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1 Introduction  
The study of interest theory includes the concept of duration and how it may be used to 

approximate the change in the present value of a cash flow series resulting from a small change 

in interest rate. The purpose of this study note is to demonstrate a non-linear approximation using 

Macaulay duration that is more accurate than the linear approximation using modified duration, 

and that a corresponding second-order approximation using Macaulay duration and convexity is 

more accurate than the usual second-order approximation using modified duration and convexity. 

These Macaulay approximations are found in formulas (4.2) and (6.2) below.  

Most textbooks give the following formula using modified duration to approximate the change in 

the present value of a cash flow series due to a change in interest rate: 

 0 0 mod 0( ) ( ) 1 ( ) ( )P i P i i i D i     . 

This approximation uses only the difference in interest rates and two facts about the cash flow 

series based on the initial interest rate, 0i , to provide an approximation of the present value at a 

new interest rate, i. These two facts are (1) the present value of the cash flow series and (2) the 

modified duration of the cash flow series. Furthermore, the approximation of the change in 

present value is directly proportional to the change in interest rate, facilitating mental 

computations. We will refer to this approximation as the first-order modified approximation. 

The following approximation, using Macaulay duration, is, under very general conditions, at 

least as accurate as the first-order modified approximation and has other pleasant attributes: 

mac 0( )
0

0
1

( ) ( )
1

D i
i

P i P i
i

 
  

 
, 

We will refer to this approximation as the first-order Macaulay approximation.  

The methods discussed in this note are based on the assumption that the timings and amounts of 

the cash flow series are unaffected by a small change in interest rate. This assumption is not 

always valid. On one hand, in the case of a callable bond, a change in interest rates may trigger 

the calling of the bond, thus stopping the flow of future coupons. On the other hand, non-callable 

bonds, or payments to retirees in a pension plan are situations where the assumption is usually 

valid.  

The developments in this note are also predicated on a flat yield curve, that is to say that cash 

flows at all future times are discounted to the present using the same interest rate.  

This note is not intended to be a complete discussion of duration. In fact, we assume the reader 

already is acquainted with the concept of duration, although it is not absolutely required. 
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2 Cash Flow Series and Present Value 
A cash flow is a pair, ( , )a t , where a is a real number, and t is a non-negative real number. Given 

a cash flow ( , )a t , the amount of the cash flow is a  and the time of the cash flow is t . Notice 

that we have allowed the amount to be negative, although the time is non-negative. A cash flow 

series is a sequence (finite or infinite) of cash flows ( , )k ka t  defined for k N , where N is a 

subset of the set of non-negative integers.  

For the purpose of calculating present values and durations, we introduce a periodic effective 

interest rate, i, where the period of time is the same time unit used to measure the times of the 

cash flows. For example, if the times are measured in months, then the interest rate, i, is a 

monthly effective interest rate. We define P to represent the present value of the cash flow series 

as a function of the interest rate as follows. 

  ( ) (1 ) kt
k

k N

P i a i




    (2.1) 

If the cash flow series is infinite, the sum in (2.1) may not converge or be finite. In what follows, 

we implicitly make the assumption that any sums so represented converge. In the case that N is a 

finite set of the form {1,..., }n , we may choose to write the sum as 

 
1

(1 ) k
n

t
k

k

a i




  . 

The following examples show the present value of a 10-year annuity immediate calculated at an 

annual effective interest rate of 7.0% and at an annual effective interest rate of interest of 6.5%. 

We will use this same cash flow series as an example throughout this note. 

Suppose ( , ) (1000, )k ka t k  and  1,...,10N  . Then, 

 
10 0.07

(0.07) 1000 7023.5815P a    (2.2) 

and 

 
10 0.065

(0.065) 1000 7188.8302.P a    (2.3) 

We would like to approximate the change in the present value of a cash flow series resulting 

from a small change in the interest rate. This is a valuable technique for several reasons. First, 

much of actuarial science involves the use of mathematical models of various levels of 

complexity and sophistication. To be able to use a model effectively, one needs to understand the 

dynamics of the model, i.e., how one variable changes based on a change to a different variable. 

The present value formula is such a mathematical model. An actuary should understand how 

present value changes when the amounts change, when the times change, and when the interest 

rate changes.  
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A second reason is that as a practical matter, actuaries are required sometimes to approximate 

changes in present value without being able to use the computer power needed for a complete 

calculation. For example, consider an investment actuary meeting with the president of a large 

insurance company with a substantial bond portfolio. The president is concerned that interest 

rates will increase, which will decrease the value of the bond portfolio. The investment actuary 

has recently calculated the value of the bond portfolio using an interest rate of 6.5%. The 

president wants to know the value of the bond portfolio if interest rates increase to 6.75% or even 

7.0%. Since the value of the bond portfolio is merely the present value of future cash flows, 

using the concepts of duration defined below, such approximations can be done quickly using 

nothing more than a handheld calculator.  

Even when full computing power is available, approximations like the ones in this note are 

essential. For example, when doing multi-year projections using Monte Carlo techniques for 

interest rate scenarios, thousands of present value calculations may be needed. It is not feasible 

to do full calculations and approximations make it possible for such projections to be done. 

3 Macaulay and Modified Duration 
The definition of Macaulay duration is 

 

 

 

 
mac

(1 ) (1 )

( ) .
( )(1 )

k k

k

t t
k k k k

k N k N

t
k

k N

t a i t a i

D i
P ia i

 

 





     

 
 

 


 (3.1) 

The definition of modified duration is 

 
 1

mod

(1 )
( )

( ) .
( ) ( )

kt
k k

k N

t a i
P i

D i
P i P i

 



  


 


 (3.2) 

Macaulay duration is the weighted average of the times of the cash flows, where the weights are 

the present values of the cash flows. Modified duration is the negative derivative of the present-

value function with respect to the effective interest rate, and expressed as a fraction of the 

present value. Therefore it is expected that modified duration gives us information about the rate 

of change of the present-value function as the interest rate changes. We note the following 

relation between the two notions of duration: 

 mac
mod

( )
( ) .

1

D i
D i

i



 (3.3) 

Because both definitions of duration involve division by P(i), we will assume for the remainder 

of this note that  

 ( ) 0.P i    (3.4) 
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As an example of Macaulay and modified duration, we first consider a cash flow series that 

consists of a single flow, 1 1( , )a t . For this situation, we have 

 1
mac 1 mod( )   and  ( ) .

1

t
D i t D i

i
 


 (3.5) 

Next, using the 10-year immediate annuity and setting 0.07i  we have 

 

10

1
mac 10

1

( 1000 1.07 )
34739.1332

(0.07) 4.9460710.
7023.5815

(1000 1.07 )

k

k

k

k

k

D









 

  







 (3.6) 

Alternatively, for this example, we can see that 

 mac
10 0.07 10 0.07

10 0.07 10 0.07

1000 ( ) ( ) 34.7391332
(0.07) 4.9460710.

1000 7.0235815

Ia Ia
D

a a


   


 (3.7) 

Also, for this example, we have 

 mac
mod

(0.07) 4.9460710
(0.07) 4.6224963.

1.07 1.07

D
D      (3.8) 

4 First-Order Approximations of Present Value 
The first-order modified approximation of the present-value function is 

 0 0 mod 0( ) ( ) (1 ( ) ( )).P i P i i i D i      (4.1) 

This approximation is presented on Page 369 in [1], on Page 396 in [2], on Page 455 in [3], and 

on Page 216 in [4]. It is derived using the first-order Taylor approximation for ( )P i  about 0i . 

The first-order Macaulay approximation of the present-value function is 

 
mac 0( )

0
0

1
( ) ( ) .

1

D i
i

P i P i
i

 
  

 
  (4.2) 

The derivation of this approximation is given in Appendix A. 

Using the 10-year annuity immediate, we calculate the first-order modified approximation for 

P(0.065) and compare it to the true present value. The result is 

  mod(0.065) (0.07) 1 (0.065 0.07) (0.07)

7023.5815 (1 0.005 4.6224963) 7185.9139.

P P D    

    

 (4.3) 

Because P(0.065) = 7188.8302, the percent error is –0.0406%. 

Next we calculate the corresponding values for the first-order Macaulay approximation: 
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4.9460710

1.07
(0.065) 7023.5815 7188.1938.

1.065
P

 
   

 
 (4.4) 

The percent error is –0.0089%. 

Thus, the error from Macaulay approximation is about 22% of the error from the modified 

approximation. 

It is worthwhile noting that in the case where the cash flow series consists of a single cash flow, 

the first-order Macaulay approximation gives the exact present value, while the first-order 

modified approximation does not.  

In Appendix B, we have compared the two approximations over 180 scenarios. At worst, the 

error from the first-order Macaulay approximation is 39% of the error from the first-order 

modified approximation. At best, the error from the first-order Macaulay approximation is 14% 

of the error from the first-order modified approximation.  

In Appendix C, it is shown that the first-order Macaulay approximation is more accurate than the 

first-order modified approximation whenever the cash flow amounts are positive. When this 

condition is not met, it is possible for the first-order modified approximation to be more accurate 

than the first-order Macaulay approximation. 

5 Modified and Macaulay Convexity  
The definition of modified convexity is:  

 
 2

mod

( 1) (1 )

( ) ( ) / ( ) .
( )

kt
k k k

k N

t t a i

C i P i P i
P i

 



    

 


  (5.1) 

The definition of Macaulay convexity is:  

 

 

 

 2 2

mac

(1 ) (1 )

( ) .
( )(1 )

k k

k

t t
k k k k

k N k N

t
k

k N

t a i t a i

C i
P ia i

 

 





     

 
 

 


 (5.2) 

Thus, Macaulay convexity is the weighted average of the squares of the times of the cash flows, 

where the weights are the present values of the cash flows. The following relationship is easily 

derived: 

 mac mac
mod 2

( ) ( )
( ) .

(1 )

C i D i
C i

i





 (5.3) 

As an example of Macaulay and modified convexity, we first consider a cash flow series that 

consists of a single cash flow, 1 1( , )a t . For this situation, we have 



7 

 

 2 1 1
mac 1 mod 2

( 1)
( )   and  ( ) .

(1 )

t t
C i t C i

i

 
 


  (5.4) 

Using the 10-year annuity example from Sections 2 and 3, we can see that 

 

10
2

1
mac 10

1

(1000 1.07 )
228,451.20

(0.07) 32.526311
7,023.5815

(1000 1.07 )

k

k

k

k

k

C









 

  







 (5.5) 

and 

 mac mac
mod 2

(.07) (0.07)
(0.07) 32.729830.

1.07

C D
C


    (5.6) 

6 Second-Order Approximations of Present Value 
The second-order modified approximation of the present value function is: 

 
2

0
0 0 mod 0 mod 0

( )
( ) ( ) 1 ( ) ( ) ( ) .

2

i i
P i P i i i D i C i

 
       

 
 

 (6.1) 

This approximation can be found in most of the texts. 

Letting 2
mac 0 mac 0 ( ) and ( )T D i Q C i T   , the second-order Macaulay approximation of 

the present value function is:  

 
2

0 0
0

0

1
( ) ( ) 1 .

1 1 2

T
i i i Q

P i P i
i i

            
      

  (6.2) 

A derivation of this formula can be found in Appendix D. 

To illustrate these two approximations, we will apply them to the 10-year annuity example. 

Using the convexity values from Section 5 and the duration values from Section 3, we can 

calculate the two second-order approximations of P(0.065), with the following results. 

First, for the second-order modified approximation, we get 

 

 

2

mod mod

2

(0.065 0.07)
(0.065) (0.07) 1 (0.065 0.07) (0.07) (0.07)

2

(0.005)
7023.5815 1 0.005 4.6224963 32.729830

2

7023.5815 1 0.0231125 0.0004091

7188.7874.

P P D C
 

       
 
 

 
      

 
 

   



(6.3) 
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Because P(0.065) = 7188.8302, the percent error is –0.00060%. 

Next we calculate the second-order Macaulay approximation:  

 

4.9460719

2 2

1 0.07
(0.065) (0.07)

1 .065

0.065 0.07 32.526311 4.9460710
  1

1 .07 2

7023.5815 1.02343708 1.0000881

7188.8266. 

P P
 

  
 

   
       

  



  (6.4) 

Here the percent error is –0.00005%. For this example, the error for the second-order Macaulay 

approximation is less than 10% of the error of the second-order modified approximation.  

Table (B.3) of Appendix B shows that the error from the second-order Macaulay approximation 

is less than 20% of the error from the second-order modified approximation over 180 different 

scenarios. 

As a final observation about the second-order methods, we note that the Macaulay approximation 

gives the exact present value at the new interest rate in the case of a single cash flow, because in 

this case, using (3.5) and (5.4), 2 2

1 1 0Q t t   .  
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Appendix A: Derivation of First-Order Macaulay Approximation 
To derive this approximation of P(i) we reason as follows. For each time T, we define a function 

TV to represent the current value of the given cash flow series at time T: 

 ( ) ( ) (1 ) .T
TV i P i i     (A.1) 

Note that if we set 0T  in (A.1), we obtain the present-value function. It is important to 

understand that each function TV is a function of a single real variable, which we think of as 

representing an effective rate of interest. Below, when we take the derivative of one of these 

functions, it is with respect to that variable. 

For the moment, let us consider a specific interest rate, 0i , and consider current-value functions 

for various values of T. If T is small enough, for example before the time of the first payment, 

then a small increase in the interest rate will decrease the current value, i.e., 0( ) 0TV i  . 

However, if T is large enough, then a small increase in the interest rate will increase the current 

value, i.e., 0( ) 0TV i  . This suggests that there is some value of T such that the function TV is 

neither increasing nor decreasing at 0i . That is, for this value of T, we would have 0( ) 0TV i  . 

We solve for this value: 

1
0 0 0 0 00 ( ) ( ) (1 ) ( ) (1 )T T

TV i P i T i P i i         . 

Thus, 

0 0 0 0
mod 0 0 mac 01

00 0

( ) (1 ) ( ) (1 )
( ) (1 ) ( )

( )( ) (1 )

T

T

P i i P i i
T D i i D i

P iP i i 

      
     

 
. 

It is easily checked that, in fact, 00 ( )TV i  if mac 0( )T D i . Let us now define the function V, 

with no subscript, as TV with mac 0( )T D i . Thus,  

mac 0( )
( ) ( ) (1 )

D i
V i P i i    

and 0( ) 0V i  . By applying the first-order Taylor approximation to V(i) about 0i we see  

 mac 0 mac 0

mac 0

0 0 0 0

( ) ( )
0 0

( )
0

0

( ) ( ) ( ) ( ) ( )

( ) (1 ) ( ) (1 )

1
( ) ( ) .

1

D i D i

D i

V i V i i i V i V i

P i i P i i

i
P i P i

i

    

    

 
  

 

  (A.2)  
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Appendix B: Comparisons of Approximations 
The percent error has been analyzed for both the modified duration approximation and the 

Macaulay duration approximation under a variety of scenarios. We have considered nine 

different cash flow series, each with up to 25 cash flows at times 1 through 25. The series are 

defined as follows. 

(B.1) Table of Cash Flow Series Scenarios 

Time Level-5 Level-10 Level-15 Level-20 Level-25 Increasing Decreasing Inc/Dec Dec/Inc 

1 1,000  1,000  1,000  1,000  1,000  1,000  26,000  1,000  26,000  

2 1,000  1,000  1,000  1,000  1,000  2,000  25,000  2,000  25,000  

3 1,000  1,000  1,000  1,000  1,000  3,000  24,000  3,000  24,000  

4 1,000  1,000  1,000  1,000  1,000  4,000  23,000  4,000  23,000  

5 1,000  1,000  1,000  1,000  1,000  5,000  22,000  5,000  22,000  

6 0  1,000  1,000  1,000  1,000  6,000  21,000  6,000  21,000  

7 0  1,000  1,000  1,000  1,000  7,000  20,000  7,000  20,000  

8 0  1,000  1,000  1,000  1,000  8,000  19,000  8,000  19,000  

9 0  1,000  1,000  1,000  1,000  9,000  18,000  9,000  18,000  

10 0  1,000  1,000  1,000  1,000  10,000  17,000  10,000  17,000  

11 0  0  1,000  1,000  1,000  11,000  16,000  11,000  16,000  

12 0  0  1,000  1,000  1,000  12,000  15,000  12,000  15,000  

13 0  0  1,000  1,000  1,000  13,000  14,000  13,000  14,000  

14 0  0  1,000  1,000  1,000  14,000  13,000  12,000  15,000  

15 0  0  1,000  1,000  1,000  15,000  12,000  11,000  16,000  

16 0  0  0  1,000  1,000  16,000  11,000  10,000  17,000  

17 0  0  0  1,000  1,000  17,000  10,000  9,000  18,000  

18 0  0  0  1,000  1,000  18,000  9,000  8,000  19,000  

19 0  0  0  1,000  1,000  19,000  8,000  7,000  20,000  

20 0  0  0  1,000  1,000  20,000  7,000  6,000  21,000  

21 0  0  0  0  1,000  21,000  6,000  5,000  22,000  

22 0  0  0  0  1,000  22,000  5,000  4,000  23,000  

23 0  0  0  0  1,000  23,000  4,000  3,000  24,000  

24 0  0  0  0  1,000  24,000  3,000  2,000  25,000  

25 0  0  0  0  1,000  25,000  2,000  1,000  26,000  
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For each cash flow series, the present value was approximated at 20 interest rates that differed 

from the initial interest rate of 7.0% by multiples of 0.2% between 5.0% and 9.0%. The percent 

errors were averaged using a subjectively selected weighting of 0e
i i 

 to give greater value to 

rates nearer the initial rate.  

(B.2) Table of average weighted percent errors for first-order approximations 

Cash Flow 

Series 

1st-order 

modified 

1st-order 

Macaulay 

Macaulay err/ 

modified err 

Level-5 0.0820% 0.0125% 15.24% 

Level-10 0.2351% 0.0506% 21.52% 

Level-15 0.4402% 0.1112% 25.26% 

Level-20 0.6765% 0.1905% 28.16% 

Level-25 0.9266% 0.2837% 30.62% 

Increasing 1.6473% 0.2601% 15.79% 

Decreasing 0.5313% 0.1776% 33.43% 

Inc/Dec 1.0181% 0.1689% 16.59% 

Dec/Inc 0.8984% 0.3138% 34.93% 

 

Table (B.2) shows that the first-order Macaulay approximation is consistently markedly better 

than the first-order modified approximation. Overall, the error from the Macaulay approximation 

is about 1/3 or less of the error from the modified approximation. 

(B.3) Table of weighted-average percent errors for second-order approximations 

Cash Flow 

Series 

2nd-Order 

modified 

2nd-Order 

Macaulay 

Macaulay err/ 

modified err 

Level-5 0.0023% 0.0002% 8.70% 

Level-10 0.0107% 0.0009% 8.41% 

Level-15 0.0272% 0.0024% 8.82% 

Level-20 0.0522% 0.0051% 9.77% 

Level-25 0.0851% 0.0095% 11.16% 

Increasing 0.1666% 0.0028% 1.68% 

Decreasing 0.0405% 0.0071% 17.53% 

Inc/Dec 0.0844% 0.0034% 4.03% 

Dec/Inc 0.0853% 0.0122% 14.30% 
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Table (B.3) shows that the second-order Macaulay approximation is consistently markedly better 

than the second-order modified approximation. Overall, the error from the Macaulay 

approximation is about 1/5 or less of the error from the modified approximation.  

We can use the second-order results to measure the success of the Macaulay first-order 

approximation. For the Level-5 cash flow series, the difference between the first-order modified 

average error and the second-order modified average error is 0.0820% - 0.0023%, or 0.0797%. 

The difference between the first-order modified average error and the first-order Macaulay 

average error is 0.0820% – 0.0125%, or 0.0695%. Thus the first-order Macaulay approximation 

takes you 87% of the way from the first-order modified to the second-order modified 

approximation.  This percentage varies between 72% and 94% over the nine different cash flow 

series studied. 
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Appendix C: Demonstration that the First-Order Macaulay 

Approximation is More Accurate than the First-Order Modified 

Approximation 
We assume in this appendix that the cash flow amounts are positive. We first establish some 

notation. We are given an initial periodic effective interest rate, 
0i . For our given cash flow 

series, we set 

mac 0

0
1 0 0 mod 0 0

0

0
2 0 0

0

( )

( ) ( ) (1 ( ) ( )) ( ) 1
1

1 1
( ) ( ) ( )

1 1

TT

T D i

i i
F i P i i i D i P i T

i

i i
F i P i P i

i i





 
         

 

   
     

    

 

so that 1( )F i is the first-order modified approximation to P(i), and 2 ( )F i is the first-order 

Macaulay approximation to P(i). 

In Theorem (C.5) below, we show that, the first-order modified approximation is less than or 

equal to the first-order Macaulay approximation which is less than or equal to the actual present 

value. Thus the first-order Macaulay approximation is always a better approximation. 

We begin by showing that the first-order modified approximation is less than or equal to the 

first-order Macaulay approximation. 

(C.1) Theorem: 1 2( ) ( )F i F i  

Proof:  

We have 

 

1

2 0

0 0

2

2 0 2

0 0

1 1
( ) ( )

1 1

1 1
( ) ( 1) ( ) 0.

1 1

T

T

i
F i T P i

i i

i
F i T T P i

i i

 

 

 
      

  

 
        

  
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By Taylor’s Theorem with remainder there is j between 
0i  and i such that 

2

0
2 2 0 0 2 0 2

2 0 0 2 0

0
0 0

0

1

( )
( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( )

( )
( ) ( )

1

( ).

i i
F i F i i i F i F j

F i i i F i

T P i
P i i i

i

F i


      

   

 
   





 

Theorems (C.2) through (C.5) are devoted to showing that the first-order Macaulay 

approximation is less than or equal to the present value. While Theorems (C.2) through (C.4) are 

important in their own right, the reader may wish to think of these as Lemmas. For these 

theorems, our argument is simplified by using a continuously compounded rate of interest,  , as 

the independent variable. Thus we will define the present value function, Macaulay duration, 

Macaulay convexity, and the first-order Macaulay approximation in terms of this variable. We 

begin with an initial 0 0ln(1 )i    and make the following definitions. 

   

 
 

 
 

  0

mac

2

mac

( )

2 0

( ) e 1 e ;

e

( ) e 1 ;
( )

e

( ) e 1 ;  and
( )

( ) e 1 ( ) e .

k

k

k

t

k

k N

t

k k

k N

t

k k

k N

T

P P a

t a

D D
P

t a

C C
P

F F P











 









 

 





 






 






  

 

   

 

  

 

  

   






 

(C.2) Theorem: If ( )D D   and ( )C C   then 
2 0C D  . 

Proof: 

For each k N , set 
e

( )

kt

k
k

a
q

P





 




 , and note that 0kq   and 

1 k

k N

q


  and  ( ) k k

k N

D t q



   and  2( ) k k

k N

C t q



  . Then 
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   

  

  

2 2

2 2

2 2

2

2 1

2

2

0.

k k k k k

k N k N k N

k k k

k N

k k

k N

C D C D D D

t q D t q D q

t D t D q

t D q

  





      

       

     

  



  





 

(C.3) Theorem: ( ) 0D 
   

Proof: We first note that 

 ( ) e

( )
( )

( )

( )
( ) .

( )

kt

k k

k N

P t a

P
D

P

P
C

P













 











    









 

We can now see that 

2

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( )

0.

P P P P
D

P

C D D

   




  

   




  

     
 

   



 

Theorem (C.3) shows that Macaulay duration decreases as the interest rate increases. 

(C.4) Theorem: ( ) ( )F P    

Proof: Set ( )  ( ) eTV P   

   . Then 

 ( ) ( ) e ( ) e ( ) e ( ) .T T TV P T P P T D        

    
           

Using Taylor’s Theorem with Remainder, there is j between   and 0  such that  

0 0( ) ( ) ( ) ( )V V V j     
     

and hence 

0

0

0 0

0 0 0

( ) e ( ) e ( ) ( ) e ( ( ))

( ) e ( ) ( ) e ( ( ) ( )).

TT T j

T T j

P P P j T D j

P P j D D j





   

   

 
   

 
   

        

       
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If 
0   then 

0j   , and because of (C.3), 
0( ) ( )D j D   , and 

 0 0( ( ) ( )) 0.D D j        

Similarly, if 0  , then  0 0( ( ) ( )) 0D D j       . 

Thus 

0

0

0

( )
0

( ) e ( ) e

( ) ( ) e

( ).

TT

T

P P

P P

F



 

 

 




 

  
 



  

 



 

(C.5) Theorem: 1 2( ) ( ) ( )F i F i P i   

Proof: 

1 2( ) ( )

(ln(1 ))

(ln(1 ))

( ).

F i F i

F i

P i

P i







 

 


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Appendix D: Derivation of Second-Order Macaulay Approximation 

As in Appendix A, we let ( ) ( ) (1 )TV i P i i    where mac 0( )T D i , and we remember that 

0( ) 0V i  . We will use a second-order Taylor approximation for V, and therefore we compute 

the first and second derivatives of V: 

 1( ) ( ) (1 ) ( ) (1 )T TV i P i T i P i i         (D.1) 

and 

 

 

2 1

2 2

2 2

mod mod

2

( ) ( ) ( 1) (1 ) 2 ( ) (1 ) ( ) (1 )

( ) ( )
( ) (1 ) ( 1) 2 (1 ) (1 )

( ) ( )

( ) (1 ) ( 1) 2 ( ) (1 ) ( ) (1 )

( ) (1 ) (

T T T

T

T

T

V i P i T T i P i T i P i i

P i P i
P i i T T T i i

P i P i

P i i T T D i T i C i i

P i i T

 







               

  
              

 

             

     mac mac mac1) 2 ( ) ( ) ( ) .T D i T C i D i     

 (D.2) 

In particular, for 0i i , we have 

 

 

 

 

2

0 0 0 mac 0 mac 0 mac 0

2

0 0 mac 0

2 2

0 0 mac 0

( ) ( ) (1 ) ( 1) 2 ( ) ( ) ( )

( ) (1 ) ( 1) 2 ( )

( ) (1 ) ( ) .

T

T

T

V i P i i T T D i T C i D i

P i i T T T T C i T

P i i C i T







           

          

    

  (D.3) 

We now use the second-order Taylor approximation for V(i) about 0i : 

2

0
0 0 0 0

( )
( ) ( ) ( ) ( ) ( )

2

i i
V i V i i i V i V i


        

This translates to 

  
2

2 20
0 0 0 0 mac 0

2 2

0 mac 0
0 0 2

0

( )
( ) (1 ) ( ) (1 ) 0 ( ) (1 ) ( )

2

( ) ( )
( ) (1 ) 1

(1 ) 2

T T T

T

i i
P i i P i i P i i C i T

i i C i T
P i i

i


           

  
      

 

 

from which we obtain the second-order Macaulay approximation: 

 
2 2

0 0 mac 0
0 2

0

1 ( ) ( )
( ) ( ) 1 .

1 (1 ) 2

T
i i i C i T

P i P i
i i

    
      

    
  (D.4) 
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