will be demonstrated in a future paper. 

Speed of execution is but one consideration when evaluating which programming language(s) to use for the analysis 

of a large dataset. While C++ is fast, it lacks the many libraries available in languages such as R and Python. As 

discussed earlier, R and Python have libraries to process netCDF files, as well as libraries to perform statistical 

analysis (such as fitting generalized linear models to data). These libraries can dramatically reduce the time required 

to design a computer program – for example, a computer program that cycles through temperature data in netCDF 

format, estimating a linear temperature trend for each geographic grid point. 

If one is willing to learn two programming languages, a good combination for the analysis of weather datasets would 

be C++ and either R or Python. This combination provides speed for preparing and reorganizing large datasets so 

that the information can then be processed by the statistical packages offered by R and/or Python. 

6. Options for Dealing with Limited Hard Drive Space 

Processing a large data file in small chunks allows a computer program to stay within a PC’s RAM limitations (RAM is 

the active memory that performs calculations on data retrieved from storage). However, one must still contend with 

a PC’s limited space for storing files. A typical PC has a hard drive of between 250 and 1000 gigabytes, but much of 

this space is consumed by the operating system and software such as Microsoft Office. Furthermore, an actuary or 

other professional may have hundreds or thousands of work-related files that consume additional space. 

Consequently, the remaining free space on a PC’s hard drive may be insufficient to store a large weather dataset. 

To illustrate options for working with a weather dataset that is too large to store on a PC’s hard drive, we will 

describe an analysis recently performed by the Society of Actuaries (SOA) as a part of its ongoing climate research. 

The goal of the analysis was to estimate long-term temperature trends using ERA5, a high-resolution gridded 

dataset with worldwide geographic coverage. The dataset has worldwide coverage with over one million geographic 

grid points, with data in hourly time steps. The SOA’s analysis focused on Canada and the United States (U.S.) across 

the 72-year period from 1950 through 2021. The analysis was performed on a standard laptop with 32 gigabytes of 

RAM and about 100 gigabytes of available hard drive space.  

A year’s worth of worldwide ERA5 data for one weather metric (such as temperature) amounts to about 20 

gigabytes in netCDF format; thus, 72 years of data amounts to over 1400 gigabytes. Fortunately, while ERA5 data 

spans the entire surface of the earth, the web interface through which ERA5 data requests are submitted allows 

users to specify northern, southern, eastern, and western boundaries of the data that they wish to download. 

Because the SOA’s study of temperature trends was focused solely on Canada and the U.S., we submitted a data 

request for a region running from 25N to 83N and from 52W to 172W (see Exhibit 12). This region captures the area 

of interest, while excluding areas that lay outside the scope of the analysis. Because the excluded area represents 

about 90% of the planet’s surface, the size of the requested dataset was reduced dramatically, from 1400 gigabytes 

(for worldwide data) to just 140 gigabytes. 

ERA5 data uses hourly time steps, but our temperature-trend research project did not require such high temporal 

resolution. For our purposes, data in daily time steps was sufficient. Specifically, for each geographic grid point, we 

needed a time series of daily minimum and daily maximum temperature. One possibility was to convert the raw 

data from hourly to daily each time we ran tabulations on it – that is, the conversion process would take place “on-

the-fly” after reading the hourly data as an input. However, our research plan involved more than ten separate 

tabulation tasks, each using daily data as an input. Completing these tasks would have required us to repetitively 

convert the data from hourly to daily time units. This is a time-consuming process to execute across a large dataset. 

Therefore, it made greater sense to convert the data just one time, and then save it to the hard drive. Using this 
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approach, we generated two CSV files -- “DailyMaxTemp.csv” and “DailyMinTemp.csv” – each containing 

temperature data in daily time steps. Each of these two files is merely 7 gigabytes. While the hourly netCDF file is 

140 gigabytes, the daily CSV files are merely 14 gigabytes in total. Thus, by reducing the temporal resolution of the 

data, we dramatically reduced the size of the dataset. 

Exhibit 13 

THE RECTANGULAR GEOGRAPHIC REGION SUBMITTED TO THE ERA’5 DATA PORTAL 

 

Exhibit 14 

FILE SIZES (GIGABYTES) FOR THE SOA’S TEMPERATURE TREND ANALYSIS USING ERA5 DATA  

 

When converting data from netCDF format to CSV format, the resulting values may have more decimal places than 

needed for a particular analysis. All else equal, the greater the number of decimal places, the greater the size of a 

CSV file. For our temperature-trend analysis, we rounded the data to 2 decimal places before generating the CSV 

files. Had we not rounded the data, the resulting CSV files would have been twice as large.  

After converting the data from hourly to daily time steps, the resulting CSV files were relatively small (see Exhibit 

14), allowing us to store them on our laptop’s hard drive as opposed to the external hard drive. Rather than deleting 

the original hourly netCDF file, we retained it on our external hard drive because it may be useful for future research 

projects. 

This case study illustrates the following key ideas for working with large weather datasets: (1) if possible, when 

downloading the data, exclude geographic areas and time periods that lie outside of the scope of your analysis; (2) if 
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the data’s temporal or spatial resolution exceeds what is required for your analysis, consider transforming the data 

to eliminate the excess resolution; (3) if you convert the data from netCDF to CSV format, round each value to 

eliminate excess precision that isn’t required for the analysis; and (4) if the data cannot fit on your internal hard 

drive, store the data on an external drive, and design your tabulation programs to read the data from that drive. 

7. A Preview of the Next Paper in this Series 

The next paper in this series will provide an overview of the Global Historical Climatology Network Daily (GHCNd) 

dataset, accompanied by an open-source computer program for analyzing the data. GHCNd is hosted by the 

National Oceanic and Atmospheric Administration (NOAA) and is available for download from NOAA’s website. 

GHCNd is relatively small – about 30 gigabytes – making it easy to download and store. The data consists of daily 

temperature, precipitation and wind speed observations collected from over 100,000 land-based weather stations. 

GHCNd provides geographic coverage of much of the world, but the availability of data varies significantly from one 

country to another, as well as within each country. In general, the density of weather stations is greatest in urban 

areas and lowest in rural areas. 

Appendix A. Reading Large Text Files: Examples in VBA, R, Python and C++ 

In the body of this paper, computer code for reading large data files was presented in VBA and R. Also, the VBA, R, 

C++, and Python computer code used for the speed test summarized in Exhibit 12 is available on our weather guide 

web page. In addition to these examples, it may be useful to briefly illustrate how closely the four languages (VBA, R, 

C++, and Python) resemble each other with respect to the syntax for looping through large text files. Below, in each 

of the four languages, code is presented that opens the synthetic precipitation fixed-width text file and loops 

through the data reading one monthly record at a time. For sake of brevity, the code does not perform any 

tabulations; rather, it simply reads the data. 

 

VBA 
 

Open “Synthetic_Data.txt” for Input as #1 
Do While EOF(1) = False 
   Line Input #1, MonthlyRecord 
Loop 
Close #1 
 

 

C++ 
 

std::ifstream iFile(“Synthetic_Data.txt”); 
std::getline(iFile, FieldNames); 
while (std::getline(iFile, MonthlyRecord)) { } 
iFile.close();   

 

R 
 

con = file(“Synthetic_Data.txt”, "r") 
EOF <- FALSE 
while (EOF == FALSE)  { 
   MonthlyRecord <- readLines(con, n = 1) 
   if ( length(MonthlyRecord) == 0 ) { break } 
} 
close(con) 
 

 

Python 
 

file = open(“Synthetic_Data.txt”, 'r') 
while True: 
    MonthlyRecord = file.readline() 
    if not MonthlyRecord: 
        break 
file.close() 
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Appendix B. How to Install R, Python, or C++ on Your PC 

VBA is integrated into Excel; therefore, if you have Excel on your PC, then you also have VBA. Thus, you do not need 

to install VBA to begin using it. In contrast, the other three languages discussed in this paper (R, Python, and C++) 

must be installed. If you use a PC issued by your employer, you may not have the freedom to install programs on 

your own; rather, you will need help from an administrator in your IT department. 

R, Python, and C++ are available for free, and installation of each requires merely a few minutes. Installation 

instructions are available at these URLs: 

URLS WITH DOWNLOAD INSTRUCTIONS FOR EACH LANGUAGE 

Language URL with Installation Instructions 

VBA Included with Excel 

R https://cran.r-project.org/  

Python https://www.python.org/downloads/  

C++ https://visualstudio.microsoft.com/vs/community/  

 

Note that C++ is part of a package named “Visual Studio”. This package includes several languages, one of which is 

C++. 

Feedback 

 

  

https://cran.r-project.org/
https://www.python.org/downloads/
https://visualstudio.microsoft.com/vs/community/
https://soa.qualtrics.com/jfe/form/SV_9viMlx6A9s7dEQS
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