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Flood Risk Management and 
Adaptation Under Sea-Level Rise 
Uncertainty 

Executive Summary 

Assessing climate risk and its potential impacts on our cities and economies is of fundamental 

importance. Extreme weather events, such as hurricanes, floods, and storm surges can lead to cause 

catastrophic damages. In urban settings, and particularly in coastal regions, factoring in climate 

uncertainty when identifying and assessing optimal adaptation policies, has become essential to 

increase resilience to storm surge risk. 

Our study presents a comprehensive approach of real option analysis to climate adaptation policies 

aiming to mitigate flood risk. Our framework focuses on pricing catastrophic risk in coastal regions, 

allowing for economic growth and uncertainty in the mean sea level rise. The framework also 

provides insights into the optimal investment timing, both for single investment projects and for 

optimal adaptation pathways, when multiple projects are feasible.  

We showcase our proposed methodology with three case studies based in New York City, 

Copenhagen, and South-East Queensland. We use the block maxima approach from extreme value 

theory combined with the generalized additive model for location scale and shape framework, to 

model the behavior of extreme sea level events using climate indices as covariates. We then 

combine the estimation results with the proposed real option framework in the three case studies, 

evaluating both hard and soft climate adaptation policies. 
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1: Introduction 

Catastrophes such as hurricanes, floods, and storm surges have caused significant damages in 

coastal regions. Hurricane Katrina in 2005 claimed more than 1800 lives and a total damage cost of 

$108 billion (Wang et al., 2015), while the total costs of recent hurricanes Harvey and Irma also 

exceeded $100 billion. More recently, Hurricane Ian in 2022 claimed more than 131 lives and costs 

more than $50 billion (NOAA, 2022). These catastrophes have increased the debt under the National 

Flood Insurance Program (NFIP) in the US to nearly $20 billion and have raised serious concerns 

about the sustainability of the program (Musulin, 2017). In the presence of growth in physical asset 

values and population in coastal areas, the frequency and severity of losses from catastrophic 

events can be expected to increase further with the impact of climate change (IPCC, 2007). Optimal 

planning for adaptation to these emerging risks is therefore paramount for coastal regions. It is 

particularly important for those regions with considerable wealth and concentration of exposure 

such as New York, New Orleans, and South Florida. 

Adaptation options for reducing flood and storm surge risk in coastal areas include hard protection 

measures and soft measures. Hard protection measures such as dikes or sea walls aim to protect 

the region up to the designed flood height. Soft measures include building codes that require 

buildings to be elevated to a certain height, dry flood-proofing measures that seal the buildings to 

prevent water from entering into the buildings, and wet flood-proofing measures that move 

valuable assets to a higher level. Soft measures also include land use policy that converts the most 

vulnerable housing areas to parkland. 

Previous studies on adaptation to catastrophic risk typically use the net present value (NPV) rule to 

guide adaptation (see, e.g., Brouwer and van Ek, 2004; Michael, 2007; Kirshen et al., 2008; Aerts et 

al., 2014; Smajgl et al., 2015; Han et al., 2020). While the NPV rule is simple and easy to use, it is not 

an optimal rule for adaptation investment since it ignores the value of flexibility and the uncertainty 

of climate change. Real options theory, on the other hand, takes into account the value of flexibility, 

when the costs, benefits, and value of investment are uncertain. However, there are very few 

studies that apply real options to evaluate flood risk mitigation projects (see, e.g., Gersonius et al., 

2013; Kim et al., 2017). To the best of our knowledge, none of these studies has allowed to consider 

the impact of climate change on storm surges. In addition, no study has used real options to 

determine the optimal pathways that allow for more flexibility to reduce flood risk for coastal 

regions. 

In this report, we examine optimal adaptation pathways to increase the resilience of coastal regions 

to flood and storm surge risk. The proposed modeling framework allows us to examine the timing 

of investment, when both hard protection measures and soft measures are available. It also enables 

us to take into account the economic growth in loss exposure and the uncertain impacts of climate 

change. The project aims to: 

• Develop a new modeling framework for pricing catastrophic risk in coastal regions, taking 
into account the impact of economic growth, the seasonal impact of tides, uncertainty 
about the mean sea-level rise, and the stochastic volatility of storm surges. 
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• Develop a real options framework that can determine flexible adaptation pathways, i.e., 
the optimal time to invest into single investment projects, and optimal pathways for 
adaptation, when multiple adaptation measures are available. 

• Calculate appropriate insurance premiums for flood risk without adaptation, as well as 
when the optimal adaptation pathway is followed. 

• Apply the proposed models to three coastal regions, namely New York, Copenhagen, and 
South East Queensland (Australia). 

The report documents the results of the project and is organized as follows. In the next section, we 

provide a review of the literature related to the work conducted in this report. In Section 3, we 

investigate the empirical behavior of sea levels in the studied regions. We then provide the 

methodology for optimal adaptation strategies in Section 4 and conduct the corresponding 

empirical work for the three case studies in Section 5. The distributions of insurance premiums are 

examined in Section 6 and the report is concluded in Section 7. 
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2: Literature review 

Due to scarcity of data on catastrophes, the impact of climate change on sea levels and on the 

frequency and severity of catastrophic storms is not well understood until recently (Jongman et al., 

2015; Winsemius et al., 2016; Tanoue et al., 2016; Letzing and Berkley, 2021). The improvement in 

imagery and monitoring technology has helped to provide more complete information. In a recent 

study, Tellman et al. (2021) use daily satellite imagery to estimate flood extent and population 

exposure for 913 large flood events in the world over the period 2000-2018. Tellman et al. (2021) 

provide a global database (available online via website: http://global-flood-

database.cloudtostreet.info/) that includes information about the number of flood events per 

country, the cumulative exposed population to flood risk, the time evolution of the flooded areas 

and the exposed population over the period 2000-2018. Based on this more accurate database, 

Tellman et al. (2021) and Letzing and Berkley (2021) report that the proportion of people living in 

areas of severe flood risk is underestimated by a factor of 10 in previous studies. 

Upon comparing the proportion of the observed flood-exposed population in 2015 to that in 2000 

for each country, Tellman et al. (2021) find that the proportion of the population exposed to floods 

has increased in 70 out of 119 countries across all continents, which is much higher than 22 or 55 

countries previously reported in the literature. The more accurate data set is then used to examine 

the accuracy of flood models. A model (GLOFRIS) whose flood exposure estimates have high 

correlation (0.89) with the flood exposure observations in the data set is then used to provide 

forecast for 2030. Tellman et al. (2021) identify 57 countries where exposure is predicted to grow 

(IPCC, 2007). The upward trends in population and property values in risk-prone regions, combined 

with the impact of climate change, will cause the frequency and severity of catastrophe losses to 

continue to grow (IPCC, 2007). Optimal adaptation strategies will play important roles in the coming 

years to cope with the increasing global catastrophic risk (Dixit and Pindyck, 1994; Wang et al., 

2019). 

Optimal adaptation strategies require sound financial analysis of climate adaptation infrastructures 

and adequate measurement of the involved key variables. A number of studies have used the NPV 

rule to determine whether to proceed with a catastrophic risk adaptation project (see, e.g., West et 

al., 2001; Brouwer and van Ek, 2004; Michael, 2007; Kirshen et al., 2008; Symes et al., 2009; Aerts 

et al., 2014). For a given project, the NPV is obtained by aggregating the present value of net 

benefits offered by the project. If the NPV is positive, the project is invested, otherwise, it is ignored. 

Climate adaptation projects may also be compared based on their NPVs to select the one with the 

highest NPV. 

2.1 DETERMINISTIC DYNAMIC INVESTMENT MODEL 

As a rule, NPV has many advantages: it is simple, easy to use, and easy to communicate. However, 

NPV has been shown not to be an optimal investment rule when there is the possibility of deferral, 

mitigation, and adaptation. Truong and Trück (2016) show that when catastrophic risk increases 

over time, deferring investment to a future time may actually increase the value of investment; in 

these cases, a dynamic deterministic model is preferred to the NPV rule. 
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Figure 1 

BENEFIT OF DYNAMIC MODEL 

 

(a) Marginal analysis 

 

(b) NPV decision rule 

This figure illustrates the dynamic marginal analysis (a) and the NPV decision rule (b). Applying a simple NPV rule 
(invest when NPV > 0 at t = 0) would lead to immediate investment without allowing for deferring the decision to 
invest. However, later investment could lead to a superior performance as illustrated in panel (b). Source: Truong and 
Trück (2016). 

Figure 1 illustrates the benefit of using a dynamic investment model rather than the NPV rule. Panel 

(a) shows the marginal benefit compared to the marginal cost of deferring investment by one more 

year. On the one hand, deferring investment will defer the use of investment cost and generate the 
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interest revenue associated with that cost. On the other hand, the benefit of the project in terms of 

reduced catastrophic risk will be foregone. As shown in panel (a), at the initial time, deferring the 

investment by one year will generate a higher benefit compared to the cost and it is optimal to do 

so. Deferring the investment decision continues to be optimal until the annual benefit of the project 

is equal to the annual interest revenue. As a result, although the NPV of the project may be positive 

at the current time, deferring investment to a future time may lead to an even higher NPV, as shown 

in panel (b). Dynamic deterministic models have also been used for flood and storm surge risk (see, 

e.g., Wang and De Neufville, 2005; Zhu et al., 2007; Tsvetanov and Shah, 2013; Eijgenraam et al., 

2016). 

In deterministic studies, the impact of uncertainty is not considered, and the investment decision is 

based on the current information and forecasts, myopically disregarding the possibility of changes 

in the underlying conditions. Since the decision to invest in a climate adaptation project shares many 

similarities with the decision to exercise an American call option, such as irreversibility of the 

investment, unstable cash flow, and flexible investment timing, many authors have identified the 

problem under the umbrella of decision making under uncertainty, with adaptation pathways and 

real option theory being the main proposed frameworks (see, e.g., Dixit and Pindyck, 1994; Kim et 

al., 2017; Haasnoot et al., 2013; Ranger et al., 2013; Woodward et al., 2011, 2014; Kim and Kim, 

2018; Kim et al., 2019). 

2.2 ADAPTATION PATHWAYS 

The value of flexibility in decision making under climate change uncertainty has been recognized in 

“adaptation pathways” studies. Adaptation pathways provide insights into the sequencing of actions 

over time, aiming to construct flexible strategies that can then be adapted as new information is 

revealed, or when the conditions are changed (see, e.g., Haasnoot et al., 2013; Ranger et al., 2013; 

Kim et al., 2019). To deal with uncertainty about the future, the possibility to spread, expand, or 

even abandon an investment over time should be considered (Dobes, 2010; Haasnoot et al., 2013; 

Nicholls et al., 2014). 

The map in Figure 2 shows an example of the decision-making process in the adaptation pathways 

framework. The map compares alternative climate adaptation strategies achieving the same goal in 

100 years’ time. As shown in the figure, thanks to its flexibility, adaptation pathways can deal with 

multiple tipping points during the lifespan of climate adaptation projects. The map can also be used 

by decision makers to select which actions can be undertaken in the short run and to plan ahead in 

order to implement a specific project if future conditions change. Adaptation pathways have been 

successfully applied to complex contexts, involving, among other features, conflicting incentives and 

distributed decision makers impacted by uncertainty, such as biodiversity, natural resource 

management, and coastal development (see, among others, Downing, 2012; Haasnoot et al., 2012, 

2013; Wise et al., 2014; Fazey et al., 2016). Despite its relative success, the adaptation pathways 

framework has typically been applied in a qualitative way only, while the selected adaptation actions 

can also be strongly subjective. 
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Figure 2 

EXAMPLE OF ADAPTATION PATHWAYS MAP 

 

This figure shows an example of an adaptation pathways map (on the left) and scorecard (on the right) for four 
possible actions with nine possible pathways. The current policy (gray) misses the target after 4 years. Actions A (red) 
and D (blue) will succeed in achieving the goal in 100 years, under all climate scenarios. Action B reaches a tipping 
point in about 5 years, shifting to one of the other strategies will be needed. Action C requires a shift to either Action 
A, B, or D if scenario X occurs after 80 years. Source Haasnoot et al. (2013). 

2.3 REAL OPTIONS WITH UNCERTAINTY 

Real option analysis shares many appealing aspects with adaptation pathways, providing at the 

same time the ability to estimate the value of flexibility, and reducing the relative cost of adaptation 

(see, Dobes, 2010; Woodward et al., 2011, 2014; Wreford et al., 2020). Commonly used methods 

to determine the value of real options include binomial tree, Monte Carlo simulation, and finite 

difference methods. Binomial/decision tree and Monte Carlo simulation pricing frameworks have 

been applied to flood disaster prevention mechanisms on both river estuaries (see, among others, 

Woodward et al., 2011, 2014; Kind et al., 2018; Ryu et al., 2018) and coastal protection from sea 

level rise (see, e.g., Kontogianni et al., 2014; Brown et al., 2018). 

Figure 3 illustrates the use of a decision tree to evaluate the optimal time to provide flood defense 

for electricity substations in the UK (Brown et al., 2018). The authors first calculate hazard ratings 

and estimate flood depth for electricity substations as shown in panel a). The flood hazard is then 

used to evaluate the benefit of providing flood defense over time. Panel b) shows the real option 

evaluation of the climate adaptation project, which suggests that the investment in the flood 

defense should be deferred until 2090. 
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Figure 3 

EXAMPLE OF REAL OPTION ANALYSIS 

 

This figures shows an example of real option analysis assessing the vulnerability of the electricity grid to coastal 
hazards, in Fleetwood, Northwest England. Panel a) shows hazard ratings, estimated flood depth, and locations of 
the already in place electricity substations (red dots). Panel b) shows the decision tree for the construction of a flood 
defense for an electricity substation. The NPV and real option value at each step are estimated based on the 
hazardous ratings and estimated flood depth of panel a). Real option analysis suggests that for this particular case, 
construction of the climate adaptation project should go ahead in 2090. Source Brown et al. (2018). 

Park et al. (2014) and Chan et al. (2016) apply a similar framework to drainage projects and 

defensive strategies against catastrophic rainstorms, while Oh et al. (2018) extended the framework 

to include a climate-driven economic evaluation. These studies show that allowing for more flexible 

investment options can increase the value of the project. As pointed out by Park et al. (2014) and 

Kim and Kim (2018), the value of flexible investment can be great and significant even for projects 

that do not pass the NPV rule (𝑁𝑃𝑉 > 0) at the current time. 

Binomial/decision trees are approximation methods which assume a finite number of steps that can 

be taken by the change in a random variable. A more realistic method is to use Brownian motion to 

model uncertainty (see Regan et al., 2017; Schiel et al., 2019; Ginbo et al., 2021). Gersonius et al. 

(2011) provide a real option analysis based on a Brownian motion for coastal defense adaptation 
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evaluation. They find that real option analysis is more suitable in decision making concerning flood 

risk and coastal management than the classic NPV rule. In Gersonius et al. (2013), the change in 

rainfall intensity is modeled to follow a geometric Brownian motion, and therefore the variance of 

rainfall intensity increases over time. This is consistent with the intuition that the forecast of future 

rainfall becomes more uncertain as the forecast horizon increases. The optimal investment timing 

for coastal flood adaptation given the sea-level rise has been analyzed also in Kim et al. (2019). Their 

findings suggest that real option analysis in climate change adaptation studies needs two critical 

components: a model that allows the monetized benefit of the adaptation measure to depend on 

the climatic variables that cause the sea-level rise, and an observation mechanism to determine the 

critical value triggering the adaptation at the optimal investment timing. 

2.4 LIMITATIONS OF PREVIOUS STUDIES 

Although existing studies provide a good introduction to real options thinking in catastrophic risk 

mitigation, there are several shortcomings. First, the drift rate of the underlying process plays an 

important part in the investment evaluation. Nevertheless, the literature on climate adaptation 

does not provide a rigorous justification for how this parameter is selected. For example, Kim et al. 

(2017, 2019) set it at the risk-free rate. This assumption leads to the conclusion that exercising the 

option early is never optimal, implying that in a finite horizon setting, investment always happens 

in the final period (Dixit and Pindyck, 1994). 

Second, although population and wealth may have important impact on catastrophic losses and 

may be the primary reason for risk mitigation, most studies do not consider the impact of loss 

exposure growth on adaptation strategies. 

Third, catastrophic losses are often found to follow heavy tailed distributions (Embrechts et al., 

1999). Typically, extreme value theory (EVT) is often used in catastrophic risk quantification, in 

insurance and actuarial science. Nonetheless, there exist only a few studies applying EVT to climate 

adaptation problems (see, e.g., Towler et al., 2010; Cheng et al., 2014; Ban et al., 2020). 

Fourth, most papers that use real options on catastrophic mitigation assume a zero-market price 

for catastrophic risk, such as Truong et al. (2017). Since Froot (2001) shows that insurance premiums 

are usually high relative to the expected catastrophic losses and Garmaise and Moskowitz (2009) 

show that the inefficiency of catastrophic risk insurance market is magnified in the credit markets, 

where banks hesitate to extend credit to finance real estate in high-risk areas. It is thus important 

to develop a model that can allow for positive premiums for catastrophic risks. 

Finally, some assumptions in real option models are too simple to be realistic: for example, 

Gersonius et al. (2011) assume that for each 15-year interval, sea-level rise can only take one of two 

values. 

In this project, we address these issues by introducing a real options model to determine the optimal 

adaptation strategy for flood risk. We make use of the EVT to quantify flood risk and allow for 

climate change as well as loss exposure growth in future years. We analyze the impact of different 

adaptation measures on reducing flood risk and show how the investment value and the optimal 

investment time can be determined. The real options model is then extended to find the optimal 
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pathways to invest in multiple projects, as well as the optimal investment strategy for a project that 

can be invested in several stages. 
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3: Empirical behavior of extreme sea level 

3.1 RELEVANT CLIMATE INDICES 

Sea-surface temperature and atmospheric pressure have important impacts on the occurrence of 

storms and other extreme events. Indices have been constructed based on these climate variables 

to predict climate related extreme events. We examine climate indices relevant to our case studies 

and later on use them to predict extreme sea levels. 

North Atlantic Oscillation Index 

The North Atlantic Oscillation (NAO) index measures the difference in the atmospheric pressure at 

the sea level between two locations in the North Atlantic: a low figure near Iceland, and a high figure 

near the Azores Islands. When the index is positive and large, the difference in the pressure between 

the two regions results in a stronger Atlantic jet stream and a northward shift of the storm track. 

Positive phases of the NAO are often associated with higher air pressure, fewer cold-air outbreaks, 

and decreased storminess in eastern North America and Southern Europe. In contrast, increased 

storminess and precipitation, and warmer-than-average temperatures will be observed in Northern 

Europe (Dahlman, 2009). 

The NAO is one of the major contributors to the precipitation patterns of North America and 

therefore is affecting the extreme sea-level event magnitude (Menéndez and Woodworth, 2010; 

Lobeto et al., 2018). Moreover, recent papers have linked positive and negative phases of the NAO 

to the sea level in North America via the so-called “inverted barometer” effect, where high 

atmospheric pressure pushes the sea levels down, and raises them when air pressure plummets 

(Piecuch and Ponte, 2015). 

Niño 3.4 

Niño 3.4 is one of the indices tracking the sea-level temperature in the tropical Pacific Area, and it 

is one of the most commonly used indices in defining El Niño or La Niña events (Trenberth and 

Stepaniak, 2001). Niño 3.4 represents the average equatorial sea-surface temperature across the 

Pacific from the date line to the South America coast (5∘S to 5∘N latitude and 170∘W to 120∘W 

longitude). 

Scandinavian Pattern 

The Scandinavian Pattern (SCAND) is a climate index derived from the monthly-mean 700mb height 

anomalies1 over the extratropical Northern Hemisphere. Positive phases of the SCAND correspond 

to below-normal atmospheric pressures in Southern Europe, and above-normal atmospheric 

pressures in Northern Europe (Bueh and Nakamura, 2007). It is one of the major drivers of the 

European climate being associated with increasing occurrences of extreme rainfall events in the 

United Kingdom and Northern Europe, as well as extreme sea-surface temperature in the North 

Atlantic (see, Blackburn and Hoskins, 2001; Walter et al., 2001). 

 

1 A 700mb height is the height of the location where the atmospheric pressure is 700mb. A height anomaly is the difference 
between the height observed at a given time and its long run average. 
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Indian Ocean Dipole 

The Indian Ocean Dipole (IOD) is a coupled ocean-atmosphere phenomena, thought to be linked 

with El Niño Southern Oscillation. It measures the difference in sea-surface temperature between 

the western dipole (10∘S to 10∘N latitude and 50∘E to 70∘E longitude) and the eastern dipole (10∘S 

to 0∘ latitude and 90∘E to 108∘E longitude). It is one of the major contributors to the Australian 

climate variability, where positive phases are associated with El Niño and negative events with La 

Niña, therefore affecting the probability of extreme rainfall events. 

Antarctic Oscillation 

The Antarctic Oscillation (AAO) measures atmospheric pressure difference between polar and 

subpolar regions in the southern hemisphere. Positive phases increase the chances of extreme 

rainfalls in south-eastern Australia, and it is usually positively correlated with La Niña type of events 

(Thompson et al., 2011). 

Southern Oscillation Index 

The Southern Oscillation Index (SOI) measures the strength of the Walker Circulation, and it is 

calculated using the difference in atmospheric pressures between Tahiti and Darwin2. Sustained 

positive phases are associated with stronger Pacific winds and higher sea-surface temperature in 

Northern Australia, which increases the probability of wetter-than-normal rainfalls in Eastern and 

Northern Australia. 

3.2 DATA COLLECTION 

Data for the empirical studies in this project are collected from various sources. For sea-level data, 

we use hourly data available from the archives of the University of Hawaii Sea Level Center 

(http://uhslc.soest.hawaii.edu). These data have been used in many previous studies, see e.g., 

Menéndez and Woodworth (2010). 

For New York City and Copenhagen case studies, sea-level data are dated back to 1930 and 1890, 

respectively. However, since data on climate indices are available only from 1950, we use sea-level 

data that start from 1950. In addition, for Copenhagen, the tidal gauge was relocated to Gothenborg 

in 2013 and the available time series data ends in 2012. Data at the new tide gauge have not been 

quality checked as for other stations. We therefore use the current data available and provide a 

robustness check that makes use of the data at the new gauge station. For the Southeast of 

Queensland in Australia, the time series starts from 1984. 

For other climate indices, we use the NAO and the Niño 3.4 indices for the US, and the SCAND for 

Europe. For Australia, we use the AAO, the IOD and the SOI. These indices are collected from 

different sources. AAO is available from the British Antarctic Survey (http//www.nerc-

bas.ac.uk/icd/gjma/sam.html), IOD and SOI are available from the Bureau of Meteorology, Australia 

(http://www.bom.gov.au/) and the rest of the indices are available from the National Oceanic and 

Atmospheric Administration (http://www.cpc.ncep.noaa.gov). 

 

2 More details available at http://www.bom.gov.au/climate/glossary/soi.shtml 

http://uhslc.soest.hawaii.edu/
file:///C:/Users/bkhour/Dropbox/Clients/StefanTrueck/2022-10-03-tex-to-word/2022-10-04-newest-version/http/www.nerc-bas.ac.uk/icd/gjma/sam.html
file:///C:/Users/bkhour/Dropbox/Clients/StefanTrueck/2022-10-03-tex-to-word/2022-10-04-newest-version/http/www.nerc-bas.ac.uk/icd/gjma/sam.html
http://www.bom.gov.au/
http://www.cpc.ncep.noaa.gov/
http://www.bom.gov.au/climate/glossary/soi.shtml
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3.3 DATA VISUALIZATION 

3.3.1 MAXIMUM SEA LEVEL AND TIDES 

Figure 4 shows the monthly maximum sea level (red) and the monthly maximum tide (blue) 

observed at the three stations: New York (panel [a]), Copenhagen (panel [b]), and Brisbane (panel 

[c]). Tide is estimated using the UTide package by Codiga (2011) and the most recent four years of 

data. The plot of maximum sea level in New York (panel [a]) reflects some extreme hurricane events, 

especially Hurricane Sandy that occurs in 2012. The time series of both water level and tide in 

Copenhagen (panel [b]) reach lower levels and exhibit less extreme events, both in frequency and 

magnitude, compared to the New York City (NYC) site. Finally, for panel (c), it can be seen that tide 

has considerable variation relative to the sea level at the Brisbane site. In addition, for sea-level 

observations, we do not observe the very extreme outliers as in the case of New York City. 

Figure 4 

MAXIMUM SEA LEVEL AND MAXIMUM TIDE AT THE THREE STATIONS 

 

(a) Maximum sea level at New York Station (red) and the maximum estimated tide (blue).  
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(b) Maximum sea level at Copenhagen Station (red) and the maximum estimated tide (blue). 

 

(c) Maximum sea level at Brisbane station (red) and the maximum estimated tide (blue). 



 

19 of 101 

3.3.2 CLIMATE INDICES 

Figure 5 shows the time series of the NAO index and Niño 3.4 from 1950 to 2018. There seems to 

be little correlation between the two indices (the linear correlation coefficient estimate is equal to 

0.012). 

Figure 5 

NORTH ATLANTIC OSCILLATOR INDEX AND NIÑO 3.4 FROM 1950 TO 2018 

 

Figure 6 shows scatter plots of the sea levels (without tide) at the New York City site, against the 

value of the climate indices NAO (linear correlation coefficient of 0.032) and Niño 3.4 (linear 

correlation coefficient of 0.013). The blue line is a linear regression line using Ordinarily Least 

Squares (OLS). Overall, the impact of the considered climate indices on the sea level seems to be 

relatively small. 
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Figure 6 

WATER LEVEL IN NYC VS CLIMATE INDICES 

 

 

This figure shows water level without tide at New York site, plotted against the NAO (up) and Niño 3.4 (bottom). 

The climate index relevant to Copenhagen is the SCAND index. As shown in Figure 7, the SCAND 

index is far from deterministic. The observations seem to be clustered with extreme values tending 

to be observed together, where subsequent values largely deviating from the average are typically 

observed in subsequent time periods. 
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Figure 7 

SCANDINAVIAN PATTERN INDEX TIME SERIES FROM 1950 TO 2013 

 

Figure 8 shows the scatter plots of the water levels at Copenhagen site without tide against the 

SCAND index. The blue line shows the fitting of a regression line using OLS. The linear correlation 

coefficient between the two variables is -0.33 (statistically significant at the 1% level). It seems that 

there is a relatively strong linear relationship between the two variables. 

Figure 8 

WATER LEVEL IN COPENHAGEN VS SCAND 

 

This figure shows the water level without tide, plotted against the SCAND. 
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Finally, for Brisbane, we examine three climate indices: AAO, IOD, and SOI. Their time series from 

1984 to 2018 are depicted in Figure 9. AAO and IOD are positively correlated with a correlation 

coefficient of 0.003 and the coefficient is not statistically significant at the 5% significance level. In 

contrast, AAO and SOI are positively correlated with a correlation coefficient of 0.112 that is 

statistically significant at 5%. IOD and SOI are negatively correlated, with a correlation coefficient of 

-0.22 which is statistically significant at 1%. 

Figure 9 

ANTARTIC OSCILLATION, INDIAN OCEAN DIPOLE AND SOUTHERN OSCILLATION TIME SERIES FROM 

1984 TO 2018

 

Antarctic Oscillation (AAO), Indian Ocean Dipole (IOD) and Southern Oscillation Index (SOI) time series from 1984 to 
2018. 

Figure 10 shows the scatter plots of sea levels without tide against the value of the climate indices 

IOD (linear correlation coefficient of 0.012), AAO (linear correlation coefficient of 0.009), and SOI 

(linear correlation coefficient of -0.04). The blue line corresponds to the regression line using OLS. 

The impact of the climate indices, if any, seems to be small. 
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Figure 10 

WATER LEVEL IN SOUTH EAST QUEENSLAND VS CLIMATE INDICES 
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This figure shows water level without tide, plotted against the IOD (top), AAO (center), and SOI (bottom). 

3.4 ESTIMATION METHOD 

There are two approaches that are commonly used in modeling extreme sea level events: block 

maxima (BM) and the peaks over threshold (POT) approach. POT uses extreme sea level events with 

magnitude exceeding an adequately selected threshold in order to draw inference on the 

probability distribution of the sea level. Recent application of the POT on hydrology related 

problems can be found in, e.g., Roth et al. (2012, 2014); Silva et al. (2014, 2016); Prosdocimi et al. 

(2015); Razmi et al. (2017). BM models extreme sea level events by looking at the maximum values 

over a given time period (block). Typically, one may consider yearly or monthly maxima. One of the 

main advantages of BM over POT is that, relying on monthly maxima, BM requires fewer numbers 

of observations to estimate the underlying probability distribution (Menéndez and Woodworth, 

2010; Lobeto et al., 2018; Salas et al., 2018). Among the many probability distributions used to 

model BM, the Generalized Extreme Value (GEV) distribution has become extremely popular in 

hydrology. 

To allow for non-stationarity in extreme water levels, we model sea level monthly maxima to follow 

a time dependent GEV distribution: 

 𝐻(𝑆𝑡; 𝑎(𝑡), 𝑏(𝑡), 𝜉) = 𝑒
−[1+𝜉

𝑆𝑡−𝑎(𝑡)

𝑏(𝑡)
]
  with  1 + 𝜉

𝑆𝑡−𝑎(𝑡)

𝑏(𝑡)
> 0.   (1) 

with 1 + 𝜉
𝑆𝑡−𝑎(𝑡)

𝑏(𝑡)
> 0. 
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Before estimating the GEV distribution, we follow the literature, see e.g., Menéndez and 

Woodworth (2010), to exclude the tide component from the water level. The residuals (in hourly 

frequency) are used to calculate the monthly maxima observations. These monthly maxima are then 

used in a maximum likelihood estimation (MLE) framework to fit the GEV distribution. 

3.4.1 MAXIMUM LIKELIHOOD ESTIMATION FRAMEWORK 

There are several ways to estimate time-dependent probability distributions using MLE. An R 

package called “extRemes” is designed specifically for extreme values distributions. Alternatively, 

there is a Generalized Additive Models for Location Scale and Shape (GAMLSS) framework that can 

be used for various distributions. Here, we adopt the more general GAMLSS introduced by Rigby 

and Stasinopoulos (2001, 2005). The log-likelihood function of the time-dependent GEV in Equation 

1 is: 

𝑙(𝑆; 𝑎(𝑋, 𝑡), 𝑏(𝑋, 𝑡), 𝜉) =∑log

𝑇

𝑡=1

(ℎ(𝑆𝑡; 𝑎(𝑋, 𝑡), 𝑏(𝑋, 𝑡), 𝜉)), 

where ℎ(⋅; 𝑎(𝑋, 𝑡), 𝑏(𝑋, 𝑡), 𝜉) is the probability density function of a GEV random variable, 𝑆𝑡 is 

monthly maximum non-tidal residual at time t, 𝑎(𝑋, 𝑡), 𝑏(𝑋, 𝑡), 𝜉 are the location, scale, and shape 

parameter respectively, and 𝑋 is the set of problem specific covariates. The estimation routine also 

requires the specification of the so-called link functions. In this study, we employ a linear link 

function for the location parameter 𝑎(𝑋, 𝑡) and a log link function for the scale parameter 𝑏(𝑋, 𝑡): 

𝑎(𝑋, 𝑡) = 𝑓
𝑎
(𝑋, 𝑡)

log(𝑏(𝑋, 𝑡)) = 𝑓
𝑏
(𝑋, 𝑡),

 

while the shape parameter 𝜉 is assumed to be constant due to the difficulty in obtaining a reliable 

estimate in the nonstationary case. The log link helps to ensure that the scale parameter is positive. 

3.4.2 SELECTION OF COVARIATES 

Given the monthly structure of the maximum sea levels, it is important to allow for the presence of 

seasonality in both location and scale parameters. Typically, seasonality is addressed via harmonic 

functions. Following Menéndez and Woodworth (2010), we consider annual and semiannual cycles: 

𝑓𝑎,1(𝑋, 𝑡) = 𝑎0 +∑𝛽2𝑖−1

2

𝑖=1

𝑐𝑜𝑠(𝑖𝜔𝑡) + 𝛽2𝑖𝑠𝑖𝑛(𝑖𝜔𝑡)

𝑓𝑏,1(𝑋, 𝑡) = 𝑏0 +∑𝛼2𝑖−1

2

𝑖=1

𝑐𝑜𝑠(𝑖𝜔𝑡) + 𝛼2𝑖𝑠𝑖𝑛(𝑖𝜔𝑡)

 

where 𝜔 = 2𝜋/12. Astronomical modulations, such as the nodal cycle (18.6 years) or the 

interannual perigean influence (4.4 years) can affect the risk of extreme sea level events (Pugh, 

1987). To take this into account, Menéndez and Woodworth (2010) consider two additional 

harmonic functions for each cycle: 
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𝑓𝑎,2(𝑋, 𝑡) = 𝑎1(𝑡) + 𝛽1,𝑛𝑜𝑑𝑎𝑙𝑐𝑜𝑠(𝜔𝑡/𝑇𝑛𝑜𝑑𝑎𝑙) + 𝛽2,𝑛𝑜𝑑𝑎𝑙𝑠𝑖𝑛(𝜔𝑡/𝑇𝑛𝑜𝑑𝑎𝑙)

𝑓𝑏,2(𝑋, 𝑡) = 𝑏1(𝑡) + 𝛼1,𝑛𝑜𝑑𝑎𝑙𝑐𝑜𝑠(𝜔𝑡/𝑇𝑛𝑜𝑑𝑎𝑙) + 𝛼2,𝑛𝑜𝑑𝑎𝑙𝑠𝑖𝑛(𝜔𝑡/𝑇𝑛𝑜𝑑𝑎𝑙)

𝑓𝑎,2(𝑋, 𝑡) = 𝑎1(𝑡) + 𝛽1,𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛𝑐𝑜𝑠(𝜔𝑡/𝑇𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛) + 𝛽2,𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛𝑠𝑖𝑛(𝜔𝑡/𝑇𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛)

𝑓𝑏,2(𝑋, 𝑡) = 𝑏1(𝑡) + 𝛼1,𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛𝑐𝑜𝑠(𝜔𝑡/𝑇𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛) + 𝛼2,𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛𝑠𝑖𝑛(𝜔𝑡/𝑇𝑝𝑒𝑟𝑖𝑔𝑒𝑎𝑛)

 

To account for a long-term variability, a linear trend can also be included (Lobeto et al., 2018): 

𝑓𝑎,3(𝑋, 𝑡) = 𝑓𝑎,2(𝑋, 𝑡) + 𝛽𝑡𝑡

𝑓𝑏,3(𝑋, 𝑡) = 𝑓𝑏,2(𝑋, 𝑡) + 𝛽𝑡𝑡
 

The magnitude of extreme sea level events may also depend on the natural climatic variability, 

adding an extra layer of randomness into the modeling (Kiem et al., 2003; Park et al., 2011). 

Therefore, large atmospheric mechanisms and oscillations are included as covariates as well. For 

each location, relevant climate indices are included as covariates for both location and scale 

according to the following equations: 

𝑓𝑎(𝑋, 𝑡) = 𝑓𝑎,3(𝑋, 𝑡) + 𝛽𝑐𝑙𝐶𝑙𝑖𝑚

𝑓𝑏(𝑋, 𝑡) = 𝑓𝑏,3(𝑋, 𝑡) + 𝛽𝑐𝑙𝐶𝑙𝑖𝑚
 

Following Menéndez and Woodworth (2010) and Lobeto et al. (2018), variables are selected in 

three steps. In the first step, the seasonality structures in 𝑓𝑎,1 and 𝑓𝑏,1 are identified using the 

forward selection principle. For each covariate, a likelihood ratio test is performed with the 

following hypotheses: 𝐻0: 𝛽 = 0 vs 𝐻1: 𝛽 ≠ 0. The covariate is included only if the null hypothesis 

is rejected. After variable selection is completed for the seasonality component, the perigean and 

nodal cycle effects are examined. In the next step, the impact of the long-term trend is investigated 

in 𝑓𝑎,3 and 𝑓𝑏,3. Once the time dependence has been selected according to its statistical significance, 

we then consider the climate indices. For completeness, we also consider the impact of interaction 

variables, and the non-linearity in the covariates. 

3.5 ESTIMATION RESULTS 

3.5.1 NEW YORK CITY 

Estimation results for New York City are summarized in Table 1. The monthly maximum non-tidal 

residuals exhibit a high degree of seasonality, both in location and scale parameters. In contrast, 

the long-term trend affects only the location parameter and is not statistically significant for the 

scale parameter. We find that individual climate indices have low explanatory power as their 

coefficients are not statistically significant, although they have the correct signs. The positive 

coefficient of the NAO confirms the presence of the inverse barometer effect since positive values 

of the index correspond to low levels of atmospheric pressure on site. The negative coefficient for 

Niño 3.4 indicates that La Niña type of events negatively affect the location parameter. 

In addition, we find a significant and positive joint effect of atmospheric pressures and equatorial 

sea-surface temperature. The joint effect means that below-normal atmospheric pressure in the 

North Atlantic and El Niño events have the potential to significantly increase the magnitude of 

extreme sea level events. Given the unit of measurement, even 1mb of atmospheric pressure per 
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degree of temperature can increase the surge level of 15 centimeters, on average. Overall, for New 

York City, the mean sea levels have been rising while the variability only follows seasonal patterns. 

These results agree with previous studies (Menéndez and Woodworth, 2010; Lobeto et al., 2018; 

Hieronymus and Kalén, 2020; Muis et al., 2018). 

Table 1 

COEFFICIENT ESTIMATES FOR NYC  

Covariate Name Unit Location Scale(log-scale) 

Constant Base Level mm 969.00 5.22 

𝑡 Long Term Trend mm/month 3.79*** - 

cos(2𝜋𝑡/12) Seasonal Component mm/month 33.15*** - 

sin(2𝜋𝑡/12) Seasonal Component mm/month 29.42*** -0.04 

sin(4𝜋𝑡/12) Seasonal Component mm/month - 0.08 

cos(2𝜋𝑡/12 × 18.6) Nodal Component mm/month 16.77 -0.07** 

cos(2𝜋𝑡/12 × 4.4) Perigean Component mm/month -19.33** 0.07** 

𝐶𝑙𝑖𝑚𝑁𝐴𝑂,𝑡  NAO mm/millibar 4.14 0.002 

𝐶𝑙𝑖𝑚𝑁𝑖ñ𝑜,𝑡 Niño 3.4 mm/∘𝐶 -8.08 0.01 

𝐶𝑙𝑖𝑚𝑁𝐴𝑂,𝑡 × 𝐶𝑙𝑖𝑚𝑁𝑖ñ𝑜,𝑡 NAO/Niño interaction mm/(∘𝐶millibar) 15.68** -0.012 

This table shows coefficient estimates for location parameter 𝑎(𝑡) and scale parameter 𝑏(𝑡) for the model, obtained 
using the procedure in Menéndez and Woodworth (2010). Significance levels are reported following the standard 
convention, i.e., ∗ corresponds to 10%, ∗∗ corresponds to 5%, and ∗∗∗ corresponds to 1%. 

The estimation results are further visualized in Figure 11, which shows the values of the fitted GEV 

parameters and the predicted mean for the analyzed dataset. It is apparent that both the location 

parameter and the mean of the corresponding distribution exhibit an increasing trend coupled with 

a high degree of seasonality, while the scale parameter only shows seasonal dependence. 
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Figure 11 

FITTED VALUES FOR THE LOCATION, AND SCALE PARAMETER AND THE CORRESPONDING 

DISTRIBUTIONAL MEAN VALUE, FOR THE GEV MODEL IN NEW YORK CITY 

 

(a) Fitted location values for the New York Station 
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(b) Fitted scale value for the New York Station 

 

(c) Mean values for the New York Station 

To illustrate how atmospheric phenomena affect the probability distribution of monthly maximum 

non-tidal residual, Figure 12 depicts the probability density functions corresponding to three 

scenarios: a low value of the climate index (5% quantile), the median value, and a high value of the 

climate index (95% quantile). The plots in Figure 12 show how extreme variation in climate indices 

are then reflected in the shape of the probability distribution. If a variation in the climate index 

determines a shift to the right, then an increase in the magnitude of maximum sea water level can 

be expected. If a variation in the climate index makes the distribution “wider,” then an increase in 

the volatility of sea water level has to be expected. As can be seen, the change in the distribution is 

small when NAO and Niño 3.4 are considered alone, while a shift to the right can be observed in the 

case where both climate indices are included. This exercise shows the benefit of using the GAMLSS 

approach, which allows to directly evaluate the impact of covariates on the distribution. 
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Figure 12 

IMPACT OF CLIMATE INDICES ON THE PROBABILITY DISTRIBUTION OF MAXIMUM NON-TIDAL 

RESIDUAL 

 

(a) Effects of variation in the NAO on the probability density function. 

 

(b) Effects of variation in the Niño 3.4 on the probability density function. 
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(c) Combined effect of NAO and Niño 3.4 on the probability density function. 

As a goodness of fit test, Figure 13 compares the QQ plots of a stationary GEV models and the GEV 

model in Table 1. It is apparent that including covariates into the model allows to achieve a better 

fit. 

Figure 13 

QQ PLOTS OF STATIONARY AND NON-STATIONARY MODELS IN NYC 

 

(a) QQplots of the model residual without covariates. 
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(b) QQplots of the model residual including covariates. 

3.5.2 COPENHAGEN 

Table 2 summarizes the estimates for both the location and scale parameters of the best selected 

model for Copenhagen. Similar to the case of New York, the location parameter exhibits a high 

degree of seasonality. In contrast, the scale parameter appears not to follow any deterministic 

seasonality and to be impacted only by the long-term trend. The coefficient for SCAND is negative 

both for location and scale parameters, which is consistent with the findings of previous studies 

(Lang and Mikolajewicz, 2019; Hieronymus and Kalén, 2020). This means that positive phases of 

SCAND are associated with above-normal atmospheric pressure in Northern Europe and lower 

magnitude of extreme sea level. 

Table 2 

COEFFICIENT ESTIMATES FOR COPENHAGEN  

Covariate Name Unit Location Scale(log-scale) 

Constant Base Level mm 341.68 5.46 

𝑡 Long Term Trend mm/month 1.12** -0.0005 

cos(2𝜋𝑡/12) Seasonal Component mm/month 9.83 - 

sin(2𝜋𝑡/12) Seasonal Component mm/month -24.94** - 

sin(4𝜋𝑡/12) Seasonal Component mm/month 19.18 - 

cos(2𝜋𝑡/12 × 18.6) Nodal Component mm/month 4.25 - 

𝐶𝑙𝑖𝑚𝑆𝐶𝐴𝑁𝐷,𝑡  SCAND mm/millibar -101.15*** -0.08*** 
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This table shows coefficient estimates for location parameter 𝑎(𝑡) and scale parameter 𝑏(𝑡) for the model obtained 
using the procedure in Menéndez and Woodworth (2010). Significance levels are reported following the standard 
convention, i.e., ∗ corresponds to 10%, ∗∗ corresponds to 5%, and ∗∗∗ corresponds to 1% 

Figure 14 shows the fitted values of location and scale parameters and the corresponding 

distributional mean. As can be seen, the location parameter exhibits seasonality and an increasing 

trend, which is mirrored in the distributional mean. The scale variability of the scale parameter is 

only affected by the stochasticity of the SCAND. 

Figure 14 

FITTED VALUES FOR THE LOCATION, AND SCALE PARAMETER AND THE CORRESPONDING 

DISTRIBUTIONAL MEAN VALUE, FOR THE GEV MODEL IN COPENHAGEN 

 

(a) Fitted location values for Copenhagen 
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(b) Fitted scale values for Copenhagen 

 

(c) Mean values for Copenhagen 

Similar to the case of New York City, we present the impact of the SCAND index on the distribution 

of non-tidal water level in Figure 15. The effect of the atmospheric phenomena, represented by the 

climate index, is clearly visible from the graph and follows a reverse pattern. Since the SCAND 

negatively affects the location parameter, a lower value of the index corresponds to a shift of the 
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probability distribution to the right and leads to an increase in the magnitude of extreme sea level 

events. 

Figure 15 

EFFECT OF SCAND ON PROBABILITY DENSITY FUNCTION 

 

Finally, Figure 16 compares the QQ plots of residual of stationary model with those from the model 

in Table 2. Also in this case, including covariates improves the quality of the fitting. 

Figure 16 

QQ PLOTS OF STATIONARY AND NONSTATIONARY MODELS IN COPENHAGEN 

 

(a) QQ plots of the model residual without covariates. 
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(b) QQ plots of the model residual including covariates. 

 

3.5.3 SOUTH EAST QUEENSLAND 

Estimation results for South-East Queensland are reported in Table 3. The location parameter 

exhibits seasonality and follows an increasing trend, but it does not seem to be impacted by neither 

nodal nor perigean cycles, while the scale parameter is not affected by seasonality. The long-term 

trend in the scale parameter has a negative coefficient, but it is still in-significant. Atmospheric 

phenomena linked with positive phases of the AAO and the SOI have positive impact on the location 

parameter, increasing the magnitude of extreme sea level event. This is consistent with the findings 

by previous studies, see e.g., Muis et al. (2018). On the other hand, the scale parameter is negatively 

affected by any increase in the climate indices considered. 

Table 3  

COEFFICIENT ESTIMATES FOR SOUTH EAST QUEENSLAND  

Covariate Name Unit Location Scale(log-scale) 

Constant Base Level mm 61.75 4.47 

𝑡 Long Term Trend mm/month 3.85*** -0.003 

sin(2𝜋𝑡/12) mm/month Seasonal Component 15.81*** - 

𝐶𝑙𝑖𝑚𝐼𝑂𝐷,𝑡  IOD mm/∘𝐶 -10.63 -0.21* 

𝐶𝑙𝑖𝑚𝐴𝐴𝑂,𝑡  AAO mm/millibar 2.37 -0.04 

𝐶𝑙𝑖𝑚𝑆𝑂𝐼,𝑡  SOI mm/millibar 3.50 -0.03 
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This table shows coefficient estimates for location parameter 𝑎(𝑡) and scale parameter 𝑏(𝑡) for the model obtained 
using the procedure in Menéndez and Woodworth (2010). Significance levels are reported following the standard 
convention, i.e., ∗ corresponds to 10%, ∗∗ corresponds to 5%, and ∗∗∗ corresponds to 1% 

Figure 17 depicts the fitted location and scale parameters for the model in Table 3. The fitted 

location parameter exhibits increasing trend and seasonality, while the scale parameter follows a 

decreasing trend with a variability depending entirely on IOD, AAO, and SOI. As expected, the 

corresponding distributional mean values exhibit an increasing trend, following more closely the 

evolution of the fitted location parameter rather than the fitted scale one. 

Figure 17 

FITTED VALUES FOR THE LOCATION, AND SCALE PARAMETER AND THE CORRESPONDING 

DISTRIBUTIONAL MEAN VALUE, FOR THE GEV MODEL IN BRISBANE 

 

(a) Fitted location values for the Brisbane station 
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(b) Fitted scale values for the Brisbane station 

 

(c) Mean values for the Brisbane station 

The effect of atmospheric phenomena on the probability density function of monthly maximum 

non-tidal residual is shown in Figure 18. Panel (a) illustrates the negative relationship between the 
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IOD and location parameter, showing how an increase in the IOD shifts the distribution to the left, 

reducing the average magnitude of the non-tidal residual. Panel (b) and (c) show the similar 

behavior of the impact of the AAO and SOI, where a positive phase in one of the indices generates 

and increases the magnitude of the non-tidal residual. 

Figure 18 

EFFECTS OF CLIMATE INDICES ON PROBABILITY DISTRIBUTION 

 

(a) Effects of variation in the IOD on the probability density function 
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(b) Effects on variation in the AAO on the probability density function 

 

(c) Effects of variation in the SOI on the probability density function 
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Finally, Figure 19 compares the QQ plots of residual of a stationary model with the one from the 

model in Table 18. Also in this case, the nonstationary model provides a better fit than the 

stationary. 

Figure 19 

QQPLOTS OF STATIONARY AND NONSTATIONARY MODELS IN SOUTH EAST QUEENSLAND 

 

(a) QQ plots of the model residual without covariates. 

 

(b) QQ plots of the model residual including covariates. 
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3.6 SUMMARY 

This section provides an econometric framework to estimate the distribution of extreme water 

levels in a nonstationary environment. Applying the framework to the three case studies, we find 

evidence for sea level rise in all the three areas. We also find significant impacts of intra-year 

seasonality as well as inter-year in the sea levels of the studied regions. Climate indices are also 

found to have impacts in one of the case studies, Copenhagen, and can be useful for predicting 

future storm surges. The results of these econometric exercises have important implications for 

investment analysis. The presence of a trend in extreme water levels suggests that sea level rise is 

real, and it is important to use real options models rather than the NPV rule to determine the 

optimal investment decision. In the presence of upward trends in the sea levels and hence the 

increasing flood risk, investment according to the NPV rule can lead to too early investment and 

inefficient use of capital. The next section will outline the real option models and how they can be 

used to analyze investment flexibility in the presence of sea level rises. 
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4: Investment analysis – Methodology 

This section will describe the modeling framework developed for real option analysis. The 

framework has three main components: 1) a component for modeling the sea water level, 2) an 

insurance model, and 3) a component for conducting real options analysis (see Figure 20). The first 

component provides for each future time a distribution of high-water marks – the highest level to 

which sea water level rises in a particular year. The second component relates the high-water marks 

to flood damage via a loss curve. This model calculates the insurance premium without flood 

mitigation as well as with flood mitigation measures in place at a given time. Finally, the third 

component uses the reduction in the insurance premium by a mitigation measure to calculate the 

value of implementing that measure. This approach allows us to determine the optimal time to 

implement a single measure, or multiple measures when several flood mitigation investment 

options are available. 

It is important to note that in this project, we follow real options analysis studies and determine the 

optimal investment decisions based on the market values of the projects. This involves treating 

investment projects as assets in financial markets and use the asset pricing tools to determine the 

values of these projects if they were traded in the markets (Dixit and Pindyck, 1994). This approach 

is suitable to the evaluation of public infrastructure that may involve co-benefits or social 

externalities as long as these additional benefits/impacts can be determined and added to the cash 

flows of the projects. In addition, the proposed framework separates risk from the discount rate 

and allows the evaluation of projects that involve complex optionality and therefore changing risks 

(Brealey et al. 2020). This is in contrast to the traditional risk adjusted approach or the social 

discounting approach that uses the discount rate to account for the impact of risk or co-benefits of 

the projects. 
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Figure 20 

MODELING FRAMEWORK 

 

4.1 SEA WATER LEVEL MODELING 

The maximum 𝑆𝑡 of the storm surge height observed in period 𝑡 is assumed to follow a GEV 

distribution: 

 𝐻(𝑆𝑡; 𝑚, 𝑠, 𝜉) = exp {− [1 + 𝜉(
𝑆𝑡−𝑚

𝑠
)]
−1/𝜉

} , 1 + 𝜉(
𝑆𝑡−𝑚

𝑠
) > 0, (2) 

where 𝑚, 𝑠, 𝜉 are called the location, scale and shape parameters. We define the high-water mark  

𝑀𝑡 as the sum of mean sea level 𝑊(𝑡), 𝑇𝑖𝑑𝑒(𝑡) and the block maximum surge 𝑆𝑡. Since 𝑆𝑡 follows 

a GEV distribution 𝐻(𝑆𝑡; 𝑚, 𝑠, 𝜉), conditional on the mean sea level 𝑊(𝑡) and tide 𝑇𝑖𝑑𝑒(𝑡) at time 

𝑡, the high water mark 𝑀𝑡 also follows a GEV 𝐻(𝑀𝑡; 𝛼, 𝑠, 𝜉) with the same scale and shape 

parameters as 𝑆𝑡, but the location parameter is given by 𝛼 = 𝑊(𝑡) + 𝑇𝑖𝑑𝑒𝑡 +𝑚. In the investment 

model, we adopt the deseasonalization approach often used in the real options literature, see e.g. 

Abadie and Chamorro (2008); Boomsma et al. (2012); Ernstsen and Boomsma (2018) and in flood 
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risk adaptation, see e.g. Aerts et al. (2013, 2014); Wang et al. (2015); Hallegatte et al. (2011) and 

replace 𝑇𝑖𝑑𝑒𝑡 by its average level 𝑇𝑖𝑑𝑒. 

4.2 INSURANCE MODEL 

The insurance model helps to determine catastrophic losses corresponding to each high-water mark 

𝑀. We adopt loss curves estimated by previous studies (see, e.g., Prettenthaler et al., 2010; 

Hallegatte et al., 2011; Wang et al., 2015; Aerts et al., 2014; Han et al., 2020) to associate sea level 

with economic damages. Typically, a loss curve 𝐿(𝑀) provides the loss estimate for each water level 

𝑀 when loss exposure is as currently observed. When loss exposure grows at a rate 𝛾, a water level 

𝑀𝑡 will cause a loss 𝑒𝛾𝑡𝐿(𝑀𝑡). The insurance premium for a full loss coverage at time 𝑡, when the 

mean sea level is 𝛼, can be obtained as 

 𝜋(𝑢, 𝑡, 𝛼; 𝐿) = (1 + 𝛿)𝑒𝛾𝑡 ∫ 𝐿
∞

𝑢
(𝑀)𝑑𝐻(𝑀), (3) 

where 𝛿 is the premium loading and 𝑢 is the flood threshold such that when the water level is lower 

than 𝑢, no damage is caused. 

Figure 21 

IMPACT OF FLOOD-PROOFING MEASURES ON FLOOD LOSS DISTRIBUTION 

 

Building code requirements such as dry-proofing or wet-proofing can help to reduce damages by a 

proportion 𝜅 as long as the water level is lower than a certain height, say 𝑢 + 𝑘. As illustrated in 

Figure 21, these measures rotate downwards a lower portion of the damage curve. By alleviating 

the impact of smaller floods, flood-proofing measures reduce the insurance premium by an amount 
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 𝑅(𝑘, 𝑡, 𝛼; 𝐿) = 𝜅[𝜋(𝑢, 𝑡, 𝛼; 𝐿) − 𝜋(𝑢 + 𝑘, 𝑡, 𝛼; 𝐿)]. (4) 

Building a dike or seawall that raises the flood threshold from 𝑢 to 𝑢 + 𝑘 will help avoid damages 

from flood with heights up to 𝑢 + 𝑘. The impact is similar to that of flood-proofing where 𝜅 = 1. 

The dike helps to reduce the insurance premium at time 𝑡 from 𝜋(𝑢, 𝑡, 𝛼; 𝐿) to 𝜋(𝑢 + 𝑘, 𝑡, 𝛼; 𝐿), 

and so the benefit flow of this adaptation measure is 

 𝑅(𝑘, 𝑡, 𝛼; 𝐿) = 𝜋(𝑢, 𝑡, 𝛼; 𝐿) − 𝜋(𝑢 + 𝑘, 𝑡, 𝛼; 𝐿). (5) 

Converting houses in the most vulnerable areas to parkland, or elevating houses in the region by a 

height 𝑘, can be modeled by shifting the loss curve horizontally (Figure 22). The insurance premium 

reduction by house elevation is 

 𝑅(𝑘, 𝑡, 𝛼; 𝐿) = 𝜋(𝑢, 𝑡, 𝛼; 𝐿) − 𝜋(𝑢, 𝑡, 𝛼; 𝐿1), (6) 

where 𝐿1(𝑀) = 𝐿(𝑀 − 𝑘) for all 𝑀. 

Figure 22 

IMPACT OF ELEVATING HOUSES IN THE REGION 

 

4.3 PARAMETRIC LOSS CURVE 

Polynomial curves can be used to fit losses for different water levels. We use a quadratic form for 

the loss function 𝐿(𝑀): 

 𝐿(𝑀) = 𝑎𝑀2 + 𝑏𝑀 + 𝑐 = 𝑋𝛽 (7) 
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where 𝑋 = [𝑀2 𝑀 1] and 𝛽 = [𝑎 𝑏 𝑐]′. With this loss function, the original flood threshold 

𝑢 satisfies 𝑎𝑢2 + 𝑏𝑢 + 𝑐 = 0. The water level 𝑢 is the flood threshold in the absence of any flood 

mitigation. The flood threshold 𝑥 that is effective when flood mitigation measures such as dams are 

in presence can be higher than 𝑢. With the flood threshold 𝑥, the insurance premium 𝜋(𝑥, 𝑡, 𝛼; 𝐿) 

can be expressed as 

 𝜋(𝑥, 𝑡, 𝛼; 𝐿) = (1 + 𝛿)𝑒𝛾𝑡𝐷(𝑥, 𝛼; 𝛽), (8) 

where 𝐷(𝑥, 𝛼; 𝛽) is the expected damage given by 

 𝐷(𝑥, 𝛼; 𝛽) = ∫ (
∞

𝑥
𝑎𝑀2 + 𝑏𝑀 + 𝑐)𝑑𝐻(𝑀). (9) 

When GEV is used to model the maximum water level, the expected damage function 𝐷(𝑥, 𝛼; ; 𝛽) 

in the above equation takes the following form (El Sherpieny et al., 2013; Embrechts et al., 2013): 

 𝐷(𝑥, 𝛼; 𝛽) =

{
  
 

  
 
𝐷1(𝑥, 𝛼; 𝛽) if 𝜉 > 0 and 𝑥 > 𝛼 −

𝑠

𝜉

𝐷2(𝑥, 𝛼; 𝛽) if 𝜉 > 0 and 𝑥 ≤ 𝛼 −
𝑠

𝜉

0 if 𝜉 < 0 and 𝑥 > 𝛼 −
𝑠

𝜉

𝐷1(𝑥, 𝛼; 𝛽) if 𝜉 < 0 and 𝑥 ≤ 𝛼 −
𝑠

𝜉

 (10) 

where 𝐷1(𝑥, 𝛼; 𝛽) and 𝐷2(𝑥, 𝛼; 𝛽) are given by: 

 

𝐷1(𝑥, 𝛼; 𝛽) = 𝑎(
𝑠

𝜉
)
2
𝛤(1 − 2𝜉, [1 + 𝜉(

𝑥−𝛼

𝑠
)]
−
1

𝜉)

+2
𝑠

𝜉
(𝑎𝛼 − 𝑎

𝑠

𝜉
+ 𝑏/2)𝛤(1 − 𝜉, [1 + 𝜉(

𝑥−𝛼

𝑠
)]
−
1

𝜉)

+[𝑎(𝛼 −
𝑠

𝜉
)2 + 𝑏(𝛼 −

𝑠

𝜉
) + 𝑐][1 − 𝐻(𝑥)],

 (11) 

 
𝐷2(𝑥, 𝛼; 𝛽) = 𝑎(𝛼 −

𝑠

𝜉
)2 +

𝑠𝑎

𝜉
(
𝑠

𝜉
𝛤(1 − 2𝜉) − 2(

𝑠

𝜉
− 𝛼)𝛤(1 − 𝜉))

+𝑏𝛼 +
𝑠𝑏

𝜉
[𝛤(1 − 𝜉) − 1].

 (12) 

4.4 SINGLE INVESTMENT REAL OPTIONS MODEL 

Recall that 𝑀𝑡 follows a GEV distribution 𝐻(𝑀𝑡; 𝛼(𝑡), 𝑠(𝑡), 𝜉), where 𝛼(𝑡) = 𝑊(𝑡) + 𝑇𝑖𝑑𝑒 +𝑚. 

Due to the impact of climate change, we assume that the mean sea level 𝑊𝑡 follows an arithmetic 

Brownian motion process: 

 𝑑𝑊𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡 , (13) 
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where 𝐵𝑡  is a standard Brownian motion, 𝜇 is the expected change in the mean sea level and 𝜎 

represents the uncertainty in the estimates of sea-level changes. Then, the location parameter 𝛼𝑡 

follows the same process and the location parameter for the high-water mark at time 𝑇 is 𝛼𝑇 ∼

𝑁(𝛼0 + 𝜇𝑇, 𝜎
2𝑇). The simple relation between the location parameter 𝛼𝑡 and the mean water level 

provides a way to estimate the time varying location parameter 𝛼𝑡 by observing the mean water 

level. We estimate the mean water level by the average hourly water level for each year and use 

the annual mean water level to estimate the stochastic process in Equation 13. 

It should be noted that some city may experience land subsidence that further exacerbates the 

impact of sea level rise. Land subsidence can be incorporated into the model by increasing the level 

of sea rise. It is, however, often difficult to obtain data on land subsidence and a deterministic rate 

of subsidence is usually assumed. In that case, parameter 𝜇 is increased to allow for land subsidence. 

We examine a project that lasts infinitely and costs 𝐼 to invest. The project provides a benefit flow 

𝑅(𝑡, 𝑘, 𝛼), which is a product of a time invariant component 𝑅(𝑘, 𝛼) and a growth component 𝑒𝛾𝑡, 

i.e. 𝑅(𝑡, 𝑘, 𝛼) = 𝑒𝛾𝑡𝑅(𝑘, 𝛼).3 

To facilitate the evaluation of the project and option values, we formulate a risk-neutral measure 

under which derivative prices can be obtained as the present value of the expected cash flows. 

Based on the capital asset pricing model (CAPM), the expected return 𝜇𝑋 on an asset 𝑋 that has a 

return standard deviation 𝜎𝑋 is given by: 

 𝜇𝑋 = 𝑟 + 𝜙𝜌𝑥𝑚𝜎𝑋, (14) 

where 𝜌𝑥𝑚 is the correlation between the asset return and market return, 𝜙 =
𝑟𝑚−𝑟

𝜎𝑚
 is the market 

price of risk and 𝑟𝑚  and 𝜎𝑚 are the expected value and standard deviation of the market return. 

A risk-neutral measure ℙ∗ is a probability measure under which all non-dividend paying assets have 

an expected rate of return equal to the risk-free rate 𝑟. If 𝐵(𝑡) is a Brownian motion under the 

physical measure ℙ, then 𝐵∗(𝑡) that satisfies 𝑑𝐵∗(𝑡) = 𝑑𝐵(𝑡) + 𝜙𝜌𝑥𝑚𝜎𝑑𝑡 is a Brownian motion 

under the risk-neutral measure ℙ∗. As a result, the process for 𝑊(𝑡) under the risk-neutral measure 

is given by: 

 𝑑𝑊(𝑡) = (𝜇 − 𝜃)𝑑𝑡 + 𝜎𝑑𝐵∗(𝑡) (15) 

where 𝜃 = 𝜙𝜎𝜌𝑤𝑚 and 𝜌𝑤𝑚  is the correlation between the changes in the mean sea level and the 

market return. 

Using the risk-neutral measure, the project value can be calculated as 

 𝑉(𝛼) = ∫ 𝑒−(𝑟−𝛾)(𝑢−𝑡)
∞

𝑡
𝐸∗[𝑅(𝑘, 𝛼(𝑢))|𝛼(𝑡) = 𝛼]𝑑𝑢, (16) 

where 𝑅(𝑘, 𝛼(𝑢)) (for the case of flood-proofing) is given by 

 

3 Note that the benefit flow also depends on the loss curve 𝐿. We have dropped 𝐿 to simplify notations. 
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 𝑅(𝑘, 𝛼(𝑢)) = (1 + 𝛿)𝜅(𝐷(𝑢, 𝛼; 𝛽) − 𝐷(𝑢 + 𝑘, 𝛼; 𝛽)). (17) 

The value of the option to invest, 𝛷(𝛼), can be shown to follow the stochastic differential equation, 

see, e.g., Dixit and Pindyck (1994): 

 
1

2
𝜎2𝛷𝛼𝛼 + (𝜇 − 𝜃)𝛷𝛼 − 𝑟𝛷 = 0. (18) 

Furthermore, at the option exercise threshold 𝛼∗, the value matching and smooth pasting 

conditions need to be satisfied, providing two boundary conditions: 

 
𝛷(𝛼∗) = 𝑉(𝛼∗) − 𝐼,

 (19) 

 
𝛷𝛼(𝛼

∗) = 𝑉𝛼(𝛼
∗).

 (20) 

We use the binomial lattice to solve for the project value, the optimal investment boundary and the 

option value, since it is simple to find the investment boundary with this method. 

4.5 MULTIPLE INVESTMENTS 

When several adaptation projects can be invested, identifying the optimal investment sequence can 

help to improve the investment value. We define the optimal investment sequence as the one that 

gives the highest investment value. For an example of two mutually non-exclusive investment 

projects, Project 1 and Project 2, two investment sequences are possible: i) Project 1 is invested 

first, and then Project 2 is invested thereafter and ii) Project 2 is invested first and then Project 1 is 

invested. It is necessary to compute the investment value for each sequence and identify the 

optimal sequence that gives the highest value. The same procedure applies when more than two 

projects are considered. 

To evaluate the investment value of one investment sequence, for example, the first sequence in 

the above example, suppose the investment costs of the two projects are 𝐼1 and 𝐼2. In addition, 

suppose 𝑅1(𝑘1, 𝑡, 𝛼; 𝐿1) is the benefit flow that is obtained when Project 1 is invested. The benefit 

flow 𝑅1(𝑘1, 𝑡, 𝛼; 𝐿1) is the same as that obtained when in the case of single investment. In contrast, 

the benefit flow 𝑅12(𝑘2, 𝑡, 𝛼; 𝐿2) obtained when we further invest in Project 2 after Project 1 has 

been invested is the marginal benefit obtained due to the additional protection offered by Project 

2. For example, for the case of upgrading the height of the same dike, the loss curve does not change 

(𝐿2 = 𝐿1 = 𝐿) and 𝑅12(𝑘2, 𝑡, 𝛼; 𝐿2) can be obtained as 

 𝑅12(𝑘2, 𝑡, 𝛼; 𝐿) = 𝜋(𝑢 + 𝑘1, 𝑡, 𝛼; 𝐿) − 𝜋(𝑢 + 𝑘1 + 𝑘2, 𝑡, 𝛼; 𝐿). (21) 

Once we have defined the benefit flow provided by each investment, we need to determine the 

optimal time 𝜏1 to invest in Project 1, and the optimal time 𝜏2 to invest in Project 2 thereafter: 
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𝛷1(𝛼𝑡) + 𝛷12(𝛼𝑡) = max

𝜏1,𝜏2
𝐸𝑡
𝑄 [∫ 𝑒−𝑟𝑠

∞

𝜏1
𝑅1(𝑘1, 𝑡, 𝛼𝑠; 𝐿1)𝑑𝑠 − 𝑒

−𝑟𝜏1𝐼1 +

   ∫ 𝑒−𝑟𝑠
∞

𝜏2
𝑅12(𝑘2, 𝑡, 𝛼𝑠; 𝐿2)𝑑𝑠 − 𝑒

−𝑟𝜏2𝐼2|𝛼𝑡] ,
 (22) 

where 𝛷1(𝛼𝑡) is the value of the option to invest in Project 1 and 𝛷12(𝛼𝑡) is the value of the option 

to invest in Project 2, after Project 1 has already been invested. Similarly, if Project 2 is invested first, 

then 𝛷2(𝛼𝑡) + 𝛷21(𝛼𝑡) is obtained. In considering which project to be invested first, the decision 

maker needs to select a sequence that maximizes the option to invest, 𝛷𝑠(𝛼𝑡), i.e. 

 𝛷𝑠(𝛼𝑡) = max{𝛷1(𝛼𝑡) + 𝛷12(𝛼𝑡), 𝛷2(𝛼𝑡) + 𝛷21(𝛼𝑡)}. (23) 
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5: Investment analysis – Case studies 

In this section we present the results of the numerical analysis for three case studies. In the case 

study of New York City, we consider single investments of i) a barrier and dike project and ii) a water 

proofing project, as well as a multiple investment when the two projects are considered together. 

Consideration of multiple investments is necessary for the formulation of dynamic investment 

pathways. In South-East Queensland, we investigate the optimal time to invest in a house elevation 

project. In the Copenhagen, we consider the problem of investing in a dike system where the 

ultimate height of the dike is achieved in one go (a single investment) or achieved in two stages (a 

multistage investment). 

5.1 CASE STUDY OF NEW YORK CITY 

We examine the optimal investment strategies for two projects for New York City based on Aerts et 

al. (2014): a) a barrier project that uses barriers and dikes to protect the region and b) a wet flood-

proofing project that adjusts the interior and material of buildings in the one-in-100-year flood area 

(i.e. the area in which the probability of having a flood in any single year is at least 0.01) to limit 

flood damage. 

The barrier project is referred to as project S2c in Aerts et al. (2014), which aims to reduce the 

length of the coastline of the New York City area as much as possible. It involves the construction 

of two storm surge barriers. One barrier will connect Sandy Hook in New Jersey and the tip of the 

Rockaways in Queens, New York and the other barrier will close the East River. The investment cost 

is estimated to range from $11 billion to $15 billion and the maintenance cost is $118 million per 

year. We use a mid-range value of the investment cost, which is $13 billion. The project is assumed 

to raise the flood threshold by 1000mm for houses and infrastructure. 

The flood-proofing project is a measure that helps to keep the options open. Building codes can be 

further enhanced in the future or storm surge barriers can be developed. It involves wet flood-

proofing of existing buildings in the one-in-100-year flood area. We consider the most cost-effective 

measure found by Aerts et al. (2014), which involves wet-proofing 2 feet (610mm) of buildings with 

30% effectiveness. The cost of this measure is $246 million. 

Table 4 

INFORMATION ON ESTIMATED AND ASSUMED PARAMETER VALUES FOR NEW YORK CITY 

Parameters Values 

Location parameter (𝛼) 1642 

Scale parameter (𝑠) 131 

Shape parameter (𝜉) 0.27 

Current flood threshold (𝑢) 2506mm 

Quadratic coefficient of damage curve (𝑎) 0 

Linear coefficient of damage curve (𝑏) 0.0393 

Mean sea level rise per year (𝜇) 6mm 

Standard deviation of sea level rise per year (𝜎) 25mm 
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Safety loading of flood risk (𝛿) 3% 

Risk-free rate (𝑟) 4% 

Growth rate of loss exposure (𝛾) 1% 

Market risk premium (𝜃) 0.15 

Dike construction 
 

Investment cost (𝐼) $15.95 billion 

Flood mitigation (𝑘) 1000mm 

Flood-proofing 
 

Investment cost $246 million 

Flood mitigation 610mm 

Effectiveness 30% 

5.1.1 PARAMETER ESTIMATION FOR NEW YORK CITY 

We start by estimating flood risk in the area based on the surge height at the Battery in lower 

Manhattan, NYC. We obtain the surge height by excluding the tide and the mean sea level from the 

hourly water level. We then obtain the annual maximum of storm surge height for each year to 

estimate the GEV distribution. The average tide and the mean sea level are then added back to the 

estimated location parameter to obtain the distribution of the high-water mark. The estimated 

parameters of the high-water mark distribution are: 𝛼 = 1642, 𝑠 = 131, 𝜉 = 0.27. 

Figure 23 

OBSERVED ANNUAL MEAN AND ANNUAL MAXIMUM SEA LEVELS AT THE BATTERY IN LOWER 

MANHATTAN, NYC 
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We assume a 1.31% growth in loss exposure for the area in this study, based GDP and population 

growth in the region (see Weinkle et al. [2018] for details). In addition, we assume a real risk-free 

rate of 4% based on the study by Newell and Pizer (2003), who estimate the real risk-free rate using 

10-year treasury bond yields observed since 1800.4 

We use an estimate of the market risk premium 𝜃 of 0.15, based on the correlation between the 

annual change in the mean sea level and the rate of return on the stock market index (S&P 500) 

(corr= 0.0283), the market price of risk 𝜙 = 0.1382, and the historical standard deviation of 38.48. 

A safety loading of 𝛿 = 3% is assumed, following the estimation results reported by Shao et al. 

(2015) based on CAT bond prices. We use results from climate change studies to calibrate the mean 

sea level rise process. We follow Aerts et al. (2014) to assume a mean sea level rise of 6.5 mm per 

year for the area that takes into account land subsidence in the area and use 𝜎 =25mm to 

summarise the uncertainty in sea level change estimates, based on data provided by Johansson et 

al. (2014). The ratio of the standard deviation and the mean of the sea level rise is quite high, which 

indicates significant uncertainty related to the estimate of future sea level changes. 

We use the damage curve estimated by Aerts et al. (2014) (Figure 25). Without adaptation, flood 

loss occurs whenever the sea level exceeds 2.506m. This flood threshold occurs at the extreme right 

tail of the distribution where 1 − 𝐻(𝑢) = 0.023. Using the estimated damage curve and the high-

water mark distribution, the expected annual damage without adaptation is $498M, which is slightly 

lower than the expected annual damage of $508M estimated by Aerts et al. (2014). The discrepancy 

is likely due to the difference in the approach to high water mark estimation: Aerts et al. (2014) use 

a model-based approach that estimates the high-water mark distribution based on simulated storm 

surge events, while we use historical data. 

 

4 This is also the discount rate used by Aerts et al. (2014). 
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Figure 24 

LOSS CURVE FOR THE STUDIED AREA IN NEW YORK CITY 

 

The flood-proofing project will reduce flood damages to buildings, leaving flood losses to business 

interruption, infrastructure and vehicles unchanged. Aerts et al. (2014) consider flood-proofing for 

buildings in the one-in-100-year flood area, leaving buildings in other areas unchanged. To recognize 

the impact of this measure in our model, we scale down the total damage curve in Figure 26 so that 

the annual benefit of flood-proofing under no loss exposure growth and no climate change is the 

same as that estimated by Aerts et al. (2014). 

Figure 25 shows the damage curves for the two projects. The barrier and dike project helps to 

prevent water from coming into the city and provides a large risk reduction. In contrast, the flood-

proofing project focuses on only protecting buildings and leaving business interruptions and 

damages to infrastructure unchanged. These two projects may provide a good example of 

supplementary projects in the dynamic dimension. It appears that the barrier project is costly and 

optimal to invest only when climate change is sufficiently serious. The flood-proofing project has a 

low investment cost and may be worthwhile to invest in the absence of the barrier project. Actual 

investment timing, however, will depend on the benefit of each project relative to the cost. 
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Figure 25 

DAMAGE CURVES FOR NYC  

 

Damage curves estimated for the studied area in New York City for the case of no adaptation, adaptation with barriers 
and dikes and adaptation with flood-proofing buildings. 

5.1.2 PROTECTING NYC USING STORM SURGE BARRIERS 

The NPVs and option values of the investment project for different scenarios are reported in Table 

5. The project has negative NPVs when the climate does not change, which indicates that the 

current risk infrastructure is quite adequate. In presence of climate change and positive growth in 

loss exposure, the NPV of the project is positive and the project is worth investing. However, due to 

the uncertainty that is related to the future sea level changes, deferring the investment to a future 

time would result in a higher investment value. This is illustrated by the difference between the 

total value with optionality and the NPV of the project in the table. The project would be invested 

when the location parameter reaches 1770mm. 

Table 5 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE PROJECT IN NYC 

 𝜇 = 0, 𝛾
= 1.31% 

 𝜇 = 6.5, 𝛾
= 1.31% 

 𝜇 = 13, 𝛾
= 1.31%% 

 𝜇 = 6.5, 𝛾
= 2.6% 

NPV -7.07  9.90  58.35  59.01 

Total value with 
optionality 

0.19  11.25  58.35  59.01 

Difference 7.25  1.35  0.00  0.00 
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Investment analysis for barrier and dike project using NPV rule and real options methods. We report (in billion USD) 
the NPV, the total value with optionality and the difference of the two values. Results are reported for four cases: i) 
no climatic change and zero exposure growth, ii) climatic change and exposure growth, iii) doubled expected sea level 
rise and exposure growth, iv) climatic change and doubled exposure growth. All cases assume σ = 25mm. 

Sensitivity analysis results in Tables 6, 7 and 8 show that the value of the project is higher when the 

discount rate is lower, when the expected sea level rise is higher, and when the uncertainty on the 

sea level rise is higher. For low discount rates or high levels of sea rise, the project has high NPVs, 

and it is optimal to invest in the project immediately. No difference would exist between the value 

of optionality and the value given by the NPV rule in these cases. As the sea level rise uncertainty 

increases the difference between NPV and optionality decreases. 

Table 6 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE PROJECT IN NYC UNDER DIFFERENT DISCOUNT 

RATES 

 r=2%  r=3%  r=4%  r=5%  r=6% 

NPV 349.18  58.02  9.90  -2.30  -6.62 

Total value with optionality 349.18  58.02  11.24  2.88  0.90 

Difference 0.00  0.00  1.35  5.18  7.52 

Investment analysis for barrier and dike project using NPV rule and real options methods under different discount 
rates. We report (in billion USD) the NPV, the total value with optionality and the difference between the two values. 

Table 7 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE IN NYC UNDER DIFFERENT SEA LEVEL RISE 

 𝜇=0  𝜇=3  𝜇=6  𝜇=9  𝜇=12 

NPV -7.20  -2.60  9.90  32.43  59.73 

Total value with optionality 0.17  2.05  11.24  32.43  59.73 

Difference 7.37  4.65  1.35  0.00  0.00 

Investment analysis for barrier and dike project using NPV rule and real options methods under different levels of sea 
rise. We report (in billion USD) the NPV, the total value with optionality and the difference between the two values. 

Table 8 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE IN NYC UNDER DIFFERENT SEA LEVEL RISE 

UNCERTAINTY 

 𝜎=7  𝜎=15  𝜎=25  𝜎=30  𝜎=45 

NPV 5.25  6.71  9.90  11.99  19.72 

Total value with optionality 6.83  8.22  11.24  13.22  20.57 
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Difference 1.57  1.51  1.35  1.23  0.85 

Investment analysis for barrier and dike project using NPV rule and real options methods under different sea level 

rise uncertainty. We report (in billion USD) the NPV, the total value with optionality and the difference between the 

two values.5.1.3 Wet flood-proofing buildings in vulnerable areas. 

 

Flood-proofing buildings in the most vulnerable area may provide a low-cost adaptation option that 

is relevant when the mean sea level remains low. The results in Table 9 suggest that this adaptation 

measure has a positive NPV even in the case of zero expected sea level rise, in contrast with the 

dike and barrier cases. As expected, the NPV increases in both sea level change and loss exposure 

growth. In addition, this adaptation measure provides a high value relative to its cost and there is 

no value in waiting to invest. 

Table 9 

INVESTMENT ANALYSIS FOR FLOOD PROOFING PROJECT IN NYC 

 𝜇 = 0, 𝛾
= 1.31% 

 𝜇 = 6.5, 𝛾
= 1.31% 

 𝜇 = 13, 𝛾
= 1.31%% 

 𝜇 = 6.5, 𝛾
= 2.6% 

NPV 0.10  0.81  2.43  2.63 

Total value with 
optionality 

0.10  0.81  2.43  2.63 

Difference 0.00  0.00  0.00  0.00 

Investment analysis for wet flood-proofing project using NPV rule and real options methods. We report (in billion 
USD) the NPV, the total value with optionality and the difference of the two values. Results are reported for four 
cases: i) no climatic change and zero exposure growth, ii) climatic change and exposure growth, iii) doubled expected 
sea level rise and exposure growth, iv) climatic change and doubled exposure growth. All cases assume σ = 25mm. 

Sensitivity analysis results in Tables 10, 11, and 12 show that the NPV of the project remains positive 

for different discount rates and different levels of sea rise. Only for a discount rate of 6%, it is optimal 

to defer the project investment. 

Table 10 

INVESTMENT ANALYSIS FOR FLOOD PROOFING PROJECT IN NYC UNDER DIFFERENT DISCOUNT 

RATES 

 r=2%  r=3%  r=4%  r=5%  r=6% 

NPV 11.42  2.63  0.81  0.29  0.09 

Total value with optionality 11.42  2.63  0.81  0.29  0.11 

Difference 0.00  0.00  0.00  0.00  0.02 

Investment analysis for wet flood-proofing project using NPV rule and real options methods under different discount 
rates. We report (in billion USD) the NPV, the total value with optionality and the difference between the two values. 
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Table 11 

INVESTMENT ANALYSIS FOR FLOOD PROOFING PROJECT IN NYC UNDER DIFFERENT SEA LEVEL RISE 

 𝜇=0  𝜇=3  𝜇=6  𝜇=9  𝜇=12 

NPV 0.09  0.29  0.81  1.62  2.47 

Total value with optionality 0.09  0.29  0.81  1.62  2.47 

Difference 0.00  0.00  0.00  0.00  0.00 

Investment analysis for wet flood-proofing project using NPV rule and real options methods under different levels of 
sea rise. We report (in billion USD) the NPV, the total value with optionality and the difference between the two 
values. 

Table 12 

INVESTMENT ANALYSIS FOR FLOOD PROOFING PROJECT IN NYC UNDER DIFFERENT SEA LEVEL RISE 

UNCERTAINTY 

 𝜎=7  𝜎=15  𝜎=25  𝜎=30  𝜎=45 

NPV 0.63  0.69  0.81  0.89  1.16 

Total value with optionality 0.63  0.69  0.81  0.89  1.16 

Difference 0.00  0.00  0.00  0.00  0.00 

Investment analysis for wet flood-proofing project using NPV rule and real options methods under different levels of 
sea rise. We report (in billion USD) the NPV, the total value with optionality and the difference between the two 
values. 

5.1.4 DYNAMIC ADAPTATION PATHWAYS FOR NYC 

Although the optimal investment time can be determined for single projects, separate consideration 

of each project does not allow to take into account the flexibility offered by project combinations. 

It is possible that low-cost projects can be invested first to lower flood risk and provide more time 

to observe the development of the mean sea levels before high-cost projects are committed. It is 

also possible that high-cost projects are much more cost effective than low-cost projects and it is 

optimal to invest in high-cost projects first to avoid having to invest in low-cost projects. Considering 

multiple projects simultaneously allows to determine the optimal pathway for adaptation. 

Table 13 provides the results for two alternative pathways: i) invest in the flood-proofing measure 

first and in the barrier and dike measure later; ii) invest in the barrier and dike measure first and 

consider the flood-proofing measure later. The results suggest that it is not optimal to invest in the 

flood-proofing measure now and wait to invest in the barrier and dike project later, although single 

investment analysis suggests that immediate investment in the flood-proofing measure is optimal. 

Wait and invest in the barrier and dike project, ignoring the flood-proofing project would provide a 

higher investment value. 
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Table 13 

DYNAMIC ADAPTATION PATHWAYS FOR NYC 

 Flood-proofing 
then dike 

     Dike then flood-
proofing 

    

 Flood-proofing  Barrier and 
Dike 

 Total  Barrier and Dike  Flood-
proofing 

 Total 

NPV 0.81  8.34  9.15  9.90  -0.74  9.15 

Total value with 
optionality 

0.81  10.10  10.91  11.24  0.00  11.24 

Difference 0.00  1.76  1.76  1.35  0.74  2.09 

Investment analysis for investment sequences using NPV rule and real options methods. We report (in billion euro) 
the NPV, the total value with optionality and the difference of the two values. 

Sensitivity analysis results in Table 14 show that investment results depend significantly on the 

discount rate. The strategy to invest in barrier and dike first remains optimal as the discount rate 

changes. Results in Table 15 suggest that this strategy of investing in barrier and dike first is optimal 

for high sea level rise. When the level of sea rise is low, it is optimal to invest in the flood-proofing 

first and wait for the sea level to rise to a high level before investing in barrier and dike. Table 16 

shows the results of the sensitivity analysis with respect to the sea level rise uncertainty. As it can 

be seen from the table, investing in the dike and barrier project first, and in the flood proofing 

project then returns higher project values for every scenario. 

Table 14 

DYNAMIC ADAPTATION PATHWAYS FOR NYC UNDER DIFFERENT DISCOUNT RATES 

 
Flood-
proofing 
then 
dike 

 

 

 

 

 

 

 

 

 
Dike 
then 
flood-
proofing 

 

 

 

 

 

 

 

 

 r=2%  r=3%  r=4%  r=5%  r=6%  r=2%  r=3%  r=4%  r=5%  r=6% 

NPV 
338.40  56.13  9.15  -

2.79 

 -
7.03 

 338.40  56.13  9.15  -
2.79 

 -
7.03 

Total value 
with 
optionality 

338.40  56.13  10.91  2.86  0.90  349.18  58.02  11.24  2.88  0.90 

Difference 
0.00  0.00  1.76  5.65  7.93  10.78  1.90  2.09  5.68  7.93 

Investment sequences under different discount rates. We report (in billion euro) the NPV, the total value with 
optionality and the difference between the two values. 
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Table 15 

DYNAMIC ADAPTATION PATHWAYS FOR NYC UNDER DIFFERENT SEA LEVEL RISE 

 
Flood-
proofing 
then 
dike 

 

 

 

 

 

 

 

 

 
Dike 
then 
flood-
proofing 

 

 

 

 

 

 

 

 

 𝜇=0  𝜇=3  𝜇=6  𝜇=9  𝜇=12  𝜇=0  𝜇=3  𝜇=6  𝜇=9  𝜇=12 

NPV 
-7.64  -

3.11 

 9.15  31.13  57.64  -7.64  -
3.11 

 9.15  31.13  57.64 

Total value 
with 
optionality 

0.22  2.08  10.91  31.14  57.64  0.17  2.05  11.24  32.43  59.73 

Difference 
7.86  5.19  1.76  0.00  0.00  7.81  5.16  2.09  1.29  2.09 

Investment sequences under different discount rates. We report (in billion euro) the NPV, the total value with 
optionality and the difference between the two values. 

Table 16 

DYNAMIC ADAPTATION PATHWAYS FOR NYC UNDER DIFFERENT SEA LEVEL RISE 

 
Flood-
proofing 
then 
dike 

 

 

 

 

 

 

 

 

 
Dike 
then 
flood-
proofing 

 

 

 

 

 

 

 

 

 𝜎=7  𝜎=15  𝜎=25  𝜎=30  𝜎=45  𝜎=7  𝜎=15  𝜎=25  𝜎=30  𝜎=45 

NPV 
4.61  6.04  9.15  11.20  18.72  4.61  6.04  9.15  11.20  18.72 

Total value 
with 
optionality 

6.65  8.00  10.91  12.82  19.90  6.83  8.22  11.24  13.22  20.57 

Difference 
2.04  1.96  1.76  1.63  1.18  2.22  2.19  2.09  2.03  1.84 

Investment sequences under different sea level rise uncertainty. We report (in billion euro) the NPV, the total value 
with optionality and the difference between the two values. 

    

5.2 CASE STUDY OF SOUTH EAST QUEENSLAND 

South East Queensland is the most populated area in the state of Queensland, Australia. It accounts 

for 70% of the state population while covers only 1.3% of the state’s total area. The area suffers 

from extreme climate events including floods, droughts, heatwaves and bushfires. It is expected 

that climate change will increase losses from these catastrophes. 

This case study is based on previous research carried out by Wang et al. (2015). The study area has 

983,000 residential and 21,000 commercial buildings, 2.94% of which are exposed in 1-in-100 storm 

events. Similar to Wang et al. (2015), we consider the adaptation strategy of lifting all buildings in 

the 1-in-100-year flood area5 by 1m. Since the total number of buildings in the area is 29,518 and 

the average cost of lifting a building is $43,000, the cost of adapting existing buildings is $1.27 billion. 

 

5 This is the area that would be flooded when a 1-in-100 event occurs 
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The cost of adapting new buildings depends on the number of buildings added to the area, the unit 

elevation cost and the discount rate. As in Wang et al. (2015), we assume a unit lifting cost of 0.2% 

per-square-meter cost of a dwelling for every 10cm elevation. We also follow Wang et al. (2015) to 

assume that the number of future residential and commercial buildings will grow at the same rate 

of population, which is estimated to be 1%. We assume a median size of 150 square meters per 

house and a median building cost of $1,285 per squared meters. The total cost of adapting new 

buildings is then $0.36 million. 

Using water level data collected at Brisbane tide gauge station, we plot the mean and the annual 

maximum water levels in Figure 26. The mean sea levels show a slight upward trend. As for other 

regions, we use the estimates from climate change for the estimates of the mean sea level process 

parameters, i.e., 𝜇 = 8.7 and 𝜎 = 25. No previous studies and data are available on the land 

subsidence for the region, so we assume zero land subsidence in this study. We de-tide and detrend 

the data before fitting the GEV distribution. The estimated parameters of the GEV distribution are 

𝛼 = 1666, 𝑠 = 53.23, 𝜉 = 0.45.6 

Figure 26 

OBSERVED ANNUAL MEAN AND ANNUAL MAXIMUM SEA LEVELS AT BRISBANE TIDE GAUGE 

STATION, AUSTRALIA 

 

 

6 The estimates by Wang et al. (2015) are 𝛼 = 1.372, 𝑠 = 0.012, 𝜉 = 0.463. The shape parameter is very close to our estimate. 
Their scale and location parameters are different, which may be because they use different treatments for tide and different data 
set. 
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Wang et al. (2015) provide the damage cost for the area that covers the damage to residential and 

commercial buildings. The total losses in the 1 in 10, 100, 1000, 10000-year floods are estimated to 

be 0.012, 0.120, 0.450 and 1.925 billion AUD, respectively (Figure 27). 

Figure 27 

DAMAGE CURVE ESTIMATED FOR THE 1-IN-100 YEAR FLOOD AREA IN THE SOUTH EAST 

QUEENSLAND 

 

Based on the estimates of Wang et al. (2015). 

We assume a real risk-free rate of 4% and a 1% growth in loss exposure based on population growth 

data as estimated by Wang et al. (2015). The estimate for the risk premium 𝜃 is -0.38 based on a 

market price of risk 𝜙 = 0.1274, and a correlation of-0.09 between the annual sea level change 

and the market return on All Ordinary Index. The assumed parameters are summarized in Table 17. 

Table 17 

INFORMATION ON ESTIMATED AND ASSUMED PARAMETER VALUES FOR SOUTH EAST 

QUEENSLAND 

Parameters Values 

Location parameter (𝛼) 1666 

Scale parameter (𝑠) 53.23 

Shape parameter (𝜉) 0.45 

Current flood threshold (𝑢) 1765mm 

Quadratic coefficient of damage curve (𝑎) 1.744 × 10−8 

Linear coefficient of damage curve (𝑏) 8.535 × 10−5 

Mean sea level rise per year (𝜇) 8.7mm 

Standard deviation of sea level rise per year (𝜎) 25mm 
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Safety loading of flood risk (𝛿) 3% 

Risk-free rate (𝑟) 4% 

Growth rate of loss exposure (𝛾) 1% 

Market risk premium (𝜃) -0.38 

Adaptation by elevation 
 

Investment cost (𝐼) AUD 1.276 billion 

Flood mitigation (𝑘) 1000mm 

5.2.1 BASELINE ANALYSIS 

The results of investment analysis are provided in Table 18. In the absence of sea level rise and with 

a positive loss exposure growth, the NPV is positive, but lower than the total value with optionality, 

indicating that while it’s beneficial to invest right away, deferring the investment is a more valuable 

strategy. The NPV of the project is highest when both the sea level rise and the loss exposure 

increase over time. There is also an interaction between sea level change and loss exposure growth, 

since the NPV of adaptation is much larger when both factors are present. In this case, deferring 

investment does not provide additional values and it is optimal to invest in the project immediately. 

Table 18 

INVESTMENT ANALYSIS FOR ELEVATION PROJECT IN SOUTH EAST QUEENSLAND 

 𝜇 = 0, 𝛾
= 1% 

 𝜇 = 8.7, 𝛾
= 1% 

 𝜇 = 17.4, 𝛾
= 1% 

 𝜇 = 8.7, 𝛾
= 2% 

NPV 0.33  2.61  2.80  4.80 

Total value with 
optionality 

0.52  2.61  2.80  4.80 

Difference 0.19  0.00  0.00  0.00 

Investment analysis for elevation of 100-year inundation area using NPV rule and real options methods. All cases 
assume σ = 25mm. 

5.2.2 SENSITIVITY ANALYSIS 

Sensitivity analysis results in Tables 19, 20, and 21 suggest that it is only optimal to defer investment 

into the project when the discount rate is higher than 4% or when there is no sea level rise. 

Table 19 

INVESTMENT ANALYSIS FOR ELEVATION PROJECT IN SOUTH EAST QUEENSLAND UNDER DIFFERENT 

DISCOUNT RATES 

 r=2%  r=3%  r=4%  r=5%  r=6% 

NPV 9.41  4.80  2.61  1.42  0.72 

Total value with optionality 9.41  4.80  2.61  1.45  0.84 
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Difference 0.00  0.00  0.00  0.03  0.12 

Sensitivity analysis for South East Queensland adaptation with respect to discount rate. We report (in billion AUD) 
the NPV, the total value with optionality and the difference between the two values. 

Table 20 

INVESTMENT ANALYSIS FOR ELEVATION PROJECT IN SOUTH EAST QUEENSLAND UNDER DIFFERENT 

SEA LEVEL RISE 

 𝝁=0  𝝁=4.35  𝝁=8.7  𝝁=13.05  𝝁=17.4 

NPV 0.45  1.80  2.61  2.85  2.81 

Total value with optionality 0.60  1.80  2.61  2.85  2.81 

Difference 0.16  0.00  0.00  0.00  0.00 

Sensitivity analysis for SEQ adaptation with respect to the expected sea level rise. We report (in billion AUD) the NPV, 
the total value with optionality and the difference between the two values. 

Table 21 

INVESTMENT ANALYSIS FOR ELEVATION PROJECT IN SOUTH EAST QUEENSLAND UNDER DIFFERENT 

SEA LEVEL RISE UNCERTAINTY 

 𝝈=7  𝝈=15  𝝈=25  𝝈=30  𝝈=45 

NPV 2.79  2.73  2.61  2.54  2.32 

Total value with optionality 2.79  2.73  2.61  2.54  2.32 

Difference 0.16  0.00  0.00  0.00  0.00 

Sensitivity analysis for SEQ adaptation with respect to the sea level rise uncertainty. We report (in billion AUD) the 

NPV, the total value with optionality and the difference between the two values. 

5.3 CASE STUDY OF COPENHAGEN. 

Copenhagen is the capital of Denmark, and one of the major cities in the Swedish-Danish Oresund 

region. As a low-lying city with a population of over 600 thousand people living in proximity to water, 

Copenhagen is particularly vulnerable to extreme sea level rise, making it a perfect candidate to 

showcase the contribution of real option methodology. This case study builds on previous analysis 

in Hallegatte et al. (2011); Lenk et al. (2017); Tsvetanov and Shah (2013), jointly with our estimation 

results based on monthly data. 

We consider the construction of a dike and barrier up to 2000mm to protect the city of Copenhagen 

from flood damages. We first consider a single investment in which the 2000mm height of the dike 

system is developed in one go. We then consider a multiple investment project in which the 

2000mm height is achieved in two stages with Stage 1 building a 1000mm height dike system and 

Stage 2 increasing the height from 1000mm to 2000mm. The difference between the single 
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investment project and the multiple investment project shows the value of flexibility obtained via 

real option analysis. 

Location, scale, and shape parameters for the GEV distribution for the high-water mark are taken 

as follows: 𝛼 = 402, 𝑠 = 254, and 𝜉 = −0.0554. The negative value of 𝜉 implies the existence of 

a short tail flood risk in the case of Copenhagen, which is consistent with previous studies such as 

Hallegatte et al. (2011). Regarding the sea level, we consider a mean sea level rise per year (𝜇) of 

6.5mm (0.541mm monthly), which represents a median value between a high sea level rise scenario 

(8.4mm per year) and low sea level rise scenario (4.8mm per year), based on the level of carbon 

emission provided by Pörtner et al. (2019). Consistently with other studies we assume a standard 

deviation of sea level rise per year of 25mm (7.21mm monthly). We further follow Hallegatte (2011) 

to assume zero land subsidence due to the lack of data. 

Figure 28 depicts the damage curve for Copenhagen, based on the results in Hallegatte (2009, 

2011). The shape of the curve seems to suggest a quadratic relationship between the sea level and 

the loss, expressed in billions of euros. The effective threshold 𝑢 is estimated to be 330.92mm and 

the fitted loss function is: 

𝐿(𝑀𝑡) = 7.453 × 10
−7(𝑀𝑡 − 𝑢)

2 + 1.562 × 10−3(𝑀𝑡 − 𝑢). 

Following Haer et al. (2020) and Aerts et al. (2014), we assume a yearly real risk-free rate of 4%. 

The growth exposure rate 𝛾 is set at 1.31%, based on a population growth estimate of 0.1% and a 

yearly GDP increase of 1.30% (see Hallegatte et al., 2011). The estimate for market risk premium 𝜃 

is −0.79 (monthly −0.065), based on a market price of risk 𝜙 = 0.0846, and a correlation of 𝜌𝑚,𝑠 =

−0.17 between the annual sea level change and the Dow Jones stock market return. Similarly, to 

the previous case studies, the safety loading parameter 𝛿 is set at 3%. 

Figure 28 

LOSS CURVE IN COPENHAGEN 

 

Damage Curve in Copenhagen based on the estimates by Hallegatte et al. (2011). 
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We consider the following quadratic cost function (see, for example Ng and Mendelsohn, 2005; 

Lenk et al. (2017); Tsvetanov and Shah, 2013): 

𝐼(𝑘) = 𝑐0 + 𝑐1𝑘
2 

where 𝑘 is the dike height, 𝑐0 the fixed cost, 𝑐1 the variable cost. For Copenhagen we follow Lenk 

et al. (2017) and Tsvetanov and Shah (2013) and assume 𝑐0 = €160,000 and 𝑐1 = €1,371/mm. 

Figure 29 

TOTAL PROJECT VALUE FOR THE SINGLE INVESTMENT OF THE DIKE IN COPENHAGEN 

 

Figure 29 shows the project value, for different level of the location parameter 𝛼. The values of 

other parameters for the case study are summarized in Table 22. 

Table 22 

INFORMATION ON ESTIMATED AND ASSUMED PARAMETER VALUES FOR COPENHAGEN 

Parameters Values 

Location parameter (𝛼) 402 

Scale parameter (𝑠) 254.56 

Shape parameter (𝜉) -0.0554 

Current flood threshold (𝑢) 330.92mm 

Quadratic coefficient of damage curve (𝑎) 7.434 × 10−7 

Linear coefficient of damage curve (𝑏) 0.001562 

Mean sea level rise per month (𝜇) 0.79mm 

Standard deviation of sea level rise per month (𝜎) 7.21mm 

Safety loading of flood risk (𝛿) 3% 

Risk-free rate (𝑟) 3.9% 

Growth rate of loss exposure (𝛾) 1.3% 
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Market risk premium (𝜃) - 0.79 

Adaptation by barrier and dike 
 

Investment cost Stage 1 (𝐼1) €1.37116 billion 

Investment cost Stage 2 (𝐼2) €4.11316 billion 

Investment cost Single Investment (𝐼12) €5.48416 billion 

Fixed cost (𝑐0) €160,000 

Flood mitigation (𝑘1) 1000mm 

Flood mitigation (𝑘2) 1000mm 

5.3.1 BASELINE ANALYSIS 

The numerical analysis is conducted based on monthly data, but reported at a yearly frequency, to 

be consistent with previous case studies. Table 23 reports the results of the numerical analysis. In 

Stage 1 of the multistage approach, the NPV and the option value are equivalent. As expected, the 

project value increases with both the growth exposure parameter and the mean sea level rise. The 

positive NPV in Stage 1, suggests that the project is invested immediately. Interestingly, the project 

value in Stage 1 is much higher than the project value in Stage 2, suggesting that it is beneficial to 

defer the investment to see how the climate uncertainty unfolds, as it provides a much lower 

benefit. Finally, except the fourth case, where Stage 1 and Stage 2 are invested immediately, the 

multistage approach returns a higher aggregate project value than the single investment project, 

even if the multistage has higher fixed cost, due to the added value of flexibility captured by the real 

option framework. 

Table 23 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE PROJECT IN COPENHAGEN  

 𝜇 = 0, 𝛾
= 1.31% 

 𝜇 = 6.5, 𝛾
= 1.31% 

 𝜇 = 13, 𝛾
= 1.31% 

 𝜇 = 6.5, 𝛾
= 2.6% 

Stage 1 (𝑘1 = 1000mm) 
       

NPV 24.02  25.64  27.30  55.49 

Total value with optionality 24.02  25.64  27.30  55.49 

Difference 0.00  0.00  0.00  0.00 

Stage 2 (𝑘2 = 1000mm) 
       

NPV -1.50  -1.17  -0.75  2.69 

Total value with optionality 0.004  0.03  0.13  2.69 

Difference 1.50  1.20  0.89  0.00 

Total value with optionality 
(Stage 1 + Stage 2) 

24.025  25.67  27.43  58.19 
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Single Investment (𝑘 =
2000mm) 

       

NPV 22.51  24.46  26.54  58.19 

Total value with optionality 22.51  24.46  26.54  58.19 

Difference 0.00  0.00  0.00  0.00 

Investment analysis for barrier and dike project using NPV rule and real options methods. The multistage approach 
and the single investment approach are compared. We report (in billion euro) the NPV, the total value with optionality 
and the difference of the two values. Results are reported for four cases: i) no climatic change and zero exposure 
growth, ii) climatic change and exposure growth, iii) doubled expected sea level rise and exposure growth, iv) climatic 
change and doubled exposure growth. All cases assume σ = 25mm (7.21mm monthly). Despite the higher fixed cost, 
the multistage approach returns a higher value of investment due to the added value of flexibility captured by the 
real option framework. 

5.3.2 SENSITIVITY ANALYSIS 

Finally, we conclude this section presenting a sensitivity analysis along the line of those in NYC and 

South East Queensland. Table 24 shows the numerical results of the sensitivity analysis. For low 

values of the real interest rate, the project value for the single investment project is greater than 

the aggregate project value for the multistage investment, both according to NPV and real option. 

However, as the interest rate rises, the benefit of the multistage project with respect to the single 

investment increases. 

Table 24 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE PROJECT IN COPENHAGEN UNDER DIFFERENT 

DISCOUNT RATES 

 r=2%  r=3%  r=4%  r=5%  r=6% 

Stage 1 (𝑘1 = 1000mm) 
         

NPV 117.05  41.84  25.64  17.46  13.30 

Total value with optionality 117.05  41.84  25.64  17.46  13.30 

Difference 0.00  0.00  0.00  0.00  0.00 

Stage 2 (𝑘2 = 1000mm) 
         

NPV 13.66  0.83  -1.17  -2.11  -2.57 

Total value with optionality 13.66  0.84  0.03  0.001  0.00006 

Difference 0.00  0.009  1.20  2.11  2.57 

Total value with optionality 

 (Stage 1 + Stage 2) 

130.71 

 
 42.68 

 
 25.67 

 
 17.46 

 
 13.30006 
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Single Investment (𝑘 = 2000mm) 
         

NPV 130.72  42.68  24.46  15.35  10.73 

Total value with optionality 130.723  42.68  24.46  15.35  10.73 

Difference 0.00  0.00  0.00  0.00  0.00 

Investment analysis for the dike project, using NPV rule and real options methods under different discount rates. We 
report (in billion euros) the NPV, total value with optionality and the difference between the two values. 

Table 25 shows the numerical results for a sensitivity analysis in the sea level rise, for the multistage 

and single investment project. As the sea level rise increases, the project value increases in both the 

multistage and the single investment projects. 

Consistently with the expectations, as the rate of mean sea level rise increases, the difference 

between the NPV and the option value in the second stage decreases. As climate change impact 

increases the sea level rises severity, the value of waiting reduces, therefore investing right away 

becomes more valuable. Similarly, Table 26 shows the numerical results for a sensitivity analysis in 

the sea level rise uncertainty: as the sea level rise uncertainty increases the project values increases, 

both in the multistage and the single investment projects. 

Table 25 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE IN COPENHAGEN UNDER DIFFERENT SEA LEVEL 

RISE 

 𝝁=0  𝝁=4.5  𝝁=6.5  𝝁=13.05  𝝁=17.4 

Stage 1 (𝑘1 = 1000mm)          

NPV 24.19  25.15  25.64  27.13  28.12 

Total value with optionality 24.19  25.15  25.64  27.13  28.12 

Difference 0.00  0.00  0.00  0.00  0.00 

Stage 2 (𝑘2 = 1000mm)          

NPV -1.46  -1.27  -1.05  -0.80  -0.51 

Total value with optionality 0.005  0.02  0.03  0.12  0.23 

Difference 1.47  1.29  1.39  0.92  0.74 

Total value with optionality 

 (Stage 1 + Stage 2) 24.195 
 

25.17 
 

25.67 
 

27.25 
 

28.35 

Single Investment (𝑘 = 2000mm)          

NPV 22.72  23.88  24.46  26.32  27.61 
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Total value with optionality 22.72  23.88  24.46  26.32  27.61 

Difference 0.00  0.00  0.00  0.00  0.00 

Sensitivity analysis for barrier and dike project using NPV rule and real options methods with respect to sea level rise. 
We report (in billion euros) the NPV, the total value with optionality and the difference between the two values. 

Table 26 

INVESTMENT ANALYSIS FOR BARRIER AND DIKE IN COPENHAGEN UNDER DIFFERENT SEA LEVEL 

RISE UNCERTAINTY 

 𝝈=7  𝝈=15  𝝈=25  𝝈=30  𝝈=45 

Stage 1 (𝑘1 = 1000mm)          

NPV 25.58  25.60  25.64  25.66  25.75 

Total value with optionality 25.58  25.60  25.64  25.66  25.75 

Difference 0.00  0.00  0.00  0.00  0.00 

Stage 2 (𝑘2 = 1000mm)          

NPV -1.23  -1.21  -1.05  -1.03  -1.01 

Total value with optionality 0.002  0.009  0.03  0.05  0.14 

Difference 1.232  1.219  1.08  1.08  1.15 

Total value with optionality 

 (Stage 1 + Stage 2) 25.582 
 

25.609 
 

25.67 
 

25.71 
 

25.89 

Single Investment (𝑘 = 2000mm)          

NPV 24.35  24.39  24.46  24.52  24.74 

Total value with optionality 24.35  24.39  24.46  24.52  24.74 

Difference 0.00  0.00  0.00  0.00  0.00 

Sensitivity analysis for barrier and dike project using NPV rule and real options methods with respect to sea level rise 
uncertainty. We report (in billion euros) the NPV, the total value with optionality and the difference between the two 
values. 
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6: Insurance premium distributions 

This section presents the results of a simulation study on the effect of climate adaptation policies 

on insurance premium distribution, and optimal investment timing in the three cities. Firstly, we 

consider insurance premium from the point of view of city councils willing to insure the losses due 

to extreme sea level rise for the entire city for 12 months. Secondly, we introduce the presence of 

a top cover limit, where only losses up to 1 billion dollars can be insured, to more closely resemble 

real world applications. Finally, we perform a sensitivity analysis on the insurance premium 

distribution, with respect to three possible scenarios of mean sea level rise. 

6.1 NEW YORK CITY 

Figure 30 shows how the distribution of insurance premium changes over time when: i) the dike 

and barrier project is optimally invested and ii) the flood-proofing project is optimally invested. It 

also compares these distributions with those obtained when there is no adaptation. Recall from the 

previous section that when the dike and barrier project is considered together with the flood-

proofing project, the flood-proofing project becomes redundant and therefore, the insurance 

premium distributions under the optimal investment pathway would be the same as the ones 

obtained under the single investment of the dike and barrier project. Here, insurance premium 

distributions are obtained by simulations conducted for the following years: year 10, year 20, ..., 

year 100 into the future. The simulation is done assuming a mean sea level rise of 65cm in 100 years 

and a loss exposure growth as in the baseline case in the previous section. The decision to invest 

into the adaptation project depends on whether the sea level is higher than the exercise boundaries. 

When the mean sea level increases and reaches the exercise boundary, the considered adaptation 

project is invested. In the flood-proofing case, this happens right away, as the current sea level is 

already higher than the boundary. As a result, the premium distributions in the case of flood-

proofing immediately deviates from the no adaptation one for every year reported (Figure 30b). 

In the case of the dike and barrier project, the optimal decision is to defer investment to a future 

period, and as a result, the premium distribution with adaptation only deviates from the no 

adaptation distribution in years 30-40 onwards (Figure 30a). The increase in the skewness and 

standard deviation in year 40, compared to year 30, indicates that a great number of simulated 

trajectories hit the investment boundary in or before year 40. However, for some trajectories, the 

investment occurs even earlier, as it can be seen from the small differences in the distribution at 

years 20 and 30. This shows that investment is adaptive, depending on the development of the 

mean sea level, and investment time is stochastic and uncertain. It is also apparent that with 

adaptation, insurance premiums are less uncertain, having lower standard deviation compared to 

the case of no adaptation. Once the dike and barrier project is invested, it greatly reduces the impact 

of climate change, which is then reflected into downward shifted insurance premium trajectories. 

After the year 40, insurance premium distributions have a much lower mean, median, standard 

deviation, and kurtosis. 



 

72 of 101 

 

Figure 30 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN NYC WITH AND WITHOUT 

ADAPTATION 

 

(a) Time evolution of insurance premium distribution with dike project in NYC 

 

(b) Time evolution of insurance premium distribution with flood proofing project in NYC 
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This figure compares the time evolution of insurance premiums in three cases: no adaptation policy (red), dike and 
barrier project (blue panel a), flood proofing (blue panel b). Insurance premium distributions are depicted at 10, 20, 
30, 40, 50, 60, 70, 80, 90, and 100 years. 

Flood-proofing has lower impact on insurance premium compared to the dike and barrier project, 

since the protection provided by flood-proofing accounts for only a small proportion of the flood 

damage. Different from the dike and barrier project, the condition triggering the investment in the 

flood-proofing project is already met, and the project is invested in year zero. 

Figure 31 shows the histogram for the time at which the dike project is invested. Consistent with 

Figure 30a, the average investing time is around 400 months. 

Figure 31 

SIMULATE DISTRIBUTION FOR OPTIMAL INVESTMENT TIME 

 

This figure shows the distribution of the optimal investment time (in months) for the dike project in NYC. The average 
waiting period is around 400 months. 

Table 27 compares the quantiles of the premium distributions at year 100, in the case of no 

adaptation, dike and barrier project, flood-proofing. Confirming the results depicted in Figure 30, 

the dike project provides the highest reduction in premiums among the alternative considered. 

Table 27 

INSURANCE PREMIUM QUANTILES UNDER DIFFERENT ADAPTATION POLICIES. 

Adaptation 0% 25% 50% 75% 100% 

No Adaptation 0.32 0.48 0.53 0.59 0.99 

Proofing 0.25 0.36 0.39 0.42 0.66 

Dike 0.17 0.23 0.25 0.27 0.38 
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This table reports the quantiles (in billion USD) of insurance premium in Year 100 in NYC for three cases: no 
adaptation, proofing, and dike. 

6.2 SOUTH EAST QUEENSLAND 

The project considered in the case of South East Queensland is the elevation of all the houses in the 

1 in 100-year flood area. Figure 32 shows the development of the insurance premium distribution 

over time, with and without adaptation. Recall that the project is invested right away as the current 

sea level is higher than the exercise boundary. Elevating houses has the potential to greatly balance 

the impact of climate change, shifting the insurance premium distribution downward and reduce 

the mean, median, kurtosis, and standard deviation of the insurance premium. 

Figure 32 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN SOUTH EAST QUEENSLAND WITH AND 

WITHOUT ADAPTATION 

  

This figure compares the time evolution of insurance premiums in South East Queensland in two cases: no adaptation 
policy (red), and elevating houses (blue). Insurance premium distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 
80, 90, and 100 years. 

Table 28 compares the quantiles of insurance premium in the case of no adaptation with the ones 

resulting from the case where houses are elevated. It is apparent that elevating houses reduces 

climate change impact on the insurance premiums, consistent with Figure 32. 
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Table 28 

INSURANCE PREMIUM QUANTILES UNDER DIFFERENT ADAPTATION POLICIES. 

Adaptation 0% 25% 50% 75% 100% 

No Adaptation 12.08 41.64 65.44 106.34 162.28 

Elevation 3.11 3.82 4.05 4.30 5.84 

This table reports the quantiles (in billion AUD) of insurance premium distribution in Year 100 in South East 
Queensland for two cases: no adaptation, and house elevation. 

6.3 COPENHAGEN 

The project analyzed for Copenhagen is the construction of a dike system in two stages, each 

involves elevating the height of the dike by 1000mm. Figure 33 shows the development of insurance 

premium distribution over time for two cases: i) no adaptation and ii) adaptation with the multistage 

dike project. Recall that the current mean sea level is already higher than the exercise boundary of 

Stage 1 of the project, and therefore the first stage of the project is invested right away, shifting the 

premium distribution downwards. The investment into the first stage of the project provides 

sufficient protection for many years. The exercise boundary for the second stage is reached much 

later, in years 70, 80, 90 and 100. Once the second stage exercise boundary is reached, the premium 

distribution is further pushed downwards. 

It is interesting to observe that the insurance premium distribution obtained under the optimal 

investment of the project has a higher standard deviation in year 100 than the previous years. This 

is due to the fact that for a considerable number of simulated trajectories, the investment boundary 

is hit after year 90 but before year 100. Note also that we plot only insurance premium distributions 

every 10 years, which creates an impression of a sudden change in the distribution when we move 

from year 90 to year 100. 
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Figure 33 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN COPENHAGEN WITH AND WITHOUT 

ADAPTATION. 

 

This figure compares the time evolution of insurance premiums in Copenhagen in two cases: no adaptation policy 
(red), and multistage dike (blue). Insurance premium distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 80, 90, 
and 100 years. 

Figure 34 shows the distribution of the optimal investment timing in the first 100 years. It’s worth 

to note that trajectories that do not reach the second stage exercise boundary in 100 years are not 

plotted in Figure 34. It is also probable that some trajectories never hit the boundary. 
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Figure 34 

SIMULATED DISTRIBUTION FOR OPTIMAL INVESTMENT TIME. 

 

This figure shows the distribution of the optimal investment time (in months) for the multistage investment in Dike 
in Copenhagen. 

Table 29 shows the quantiles of insurance premium in year 100 for the case of no adaptation and 

the case of adaptation with the multistage dike project. The results confirm the previous findings in 

Figure 33 that investing in the dike reduces the impact of climate change across the entire premium 

distribution. 

Table 29 

INSURANCE PREMIUM QUANTILES UNDER DIFFERENT ADAPTATION POLICIES. 

Adaptation 0% 25% 50% 75% 100% 

No Adaptation 0.70 0.83 0.86 0.898 1.04 

Dike 0.0005 0.0009 0.08 0.09 0.11 

This table reports the quantiles (in billion euro) of insurance premium distribution in Year 100 in Copenhagen for two 
cases: no adaptation and dike. 

6.4 PREMIUM DISTRIBUTION IN PRESENCE OF A TOP COVER LIMIT 

In this section, we introduce the presence of a top cover limit in the insurance policy. Although the 

insurance premium exercise is carried out with the intent to assign a monetary value to the benefit 

derived from investing into a climate adaptation policy, considering a city council willing to insure 

the entirety of a city or district might be too far-fetched. The introduction of a top cover limit, where 
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losses due to floods are insured only up to a pre-specified amount, might provide a more accurate 

representation of the real-world insurance perspective. In the three cities, we then consider an 

insurance policy, which covers the losses due to floods, for 1 year, up to 1 billion dollars. The 

corresponding insurance premium is then computed as follows: 

𝜋(𝑢, 𝑢∗, 𝑡, 𝛼; 𝐿) = (1 + 𝛿)𝑒𝛾𝑡 [∫ 𝐿
∞

𝑢

(𝑀)𝑑𝐻(𝑀) −∫ 𝐿
∞

𝑢∗
(𝑀)𝑑𝐻(𝑀)] ,

= 𝜋(𝑢, 𝑡, 𝛼; 𝐿) − 𝜋(𝑢∗, 𝑡, 𝛼; 𝐿),

 

where 𝐿(𝑢∗) =1 billion USD dollars. 

Figures 35, 36, and 37 show the result of the simulation study for the dike and proofing project in 

New York City, the house elevation project in South East Queensland, and the two-stage dike project 

in Copenhagen. The numerical results follow the one presented in the previous section, but with 

lower insurance premiums. In the New York City case, the average reduced premiums in the case of 

dike and flood-proofing are very similar. However, the dike project generates a premium 

distribution with lower standard deviation and kurtosis than the flood-proofing one. Notice how the 

investment timing remains unchanged, since the top cover limit does not affect the exercise 

boundary, nor the mean sea level. In the case of South East Queensland, the impact of imposing the 

top cover limit of $1 billion is visible, but small: the change in the insurance premium distribution 

for the case of no adaptation is minor. Similar to the case without the top cover limit, elevating the 

houses provides sufficient protection, and the impact of climate change is greatly reduced. Similarly, 

in the case of Copenhagen, the no adaptation premiums are left-skewed, and the two-stage dike 

project diminishes the impact of climate change. Also in this case, the investment timing remains 

unchanged. 
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Figure 35 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN PRESENCE OF TOP COVER LIMIT. 

 

(a) Time evolution of insurance premium distribution for a top cover limit policy with the dike project in NYC. 

 

(b) Time evolution of insurance premium distribution for a top cover limit policy with flood proofing project in NYC 

This figure compares the time evolution of insurance premiums for a policy with a top cover limit of 1 billion dollars, 
in three cases: no adaptation policy (red), dike and barrier project (blue panel a), flood proofing (blue panel b). 
Insurance premium distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 years. 
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Figure 36 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN PRESENCE OF TOP COVER LIMIT. 

 

This figure compares the time evolution of insurance premiums of a policy with a top cover limit of 1 billion dollars in 
South East Queensland in two cases: no adaptation policy (red), and elevating houses (blue). Insurance premium 
distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 years. 
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Figure 37 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN PRESENCE OF TOP COVER LIMIT. 

 

This figure compares the time evolution of insurance premiums of a policy with a top cover limit of 1 billion dollars in 
Copenhagen in two cases: no adaptation policy (red), and multistage dike (blue). Insurance premium distributions are 
depicted at 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 years. 

6.5 PREMIUM DISTRIBUTION: SENSITIVITY ANALYSIS 

This section presents the results of sensitivity analysis in the insurance premium distributions, with 

respect to the sea level rise. We consider three scenarios, an optimistic scenario, with a global sea 

level rise of 18cm by the year 2100, a neutral scenario, where the mean sea level corresponds to 

the estimated one in each city, and a pessimistic one, where the sea levels are expected to rise by 

190cm by the year 2100. The optimistic and pessimistic scenarios are taken from Johansson et al. 

(2014). 

Figures 38 and 39 show the numerical results for New York City. Panel (a) shows the optimistic 

scenario, (b) the neutral, and (c) the pessimistic one. As it can be seen the insurance premium 

distribution depends quite heavily on the sea level rise parameter. In the optimistic scenario, 

premiums increase on average by less than in the other scenarios, while still presenting a 

comparable level of standard deviation. Figure 38 clearly shows how the optimal investment timing 

varies with different sea level rise scenarios as well. In the optimistic scenario, the optimal 

investment is further deferred in comparison to the neutral one, while as expected, the investment 

in the dike project occurs earlier in the pessimistic one. 
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Figure 38 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN NYC WITH DIKE UNDER DIFFERENT SEA 

LEVEL RISE SCENARIOS. 

 

(a) Insurance premiums in the optimistic scenario. 

 

(b) Insurance premiums in the neutral scenario. 
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(c) Insurance premiums in the pessimistic scenario. 

This figure shows the insurance premiums with three different scenarios in New York City with the dike project. The 
scenarios considered allows for a global average sea level rise by 2100 of: 19cm (optimistic); 65cm (neutral); 190cm 
(pessimistic). Insurance premium distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 80, 90, and 74 100 years. 
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Figure 39 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN NYC WITH FLOOD PROOFING UNDER 

DIFFERENT SEA LEVEL RISE SCENARIOS. 

 

(a) Insurance premiums in the optimistic scenario. 

 

(b) Insurance premiums in the neutral scenario. 
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(c) Insurance premiums in the pessimistic scenario. 

This figure shows the insurance premiums with three different scenarios in New York City with the flood proofing 
project. The scenarios considered allows for a global average sea level rise by 2100 of: 19cm (optimistic); 65cm 
(neutral); 190cm (pessimistic). Insurance premium distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 75 80, 90, 
and 100 years. 

Similar to the dike project, Figure 39 shows the numerical results of the sensitivity analysis for the 

flood-proofing project. Results are similar to the previous one: as the expected level of sea rise 

increases, the insurance premium distribution shifts upwards. Overall, flood-proofing seems to 

provide a more moderate protection from the effect of climate change in all three scenarios, 

compared to the construction of the dike. 

Figure 40 shows the sensitivity analysis for the South East Queensland case. In all three scenarios, 

elevating houses provides enough protection, and reduces the impact of climate change. 
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Figure 40 

DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IIN SOUTH EAST QUEENSLAND UNDER 

DIFFERENT SEA LEVEL RISE SCENARIO. 

 

(a) Insurance premiums in the optimistic scenario. 

 

(b) Insurance premiums in the neutral scenario. 
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(c) Insurance premiums in the pessimistic scenario. 

This figure shows the insurance premiums with three different scenarios in South East Queensland in the elevation 
project. The scenarios considered allows for a global average sea level rise by 2100 of: 19cm (optimistic); 87cm 
(neutral); 190cm (pessimistic). Insurance premium distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 77 80, 90, 
and 100 years. 

FIGURE 41 DEVELOPMENT OF INSURANCE PREMIUM DISTRIBUTION IN COPENHAGEN UNDER 

DIFFERENT SEA LEVEL RISE SCENARIOS. 

 

 

(a) Insurance premiums in the optimistic scenario. 
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(b) Insurance premiums in the neutral scenario. 

 

(c) Insurance premiums in the pessimistic scenario. 

This figure shows the insurance premiums with three different scenarios in Copenhagen with dike project. The 
scenarios considered allows for a global average sea level rise by 2100 of: 19cm (optimistic); 65cm (neutral); 190cm 
(pessimistic). Insurance premium distributions are depicted at 10, 20, 30, 40, 50, 60, 70, 80, 90, and 78 100 years. 
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Finally, Figure 41 shows the numerical results for Copenhagen. Similar to the previous cases, the 

insurance premium distribution shifts upwards with the mean sea level expectation. While Stage 1 

is always invested, the likelihood of Stage 2 being invested is close to zero in the optimistic scenario. 

In this case, the protection provided by the Stage 1 dike is more than enough to avoid extreme 

consequences in Copenhagen. In addition, while the Stage 2 is invested only close to the year 100 

in the neutral scenario, in the pessimistic scenario the investment occurs much earlier, in around 

year 40 and 50. 
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7: Conclusion 

In this report, we have proposed a new modeling framework for optimal climate adaptation 

pathways, based on real option analysis. Our methodology combines the block maxima approach 

from extreme value theory and the generalized additive model for location scale and shape 

framework, with real option analysis, allowing for pricing catastrophic risk in coastal regions, 

considering economic growth and uncertainty in the mean sea level rise. It also provides insights 

into the optimal investment timing, both for single investment projects and for optimal adaptation 

pathways, when multiple projects are feasible. We then showcased our proposed methodology with 

three cases studies based in New York City, Copenhagen, and in South East Queensland. 

Sea-surface temperature and atmospheric pressure are two important predictors for the severity 

of extreme weather events. We have investigated the most commonly used climate indices and 

their statistical properties. Thanks to extreme value theory, we have used a block maxima approach 

combined with the generalized additive model for location scale and shape framework to model the 

behavior of extreme sea level events, using the climate indices as covariates. The estimation shows 

evidence of increasing sea level rise in all the three geographic areas investigated, and at the same 

time, a significant effect of the climate indices on the distribution of extreme water levels. 

We then combined the estimation results with the proposed real option framework in three case 

studies, evaluating both hard and soft climate adaptation policies. For New York, we compared a 

hard and more expensive project, the construction of a barrier and dike, with a less invasive and 

less expensive flood-proofing project. On the one hand, numerical results suggest that while the 

barrier and dike project would provide the city of New York with a higher level of protection, it 

would be beneficial to defer the investment, as the current level of infrastructure appears to be 

adequate. On the other hand, the flood-proofing project is a low-cost adaptation option and 

according to the numerical experiment conducted, it would be beneficial for the city to invest right 

away in this technology. When analyzed jointly as a possible portfolio of climate adaptation policies, 

the applied real option approach suggests not to invest into the flood-proofing project, while it is 

optimal to wait and see how climate uncertainty unfolds and then invest in the barrier and dike 

project.  

In the South East Queensland case study we analyzed house elevation as a climate adaptation policy 

to reduce the impact of climate risk. As it turns out, elevating houses reduces the impact of extreme 

weather events considerably, and while investing in it right away would be a valuable option, 

deferring the investment would provide an even higher benefit of the project. In the third case study 

we examine different climate adaptation measures in the Copenhagen region. Our study shows that 

according to the different scenarios, the real option framework can be flexible enough to adapt to 

and compare single investment options with multiple investments type of projects. In particular, we 

discussed under which conditions of expected sea level rise and growth exposure, it would be better 

to construct a barrier and dike project in two stages, raising the dike up to a certain height first, wait 

for the climate uncertainty to unfold, and then potentially further rising the dike, rather than 

elevating the dike to its total height right away. 
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Finally, we investigated how the adoption of the different projects in the three case studies impacts 

the distributions of future insurance premiums for an insurance policy covering the entire city from 

losses due to extreme sea level rise for 12 months. Then we considered the adoption of a top cover 

limit of 1 billion dollars. 

Our study presents a comprehensive approach of real option analysis to climate adaptation policies 

aiming to mitigate flood risk. As shown in this report, real option analysis is a very flexible approach 

and could be applied to similar situations to those discussed in this report. Nevertheless, a few notes 

of caution need to be mentioned. 

Firstly, real option analysis requires the estimation of several key parameters, such as the expected 

rate of sea level rise and the impact of climate indices, and therefore it must be based on high 

quality data, which is always a scarce commodity. While a lot of efforts have been made to collect 

appropriate data - also thanks to the vast networks of international scientific collaborations such as, 

e.g., the University of Hawaii Sea Level Center – information on sea level data is limited to locations, 

where it’s possible to collect it. Secondly, focusing only on extreme events, one can then rely on 

extreme value theory as a sounded statistical methodology. However, data on extreme events is 

notoriously scarce and one should always bear that in mind. Thirdly, our approach requires reliable 

estimates of the loss function used to evaluate the insurance premiums, and reliable estimates of 

loss functions are typically very complicated to obtain, again due to the scarcity of data and a lack 

of complete scientific studies. Finally, real option analysis could be quite computationally intensive 

in complex investment problems. 

Our analysis focused on the application of real option analysis to climate adaptation polices, 

mitigating the impact of flood risk and increasing resilience of coastal communities. In this report 

we presented a one factor model, where the impact of climate change is transmitted through the 

expected rate at which the mean sea level rises. For future research purposes, our framework can 

be extended to a two-factor analysis where stochasticity is also introduced in storm surge volatility. 

The stochasticity of storm surge volatility may be significant in some regions, as implied by the 

impact of climate indices on the scale parameter of storm surges. A two-factor model would help 

to capture the higher value for investment flexibility due to the stochasticity of the scale parameter 

and provide better investment decisions. In addition, this project has analyzed investment projects 

from the perspectives of governments. In practice, there is an interaction between the level of 

climate change adaptation and insurance uptake. Adaptation investments are costly, however, 

investing in adaptation projects will make insurance more affordable. Increases in insurance uptake 

help speed up disaster recovery, which may improve social welfare. This interaction between 

adaptation and insurance uptake decisions provides an interesting avenue for future research. 

Finally, although the project has examined adaptation at the building level (flood-proofing 

measures), it has not examined how the policy on building codes should be adapted. Future 

research on building codes policy would be of great interest to governments. 
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