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Abstract 
 
 Life expectancy at birth has improved dramatically over the course of the 
twentieth century. Over this period there has been a shift in that the highest 
improvements in mortality rates have been seen in progressively older ages. This 
paper discusses alternative ways of looking at this trend, fitting models to past 
trends, and projecting future mortality based on a forward projection of these trends, 
and calculates annuity values based on these projections. 
 
 We consider that the probability of age at death for very advanced ages can 
best be understood and projected in conjunction with the probability of deaths 
occurring at younger ages, as changes in mortality rates at younger ages will be 
correlated with the probability of deaths at very advanced ages. 
 
 The work of Jim Oeppen and James Vaupel (2002) influenced our thinking in 
this area. They concluded that the population life expectancy at birth of the country 
with the highest life expectancy has followed almost a straight line over the last 160 
years with a rate of increase of 0.25 years per annum. 
 
 We took the view that in attempting to identify and project trends in mortality 
the analysis should, if possible, be based on those trends showing significant 
stability. This led us to investigate whether, in addition to the standard actuarial 
approach of considering curves of qx, the following curves may provide a basis for 
modeling: 

 
The curve of the probability of death at a specified age 
The curve of the cumulative probability of death up to a specified age.  

 
 We therefore examined the progression over time of each of these curves. 
 
 We investigated age-specific mortality curves for population mortality 
experience for the United States and Japan over the last 40 years. Our investigation 
was based on population mortality experience from the Human Mortality Database. 
Japan was chosen as it has seen the highest population life expectancy of any 
developed nation over the last 20 years. Prior investigators of the Human Mortality 
Database have suggested that mortality improvements among the higher 
socioeconomic classes of the United States are not dissimilar to those seen among the 
general population of Japan. 
 
 We have developed models that attempt to relate the age-specific mortality 
curves for individual calendar years by means of time-dependent variables. The 
mortality curves that we considered for both males and females in both countries 
from life tables appropriate to individual calendar years are as follows: 

 

 



Probability of death at specified age 
Age-specific qx

Cumulative probability of death. 
 
 We used these models to project future mortality rates in the United States 
and Japan. We further consider how these mortality rates may vary according to 
different future deterministic scenarios. We illustrate the impact of these mortality 
rates by the calculation of specimen annuity values and projections of age at death 
for different percentiles of the population. 
 
 We discuss the implications of the results for life expectancy and for 
population age structure. We conclude by providing commentary on the various 
views being expressed by experts in the fields of demography and medicine as to the 
likelihood of further improvements in life expectancy and the existence of limits to 
longevity. 
 
Introduction 
 
 The twentieth century saw very dramatic reductions in mortality rates at all 
ages. In the first half of the century significant improvements in the treatment of 
infectious diseases resulted in the reductions being most significant for children and 
young adults. In contrast in the second half of the century, significant reductions in 
deaths associated with cardiovascular disease resulted in the main improvements 
being seen in those in their fifties and over. 
 
 The effect of these improvements has been that far more individuals are living 
to advanced ages than ever before. This has significant implications for society in 
general and governments in particular in terms of the work force and health and 
social costs. As experts in mortality, actuaries may be expected by nonactuaries to 
address fundamental questions about these trends. These could include the 
following: 

 
• Are there appropriate models for projecting future changes in life 

expectancy? 
• Is a model based on past trends in mortality consistent with expert opinion 

as to future changes in life expectancy from other fields such as medicine 
and demography? 

 
 In this paper we address the question by considering the time dependency of 
various measures of mortality. As regards the second question, we review these 
measures in the light of a number of different views that have been expounded on 
possible limits to life expectancy. 
 

 



 There is a long history of fitting models to mortality experience. In 1825 
Gompertz, on examination of census data, noted an exponential rise in mortality 
rates after sexual maturity. He provided a physiological explanation for this 
observation as “the average exhaustion of man’s power to avoid death gained in 
equal proportion in equal intervals of age.” The formula he proposed was 

 
Force of mortality at age x = Bcx .  

 
 The relationship does not hold well at younger ages, and Makeham added a 
constant term in 1867 to reflect, in part, differences in cause of death between those 
due to accident and those due to disease. Heligman and Pollard further refined this 
process by proposing an eight-parameter model in 1980 that specifically modeled 
such features as childhood illnesses and mortality associated with pregnancy. 
 
 The Gompertz and Makeham formulas become increasingly inaccurate at 
very advanced ages. Logistic formulas have been suggested by Kannisto (1994), 
Beard (1971), and Perks (1932) that slow the rate of increase in mortality at older 
ages. It has been suggested that mortality experience at very old ages might point to 
the existence of a plateau in the rate of mortality, although there are significant 
problems with credibility of data at these ages. 
 
 For actuaries a particular interest of mortality models is the extent that they 
provide a methodology to project future mortality rates from past experience. The 
multifactorial nature of improvements in mortality rates means that past trends in 
mortality may not necessarily provide a good forecast of future trends. However, the 
future projection of past trends provides a basis of projection that actuaries should 
consider, whereas selecting between conflicting medical theories is not an actuarial 
skill. Therefore, where coefficients in appropriate mortality models have shown 
historical time dependency, such mortality models provide a methodology for 
projecting future mortality rates that, in our view, should be considered by actuaries. 

 
Approach to Modeling 
 
 The trend in future longevity is unknowable. In practice it will be depend 
upon future medical advances. Some of these can be predicted from work already 
done, but significant work needs to be done to quantify its likely age-related impact. 
Other medical advances may not yet be foreseen. On the other side of the coin there 
are factors that may increase mortality such as the emergence of virulent strains of 
influenza or the spread of antibiotic-resistant bacteria. 
 
 These medical advances, or reverses, may themselves be subject to 
overarching constraints such as a maximum limit to human life. A later section of 
this paper discusses some of the arguments for and against such a limit. 
 

 



 Given these uncertainties, projecting future trends in mortality, very 
particularly at the high ages that are the focus of this symposium, is fraught with 
difficulty. Unfortunately for actuaries, many nonactuaries seem to think that 
actuaries should be able to solve this problem. 
 
 In the authors’ view there are three basic ways of thinking about this: 

 
a. The analysis of past trends and their forward projection, without taking 

into account medical data 
b. Projections based on medical data at the specific condition level 
c. Projections based on overarching medical constraints, most obviously, an 

upper limit to human lifespan, although others may perhaps be envisaged. 
 
 Approach (a) is the approach that comes most naturally to actuaries, and the 
detailed analysis in this paper provides examples of it. Two of the authors (Humble 
and Ryan) have done work involving a combination of approaches (a) and (b) and 
see considerable merit in, and scope to extend, this approach. A predictive model 
based solely on medical data, that is, (b) in isolation, is possible in principle, but the 
authors regard it as being, at least, several years away in practice. 
 
 Option (c) is clearly very important or rather may be very important (a clear 
demonstration that the limit to human lifespan was, say, 1,000 may be interesting 
but would have no discernible impact on calculating capital values of annuities at 
the present time). The authors do not consider, however, that the case for such a 
limit has been made with sufficient clarity to include it as a constraint in  modeling 
at this time. 

 
Methodology 
 
Data Sources 
 
 We used the Human Mortality Database (HMD; www.mortality.org) as our 
source for age-specific mortality rates for both sexes and for both countries. The 
HMD represents a collaborative project between the Department of Demography at 
the University of California, Berkeley, United States, and the Max Planck Institute 
for Demographic Research in Rostock, Germany. The HMD was based on the 
Berkeley Mortality Database as founded by John Wilmoth in 1997 and was strongly 
influenced by the Kannisto-Thatcher Database on Old Age Mortality as founded by 
Vaino Kannisto and Roger Thatcher in 1993. 
 
 The HMD contains information on 22 countries, consisting of raw data 
information on births, deaths, population size, and exposure to risk, together with 
detailed descriptions on the sources of the data that we have summarized in the 
following paragraphs. The goal of the project is to adopt uniform procedures for 

 



each country in the collection and verification of data and in calculating death rates 
and life tables. The HMD notes that in particular the issue of age exaggeration is 
addressed in part by the derivation of population estimates at older ages through the 
death counts themselves, employing extinct cohort methods, as age reporting in 
death registration systems is assumed to be more reliable than from census counts or 
official population estimates. 
 
 Data on U.S. population size were taken from the 10-year population censuses 
conducted by the U.S. Census Bureau between 1960 and 2000. Census counts were 
used as basis for annual and monthly population estimates for intercensal and 
postcensal periods, as reported in Current Population Reports. 
 
 Data on U.S. deaths are provided by the National Center for Health Statistics 
(NCHS) from individual death records as coded from death certificates. The latter 
data are available in a detailed format to participating organisations through the 
Inter-University Consortium for Political and Social Science Research, with less 
detailed summaries being produced in periodical publications from the NCHS. 
 
 Data on Japanese population were taken from population censuses conducted 
every five years by the Statistics Bureau, Management and Coordination Agency 
between 1960 and 2000. The Statistics Bureau also produces annual postcensal and 
intercensal population estimates that are published in “Annual Reports on Current 
Population Estimates.” 
 
 Data on Japanese deaths and births over this period were taken from annual 
publications by the Ministry of Health, Labour and Welfare, Division of Health and 
Welfare Statistics. 
 
Mortality Curve Models 
 
 The investigation period is defined as 1960 to 1998. For each calendar year in 
the investigation period, we derived the following mortality measures for each sex 
and for each country: 

 
qx at each age  
Cumulative probability of death at each age 
Probability of death at specified age. 

 
 We used the statistical package SPSS to investigate and select the most 
appropriate mathematical model from those considered to each of these three 
mortality measures as applied to each calendar year in the investigation period. 
 

 



 For each mortality measure, we determined the degree of time dependency to 
the coefficient values as taken from successive fittings of the most appropriate 
mathematical model over the investigation period. 
Forward Projections of Mortality and Life Expectancy 
 
 We used the time-dependency relationships identified in the mathematical 
models in respect of cumulative probability of death and of age-specific mortality 
rates to determine age-specific mortality rates in future years. We then calculated 
annuities in arrears for selected issue ages, assuming these mortality rates, annual 
payments, and an interest rate of 4.25 percent per annum. This interest rate may not 
be appropriate for both countries considered, but it was felt that a single interest rate 
would more clearly demonstrate differences in mortality experience between the two 
countries. 
 
 We used the time-dependency relationships identified in the mathematical 
models in respect of probability of death at each age to determine probability of 
death at each age in future years. This is simply an alternative method of analyzing 
the effect of future age-specific mortality rates, but does provide a direct 
presentation of the population age at death structure in the future. 
 
 We also considered an alternative methodology consisting of age at death for 
different percentiles in the population. We considered decennial percentiles from the 
10th to 90th and then individual percentiles up to the 99th. We investigated the 
pattern of age at death for each of the percentiles considered over the investigation 
period as forming a basis for forward projection. 
 
Weibull Distribution 
 
 The Weibull distribution was developed by Dr. Waloddi Weibull in 1937 and 
was first introduced in 1951 by his paper “A Statistical Distribution Function of 
Wide Applicability.” It has since been used in statistical analysis. The Weibull 
distribution is widely used in reliability and life data analysis due to its versatility.  
 
 The Weibull distribution is determined by two parameters, c (the scale 
parameter) and � (the shape parameter). Compared to the exponential distribution 
(special case of Weibull where ��= 1, i.e., constant), the Weibull distribution can have 
a failure rate (of a life) that varies. This makes the distribution more suitable for 
models of mortality.   
 
 The shape of the Weibull distribution resembles the normal distribution with 
a right-skew and a tail that is lighter than other distributions. These characteristics of 
the Weibull distribution have allowed us to fit the distribution to the probability of 
death with some success.  
 

 



Use of the Weibull Distribution 
 
 The probability density function (equation 1) and the probability distribution 
function (equation 2) of the Weibull distribution both contain two parameters, c and 
γ (Miller, 1999):  
 

f(x) =cγxγ−1 exp(−cxγ), (1) 
F(x) =1 −exp(−cxγ). (2) 

 
 The “Method of Moments” estimation (Hossack, 1999), equating the actual 
mean and variance of the data set to the theoretical mean and variance of the 
distribution in question, was not appropriate in this instance as both the mean and 
variance of the Weibull distribution contain both of the parameters, equations (3) 
and (4): 
 

E(x) = Γ(1+1/γ)/ c1/γ, (3) 
V(x) = Γ(1+2/γ)/ c2/γ − {Γ(1+1/γ)/ c1/γ}2. (4) 

 
 Instead, in order to fit the Weibull model, we have used the “Method of 
Percentiles” (Klugman, 1998) to estimate the parameters of the distribution.  
 
 The Method of Percentiles enables two equations with two unknowns to be 
written. We have equated the probability distribution function at the percentile ages 
to the corresponding percentile. We have used the 50th percentile and the 95th 
percentile to fit the curve, as we were most concerned with fitting the latter part of 
the ages versus actual age of death curve.  
 
 The following equations have been used to estimate the parameters: 
  

F(x) = 0.50, (5) 
 
where x is the actual age of the data set corresponding to the 50th percentile and 
where F(x) is the value of the probability distribution function of the Weibull 
distribution, and 
 

F(x) = 0.95, (6) 
 
where x is the actual age of the data set corresponding to the 95th percentile and 
where F(x) is the value of the probability distribution function of the Weibull 
distribution. 
 
 By ratioing equation (5) to equation (6), the parameter c disappears, and 
parameter γ can be estimated.  Using parameter γ, one can then deduce the 
parameter c. 

 



 In our investigations of probability of death at a specified age in conjunction 
with the Weibull distribution, we have defined parameter α to be equal to parameter 
γ, and parameter β to be c−1/γ. 

 
Principal Results: United States 
Age-Specific qx
Logistic Model 
The logistic model is of the form 
 

xx  
1q αβγ +

=  , where γ is a time-independent constant. 

 
We fitted curves of this type to the actual mortality experience for each of the 
calendar years from 1960 to 1998. Figures 1–5 provide a demonstration of the 
appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, 
respectively. 

Figure 1
U.S. Females: Actual qx as against Logistic Distribution for Year 1960
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Figure 2
U.S. Females: Actual qx as against Logistic Distribution for Year 1970
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Figure 3
U.S. Females: Actual qx as against Logistic Distribution for Year 1980
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Figure 4
U.S. Females - Actual qx as against Logistic Distribution for Year 1990

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

50 55 60 65 70 75 80 85 90 95 100 105

Age at death

Pr
ob

ab
ili

ty
 o

f d
yi

ng
 a

t a
ge

 %

Actual
Estimated

 

Figure 5
U.S. Females - Actual qx as against Logistic Distribution for Year 1998
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 Table 1 provides results of the goodness-of-fit analyses, together with the values of 
the parameters that were required by the logistic model for each of the selected years. 

 
TABLE 1 

Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 
(U.S. Females) 

 
 1960 1970 1980 1990 1998 

Parameter α 21210 21208 31138 37634 46969 
Parameter β 0.911 0.912 0.909 0.908 0.906 
R2 value 0.997 0.998 0.998 0.998 0.999 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 19,851 � exp(0.0215 � (Calendar Year – 1959)); R2 value: 0.970, 
 Parameter β = −0.000122 � (Calendar Year – 1959) + 0.91168; R2 value: 0.806. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 
calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 2. 

 
TABLE 2 

Annuities Payable in Arrears on Different Mortality Bases 
(U.S. Females) 

 
 Age 
 60 65 70 75 80 85 90 95 100 
(1) This basis 14.31 12.63 10.84 9.01 7.21 5.54 4.07 2.86 1.91
(2) Population mortality 13.51 11.92 10.21 8.45 6.63 4.94 3.59 2.50 1.73
((1) / (2)) − 1 5.9% 6.0% 6.2% 6.6% 8.7% 12.0% 13.3% 14.4% 10.5%

 
 
 Figures 6–10 provide a demonstration of the appropriateness of the fit for 
males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based 
on far fewer lives at high ages. 

 



Figure 6
U.S. Males: Actual qx as against Logistic Distribution for Year 1960
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Figure 7
U.S. Males: Actual qx as against Logistic Distribution for Year 1970
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Figure 8
U.S. Males: Actual qx as against Logistic Distribution for Year 1980
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Figure 9
U.S. Males: Actual qx as against Logistic Distribution for Year 1990
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Figure 10
U.S. Males: Actual qx as against Logistic Distribution for Year 1998
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 Table 3 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the logistic model for each of the 
selected years. 

 
TABLE 3 

Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 
(U.S. Males) 

 
 1960 1970 1980 1990 1998 
Parameter α 4644 4412 7415 11534 16178 
Parameter β 0.924 0.925 0.921 0.917 0.914 
R2 value 0.998 0.998 0.999 0.999 0.999 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 3685.3 � exp(0.0369 � (Calendar Year – 1959)); R2 value: 0.929, 
 Parameter β = −0.000304 � (Calendar Year – 1959) + 0.92631; R2 value: 0.877. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 

 



calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 4. 
 

TABLE 4 
Annuities Payable in Arrears on Different Mortality Bases 

(U.S. Males) 
 

 Age 
 60 65 70 75 80 85 90 95 100 
(1) This basis 12.71 10.97 9.20 7.46 5.84 4.40 3.19 2.22 1.48
(2) Population mortality 12.01 10.40 8.76 7.16 5.55 4.15 3.05 2.17 1.56
((1) / (2)) − 1 5.8% 5.5% 5.0% 4.3% 5.2% 6.2% 4.6% 2.2% −5.2%

 
 
Cumulative Probability of Death 
 
Logistic Model 
 
 We next fitted a logistic model to the cumulative probability of death: 

 

x 
1

lo
lx1

αβγ +
=−

 , where γ is a time-independent constant. 

 
 We fitted curves of this type to the actual cumulative probability of death for 
each of the calendar years from 1960 to 1998.  Figures 11–15 provide a demonstration 
of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, 
respectively. 

 



Figure 11
U.S. Females: Cumulative qx as against Logistic Distribution for Year 1960
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Figure 12
U.S. Females: Cumulative qx as against Logistic Distribution for Year 1970
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Figure 13
U.S. Females: Cumulative qx as against Logistic Distribution for Year 1980
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Figure 14
U.S. Females: Cumulative qx as against Logistic Distribution for Year 1990
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Figure 15
U.S. Females: Cumulative qx as against Logistic Distribution for Year 1998
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 Table 5 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the logistic model for each of the 
selected years. 

 
TABLE 5 

Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 
(U.S. Females) 

 
 1960 1970 1980 1990 1998 
Parameter α 495 563 1043 1426 1769 
Parameter β 0.925 0.924 0.919 0.917 0.915 
R2 value 0.987 0.980 0.992 0.994 0.993 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 452.77 � exp(0.0375 � (Calendar Year – 1959)); R2 value: 0.962, 
 Parameter β = −0.000294 � (Calendar Year – 1959) + 0.92585; R2 value: 0.961. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 

 



calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 6. 

 
TABLE 6 

Annuities Payable in Arrears on Different Mortality Bases 
(U.S. Females) 

 
 Age 
 60 65 70 75 80 85 90 95 100 

(1) This basis 14.42 12.91 11.34 9.74 8.16 6.60 5.02 3.33 1.38
(2) Population mortality 13.51 11.92 10.21 8.45 6.63 4.94 3.59 2.50 1.73
((1) / (2)) −1 6.7% 8.3% 11.0% 15.3% 23.1% 33.6% 39.8% 33.3% −20.4%

 
 Figures 16–20 provide a demonstration of the appropriateness of the fit for 
males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based 
on far fewer lives at high ages. 

Figure 16
U.S. Males: Cumulative qx as against Logistic Distribution for Year 1960
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Figure 17
U.S. Males: Cumulative qx as against Logistic Distribution for Year 1970

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

50 55 60 65 70 75 80 85 90 95 100 105

Age at death

Pr
ob

ab
ili

ty
 o

f d
yi

ng
 b

y 
ag

e 
%

Actual
Estimated

 

Figure 18
U.S. Males: Cumulative qx as against Logistic Distribution for Year 1980

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

50 55 60 65 70 75 80 85 90 95 100 105

Age at death

Pr
ob

ab
ili

ty
 o

f d
yi

ng
 b

y 
ag

e 
%

Actual
Estimated

 

 



Figure 19
U.S. Males: Cumulative qx as against Logistic Distribution for Year 1990
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Figure 20
U.S. Males: Cumulative qx as against Logistic Distribution for Year 1998
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 Table 7 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the logistic model for each of the 
selected years. 
 

TABLE 7 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(U.S. Males) 
 

 1960 1970 1980 1990 1998 
Parameter α 113 116 214 306 465 
Parameter β 0.938 0.937 0.932 0.929 0.926 
R2 value 0.939 0.943 0.955 0.966 0.971 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 94.167 � exp(0.0393 � (Calendar Year – 1959)); R2 value: 0.942, 
 Parameter β = −0.00033 � (Calendar Year – 1959) + 0.93899; R2 value: 0.933. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 
calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 8. 
 

TABLE 8 
Annuities Payable in Arrears on Different Mortality Bases 

(U.S. Males) 
 

 Age 
 60 65 70 75 80 85 90 95 100 

(1) This basis 13.04 11.62 10.17 8.73 7.28 5.80 4.20 2.40 0.30
(2) Population mortality 12.01 10.40 8.76 7.16 5.55 4.15 3.05 2.17 1.56
((1) / (2)) − 1 8.6% 11.7% 16.1% 21.9% 31.1% 39.8% 37.8% 10.7% −80.7%

 

 



Probability of Death at Specified Age 
 
Trends in Percentiles 
 
 We derived the age at death for decennial percentiles within the population 
for each of the calendar years from 1960 to 1998. We further derived age at death for 
individual percentiles for the same calendar years between the 91st and 99th 
percentiles. Figure 21 shows the results for females for years 1960, 1970, 1980, 1990, 
and 1998. 

Figure 21
Age at Death from Life Tables for U.S. Females by Percentile for Selected Calendar 

Years
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 We determined a time-dependent relationship between age at death for each 
of the selected percentiles and calendar year. Table 9 sets out the parameters 
associated with these relationships, and the results of the goodness-of-fit test 
between the time-dependent relationship and the actual ages at death in each 
calendar year. 

 
TABLE 9 

Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 
(U.S. Females) 

 
 50th 

Percentile 
90th 

Percentile 
95th 

Percentile 
99th 

Percentile 
Intercept 77.5 90.4 92.4 93.9 
Gradient 0.149 0.132 0.128 0.126 
R2 value 0.948 0.928   

 



 From this we projected the age at death for each of the percentiles set out 
above for selected future calendar years. The results are set out in Table 10. 
 

TABLE 10 
Age at Death for Specified Percentile in Selected Calendar Years 

(U.S. Females) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile 84.8 85.0 85.1 85.8 86.6 87.3 88.1 88.8 89.6
90th percentile 96.9 97.0 97.2 97.8 98.5 99.1 99.8 100.5 101.1
95th percentile 98.7 98.8 98.9 99.6 100.2 100.8 101.5 102.1 102.8
99th percentile 100.1 100.2 100.3 100.9 101.6 102.2 102.8 103.5 104.1

 
 Figure 22 shows the results for males for years 1960, 1970, 1980, 1990, and 
1998. 

Figure 22
Age at Death from Life Tables for U.S. Males by Percentile for Selected Calendar 

Years
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 We determined a time-dependent relationship between age at death for each 
of the selected percentiles and calendar year. Table 11 sets out the parameters 
associated with these relationships, and the results of the goodness-of-fit test 
between the time-dependent relationship and the actual ages at death in each 
calendar year. 
 

 



TABLE 11 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(U.S. Males) 
 

 50th 
Percentile 

90th 
Percentile 

95th 
Percentile 

99th 
Percentile 

Intercept 69.4 85.4 87.8 89.7 
Gradient 0.187 0.138 0.131 0.125 
R2 value 0.955 0.958   

 
 From this we projected the age at death for each of the percentiles set out 
above for selected future calendar years. The results are set out in Table 12. 
 

TABLE 12 
Age at Death for Specified Percentile in Selected Calendar Years 

(U.S. Males) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile 78.6 78.8 79.0 79.9 80.9 81.8 82.7 83.7 84.6
90th percentile 92.2 92.3 92.5 93.2 93.9 94.6 95.2 95.9 96.6
95th percentile 94.2 94.3 94.5 95.1 95.8 96.4 97.1 97.7 98.4
99th percentile 95.8 95.9 96.1 96.7 97.3 97.9 98.5 99.2 99.8

 
Weibull Distribution 
 
 We also fitted a Weibull distribution to the probability of death at a given age 
with the formula 

 
 Probability of death at a given age = (α/βα) � (xα−1)���exp(−(x/β)α). 

 
 We fitted curves of this type to the actual cumulative probability of death for 
each of the calendar years from 1960 to 1998. Figures 23–27 provide a demonstration 
of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, 
respectively. 

 



Figure 23
U.S. Females: Age at Death as against Weibull Distribution for Year 1960
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Figure 24
U.S. Females: Age at Death as against Weibull Distribution for Year 1970
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Figure 25
U.S. Females: Age at Death as against Weibull Distribution for Year 1980
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Figure 26
U.S. Females: Age at Death as against Weibull Distribution for Year 1990
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Figure 27
U.S. Females: Age at Death as against Weibull Distribution for Year 1998
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 Table 13 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the Weibull distribution for each of 
the selected years. 
 

TABLE 13 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(U.S. Females) 
 

 1960 1970 1980 1990 1998 
Parameter α 7.94 7.96 8.48 8.66 8.91 
Parameter β 81.38 82.62 84.85 85.97 86.23 
R2 value 0.991 0.989 0.989 0.989 0.991 
Skewness 0.270 0.261 0.329 0.346 0.382 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the Weibull distribution and provide details of the analysis 
of goodness of fit as follows: 
 
 Parameter α = 0.0259 � (Calendar Year – 1959) + 7.8987; R2 value: 0.959, 
 Parameter β = 0.1444 � (Calendar Year – 1959) + 81.493; R2 value: 0.939. 
 
 From this we projected the age at death for selected percentiles for selected 
future calendar years. The results are set out in Table 14. 
 

 



TABLE 14 
Age at Death for Specified Percentile in Selected Calendar Years 

(U.S. Females) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile  84.3 84.4 85.1 85.9 86.6 87.3 88.1 88.8
90th percentile  96.3 96.4 97.1 97.8 98.4 99.1 99.7 100.4
95th percentile  99.2 99.3 99.9 100.6 101.2 101.8 102.4 103.0
99th percentile  104.0 104.1 104.7 105.2 105.8 106.3 106.9 107.4

 
 Figures 28–32 provide a demonstration of the appropriateness of the fit for 
males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based 
on far fewer lives at high ages. 

Figure 28
U.S. Males: Age at Death as against Weibull Distribution for Year 1960
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Figure 29
U.S. Males: Age at Death as against Weibull Distribution for Year 1970
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Figure 30
U.S. Males: Age at Death as against Weibull Distribution for Year 1980
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Figure 31
U.S. Males: Age at Death as against Weibull Distribution for Year 1990
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Figure 32
U.S. Males: Age at Death as against Weibull Distribution for Year 1998
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 Table 15 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the Weibull distribution for each of 
the selected years. 
 

 



TABLE 15 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(U.S. Males) 
 

 1960 1970 1980 1990 1998 
Parameter α 6.16 6.07 6.62 7.02 7.42 
Parameter β 74.97 75.26 77.77 79.64 81.18 
R2 value 0.991 0.993 0.993 0.992 0.990 
Skewness –0.051 –0.080 0.021 0.096 0.169 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the Weibull distribution and provide details of the analysis 
of goodness of fit as follows: 
 
 Parameter α = 0.036 � (Calendar Year – 1959) + 5.9263; R2 value: 0.930, 
 Parameter β = 0.1802 � (Calendar Year – 1959) + 74.104; R2 value: 0.964. 
 
 From this we projected the age at death for selected percentiles for selected 
future calendar years. The results are set out in Table 16. 
 

TABLE 16 
Age at Death for Specified Percentile in Selected Calendar Years 

(U.S. Males) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile  77.9 78.1 79.0 79.9 80.9 81.8 82.8 83.7
90th percentile  91.6 91.7 92.5 93.2 94.0 94.8 95.6 96.4
95th percentile  94.9 95.0 95.7 96.4 97.2 97.9 98.6 99.4
99th percentile  100.5 100.7 101.3 101.9 102.5 103.1 103.8 104.4

 
 
Principal Results: Japan 
 
Age-Specific qx 

Logistic Model 
 
 The logistic model is of the form 
 

xx  
1q αβγ +

=  , where γ is a time-independent constant. 

 

 



 We fitted curves of this type to the actual mortality experience for each of the 
calendar years from 1960 to 1998. Figures 33–37 provide a demonstration of the 
appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, 
respectively. 

Figure 33
Japanese Females: Actual qx as against Logistic Distribution for Year 1960

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

50 55 60 65 70 75 80 85 90 95 100 105

Age at death

Pr
ob

ab
ili

ty
 o

f d
yi

ng
 a

t a
ge

 %

Actual
Estimated

 

Figure 34
Japanese Females: Actual qx as against Logistic Distribution for Year 1970
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Figure 35
Japanese Females: Actual qx as against Logistic Distribution for Year 1980
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Figure 36
Japanese Females: Actual qx as against Logistic Distribution for Year 1990
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Figure 37
Japanese Females: Actual qx as against Logistic Distribution for Year 1998
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 Table 17 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the logistic model for each of the 
selected years. 
 

TABLE 17 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(Japanese Females) 
 

 1960 1970 1980 1990 1998 
Parameter α 20540 38735 100505 179851 173158 
Parameter β 0.909 0.904 0.896 0.893 0.896 
R2 value 0.992 0.992 0.993 0.994 0.994 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 22885 � exp(0.0641 � (Calendar Year – 1959)); R2 value: 0.960, 
 Parameter β = –0.000438 � (Calendar Year – 1959) + 0.90732; R2 value: 0.888. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 

 



calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 18. 
 

TABLE 18 
Annuities Payable in Arrears on Different Mortality Bases 

(Japanese Females) 
 

 Age 
 60 65 70 75 80 85 90 95 100 
(1) This basis 16.23 14.53 12.61 10.53 8.39 6.34 4.50 3.00 1.86
(2) Population mortality 14.86 13.25 11.44 9.44 7.40 5.49 3.86 2.64 1.75
((1) / (2)) − 1 9.2% 9.7% 10.3% 11.5% 13.4% 15.3% 16.5% 13.6% 6.0%

 
 Figures 38–42 provide a demonstration of the appropriateness of the fit for 
males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based 
on far fewer lives at high ages. 

Figure 38
Japanese Males: Actual qx as against Logistic Distribution for Year 1960
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Figure 39
Japanese Males: Actual qx as against Logistic Distribution for Year 1970

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

50 55 60 65 70 75 80 85 90 95 100 105

Age at death

Pr
ob

ab
ili

ty
 o

f d
yi

ng
 a

t a
ge

 %

Actual
Estimated

 

Figure 40
Japanese Males: Actual qx as against Logistic Distribution for Year 1980
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Figure 41
Japanese Males: Actual qx as against Logistic Distribution for Year 1990
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Figure 42
Japanese Males: Actual qx as against Logistic Distribution for Year 1998
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 Table 19 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the logistic model for each of the 
selected years. 
 

 



TABLE 19 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(Japanese Males) 
 

 1960 1970 1980 1990 1998 
Parameter α 6867 10824 21158 29541 31079 
Parameter β 0.918 0.915 0.910 0.908 0.908 
R2 value 0.989 0.989 0.993 0.995 0.997 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 7792.8 � exp(0.042 � (Calendar Year – 1959)); R2 value: 0.952, 
 Parameter β = –0.00028 � (Calendar Year – 1959) + 0.91677; R2 value: 0.876. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 
calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 20. 
 

TABLE 20 
Annuities Payable in Arrears on Different Mortality Bases 

(Japanese Males) 
 

 Age 
 60 65 70 75 80 85 90 95 100 

(1) This basis 14.05 12.26 10.37 8.45 6.62 4.95 3.54 2.40 1.55
(2) Population mortality 12.72 11.04 9.30 7.49 5.73 4.20 2.97 2.08 1.46
((1) / (2)) − 1 10.5% 11.1% 11.5% 12.8% 15.4% 17.9% 19.0% 15.3% 6.3%

 
Cumulative Probability of Death 
 
Logistic Model 
 
 We next fitted a logistic model to the cumulative probability of death: 
 

x 
1

lo
lx1

αβγ +
=−  , where γ is a time-independent constant. 

 
 We fitted curves of this type to the actual cumulative probability of death for 
each of the calendar years from 1960 to 1998. Figures 43–47 provide a demonstration 

 



of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, 
respectively. 

Figure 43
Japanese Females: Cumulative qx as against Logistic Distribution for Year 1960
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Figure 44
Japanese Females: Cumulative qx as against Logistic Distribution for Year 1970
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Figure 45
Japanese Females: Cumulative qx as against Logistic Distribution for Year 1980
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Figure 46
Japanese Females: Cumulative qx as against Logistic Distribution for Year 1990
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Figure 47
Japanese Females: Cumulative qx as against Logistic Distribution for Year 1998
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 Table 21 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the logistic model for each of the 
selected years. 
 

TABLE 21 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(Japanese Females) 
 

 1960 1970 1980 1990 1998 
Parameter α 311 984 2993 5757 6524 
Parameter β 0.928 0.918 0.909 0.904 0.905 
R2 value 0.980 0.982 0.985 0.989 0.993 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 454.44 � exp(0.0825 � (Calendar Year – 1959)); R2 value: 0.957, 
 Parameter β = −0.00064 � (Calendar Year – 1959) + 0.92423; R2 value: 0.925. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 

 



calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 22. 
 

TABLE 22 
Annuities Payable in Arrears on Different Mortality Bases 

(Japanese Females) 
 

 Age 
 60 65 70 75 80 85 90 95 100 

(1) This basis 15.88 14.26 12.50 10.66 8.81 7.03 5.31 3.58 1.66
(2) Population mortality 14.86 13.25 11.44 9.44 7.40 5.49 3.86 2.64 1.75
((1) / (2)) − 1 6.8% 7.7% 9.3% 12.9% 19.2% 27.9% 37.3% 35.7% −5.3%

 
 Figures 48–52 provide a demonstration of the appropriateness of the fit for 
males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based 
on far fewer lives at high ages. 

Figure 48
Japanese Males: Cumulative qx as against Logistic Distribution for Year 1960
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Figure 49
Japanese Males: Cumulative qx as against Logistic Distribution for Year 1970
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Figure 50
Japanese Males: Cumulative qx as against Logistic Distribution for Year 1980
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Figure 51
Japanese Males: Cumulative qx as against Logistic Distribution for Year 1990
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Figure 52
Japanese Males: Cumulative qx as against Logistic Distribution for Year 1998
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 Table 23 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the logistic model for each of the 
selected years. 
 

 



TABLE 23 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(Japanese Males) 
 

 1960 1970 1980 1990 1998 
Parameter α 115 261 638 1134 1343 
Parameter β 0.937 0.929 0.922 0.917 0.916 
R2 value 0.971 0.974 0.981 0.985 0.989 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the logistic model and provide details of the analysis of 
goodness of fit as follows: 
 
 Parameter α = 144.1 � exp(0.0673 � (Calendar Year – 1959)); R2 value: 0.974, 
 Parameter β = –0.000562 � (Calendar Year – 1959) + 0.93442; R2 value: 0.966. 
 
 From this we projected qx at each age and future calendar year-end and hence 
derived the capital value of an annuity as at December 31, 2004, payable annually in 
arrears with an interest rate of 4.25 percent per annum. For comparison we 
calculated an annuity based on population mortality in 1998 with no allowance for 
mortality improvements. The results are set out in Table 24. 
 

TABLE 24 
Annuities Payable in Arrears on Different Mortality Bases 

(Japanese Males) 
 

 Age 
 60 65 70 75 80 85 90 95 100 

(1) This basis 14.13 12.52 10.86 9.19 7.56 5.97 4.34 2.55 0.44
(2) Population mortality 12.72 11.04 9.30 7.49 5.73 4.20 2.97 2.08 1.46
((1) / (2)) − 1 11.1% 13.4% 16.8% 22.7% 32.0% 42.0% 45.9% 22.5% −69.6%

 
Probability of Death at Specified Age 
 
Trends in Percentiles 
 
 We derived the age at death for decennial percentiles within the population 
for each of the calendar years from 1960 to 1998. We further derived age at death for 
individual percentiles for the same calendar years between the 91st and 99th 
percentiles. Figure 53 shows the results for females for years 1960, 1970, 1980, 1990, 
and 1998. 

 



Figure 53
Age at Death from Life Tables for Japanese Females by Percentile for Selected 

Calendar Years
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 We determined a time-dependent relationship between age at death for each 
of the selected percentiles and calendar year. Table 25 sets out the parameters 
associated with these relationships and the results of the goodness-of-fit test between 
the time-dependent relationship and the actual ages at death in each calendar year. 
 

TABLE 25 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(Japanese Females) 
 

 50th 
Percentile 

90th 
Percentile 

95th 
Percentile 

99th 
Percentile 

Intercept 75.1 86.9 88.7 90.2 
Gradient 0.301 0.242 0.234 0.227 
R2 value 0.996 0.990   

 
 From this we projected the age at death for each of the percentiles set out 
above for selected future calendar years. The results are set out in Table 26. 

 

 



TABLE 26 
Age at Death for Specified Percentile in Selected Calendar Years 

(Japanese Females) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile 89.8 90.1 90.4 91.9 93.5 94.9 96.5 98.0 99.5
90th percentile 98.8 99.0 99.3 100.5 101.7 102.9 104.1 105.3 106.5
95th percentile 100.2 100.4 100.7 101.8 103.0 104.2 105.3 106.5 107.7
99th percentile 101.3 101.5 101.8 102.9 104.0 105.2 106.3 107.5 108.6

 
 Figure 54 shows the results for males for years 1960, 1970, 1980, 1990, and 
1998. 

Figure 54
Age at Death from Life Tables for Japanese Males by Percentile for Selected 

Calendar Years
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 We determined a time-dependent relationship between age at death for each 
of the selected percentiles and calendar year. Table 27 sets out the parameters 
associated with these relationships, and the results of the goodness-of-fit test 
between the time-dependent relationship and the actual ages at death in each 
calendar year. 
 

 



TABLE 27 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(Japanese Males) 
 

 50th 
Percentile 

90th 
Percentile 

95th 
Percentile 

99th 
Percentile 

Intercept 70.6 83.7 85.7 87.2
Gradient 0.264 0.220 0.214 0.210
R2 value 0.981 0.983  

 
 From this we projected the age at death for each of the percentiles set out 
above for selected future calendar years. The results are set out in Table 28. 
 

TABLE 28 
Age at Death for Specified Percentile in Selected Calendar Years 

(Japanese Males) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile 83.5 83.8 84.0 85.3 86.7 88.0 89.3 90.6 91.9
90th percentile 94.5 94.7 94.9 96.0 97.1 98.2 99.3 100.4 101.5
95th percentile 96.2 96.4 96.6 97.7 98.7 99.8 100.9 102.0 103.3
99th percentile 97.5 97.7 97.9 99.0 100.0 101.1 102.1 103.2 104.2

 
Weibull Distribution 
 
 We also fitted a Weibull distribution to the probability of death at a given age 
with the formula 
 

 Probability of death at a given age = (α/βα)�� (xα−1)���exp(–(x/β)α). 
 
 We fitted curves of this type to the actual cumulative probability of death for 
each of the calendar years from 1960 to 1998. Figures 55–59 provide a demonstration 
of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, 
respectively. 

 



Figure 55
Japanese Females: Age at Death as against Weibull Distribution for Year 1960
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Figure 56
Japanese Females: Age at Death as against Weibull Distribution for Year 1970
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Figure 57
Japanese Females: Age at Death as against Weibull Distribution for Year 1980
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Figure 58
Japanese Females: Age at Death as against Weibull Distribution for Year 1980
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Figure 59
Japanese Females: Age at Death as against Weibull Distribution for Year 1998
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 Table 29 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the Weibull distribution for each of 
the selected years. 

 
TABLE 29 

Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 
(Japanese Females) 

 
 1960 1970 1980 1990 1998 
Parameter α 8.10 9.04 10.24 10.99 10.85 
Parameter β 78.95 81.48 84.74 87.61 89.86 
R2 value 0.990 0.996 0.997 0.996 0.996 
Skewness 0.330 0.464 0.597 0.655 0.604 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the Weibull distribution and provide details of the analysis 
of goodness of fit as follows: 
 
 Parameter α = 0.0787 � (Calendar Year – 1959) + 8.3996; R2 value: 0.957, 
 Parameter β = 0.2867 � (Calendar Year – 1959) + 79.054; R2 value: 0.996. 
 
 From this we projected the age at death for selected percentiles for selected 
future calendar years. The results are set out in Table 30. 
 

 



TABLE 30 
Age at Death for Specified Percentile in Selected Calendar Years 

(Japanese Females) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile  88.2 88.5 90.0 91.4 92.9 94.3 95.7 97.1
90th percentile  97.8 98.1 99.4 100.7 102.0 103.3 104.5 105.6
95th percentile  100.0 100.3 101.6 102.8 104.1 105.3 106.4 107.5
99th percentile  103.8 104.0 105.2 106.4 107.5 108.5 109.3 109.9

 
 Figures 60–64 provide a demonstration of the appropriateness of the fit for 
males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based 
on much fewer lives at high ages. 

Figure 60
Japanese Males: Age at Death as against Weibull Distribution for Year 1960
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Figure 61
Japanese Males: Age at Death as against Weibull Distribution for Year 1970
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Figure 62
Japanese Males: Age at Death as against Weibull Distribution for Year 1980
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Figure 63
Japanese Males: Age at Death as against Weibull Distribution for Year 1990
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Figure 64
Japanese Males: Age at Death as against Weibull Distribution for Year 1998
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 Table 31 provides results of the goodness-of-fit analyses, together with the 
values of the parameters that were required by the Weibull distribution for each of 
the selected years. 
 

 



TABLE 31 
Values of Parameters for Best-Fit Models and Measure of Goodness of Fit 

(Japanese Males) 
 

 1960 1970 1980 1990 1998 
Parameter α 7.04 7.57 8.40 8.84 8.75 
Parameter β 74.46 76.76 80.14 82.46 83.72 
R2 value 0.990 0.997 0.996 0.993 0.993 
Skewness 0.175 0.253 0.370 0.417 0.386 

 
 We derived the following time-dependent formulas for each of the 
parameters required by the Weibull distribution and provide details of the analysis 
of goodness of fit as follows: 
 
 Parameter α = 0.0491 � (Calendar Year – 1959) + 7.2353; R2 value: 0.938, 
 Parameter β = 0.2534 � (Calendar Year – 1959) + 74.802; R2 value: 0.981. 
 
 From this we projected the age at death for selected percentiles for selected 
future calendar years. The results are set out in Table 32. 
 

TABLE 32 
Age at Death for Specified Percentile in Selected Calendar Years 

(Japanese Males) 
 

Population 
Percentile 

Calendar Year 

 1998 1999 2000 2005 2010 2015 2020 2025 2030 
50th percentile  82.1 82.4 83.7 85.0 86.3 87.6 88.9 90.1
90th percentile  93.5 93.7 94.9 96.1 97.2 98.4 99.6 100.7
95th percentile  96.2 96.4 97.6 98.7 99.8 101.0 102.1 103.2
99th percentile  100.8 101.0 102.0 103.1 104.2 105.2 106.3 107.2

 
Alternate Results: United States and Japan 
 
 In the previous sections we have presented two models of age at death and 
two models of mortality rates. Further analysis of the models of mortality rates is 
useful, as the structure of the models is conducive to considering alternative 
assumptions as to rates of mortality improvement. The logistic model of mortality 
rates by individual year provided a closer fit than that of the logistic model of 
cumulative mortality rates, and we therefore consider some alternative assumptions 
in respect of that model. 
 

 



 We have calculated annuities as previously on two scenarios: 
 
Age-specific mortality improvements after 1998 are assumed to be 50 percent 
of those associated with the principal results (“Scenario 1”) 
Age-specific mortality improvements after 1998 are assumed to be 200 percent 
of those associated with the principal results (“Scenario 2”). 

 
 These scenarios are intended purely as an illustration of the impact of such 
assumptions, rather than representing a probable or likely pattern of future 
mortality improvements that might be associated with particular events or changes 
in behavior. The results are set out in Tables 33–36. 
 

TABLE 33 
Annuities Payable in Arrears on Different Mortality Improvement Assumptions 

(U.S. Females) 
 

 Age 
 60 65 70 75 80 85 90 95 100 

(1) Scenario 1 13.95 12.30 10.54 8.75 7.01 5.38 3.96 2.78 1.86
(2) Scenario 2 15.05 13.32 11.46 9.54 7.64 5.86 4.30 3.01 2.01
(3) Principal 14.31 12.63 10.84 9.01 7.21 5.54 4.07 2.86 1.91
((1) / (3)) − 1  −2.5% −2.7% −2.8% −2.8% −2.8% −2.8% −2.7% −2.6% −2.5%
((2) / (3)) − 1 5.1% 5.5% 5.7% 5.9% 5.9% 5.8% 5.7% 5.5% 5.2%

 
TABLE 34 

Annuities Payable in Arrears on Different Mortality Improvement Assumptions  
(U.S. Males) 

 
 Age 
 60 65 70 75 80 85 90 95 100 

(1) Scenario 1 12.34 10.65 8.94 7.26 5.70 4.31 3.13 2.19 1.46
(2) Scenario 2 13.45 11.62 9.73 7.87 6.14 4.60 3.31 2.28 1.51
(3) Principal 12.71 10.97 9.20 7.46 5.84 4.40 3.19 2.22 1.48
((1) / (3)) − 1  −2.9% −2.9% −2.8% −2.7% −2.5% −2.2% −1.8% −1.5% −1.0%
((2) / (3)) − 1  5.8%  5.9%  5.8%  5.5%  5.0%  4.4%  3.7%   2.9%   2.1%

 

 



TABLE 35 
Annuities Payable in Arrears on Different Mortality Improvement Assumptions  

(Japanese Females) 
 

 Age 
 60 65 70 75 80 85 90 95 100 

(1) Scenario 1 15.53 13.85 11.98 9.98 7.95 6.00 4.28 2.85 1.78
(2) Scenario 2 17.52 15.85 13.87 11.66 9.33 7.04 4.99 3.30 2.03
(3) Principal 16.23 14.53 12.61 10.53 8.39 6.34 4.50 3.00 1.86
((1) / (3)) − 1  −4.3% −4.7% −5.0% −5.2% −5.3% −5.2% −5.0% −4.7% −4.4%
((2) / (3)) − 1  7.9%  9.0% 10.0% 10.8% 11.2% 11.2% 10.8% 10.0%  9.2%

 
TABLE 36 

Annuities Payable in Arrears on Different Mortality Improvement Assumptions  
(Japanese Males) 

 
 Age 
 60 65 70 75 80 85 90 95 100 

(1) Scenario 1 13.47 11.73 9.91 8.07 6.32 4.74 3.39 2.31 1.50
(2) Scenario 2 15.22 13.3 11.33 9.25 7.23 5.40 3.84 2.59 1.66
(3) Principal 14.05 12.26 10.37 8.45 6.62 4.95 3.54 2.40 1.55
((1) / (3)) − 1 −4.2% −4.3% −4.5% −4.5% −4.4% −4.2% −4.0% −3.7% −3.5%
((2) / (3)) − 1  8.3%  8.9%  9.3%  9.5%  9.4%  9.0%  8.5%  7.9%  7.2%

 
Discussion 

 

Implied Improvements in Life Expectancy 
 
 All four models that we have described and used in this paper are based on 
the assumption that there is a time dependency to the values of the parameters 
underlying those models. The results given in the previous sections would suggest 
that this assumption has some validity over the period of the investigation 1960–
1998. However, it is not necessarily probable that such historic relationships will be 
repeated in the future. Indeed, such historic relationships are likely to be the result of 
interaction between different factors whose relative contribution may have changed 
over the period of the investigation: for example, changes in the prevalence of 
smoking or the introduction of new treatments for cardiovascular disease. 
 
 With this proviso stated, all four models project continuing reductions in 
mortality rates at all ages and for both sexes. We would note, however, that unless 
there were conflicting elements within the model, it would not be possible for an 
extrapolative model to produce a trend in future mortality rates that was 
fundamentally different from that over the investigation period. 

 



 Mortality improvements for Japan are projected to be greater than for the 
United States, reflecting the higher pattern of mortality improvements over the 
period of investigation. A reasonable argument might be that developed nations 
would expect to see converging life expectancy, reflecting an increased difficulty for 
new medical advances to extend life expectancy, a greater availability of previous 
advances to both the population as a whole and to other countries, and increasing 
convergence in behavior between different populations. As a consequence, since 
Japan has the highest life expectancy among developed nations, future mortality 
improvements for Japan might be expected to be less than for other developed 
nations. However, as was noted by Oeppen, Vaupel. and others, Japanese females in 
particular have had both the highest life expectancy and the highest mortality 
improvements among developed countries in recent years. 
 
Implications for Population Age Structure 
 
 The two models of age at death clearly illustrate the potential aging of the 
population. The model of trends in percentiles projects that life expectancy at the 
99th percentile according to a life table in year 2005 will be age 101 for U.S. females 
and age 97 for U.S. males, whereas the equivalent figures are ages 103 and 99 for 
Japanese females and males, respectively. 
 
 However, the population age structure is influenced by not only changes in 
mortality rates at different ages, but also the birth rate and net effect of immigration. 
It would therefore be expected that changes in mortality rates will have a lesser 
impact on the United States’ population age structure than that of Japan, as the 
United States has a higher birth rate and higher rates of immigration. 

 
Commentary on Expert Option as to the Existence of Limits to Improvements in 
Life Expectancy 
 
 Vaupel and Oeppen in their paper “Broken Limits to Life Expectancy” (2002) 
noted that improvements in life expectancy had been greater in the second half of 
the twentieth century than had been expected by the World Health Organisation and 
government actuarial departments. Earlier assumptions as to an upper limit to life 
expectancy had now been exceeded in some developed countries. Instead they 
observed that if you consider the country with the highest life expectancy in any 
given calendar year and these highest life expectancies are plotted over a period of 
160 years, a linear relationship is evident such that highest life expectancy increases 
by 0.25 years with each calendar year. 
 
 There is no clear reason why this relationship should exist, and changes in the 
highest life expectancy would be expected to be dependent on the interplay between 
different countries, medical advances, changes in behavior, and variations in the 
hazards faced. Further, the fact that this relationship has existed for such a long 

 



period of time is neither a guarantee nor an indication that this relationship will 
continue into the future. However, the continuation of this relationship is a scenario 
that, in our view, should be considered. 
 
 Further examination of trends in age at death for different percentiles in the 
population has led Christensen and Vaupel (1996) to observe that there does not 
appear to be any evidence of convergence between the different percentiles that 
might be evidence of the presence of an imminent limit to life expectancy. 
 
 The concept of limits to life expectancy was first suggested by August 
Weissman in the nineteenth century in terms of an absolute limit that would free a 
population from the burden of supporting infirm, elderly members. This concept has 
been widely discredited in part through observation of species in captivity. 
However, such limits do exist at the cellular level, as observed by Leonard Hayflick 
as to the number of times that fibroblasts involved in wound healing are able to 
divide. 
 
 Each division of the genetic material is marked by a reduction in the length of 
a location at the end of each chromosome called the telomere. It is thought that this 
change in the telomere length affects gene expression and ultimately leads to cell 
senescence, when further divisions are impossible. The intriguing observation is that 
further divisions are linked to increasing loss of cellular function. 
 
 The phenomenon of aging at the level of the organism is well known, but the 
mechanisms are much less clear. Various evolutionary theories of aging have been 
put forward that highlight the importance of ensuring survival to sexual maturity, 
with either mutations in later life not being selected against or genes having 
beneficial and deleterious effects at different points in the lifespan. 
 
 An alternative concept as propounded by Hayflick and others is that genes 
play no direct part in the process of aging. Instead, in order to ensure survival to 
sexual maturity, natural selection favors genes that provide a functional 
overcapacity, and aging represents the result of random damage within and outside 
cells that gradually reduces this capacity. 
 
 This leads easily to the concept put forward by Olshanky, Carnes, and Cassel 
(1990) of a “biological warranty” or a practical upper limit to life expectancy. This is, 
in effect, the result of the combination of a given level of functional overcapacity and 
a given rate of aging. There is debate as to the extent that diseases such as 
atherosclerosis and Alzheimer’s are part of or independent of the aging process. 
However, proponents of the “biological warranty” concept note that the practical 
upper limit may be close and that extrapolation of past trends in life expectancy is 
not supported by the underlying biological processes. 

 



 However, all demographers and biogerontologists are in agreement that the 
absence of current treatments for the effects of aging does not mean that such 
treatments could not be developed in the future. Such treatments might include the 
results of stem cell research or rejuvenation of cell function as suggested by initial in 
vitro experiments with the enzyme telomerase. The effect of such treatments would 
depend on the penetration in the population and possible latent adverse side effects. 
 
 It is also possible that, regardless of such treatments, changes in behavior will 
have a significant and possible negative impact on future life expectancy. As the 
significant reductions in the prevalence of smoking in the second half of the 
twentieth century have had a significant effect on lung cancer and cardiovascular 
disease, changes in diet and reduced levels of exercise are leading to large increases 
in the prevalence of obesity and type 2 diabetes. 

 
Conclusions 
 
 We would note the following points from our investigations as presented in 
this paper: 

 
The Weibull distribution provides a valuable model of age at death 
 
The logistic function provides a valuable model of mortality rates for ages 50 
and over 
 
There appears to be a clear time dependency to the values of parameters that 
we have used in respect of the Weibull distribution for age at death and in 
respect of the logistic functions for both mortality rates and for cumulative 
probability of death 
 
All four models project that mortality rates will continue to reduce, and 
therefore it would be unreasonable not to allow for the possibility of further 
mortality improvements in considering annuitant mortality 
 
Life expectancy for Japan is currently greater than that for the United States, 
and particularly so for females. None of the projections from the models 
indicate that these differences will decline. 
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	 Abstract 
	 
	 Life expectancy at birth has improved dramatically over the course of the twentieth century. Over this period there has been a shift in that the highest improvements in mortality rates have been seen in progressively older ages. This paper discusses alternative ways of looking at this trend, fitting models to past trends, and projecting future mortality based on a forward projection of these trends, and calculates annuity values based on these projections. 
	 
	 We consider that the probability of age at death for very advanced ages can best be understood and projected in conjunction with the probability of deaths occurring at younger ages, as changes in mortality rates at younger ages will be correlated with the probability of deaths at very advanced ages. 
	 
	 The work of Jim Oeppen and James Vaupel (2002) influenced our thinking in this area. They concluded that the population life expectancy at birth of the country with the highest life expectancy has followed almost a straight line over the last 160 years with a rate of increase of 0.25 years per annum. 
	 
	 We took the view that in attempting to identify and project trends in mortality the analysis should, if possible, be based on those trends showing significant stability. This led us to investigate whether, in addition to the standard actuarial approach of considering curves of qx, the following curves may provide a basis for modeling: 
	 
	 We investigated age-specific mortality curves for population mortality experience for the United States and Japan over the last 40 years. Our investigation was based on population mortality experience from the Human Mortality Database. Japan was chosen as it has seen the highest population life expectancy of any developed nation over the last 20 years. Prior investigators of the Human Mortality Database have suggested that mortality improvements among the higher socioeconomic classes of the United States are not dissimilar to those seen among the general population of Japan. 
	 
	 We have developed models that attempt to relate the age-specific mortality curves for individual calendar years by means of time-dependent variables. The mortality curves that we considered for both males and females in both countries from life tables appropriate to individual calendar years are as follows: 
	 
	 We used these models to project future mortality rates in the United States and Japan. We further consider how these mortality rates may vary according to different future deterministic scenarios. We illustrate the impact of these mortality rates by the calculation of specimen annuity values and projections of age at death for different percentiles of the population. 
	 
	 We discuss the implications of the results for life expectancy and for population age structure. We conclude by providing commentary on the various views being expressed by experts in the fields of demography and medicine as to the likelihood of further improvements in life expectancy and the existence of limits to longevity. 
	 
	Introduction 
	 
	 The twentieth century saw very dramatic reductions in mortality rates at all ages. In the first half of the century significant improvements in the treatment of infectious diseases resulted in the reductions being most significant for children and young adults. In contrast in the second half of the century, significant reductions in deaths associated with cardiovascular disease resulted in the main improvements being seen in those in their fifties and over. 
	 
	 The effect of these improvements has been that far more individuals are living to advanced ages than ever before. This has significant implications for society in general and governments in particular in terms of the work force and health and social costs. As experts in mortality, actuaries may be expected by nonactuaries to address fundamental questions about these trends. These could include the following: 
	 
	 In this paper we address the question by considering the time dependency of various measures of mortality. As regards the second question, we review these measures in the light of a number of different views that have been expounded on possible limits to life expectancy. 
	 
	 There is a long history of fitting models to mortality experience. In 1825 Gompertz, on examination of census data, noted an exponential rise in mortality rates after sexual maturity. He provided a physiological explanation for this observation as “the average exhaustion of man’s power to avoid death gained in equal proportion in equal intervals of age.” The formula he proposed was 
	 
	 The relationship does not hold well at younger ages, and Makeham added a constant term in 1867 to reflect, in part, differences in cause of death between those due to accident and those due to disease. Heligman and Pollard further refined this process by proposing an eight-parameter model in 1980 that specifically modeled such features as childhood illnesses and mortality associated with pregnancy. 
	 
	 The Gompertz and Makeham formulas become increasingly inaccurate at very advanced ages. Logistic formulas have been suggested by Kannisto (1994), Beard (1971), and Perks (1932) that slow the rate of increase in mortality at older ages. It has been suggested that mortality experience at very old ages might point to the existence of a plateau in the rate of mortality, although there are significant problems with credibility of data at these ages. 
	 
	 For actuaries a particular interest of mortality models is the extent that they provide a methodology to project future mortality rates from past experience. The multifactorial nature of improvements in mortality rates means that past trends in mortality may not necessarily provide a good forecast of future trends. However, the future projection of past trends provides a basis of projection that actuaries should consider, whereas selecting between conflicting medical theories is not an actuarial skill. Therefore, where coefficients in appropriate mortality models have shown historical time dependency, such mortality models provide a methodology for projecting future mortality rates that, in our view, should be considered by actuaries. 

	 
	Approach to Modeling 
	 
	 The trend in future longevity is unknowable. In practice it will be depend upon future medical advances. Some of these can be predicted from work already done, but significant work needs to be done to quantify its likely age-related impact. Other medical advances may not yet be foreseen. On the other side of the coin there are factors that may increase mortality such as the emergence of virulent strains of influenza or the spread of antibiotic-resistant bacteria. 
	 
	 These medical advances, or reverses, may themselves be subject to overarching constraints such as a maximum limit to human life. A later section of this paper discusses some of the arguments for and against such a limit. 
	 
	 Given these uncertainties, projecting future trends in mortality, very particularly at the high ages that are the focus of this symposium, is fraught with difficulty. Unfortunately for actuaries, many nonactuaries seem to think that actuaries should be able to solve this problem. 
	 
	 In the authors’ view there are three basic ways of thinking about this: 
	 
	a. The analysis of past trends and their forward projection, without taking into account medical data 
	b. Projections based on medical data at the specific condition level 
	c. Projections based on overarching medical constraints, most obviously, an upper limit to human lifespan, although others may perhaps be envisaged. 

	 
	 Approach (a) is the approach that comes most naturally to actuaries, and the detailed analysis in this paper provides examples of it. Two of the authors (Humble and Ryan) have done work involving a combination of approaches (a) and (b) and see considerable merit in, and scope to extend, this approach. A predictive model based solely on medical data, that is, (b) in isolation, is possible in principle, but the authors regard it as being, at least, several years away in practice. 
	 
	 Option (c) is clearly very important or rather may be very important (a clear demonstration that the limit to human lifespan was, say, 1,000 may be interesting but would have no discernible impact on calculating capital values of annuities at the present time). The authors do not consider, however, that the case for such a limit has been made with sufficient clarity to include it as a constraint in  modeling at this time. 

	 
	Methodology 
	 
	 We used the Human Mortality Database (HMD; www.mortality.org) as our source for age-specific mortality rates for both sexes and for both countries. The HMD represents a collaborative project between the Department of Demography at the University of California, Berkeley, United States, and the Max Planck Institute for Demographic Research in Rostock, Germany. The HMD was based on the Berkeley Mortality Database as founded by John Wilmoth in 1997 and was strongly influenced by the Kannisto-Thatcher Database on Old Age Mortality as founded by Vaino Kannisto and Roger Thatcher in 1993. 
	 
	 The HMD contains information on 22 countries, consisting of raw data information on births, deaths, population size, and exposure to risk, together with detailed descriptions on the sources of the data that we have summarized in the following paragraphs. The goal of the project is to adopt uniform procedures for each country in the collection and verification of data and in calculating death rates and life tables. The HMD notes that in particular the issue of age exaggeration is addressed in part by the derivation of population estimates at older ages through the death counts themselves, employing extinct cohort methods, as age reporting in death registration systems is assumed to be more reliable than from census counts or official population estimates. 
	 
	 Data on U.S. population size were taken from the 10-year population censuses conducted by the U.S. Census Bureau between 1960 and 2000. Census counts were used as basis for annual and monthly population estimates for intercensal and postcensal periods, as reported in Current Population Reports. 
	 
	 Data on U.S. deaths are provided by the National Center for Health Statistics (NCHS) from individual death records as coded from death certificates. The latter data are available in a detailed format to participating organisations through the Inter-University Consortium for Political and Social Science Research, with less detailed summaries being produced in periodical publications from the NCHS. 
	 
	 Data on Japanese population were taken from population censuses conducted every five years by the Statistics Bureau, Management and Coordination Agency between 1960 and 2000. The Statistics Bureau also produces annual postcensal and intercensal population estimates that are published in “Annual Reports on Current Population Estimates.” 
	 
	 Data on Japanese deaths and births over this period were taken from annual publications by the Ministry of Health, Labour and Welfare, Division of Health and Welfare Statistics. 
	 
	 The investigation period is defined as 1960 to 1998. For each calendar year in the investigation period, we derived the following mortality measures for each sex and for each country: 
	 
	 We used the statistical package SPSS to investigate and select the most appropriate mathematical model from those considered to each of these three mortality measures as applied to each calendar year in the investigation period. 
	 
	 For each mortality measure, we determined the degree of time dependency to the coefficient values as taken from successive fittings of the most appropriate mathematical model over the investigation period. 
	 
	 We used the time-dependency relationships identified in the mathematical models in respect of cumulative probability of death and of age-specific mortality rates to determine age-specific mortality rates in future years. We then calculated annuities in arrears for selected issue ages, assuming these mortality rates, annual payments, and an interest rate of 4.25 percent per annum. This interest rate may not be appropriate for both countries considered, but it was felt that a single interest rate would more clearly demonstrate differences in mortality experience between the two countries. 
	 
	 We used the time-dependency relationships identified in the mathematical models in respect of probability of death at each age to determine probability of death at each age in future years. This is simply an alternative method of analyzing the effect of future age-specific mortality rates, but does provide a direct presentation of the population age at death structure in the future. 
	 
	 We also considered an alternative methodology consisting of age at death for different percentiles in the population. We considered decennial percentiles from the 10th to 90th and then individual percentiles up to the 99th. We investigated the pattern of age at death for each of the percentiles considered over the investigation period as forming a basis for forward projection. 
	 
	 The Weibull distribution was developed by Dr. Waloddi Weibull in 1937 and was first introduced in 1951 by his paper “A Statistical Distribution Function of Wide Applicability.” It has since been used in statistical analysis. The Weibull distribution is widely used in reliability and life data analysis due to its versatility.  
	 
	 The Weibull distribution is determined by two parameters, c (the scale parameter) and  (the shape parameter). Compared to the exponential distribution (special case of Weibull where = 1, i.e., constant), the Weibull distribution can have a failure rate (of a life) that varies. This makes the distribution more suitable for models of mortality.   
	 
	 The shape of the Weibull distribution resembles the normal distribution with a right-skew and a tail that is lighter than other distributions. These characteristics of the Weibull distribution have allowed us to fit the distribution to the probability of death with some success.  
	 
	 
	 The probability density function (equation 1) and the probability distribution function (equation 2) of the Weibull distribution both contain two parameters, c and γ (Miller, 1999):  
	 The “Method of Moments” estimation (Hossack, 1999), equating the actual mean and variance of the data set to the theoretical mean and variance of the distribution in question, was not appropriate in this instance as both the mean and variance of the Weibull distribution contain both of the parameters, equations (3) and (4): 
	 
	 
	 Instead, in order to fit the Weibull model, we have used the “Method of Percentiles” (Klugman, 1998) to estimate the parameters of the distribution.  
	 
	 The Method of Percentiles enables two equations with two unknowns to be written. We have equated the probability distribution function at the percentile ages to the corresponding percentile. We have used the 50th percentile and the 95th percentile to fit the curve, as we were most concerned with fitting the latter part of the ages versus actual age of death curve.  
	 
	 The following equations have been used to estimate the parameters: 
	  
	 
	 By ratioing equation (5) to equation (6), the parameter c disappears, and parameter γ can be estimated.  Using parameter γ, one can then deduce the parameter c. 
	 In our investigations of probability of death at a specified age in conjunction with the Weibull distribution, we have defined parameter α to be equal to parameter γ, and parameter β to be c−1/γ. 

	 
	Principal Results: United States 
	The logistic model is of the form 
	 
	 
	We fitted curves of this type to the actual mortality experience for each of the calendar years from 1960 to 1998. Figures 1–5 provide a demonstration of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, respectively. 
	  
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 2. 
	 
	 
	 Figures 6–10 provide a demonstration of the appropriateness of the fit for males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based on far fewer lives at high ages. 
	  
	 
	 Table 3 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the logistic model for each of the selected years. 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 4. 
	 
	 
	 We next fitted a logistic model to the cumulative probability of death: 
	 
	 We fitted curves of this type to the actual cumulative probability of death for each of the calendar years from 1960 to 1998.  Figures 11–15 provide a demonstration of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, respectively. 
	  
	 Table 5 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the logistic model for each of the selected years. 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 6. 
	 Figures 16–20 provide a demonstration of the appropriateness of the fit for males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based on far fewer lives at high ages. 
	  
	  Table 7 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the logistic model for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 8. 
	 
	 We derived the age at death for decennial percentiles within the population for each of the calendar years from 1960 to 1998. We further derived age at death for individual percentiles for the same calendar years between the 91st and 99th percentiles. Figure 21 shows the results for females for years 1960, 1970, 1980, 1990, and 1998. 
	  
	 We determined a time-dependent relationship between age at death for each of the selected percentiles and calendar year. Table 9 sets out the parameters associated with these relationships, and the results of the goodness-of-fit test between the time-dependent relationship and the actual ages at death in each calendar year. 
	 From this we projected the age at death for each of the percentiles set out above for selected future calendar years. The results are set out in Table 10. 
	 
	 Figure 22 shows the results for males for years 1960, 1970, 1980, 1990, and 1998. 
	  
	 We determined a time-dependent relationship between age at death for each of the selected percentiles and calendar year. Table 11 sets out the parameters associated with these relationships, and the results of the goodness-of-fit test between the time-dependent relationship and the actual ages at death in each calendar year. 
	 
	 
	 From this we projected the age at death for each of the percentiles set out above for selected future calendar years. The results are set out in Table 12. 
	 
	 
	 We also fitted a Weibull distribution to the probability of death at a given age with the formula 
	 
	 We fitted curves of this type to the actual cumulative probability of death for each of the calendar years from 1960 to 1998. Figures 23–27 provide a demonstration of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, respectively. 
	  
	 Table 13 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the Weibull distribution for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the Weibull distribution and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected the age at death for selected percentiles for selected future calendar years. The results are set out in Table 14. 
	 
	 Figures 28–32 provide a demonstration of the appropriateness of the fit for males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based on far fewer lives at high ages. 
	  
	 Table 15 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the Weibull distribution for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the Weibull distribution and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected the age at death for selected percentiles for selected future calendar years. The results are set out in Table 16. 
	 

	 
	 

	Principal Results: Japan 
	 
	 The logistic model is of the form 
	 
	 
	 We fitted curves of this type to the actual mortality experience for each of the calendar years from 1960 to 1998. Figures 33–37 provide a demonstration of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, respectively. 
	  
	 Table 17 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the logistic model for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 18. 
	 
	 Figures 38–42 provide a demonstration of the appropriateness of the fit for males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based on far fewer lives at high ages. 
	  
	 Table 19 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the logistic model for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 20. 
	 
	 
	 We next fitted a logistic model to the cumulative probability of death: 
	 
	 
	 We fitted curves of this type to the actual cumulative probability of death for each of the calendar years from 1960 to 1998. Figures 43–47 provide a demonstration of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, respectively. 
	  
	 Table 21 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the logistic model for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 22. 
	 
	 Figures 48–52 provide a demonstration of the appropriateness of the fit for males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based on far fewer lives at high ages. 
	  
	 Table 23 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the logistic model for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the logistic model and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected qx at each age and future calendar year-end and hence derived the capital value of an annuity as at December 31, 2004, payable annually in arrears with an interest rate of 4.25 percent per annum. For comparison we calculated an annuity based on population mortality in 1998 with no allowance for mortality improvements. The results are set out in Table 24. 
	 
	 
	 We derived the age at death for decennial percentiles within the population for each of the calendar years from 1960 to 1998. We further derived age at death for individual percentiles for the same calendar years between the 91st and 99th percentiles. Figure 53 shows the results for females for years 1960, 1970, 1980, 1990, and 1998. 
	  
	 We determined a time-dependent relationship between age at death for each of the selected percentiles and calendar year. Table 25 sets out the parameters associated with these relationships and the results of the goodness-of-fit test between the time-dependent relationship and the actual ages at death in each calendar year. 
	 
	 
	 From this we projected the age at death for each of the percentiles set out above for selected future calendar years. The results are set out in Table 26. 
	 Figure 54 shows the results for males for years 1960, 1970, 1980, 1990, and 1998. 
	  
	 We determined a time-dependent relationship between age at death for each of the selected percentiles and calendar year. Table 27 sets out the parameters associated with these relationships, and the results of the goodness-of-fit test between the time-dependent relationship and the actual ages at death in each calendar year. 
	 
	 
	 From this we projected the age at death for each of the percentiles set out above for selected future calendar years. The results are set out in Table 28. 
	 
	 We also fitted a Weibull distribution to the probability of death at a given age with the formula 
	 
	 
	 We fitted curves of this type to the actual cumulative probability of death for each of the calendar years from 1960 to 1998. Figures 55–59 provide a demonstration of the appropriateness of the fit for females for years 1960, 1970, 1980, 1990, and 1998, respectively. 
	 Table 29 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the Weibull distribution for each of the selected years. 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the Weibull distribution and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected the age at death for selected percentiles for selected future calendar years. The results are set out in Table 30. 
	 
	 Figures 60–64 provide a demonstration of the appropriateness of the fit for males for years 1960, 1970, 1980, 1990, and 1998, respectively. These figures are based on much fewer lives at high ages. 
	  
	 Table 31 provides results of the goodness-of-fit analyses, together with the values of the parameters that were required by the Weibull distribution for each of the selected years. 
	 
	 
	 We derived the following time-dependent formulas for each of the parameters required by the Weibull distribution and provide details of the analysis of goodness of fit as follows: 
	 
	 From this we projected the age at death for selected percentiles for selected future calendar years. The results are set out in Table 32. 
	 

	 
	Alternate Results: United States and Japan 
	 
	 In the previous sections we have presented two models of age at death and two models of mortality rates. Further analysis of the models of mortality rates is useful, as the structure of the models is conducive to considering alternative assumptions as to rates of mortality improvement. The logistic model of mortality rates by individual year provided a closer fit than that of the logistic model of cumulative mortality rates, and we therefore consider some alternative assumptions in respect of that model. 
	 
	  We have calculated annuities as previously on two scenarios: 
	 
	 These scenarios are intended purely as an illustration of the impact of such assumptions, rather than representing a probable or likely pattern of future mortality improvements that might be associated with particular events or changes in behavior. The results are set out in Tables 33–36. 
	 

	 
	Discussion 
	 
	 
	 All four models that we have described and used in this paper are based on the assumption that there is a time dependency to the values of the parameters underlying those models. The results given in the previous sections would suggest that this assumption has some validity over the period of the investigation 1960–1998. However, it is not necessarily probable that such historic relationships will be repeated in the future. Indeed, such historic relationships are likely to be the result of interaction between different factors whose relative contribution may have changed over the period of the investigation: for example, changes in the prevalence of smoking or the introduction of new treatments for cardiovascular disease. 
	 
	 With this proviso stated, all four models project continuing reductions in mortality rates at all ages and for both sexes. We would note, however, that unless there were conflicting elements within the model, it would not be possible for an extrapolative model to produce a trend in future mortality rates that was fundamentally different from that over the investigation period. 
	 Mortality improvements for Japan are projected to be greater than for the United States, reflecting the higher pattern of mortality improvements over the period of investigation. A reasonable argument might be that developed nations would expect to see converging life expectancy, reflecting an increased difficulty for new medical advances to extend life expectancy, a greater availability of previous advances to both the population as a whole and to other countries, and increasing convergence in behavior between different populations. As a consequence, since Japan has the highest life expectancy among developed nations, future mortality improvements for Japan might be expected to be less than for other developed nations. However, as was noted by Oeppen, Vaupel. and others, Japanese females in particular have had both the highest life expectancy and the highest mortality improvements among developed countries in recent years. 
	 
	 The two models of age at death clearly illustrate the potential aging of the population. The model of trends in percentiles projects that life expectancy at the 99th percentile according to a life table in year 2005 will be age 101 for U.S. females and age 97 for U.S. males, whereas the equivalent figures are ages 103 and 99 for Japanese females and males, respectively. 
	 
	 However, the population age structure is influenced by not only changes in mortality rates at different ages, but also the birth rate and net effect of immigration. It would therefore be expected that changes in mortality rates will have a lesser impact on the United States’ population age structure than that of Japan, as the United States has a higher birth rate and higher rates of immigration. 
	 
	 Vaupel and Oeppen in their paper “Broken Limits to Life Expectancy” (2002) noted that improvements in life expectancy had been greater in the second half of the twentieth century than had been expected by the World Health Organisation and government actuarial departments. Earlier assumptions as to an upper limit to life expectancy had now been exceeded in some developed countries. Instead they observed that if you consider the country with the highest life expectancy in any given calendar year and these highest life expectancies are plotted over a period of 160 years, a linear relationship is evident such that highest life expectancy increases by 0.25 years with each calendar year. 
	 
	 There is no clear reason why this relationship should exist, and changes in the highest life expectancy would be expected to be dependent on the interplay between different countries, medical advances, changes in behavior, and variations in the hazards faced. Further, the fact that this relationship has existed for such a long period of time is neither a guarantee nor an indication that this relationship will continue into the future. However, the continuation of this relationship is a scenario that, in our view, should be considered. 
	 
	 Further examination of trends in age at death for different percentiles in the population has led Christensen and Vaupel (1996) to observe that there does not appear to be any evidence of convergence between the different percentiles that might be evidence of the presence of an imminent limit to life expectancy. 
	 
	 The concept of limits to life expectancy was first suggested by August Weissman in the nineteenth century in terms of an absolute limit that would free a population from the burden of supporting infirm, elderly members. This concept has been widely discredited in part through observation of species in captivity. However, such limits do exist at the cellular level, as observed by Leonard Hayflick as to the number of times that fibroblasts involved in wound healing are able to divide. 
	 
	 Each division of the genetic material is marked by a reduction in the length of a location at the end of each chromosome called the telomere. It is thought that this change in the telomere length affects gene expression and ultimately leads to cell senescence, when further divisions are impossible. The intriguing observation is that further divisions are linked to increasing loss of cellular function. 
	 
	 The phenomenon of aging at the level of the organism is well known, but the mechanisms are much less clear. Various evolutionary theories of aging have been put forward that highlight the importance of ensuring survival to sexual maturity, with either mutations in later life not being selected against or genes having beneficial and deleterious effects at different points in the lifespan. 
	 
	 An alternative concept as propounded by Hayflick and others is that genes play no direct part in the process of aging. Instead, in order to ensure survival to sexual maturity, natural selection favors genes that provide a functional overcapacity, and aging represents the result of random damage within and outside cells that gradually reduces this capacity. 
	 
	 This leads easily to the concept put forward by Olshanky, Carnes, and Cassel (1990) of a “biological warranty” or a practical upper limit to life expectancy. This is, in effect, the result of the combination of a given level of functional overcapacity and a given rate of aging. There is debate as to the extent that diseases such as atherosclerosis and Alzheimer’s are part of or independent of the aging process. However, proponents of the “biological warranty” concept note that the practical upper limit may be close and that extrapolation of past trends in life expectancy is not supported by the underlying biological processes. 
	 However, all demographers and biogerontologists are in agreement that the absence of current treatments for the effects of aging does not mean that such treatments could not be developed in the future. Such treatments might include the results of stem cell research or rejuvenation of cell function as suggested by initial in vitro experiments with the enzyme telomerase. The effect of such treatments would depend on the penetration in the population and possible latent adverse side effects. 
	 
	 It is also possible that, regardless of such treatments, changes in behavior will have a significant and possible negative impact on future life expectancy. As the significant reductions in the prevalence of smoking in the second half of the twentieth century have had a significant effect on lung cancer and cardiovascular disease, changes in diet and reduced levels of exercise are leading to large increases in the prevalence of obesity and type 2 diabetes. 

	 
	Conclusions 
	 
	 We would note the following points from our investigations as presented in this paper: 
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