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Executive Summary

In this paper | will describe how predictive models can be constructed that will “learn” the
input-output relationships of stochastic simulations. The usefulness of this technique derives
from that fact that the sophisticated and computationally intensive set of stochastic simulations
needs to be run only once for a given set of fixed input. Once we are satisfied that the
predictive model has learned the desired relationships, the variable inputs to the more efficient
and compact predictive model can be varied and output results can be generated quickly for

optimization or “what-if” analysis.

| will explore the performance of an actual predictive model that learned the input-output
relationships of a personal financial planning model based on stochastic simulations. For this
exercise | chose to construct and use a feed-forward neural network. The neural network was
successfully trained using output from a spreadsheet based financial planning model that was
fed by an economic scenario generator. The trained network was then tested on a previously

unseen data set to gauge its level of performance.

The trained network generates an almost instantaneous result, compared to the better part of
an hour it took to run each stochastic simulation for a given set of fixed parameter value. This

can make a very significant difference when making important decisions in real time.



Choice of Predictive Modeling Techniques

While there are many predictive modeling techniques available, | have chosen to use neural
networks in this paper. It has been proven that, given certain conditions, neural network
models are universal function approximators®. Essentially, a properly constructed neural

network can reproduce any continuous functional mapping to any desired degree of accuracy.
Neural Network Basics

Neural networks, as the name implies, use principles analogous to the functioning of the neural
structure in the human brain. There are processing units called neurons that are connected
together by functional relationships similar to synapses in the brain. Information travels
between the neurons as numerical values. The receiving neurons then take the values, process

them and pass the output results on to other neurons.

! Bishop, Christopher M. (1995) Neural Networks for Pattern Recognition, p. 128. Oxford University Press.
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Figure 1. Generalized Neural Network

While generally information can flow in any direction within a neural network, it is more
convenient mathematically to have the information flow in one direction. This type of network

is called a feed-forward neural network.



Figure 2. Feedforward Neural Network

The most commonly used type of feed-forward neural network is called a multi-layer
perceptron (MLP). In this type of network, each non-input neuron (or unit) is fed into by output
from all of the units in the previous level. The units that are not input or output units are called

hidden units. There can be one or more layers of hidden units.
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Figure 3 — Multi-Layer Perceptron

d
The output of hidden unit j in the first hidden layer can be described as a; = Z Wj(il)xi
i=0

where d is the number of input units, Wj(il) is the weight in the first layer for the signal from

input i to hidden unitjand x; is the input value from input i. We will set xy=1 so that we have

what is called a bias unit.
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Figure 4. Example of Hidden Unit Processing

With any neural network architecture, processing takes place in each non-input unit after all of
the inputs to that unit are weighted and summed together. This processing must ultimately be
of a non-linear nature to allow the network to learn non-linear functional relationships.
Therefore, we will transform the linear sum a;using a non-linear activation function that we will
call g(x). The activation output is defined as z = g(a). The functional form of g can vary based

on preference, but often is based on the logistic sigmoid function where

(see Figure 5)
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Figure 5. Logisitic Sigmoid Function

The output of g(a) is then passed to units in the output layer, or alternatively another hidden
layer. In the output layer, the inputs are weighted, summed and transformed just like in the
hidden layers. The activation function at the output stage, h(x), is often linear but can vary

based on the range and nature of desired outputs.

The equation for the output of this network with one hidden layer, for the kth output, is:

M d
2 1
Yk =h Z W;Ej)g (Z Wj(i )xi>
=0 i=0

Once the network architecture has been determined and the data scrubbed and pre-processed
as necessary, the next step is to present the network with training examples so that the
network weights can be optimized. Optimizing the weights involves minimizing an error

function, typically the sum of squared error. The standard sum of squared error function for



training pattern n (where c is the number of output units and t is a training pattern output) is

given by:

1 C
en = EZ(Yk —ty)?
k=1

The aggregated error for the neural network is summed over all of the individual training

examples and is:

E=Z én
n

Optimizing the weights to minimize the error function is not a trivial process due to the
complexity and non-linearity of the neural network equations. A process called back-
propagation was developed. First a random set of weights is computed for the network. The
network is then presented with the training examples and the error between the example
output and neural net output is computed and propagated backwards through the network and
the weights are adjusted to reduce the error. This is done in successive iterations until desired
criteria for convergence are met. In this way, the neural network “learns” the underlying
functional relationship. For a mathematical treatment of back-propagation, the reader is

directed to Bishop®.

While back-propagation itself is a standard method, the actual determination of the changes in
weights can vary based on various non-linear optimization algorithms. The most common

method is called the delta rule or gradient descent. Other methods, that converge faster under

? (Bishop) p 140-148.
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certain conditions, include delta-bar-delta, conjugate gradient and Levenberg-Marquardt.

Levenberg-Marquardt is used in the example in this paper as it converges very quickly for

networks with relatively small amounts of weights.

Financial Planning Model

A crude personal financial planning model was developed in Microsoft Excel. It has the

following inputs:

1.

2.

Current dollar amount of assets, Assets,.

Current annual income, Income;.

Current annual expenses, as a ratio to income, exprat.

Current and planned retirement age, age. and age,..

Final age for calculation, ay.

Tax rate, txrt, which does not vary by age or amount or type of income.

Current and retirement asset allocation between cash, bond, small company stocks, and
large company stocks. These are denoted as a.., Acp, Acs, Acly Arer Arpy Ars, Arrg -

Short and intermediate Interest rates, large company and small company equity total

l

returns, and nominal inflation , i, i;, 1, 17, inf;.

The model produces year by year asset balances based on the inputs given:

Assets; =

Assets;_1+ (1 — txrt)[Income, — Expense;] + (1 — txrt)[Assets;_,+ (Income, —

Expenset)/z] [accig +ap (l{“ + Cgé) + acsrts + aclrtl]
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Where

t
Income; = (Income,) 1_[(1 + inf;) t=1,..,age,

=1

0 t > age,

t
Expense; = (exprat)(Income,) 1_[(1 + inf;)

=1

And
cgt = 7(it1 — i)

where 7 is the assumed effective duration of an intermediate term bond. While the cg term is a

rough approximation, it will suffice for the purpose of this example.
Economic Scenarios

Economic scenarios are necessary in order to supply input to the financial planning model.
While any real-world economic scenario generator could be used, the outputs must include the
term structure of interest rates, equity returns for various equity classes, and inflation rates.
The generator should be calibrated to produce the range and volatility of results that we expect

into the future.

For the example in this paper | have chosen a generator developed by researchers Kevin C.

Ahlgrim, Stephen P. D’Arcy, and Richard W. Gorvett under the direction of the SOA’s Committee
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on Finance Research® in July 2004. Details of the model and its development can be found on the

SOA website (http://www.soa.org/research/finance/research-modeling-of-economic-series-

coordinated-with-interest-rate-scenarios.aspx). The parameter values used in the model are

illustrative and were not calibrated to the current environment. The parameter settings are

described in Appendix A.

This generator was implemented in Microsoft Excel using the @RISK add-in produced by

Palisade Corporation.

Stochastic Simulations

For a given simulation, certain variables are held constant and not subject to change. These are
current age, final age, current value of assets, and tax rate. We will call these the constants and
they are used in the financial planning model. These are variables that will not vary under the

control of the subject and are assumed to be otherwise unpredictable. The inclusion of tax rate

in this list is somewhat arbitrary.

Other variables under the control of the subject are randomly varied so that the neural network
will have a range of training values to learn from. These variables are retirement age, expense
to income ratio, and current and retirement asset allocation percentages. N random sets of
these variables are calculated. We will call these the user variables and they are also used in the

financial planning model.

Now a set of M equally probable economic scenarios are generated and are in put into the

financial planning model one-by-one. We then calculate p, which represents the probability

* (Ahlgrim, D’Arcy, & Gorvett, 2004)
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that assets always stay greater than zero prior the final age. We calculate p over M economic
scenarios for a given set of user variable values (set k out of N) that were generated

M
j=1lj

k=1,..,N
M

Pk =

where [; is the indicator variable that is set to 1 if assets never go below zero in scenario j, 0

otherwise.
Specifying and Training the Neural Network

The following N training cases, generated by the stochastic simulations, will be fed into the

neural network.
One desired variable (output): p; the probability that assets last until the final age
Ten input variables:

e Planned retirement age
e Expense ratio
e Current and retirement asset allocation percentages for cash, bond, small company

stocks, and large company stocks.

The task for this neural network is to predict p;, the probability that assets last until the final
age, given the input user variables. Each of the N training cases for the neural network
therefore contains a set of randomly generated user variables as input, and the corresponding

value of p;, produced by the financial planning model as desired output.
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There is a dizzying array of options to choose from when specifying a neural network. As
mentioned previously, a multilevel perceptron architecture was used for this example.
However, a decision still needed to be made about the number of hidden layers and hidden
units. The guidance on choosing the number of hidden layers is that one layer is usually
sufficient®. The choice of the number of hidden units to use in each layer is a more crucial
matter. Too few units and the network will under-fit the data and will not perform well. Using
too many units relative to the number of training cases will cause the network to over-fit the
data and it will not perform well on unseen data. Figures 6-9 illustrate this concept using a
polynomial function sampled with added noise and then fitted with a polynomial. A neural
network works similarly but over n-dimensional hyperspace which can be imagined as a higher
order version of the two-dimensional curve fits shown. If there are too many free parameters
the over-fitting occurs, if there are too few under-fitting will occur. The number of units and

thus weights in the model will affect the proper degree of fit.

L 2

Figure 6 - Underlying function Figure 7 - Under-fitting sampled data

* (Gurney, 1997) p. 73-76
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Figure 8 - Over-fitting sampled data Figure 9 — Proper fitting of sampled data

In order to choose the number of hidden units for this neural network, a test was performed
whereby the network was trained on 800 points of preliminary data with varying numbers of
hidden units. The error was then computed on the training set and on an unseen 200-point

cross-validation set of data to gauge the effect of adding more hidden units.

Average of Minimum Mean Square Error

0.0018 ~
0.0016
0.0014
0.0012
0.001
0.0008 e— Training

0.0006 = = = = Cross Validation

Average of Min MSEs

0.0004

0.0002

Hidden Units

Figure 6 - Error for different numbers of hidden units
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Based on the performance of the tests, it was decided to use five hidden units for the neural

network, as there was a significantly diminished return associated with additional hidden units.

Neural Net Results Compared to Stochastic Simulation

A set of data points, using N = 2000 and M = 500, was generated using the financial planning
model and economic scenario generator. The current age and final age were fixed at 35 and 85,
respectively. The current amount of assets was set to $250,000, the annual pre-tax income to
$150,000, and the tax rate was set to 30 percent. The resulting data was subdivided into a
training set of 1700 points and a test set of 300 points. The neural network was constructed
using the Neurosolutions software package, version 5, produced by NeuroDimension, Inc. The
network was first trained using the training set. Then the network was run using the previously
unseen test data and the network output of p;, was compared to the desired pj. The scatter
plot (Figure 7) shows the relationship between predicted and actual p,. The results indicate
proper fitting of data. A tighter correlation could be achieved by increasing N and M at the

expense of CPU processing time.
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Desired Output and Actual Network Output of p(k)
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Figure 7 — Comparison of output from stochastic simulation and neural network

The advantage is that the neural network, once trained, can produce a relatively accurate
answer in a fraction of a second. The stochastic simulation model, however, can take a great
deal of processing time between queries. This is especially true as the models become more
complex. In the context of personal financial planning, it is strongly desirable that the system be
able to respond to what-if queries within a reasonable time frame. Even this basic stochastic
model required several minutes to complete but the neural network can be evaluated in less
than 1/10 of a second It is not uncommon to develop significantly more complex stochastic
models that take hours, days or even longer to solve, making it impractical to run various
"what-if" analysis. Once a valid predictive network has been developed and trained scenarios
can be tested in seconds instead of days. This computational leverage opens a whole new

frontier in financial modeling.
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In our example two graphs (Figures 8 and 9) have been easily obtained from the fully trained
neural network. They exhibit the relationships, for this hypothetical individual, between long-

term financial security, retirement age, and expenses.

75% Income to Expense Ratio
0.85

0.8
0.75 /
0.7 /
0.65 /
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Age at Retirement
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Figure 8 - Relationship between retirement age and financial security
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Figure 9 - Relationship between expenses and financial security
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Caveats of Using Predictive Models to Learn Stochastic Simulations

Predictive models in general are very good at interpolation; that is they predict well when the
input data lay in the regions of hyperspace that have been explored by the training cases.
Predictive models, including neural networks, are not quite as good at extrapolation. Care must
be taken when using inputs that are outside of the range that was used for training cases. If
stress testing is a desired use of the neural network, then training cases should be developed

that cover extreme scenarios.

One of the drawbacks of neural networks is that they are relatively opaque as a modeling tool.
It is difficult to look “inside” of a neural net to see what it is doing. There are some tools and
techniques for exploring sensitivities to changes in input, but in general neural nets have the

feel of a “black box” to critical observers.

Conclusion

We have shown that it is possible for a predictive model to learn the functional relationship

underlying a stochastic simulation to a desired degree of accuracy.

Personal financial planning is just one possible use of this concept. Business financial planning
and risk management also require fast turnarounds to “what-if” queries. One promising
application is in the area of searching for optimum investment strategies or allocations that
meet risk constraints. A neural network, once properly trained, can be quickly searched for

optimal solutions or strategies.
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Appendix A - Economic Scenario Generator Parameters

TERM STRUCTURE MODEL - TWO-FACTOR VASICEK

Model Parameters

0.01
0.1
0.0165

0.028
-0.05

0.007
0.5

0.4
0.04
0.048
-0.02
0.01
-0.3

Required Input - Current Market Conditions

Level of
0.01 inflation (.01 =
1%)
Current 3-mo T-
0-0L il rate
Current 1-yr T-
0015 bond yield
Current 2-yr T-
OHEEe bond yield
Current 5-yr T-
S bond yield
0.05 Current 10-yr T-bond yield (round UP to the nearest
' 1/2%)
Current 30-yr T-bond yield (round UP to the nearest
0.055
1/2%)

Real interest (r)

rkl - mean reversion speed for short rate process
rsl - volatility of short rate

process

rk2 - mean reversion speed for long rate process
rs2 - volatility of long rate

process

rm2 - long-term mean reversion level for long rate
rlow - lower bound for short-term interest

rinitl - initial short-term real interest rate

rinit2 - initial mean reversion level for real interest rate
rcorr - correlation between long and short processes

Inflation ()

gkl - mean reversion speed for inflation process

gsl - volatility of inflation process

gm2 - long-term mean reversion level for inflation (per time step)
glow - lower bound for short-rate inflation

ginitl - initial inflation level

gcorr - correlation between inflation and (short factor) real interest

Negative
Nominal

interest rates
not allowed
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Appendix A
(continued)

EQUITY MODEL - REGIME SWITCHING

Large Stocks
0.008 emuO - mean equity excess return in state 0 (one month)

0.039 evolO - volatility of equity return in state O (one month)
-0.011 emul - mean equity excess return in state 1 (one month)
0.113 evoll - volatility of equity return in state 1 (one month)

Regime Switching Transition Probabilities

State No Switch Switch
0 0.989 0.011
1 0.941 0.059

Small Stocks
0.01 emusO0 - mean equity excess return in state O (one month)
0.052 evolsO0 - volatility of equity return in state 0 (one month)
0.003 emusl - mean equity excess return in state 1 (one month)
0.166 evolsl - volatility of equity return in state 1 (one month)

Regime Switching Transition Probabilities

State No Switch Switch
0 0.976 0.024
1 0.9 0.1

0.9 ereg - correlation between large and small regime shifts
0.95 ecaorr - correlation between large and small excess returns

EQUITY DIVIDENDS
NOTE: These parameters may not be immediately interpreted since the process is based on LN of
yields.

0 dyk - dividend (log) yield reversion speed
0 dym - dividend (log) yield reversion level
0.13 dys - dividend (log) yield volatility
0.015 dyinit - initial dividend yield (NOT log)
-0.25 dcorr - correlation of (log) dividend yield with stock returns
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Appendix B - Neural Network Parameters for Sample Model

Training cases:

Retirement Age: 55-70

Expense to Income Ratio: 70% -95%

Allocation percentages: 0% to 100% in increments of 10% for each class
Wii = weight matrix applied to normalized inputs
J
[ 1 2 3 4 5
1 -0.2547 -0.3150 0.1305 0.4070 0.5264
2 0.5482  -0.7488  -0.6709 0.8062  -0.6836
3  -0.3466 -0.2923 -0.6386 -0.5539  -2.1562
4  -2.3312 1.7418 1.7529  -0.4271  -0.1517
5 -0.9058 -1.0541 0.7204 0.3137 -0.6866
6 -0.6592 0.7587 0.7168 -1.0645 0.4449
7 -0.1425 -0.1894 0.2932 0.0039 -1.1187
8 -1.1593 0.7800 0.7572 -0.9473 0.8244
9 0.6436 0.7992 -0.5849 -0.2025 0.8737
10 0.8819  -0.8602  -0.7946 0.9611  -0.7109
W = weight matrix applied to hidden units to compute
i1 output
J
1 2 3 4 5

-1.1590 2.1396 -2.0441 -1.4649 -3.5084
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