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Abstract 
 
 This paper employs a longitudinal form of the Grade of Membership (GoM) 
model to specify and estimate a multivariate model of the trajectories of disability and 
mortality among longitudinally followed elderly respondents to the National Long-
Term-Care Survey (NLTCS) of 1984, 1989, 1994, and 1999. A distinct trajectory is 
constructed for each individual respondent to the survey. The trajectories describe the 
progressive declines over time in physical and cognitive functioning among a nationally 
representative sample of the U.S. elderly population. 

 
The model is structured to simultaneously represent the essential features of the 

fixed frailty model (Vaupel et al. 1979) and the model of linearly declining vitality 
(Strehler and Mildvan 1960). Unlike those models, however, the longitudinal GoM 
model is designed for easy and direct application to existing longitudinal data sets. 

 
The measurement space in the NLTCS application includes from one to four sets 

of repeated measures for each survey respondent on 95 independent variables 
characterizing the nature and intensity of limitations in activities of daily living, 
instrumental activities of daily living, physical functioning, and cognitive functioning, 
as well as indicators of behavioral characteristics, medical conditions, subjective health, 
age, race, sex, and institutional status. 

 
The application shows that the model can be fitted to existing data and that the 

results are interpretable as generalizations of fixed frailty with linearly declining 
vitality. 

 
Introduction 
 
 Actuaries, demographers, gerontologists, and biomedical researchers have 
contributed significantly to our understanding of survival at advanced ages. Further 
advances are possible using the extensive morbidity, disability, and mortality data 
currently being collected on longitudinally followed populations. Full realization of the 
analytic potential of such data will require new models and methods. 

To date, much of the research on survival at advanced ages has been performed 
using the life table and related methodologies. Methods for generalizing the life table to 
represent the effects of observed and unobserved covariates have been proposed. Such 
methods are required for fully representing the effects of large numbers of time-varying 
covariates in sample data from longitudinally followed populations. 

 
This paper generalizes the life table to include the effects of observed and 

unobserved time-varying health-related covariates using a longitudinal form of the 
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Grade of Membership (GoM) model to specify and estimate a multivariate model of the 
trajectories of disability and mortality among elderly respondents to the National Long-
Term-Care Survey (NLTCS) of 1984, 1989, 1994, and 1999. This model is shown to be a 
natural extension of currently available methods and one that is consistent with recent 
research findings on individual differences in mortality and morbidity risks and the 
impact of those differences on survival at advanced ages. 

 
The paper contains five sections: 
 
• The Background section provides information on existing life-table methods 

and recent research results that are used to motivate the development of the 
longitudinal form of the GoM model. 

 
• The Data section provides information on the NLTCS and related 

administrative files from Medicare that are used as the inputs to the 
longitudinal GoM model. 

 
• The Methods section describes the longitudinal GoM model, the methods 

used for estimating its parameters, and the application of the model to 
longitudinal data such as contained in the NLTCS. 

 
• The Results section presents the parameter estimates and resulting 

generalizations of the life table to represent trajectories of individual health 
histories. Validation of the model is based on internal consistency as well as 
comparisons with published life-table models and other data. 

 
• The Discussion section considers the implications of the results in the context 

of existing models for analyzing and forecasting future disability and 
mortality patterns in the United States. 

 
Background 
 
Life-Table Parameters 
 
 A life table is a tabular array of age-specific survival probabilities and associated 
derived annual and cumulative measures (Chiang 1984). Three fundamental parameters 
are: 

1. qa = the probability of death within one year after attaining age a 
2. pa = the probability of surviving at least one year after attaining age a 
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3. μa = the age-specific death rate, hazard rate, or force of mortality for the 
corresponding one-year age interval from a to a + 1. 

 
The three parameters are functionally related. Parameter (2) is the complement of 

parameter (1)—that is, the sum of the two probabilities is exactly 1.0. Parameter (2) can 
be logarithmically transformed, with a sign change, to produce parameter (3) (assuming 
that μa is piecewise constant; Manton and Stallard 1984). Moreover, μa ≥ qa for every age 
a, with approximate equality for values of μa below 0.05, which applies to current U.S. 
mortality rates up to about age 75–80 years. 

 
Gompterz’s Law 
 
 The force of mortality exhibits exponential growth above about age 20. This was 
discovered by Gompertz (1825), who published the famous “law of mortality” that now 
bears his name. Under Gompterz’s law, a

a eβμ α= , with proportionality constant α and 
growth constant β. 

 
Gompterz’s law has been confirmed in numerous studies of human (and 

nonhuman) populations (Wetterstrand 1981; Olshansky and Carnes 1997). Two 
limitations are that the Gompertz “constants” (α and β) differ from one population to 
another and over calendar time and cohort within a given population, and moreover, 
the parameter values for α and β are negatively correlated when calculated for 
populations with a broad range of mortality conditions (Strehler and Mildvan 1960; 
Gavrilov and Gavrilova 2001). 

 
Beginning at about 80–90 years of age (for humans; at various postreproductive 

ages for nonhumans), the increases in observed mortality rates are less than that 
predicted by Gompertz’s law (Olshansky and Carnes 1997; Vaupel et al. 1998), 
indicating that Gompertz’s law should be viewed as a useful approximation rather than 
an immutable fact. 

 
Two analytic models have been proposed that yield insight into the dynamics of 

mortality at advanced ages: one based on linearly declining vitality (Strehler and 
Mildvan 1960) and the other on fixed frailty (Vaupel et al. 1979). 
 
Declining Vitality 
 
 Strehler and Mildvan (1960) proposed linearly declining vitality as the 
underlying physiological mechanism that explains the exponential increase found in 
Gompertz’s law. They defined vitality as 
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the capacity of an individual organism to stay alive, as measured by an 
appropriately weighted average of the maximum rate of work output 
(power output) less the basal power output of all of the functional 
modalities contributing to survival in the normal environment. (p. 15) 

 
They noted that vitality includes: 

 
Only the reserve capacity of an organism to do work in overcoming 
challenges to its existence. It does not include the work it must do to 
maintain itself in the absence of challenge. The latter, appropriately 
weighted, is the basal work rate. (p. 18) 
 
To validate these assumptions, they analyzed rates of decline in reserve 

capacities for eight physiologic functions (nerve conduction velocity, basal metabolic 
rate, maximal breathing capacity, standard cell water, standard renal plasma flow, vital 
capacity, standard glomerular filtration rate, and a cardiac index) and found that all of 
the declines were linear. Assuming that the force of mortality followed Gompertz’s law 
and that the fraction of challenges that are lethal was a negative exponential function of 
vitality, Strehler and Mildvan (1960, p. 17) found that the implied rate of decline in 
vitality was “in reasonable agreement” with the observed declines in reserve capacities. 

 
Strehler and Mildvan’s (1960) model was developed and tested at the population 

level. This limited their results in two ways: 
 
They did not validate their model using individual-level data on the 
relationships between measures of physiologic reserve capacities and 
subsequent mortality rates. 
 
They did not account for the impact of individual differences in initial 
vitality or in the rates of decline in vitality. 

 
Fixed Frailty 
 
 Vaupel et al. (1979) developed life-table methods to study the impact of 
unobserved but persistent individual differences in mortality risks. These differences 
were represented through the effects of a multiplicative factor termed frailty that 
operated, by assumption, as a fixed multiplier on a standard schedule of age-specific 
forces of mortality faced by individuals in each birth cohort. Without loss of generality, 
average frailty was defined to have the value 1 at the initial age of observation (e.g., at 
birth or any other age at which cohort follow-up began). Thus, using zi to denote the 
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frailty value for the i-th individual, the model can be specified as ( ) (1)a i i az zμ μ= ⋅ , 
where μa(1) is the standard force of mortality at age a. Because individual frailty values 
were fixed for life, the distribution of frailty was assumed to be affected only by the 
selective effects of differential mortality at the different levels of frailty. 

 
The meaning of frailty employed by Vaupel et al. (1979) differed substantially 

from the meaning of the same term that is being increasingly used in the gerontological 
literature to characterize a clinical syndrome among elderly persons that includes such 
characteristics as weight loss, exhaustion, grip strength, walking speed, and physical 
activity (e.g., see Fried et al. 2001, 2004; Bortz 2002). This use of the term may be closer 
to the concept of low vitality, as implied by Strehler and Mildvan’s (1960) model of 
declining vitality. The concept of frailty proposed by Vaupel et al. was one in which 
frailty was a fixed characteristic of an individual; this was synonymous with a concept 
of relative susceptibility to death. 

 
Part of the motivation for the fixed frailty model was to determine if the slowing 

of the rate of increase in the force of mortality observed at the oldest ages in a 
population was an artifact of differential mortality selection on a population in which 
the forces of mortality faced by individuals continued to increase according to 
Gompertz’s law. 

 
Vaupel et al. (1979) assumed that frailty was gamma distributed. Hougaard 

(1984) proposed that the inverse Gaussian distribution be considered as an alternative 
to the gamma. Manton et al. (1986) fitted gamma and inverse Gaussian distributions to 
U.S. death rates at ages 65–94, using both Gompertz and Weibull models for the 
standard schedule of age-specific forces of mortality faced by individuals in each birth 
cohort. The estimates of the standard deviation of frailty were in the range 0.3–0.8 and 
were larger for females than males, larger for the Gompertz than the Weibull model, 
and larger for the inverse Gaussian than the gamma distribution. However, because the 
mathematics of the mortality selection process ensure that the standard deviations were 
fixed over age for the gamma but declined over age for the inverse Gaussian, the 
standard deviations for the two distributions converged to equality at age 89 for males 
and age 93 for females, after which the standard deviations crossed over. 

 
One major limitation of the analysis in Manton et al. (1986) was the need to 

assume a parametric form such as the Gompertz or Weibull for the standard schedule of 
age-specific forces of mortality faced by individuals in each birth cohort. Because 
Strehler and Mildvan (1960, p. 19) argued that their theoretical model applied to 
individuals, the assumption of a Gompertz function for individual forces of mortality in 

 6



Manton et al. was consistent with their model. If that assumption was wrong, however, 
then the estimate of the standard deviation of frailty could be seriously in error. 

 
To test this assumption, one must apply the model to data for which the 

functional form of the individual forces of mortality is not restricted to any specific 
parametric family. Such data were available to Iachine et al. (1998), who applied a 
correlated gamma-frailty model to survival data on Danish, Swedish, and Finnish 
twins. They found that the standard schedules of age-specific forces of mortality faced 
by individuals in each birth cohort increased substantially faster than the Gompertz 
function and that the standard deviation of frailty was about 1.5, which was about 3 
times larger than the comparable estimates in Manton et al. (1986; i.e., 0.46 and 0.54, 
respectively, for males and females under the gamma-mixed Gompertz formulation). 

 
Iachine et al.’s (1998) results clearly contradicted Strehler and Mildvan’s (1960) 

assumption that their theoretical model applied to individuals. Iachine et al.’s results 
also affected the interpretation of the analysis of Manton et al. (1986), given that part of 
the motivation for the fixed frailty model was to determine if the slowing of the rate of 
increase in the force of mortality at the oldest ages in a population compared to the rate 
of increase predicted under Gompertz’s law was an artifact of mortality selection. As an 
alternative to the Gompertz function, Manton et al. considered the Weibull function as a 
model of the forces of mortality faced by individuals. However, when fitted to the same 
age-specific data, the Weibull function rose slower than the Gompertz function at older 
ages, so that the Weibull model was likewise contradicted by Iachine et al.’s results. 
Manton et al. did not consider any models in which the individual forces of mortality 
rose faster than the Gompertz function, in part because the need for such models was 
not recognized at that time. 

 
Iachine et al. (1998) found that (1) the variability in individual frailty was 

substantially larger than expected and (2) the individual forces of mortality rose 
substantially faster than expected under the assumption that the Gompertz function 
was an accurate representation of the age trajectories of individual forces of mortality. 
These findings are relevant to our goal of accurately modeling trajectories of disability 
and mortality for individual respondents to the NLTCS. 
 
Genetic and Nongenetic Factors 
 
 Because their analyses were based on the survival experience of monozygotic 
and dizygotic twins, Iachine et al. (1998) were able to partition the variability in 
individual frailty into genetic and nongenetic components. Specifically, they reported 
country-specific sex-specific estimates of “narrow-sense” heritability in frailty 
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(reflecting the fraction of the variance of frailty associated with additive genetic effects) 
in the range 0.36–0.60 and 0.37–0.54 and pooled estimates of 0.57 and 0.51, respectively, 
for males and females. 

 
Combined with other analyses by the same researchers (e.g., McGue et al. 1993; 

Yashin and Iachine 1995; Yashin, Iachine, and Harris 1999; De Benedictis et al. 2001), 
these results indicated that, for both sexes, about 50 percent of the variability in 
individual frailty was genetic. 

 
Conversely, these results indicated that about 50 percent of the variability in 

individual frailty was due to nongenetic factors. 
 
Because individual frailty values are assumed to be fixed for life, or at least 

approximately so, in the fixed frailty model, the finding that nongenetic factors account 
for about half of the variability in frailty means that the source and stability of such 
nongenetic factors are relevant. 

 
Stability is relevant because the assumption that frailty is effectively fixed by 

early adult ages is necessary for the effects of mortality selection to become manifest at 
older ages. That is, if individual differences in frailty do not persist, then the excess risks 
faced by any given individual at one set of times would tend to be canceled out by 
reduced risks at later times. Over time, no cumulative advantage or disadvantage 
would be experienced by such individuals; hence, the individual and population forces 
of mortality would be the same, on average, and the impact of nonpersistent individual 
differences in frailty would be trivial. 

 
The sources of the nongenetic factors are relevant to our understanding of these 

factors, their stability over time, the persistency of their effects, and the potential for 
interventions that could mitigate their deleterious effects. 

 
Important insight into the nature of the nongenetic factors was provided by 

McGinnis and Foege (1993), who introduced the concept of “actual causes of death,” 
which are nongenetic modifiable lifestyle and risk factor behaviors such as smoking, 
poor nutrition/physical inactivity, alcohol use, microbial agents, toxic agents, motor 
vehicle accidents, firearms, sexual behaviors, and illicit drug use that were 
quantitatively associated with the standard concept of “underlying causes of death” 
through published relative risk estimates. According to these authors, approximately 50 
percent of all deaths in the United States in 1990 were attributable to the nine factors 
studied. 
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Using similar methods, Mokdad et al. (2004) updated that study and found that 
48 percent of all deaths in the United States in 2000 could be attributed to the same nine 
factors. 

 
Mokdad et al. (2004) identified several limitations to their methodology, 

including the use of relative risk measures from independent published analyses and 
the lack of information and controls for the effects of high blood pressure and high 
serum cholesterol. Moreover, they provided no information on morbidity and 
disability, which are important to the current analysis. Despite these limitations, the 
results of their analyses were consistent with the expectation from the twin studies that 
about 50 percent of the variation in frailty, and hence in mortality, was due to 
nongenetic factors. Also, the cumulative nature of the damage associated with the 
various lifestyle and risk factor behaviors could support an assumption that the 
resulting mortality differentials were stable over time. 
 
Life Tables with Covariates 
 
 Hazard-rate (force of mortality) regression models with observed covariates are 
often specified using Cox’s (1972) regression model. This model is similar to the fixed 
frailty model except that an exponential function of the covariates operates as a fixed 
multiplier on the age-specific standard force of mortality. For example, using xi to 
denote the vector of covariates for the i-th individual, the model can be specified as 

( ) exp( ) ( )a i i aμ μ′= ⋅x x b 0 , where μa(0) is the standard force of mortality at age a, that is, 
resulting from the condition xi = 0. Moreover, because μa(0) does not appear in the 
partial likelihood equations used to estimate the regression parameters, it is not 
necessary to specify the functional form of the standard force of mortality. 
Nonparametric estimates of μa(0) can be generated after the regression parameters have 
been estimated. 

 
Various generalizations of Cox’s (1972) regression model have been proposed to 

allow estimation and testing of the hazard-rate regression coefficients and standard 
forces of mortality with time-varying covariates (e.g., see Therneau and Grambsch 
2000). A common approach is to conduct estimation and testing conditional on the 
observed sequences of covariate values obtained from all individuals in the sample. 
This approach neither requires, nor uses, an explicit model of the processes governing 
the changes in the covariate values. 

 
When the changes in the covariates are a major focus of the analysis, then an 

explicit model of the processes governing the temporal changes in the covariate values 
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is required. In this case either the Cox regression model must be embedded within a 
more general covariate model, or an alternative model must be developed. 

 
Manton et al. (1994a) presented a two-component Gaussian stochastic process 

model describing (1) the changes in the observable covariates over age and (2) the 
impact of the age-varying covariates on the individual forces of mortality. 
Implementation of the model followed the specifications given in Woodbury and 
Manton (1977) and Tolley and Manton (1991), viz., linear dynamics of the covariates 
and a quadratic form for the force of mortality. 

 
The changes in the vector of covariate values, xia, for the i-th individual from age 

a to a + 1 were modeled as a first-order autoregressive process, as follows: 
( 1) ( 1)i a a ia i a+ += + +x u Ax e , 

where ua was a vector of age-specific constant changes, A was a regression matrix 
representing the effects of xia on xi(a+1), and ei(a+1) was a vector of normally distributed 
residual values (i.e., errors or innovations) at age a + 1. Estimation of ua and A was 
generally conducted via ordinary least squares procedures. One exception was the 
application of the model to GoM scores from the NLTCS, for which estimation of A 
(actually Aa) was conducted via the minimum entropy algorithm described in Manton 
et al. (1992b, pp. 326–329). 

 
The hazard function was modeled as an age-specific quadratic function of the 

current covariates: 
1
2( ) ( )a ia a a ia ia a iaμ μ ′ ′= + +x 0 b x x B x , 

with parameters μa(0), ba, and BBa, where μa(0) was the standard force of mortality at age 
a, that is, resulting from the condition xia = 0. 

 
To facilitate estimation of the quadratic hazard, it was necessary to impose two 

types of constraints. One set of constraints was needed to ensure that the quadratic form 
was non-negative definite. The second set was needed to reduce the number of 
parameters to a manageable number. This was done by replacing each age-specific term 
in the quadratic hazard with an exponential function of age, as follows: 
 μa(0) = μ(0) eβa , 
 ba = b eβa , 
 Ba = B eβa, 
where the exponential growth constant, β, was the same for all three types of 
parameters (see Manton et al. 1992a). The expression for μa(0) was identical to 
Gompertz’s formula with the substitution α = μ(0). Substitution for μa(0), ba, and BBa in 
the expression for μa(xia) yielded 

( )1
2( ) ( ) a

a ia ia ia ia eβμ μ ′ ′= + +x 0 b x x Bx , 
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a multidimensional generalization of Gompertz’s law with the substitution α = 
1
2( ) ia ia iaμ ′ ′+ +0 b x x Bx  reflecting multiplicative and interaction effects of observable age-

varying covariates. The resulting expression allowed the individual forces of mortality 
to rise as fast as, faster than, or slower than the Gompertz function, given that the 
individual forces of mortality were controlled by (1) changes in xia, which can move the 
individual up or down the sides of the quadratic function, and (2) the exponential 
growth constant, β, which increased the height of the quadratic function by a constant 
factor at each age. 
 

Manton et al. (1994a) found that the exponential growth constant, β, was reduced 
substantially when covariates were included in the model. Moreover, in comparing the 
performance of functional status measures from the NLTCS with cardiovascular disease 
risk factors from the Framingham Heart Study, the authors found that the functional 
status measures accounted for higher proportions of the variance in mortality risks (79–
87 percent vs. 70–71 percent) and produced substantially greater reductions in the 
exponential growth constant, β (35–48 percent vs. 14–19 percent), than did the 
cardiovascular disease risk factors. 

 
As the exponential growth constant declined toward 0, one would have greater 

confidence that the changes in the covariates accounted for changes in mortality over 
age, that is, because the movement of the covariates to high risk values would be the 
only mechanism in the model that could account for the increase in mortality risks 
among affected individuals. 

 
One limitation of the two-component Gaussian stochastic process model was that 

the changes in the observed covariates were represented as an autoregressive process 
with individual covariate values tending to regress toward age-specific cohort mean 
values rather than to individually estimated covariate trajectories. This limitation 
increases in importance if the analysis is directed toward individual level survival, not 
population or cohort survival. However, generalizations of the model to represent 
individually estimated covariate trajectories are yet to be done. 

 
A second limitation was that the two-component stochastic process model was 

specified as a Gaussian diffusion process (Woodbury and Manton 1977). Application of 
this model to more general forms of covariate changes required ad hoc procedures. In 
the case of Manton et al.’s (1994a) analysis of the GoM scores from the NLTCS, ad hoc 
constraints had to be imposed on (1) the regression matrix A, to maintain constraints on 
the sums and the signs of the GoM scores, and (2) the covariance matrices of the 
elements of ei(a+1), to maintain the restricted ranges of the variances and covariances of 
the GoM scores. 

 11



The remainder of this paper presents a new approach to calculating individually 
estimated covariate trajectories based on the specification of an explicit temporal 
structure for the GoM model. The approach is substantially simpler and easier to apply 
than the prior approach, which adapted the two-component Gaussian stochastic 
process model to the analysis of the changes in the GoM scores estimated from each 
wave of the NLTCS. Moreover, with fixed covariate trajectories, the approach logically 
follows as an integration and generalization of the fixed frailty and the declining vitality 
models. 
 
Data 
 
 The longitudinal GoM model was estimated using data from the second through 
fifth waves of the National Long-Term-Care Survey, which was conducted in 1982, 
1984, 1989, 1994, 1999, and 2004. The first five waves of the NLTCS contained 
longitudinal and cross-sectional data on a nationally representative sample of 41,947 
U.S. elderly persons who were enrolled in Medicare and were aged 65 years or older at 
some point during 1982–1999. The sixth wave of the survey initiated field operations in 
late 2004 and is expected to be available for analysis in late 2005. 

 
The NLTCS covered both institutionalized and noninstitutionalized persons. The 

wave-specific sample sizes during 1982–1999 ranged from 17,286 to 22,139 persons, with 
from 3,112 to 5,552 persons disabled and living in the community, and 1,036 to 1,946 
persons in institutional residence. 

 
The response rates were excellent for the first five waves of the survey (95–97 

percent: see Manton et al. 1993, 1997; Manton and Gu 2001; Freedman et al. 2004). All 
institutionalized persons were designated for a detailed interview except in 1982. A 
screener interview targeted noninstitutionalized disabled persons for further study 
using a detailed community interview. At the time of each survey, a replenishment 
sample of 5,000–5,500 persons who attained their 65th birthday in the period following 
the prior survey was added to the surviving sample to replace the deaths occurring 
since the prior survey and to ensure that the new sample was representative of the 
entire elderly population aged 65 years or older. 

 
The NLTCS provided data on age, sex, race, residence type (community vs. 

institutional, 1982–1999; and assisted living, 1999–2004), height, weight, alcohol and 
cigarette use, exercise, 30 major medical conditions, vision, subjective health status, 
seven activities of daily living (ADLs), nine instrumental activities of daily living 
(IADLs), eight functional limitation items (Nagi 1976), cognitive status (Short Portable 
Mental Status Questionnaire [SPMSQ] 1982–1994, 2004; Mini–Mental State Examination 
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[MMSE] 1999), short-term memory, and aberrant behaviors. A detailed listing of these 
items is provided in the Appendix. 

 
The NLTCS questionnaire items used to assess ADL limitations identified 

activities in which the respondent received active physical help from another person 
during the week prior to the interview. This provided an objective anchor against which 
the use of standby help or special equipment to cope with lower levels of limitation can 
be compared; the questionnaire also probed for activities in which help was needed but 
not received, so that the entire spectrum of ADL limitations was represented in the 
NLTCS. The only subjective measure occurred when the respondent reported that help 
was needed but not received. This latter category of limitation was not counted as an 
ADL limitation in either the traditional NLTCS disability classification algorithm or in 
the HIPAA classification algorithm (Stallard 2000, 2001; Stallard and Yee 2000). It was 
included as a mild disability in the five-state Markov chain models developed in the 
two Stallard papers and Stallard and Yee. Similarly, the assessment of IADL limitations 
was based on questionnaire items that establish that the respondent cannot perform the 
activity due to a disability or health problem. This removed socially defined roles as 
reasons for not performing activities such as cooking, housework, or managing bills 
(Freedman and Martin 1998). 

 
One frequent misconception about the design of the NLTCS is that the detailed 

community interview covered only chronically disabled persons. This is not true. 
Although the screener interview targeted noninstitutionalized disabled persons for 
further study using the detailed community interview, the NLTCS included over 6,000 
detailed community interviews for nondisabled persons. 

 
The size and composition of the nondisabled group changed over time as the 

survey evolved. For each survey ADL and IADL data were collected in a screener 
interview given to a nationally representative sample drawn from Medicare lists. In 
1994 and 1999 a special “healthy” sample of persons was drawn, using screener 
interview rejection criteria, who otherwise would not have received the detailed 
community interview. This yielded a supplementary subsample of 922 nondisabled 
persons in 1994 and 284 nondisabled persons in 1999. The “healthy” samples can be 
combined with a second subgroup of 884 persons in 1994 and 1,748 persons in 1999 who 
were determined to be nondisabled after application of the NLTCS classification 
protocols in the detailed community interview, yielding a total of 1,806 nondisabled 
persons in 1994 and 2,032 persons in 1999. 

 
The NLTCS classification protocols in the detailed community interviews 

identified 536, 980, and 916 additional persons who were nondisabled in the 1982, 1984, 
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and 1989 surveys, respectively. The large increase in this subgroup between 1982 and 
1984 occurred because 1982 was the only year in which all respondents received the 
complete screener interview. After 1982, persons who previously met the screener 
criteria were designated for detailed follow-up interviews without further screening. 

 
The NLTCS had large sample sizes at ages 85 and older, ranging from 2,552 

persons in 1984 to 3,317 persons in 1999. The 1994 and 1999 surveys introduced 
supplementary samples of the population aged 95 and older, so that the sample sizes at 
ages 95 and older increased from 244 in 1989 to 745 in 1994 and 930 in 1999. 

 
All NLTCS records were linked to Medicare vital statistics and beneficiary claims 

data for calendar years 1982 and later, with ongoing periodic updating to allow 
virtually complete tracking of mortality (Kestenbaum 1992). This linkage resolved 
concerns about bias in mortality rates due to the 5 percent per wave nonresponse rate, 
which can be significant in traditional longitudinal designs in which respondent rosters 
were not linked to an administrative record system such as Medicare. 

 
A related issue is the impact of nonresponse on the estimated disability 

trajectories for persons who were initially interviewed at some prior wave. The 
longitudinal GoM model was designed to be robust in this case. The primary concern is 
that, even when controlling for prior health status, the missing responses were 
correlated with poor health at the time of the missing wave. In this case population 
estimates that do not control for prior health status may be biased (see Manton et al. 
1991 for discussion). 

 
Age at last birthday on the date of the NLTCS interview was queried on the 

interview and verified against the age computed from the Medicare vital statistics data. 
Discrepancies were resolved using the Medicare data, which were accurate up to about 
ages 95–99 (Kestenbaum 1992) and were consistent from one survey to the next, because 
the computed ages were based on recorded dates of birth. 
 
Methods 
 
 This section generalizes the basic Grade of Membership technique, a categorical 
data procedure that allows large numbers of variables to be simultaneously analyzed 
(Woodbury and Clive 1974; Woodbury et al. 1978; Manton and Stallard 1984; 
Woodbury et al. 1994; Manton et al. 1994b), to estimate individually defined covariate 
trajectories from longitudinal data. 
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The GoM technique is appropriate as the starting point for such a task because 
GoM generates scores for each individual person included in the analytic data set. The 
GoM scores are an essential building block for defining covariate trajectories. Moreover, 
because the GoM scores are derived from data on morbidity, disability, and other 
health-related characteristics, they represent individual measures of fixed frailty, and 
the age changes in those scores represent individual measures of declining vitality. 

 
The GoM scores can be included in a system of linked equations to predict the 

probabilities of future covariate outcomes based on the observed distributions of 
covariates in the analytic data set. The method permits predictions of morbidity, 
disability, and other health-related characteristics such as the use, cost, and intensity of 
long-term-care (LTC) services for the elderly. 

 
The expressions for the age changes in GoM scores can be written in the form of 

an age-inhomogeneous K-state Markov chain in which the K-element vector of GoM 
scores for the i-th individual, denoted by gi, with elements gik, k = 1,…, K, represents the 
initial state vector for the K states. 

 
In conventional Markov chain models, an individual occupies only one state at a 

time, and, with this restriction, one can say that the states are “crisp” (Manton et al. 
1994b). 

 
When GoM techniques are combined with Markov models, however, two things 

are different. First, each GoM state is described in relation to imaginary, ideal 
individuals, or “pure types.” Second, the GoM states are not “crisp”; instead they are 
“fuzzy” (Zadeh 1965; Singpurwalla and Booker 2004). Thus, each individual is 
characterized by combinations of the GoM states. The extent to which the individual is 
characterized by any one pure-type state is referred to as the individual’s grade of 
membership (GoM) score for that state. 

 
Each individual has a GoM score for each of K states; the scores fall between 0 

and 1, inclusive, and they sum to 1. These constraints imply that the vector of GoM 
scores is a stochastic vector. The GoM scores, however, are not probabilities of 
membership in each of the K states; instead they are grades of membership. If they were 
probabilities, then the GoM model would simplify to a latent class model (Lazarsfeld 
and Henry 1968), and the initial state vector, gi, would be a probability distribution 
vector. 

 
Differences between the GoM and latent class models are manifest when the 

likelihoods are compared and when the posterior probabilities of classification are 
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considered (Manton et al. 1992b). Under the latent class model, as more information is 
obtained on each individual, the posterior probabilities of classification tend toward 1 
for the correct class and 0 for all other classes. Under the GoM model, as more 
information is obtained on each individual, one obtains more precise estimates of the 
GoM scores without convergence to the boundary values, 0 or 1. 

 
Given the initial stochastic state vector of GoM scores, subsequent values of the 

stochastic state vector are obtained via matrix multiplication by a sequence of stochastic 
transition matrices, for which the elements in each row (assuming postmultiplication) 
are non-negative and sum to one. These operations, which maintain the constraints on 
the state vectors of GoM scores, are identical to the operations that constitute a 
conventional age-inhomogeneous K-state Markov chain. 

 
Thus, the set of K GoM scores defines the K-element vector gi. Disease and 

disability progression are represented as changes in the GoM score vector from one 
wave of the NLTCS to the next as the individual ages, possibly moving from the 
community to an institution, developing impairments, changing behaviors, or dying. 

 
The remainder of this section discusses the details of the GoM model and its 

application to longitudinal data analysis. 
 
Basic GoM Model 
 
 The longitudinal GoM model is most easily understood when described as an 
extension of the basic GoM model (Woodbury and Clive 1974). 

 
The basic GoM model is used to analyze data for I persons, indexed by i, i = 1,…, 

I, with measurements or observations on J multinomial covariates, indexed by j, j = 1,…, 
J, each of which is measured with Lj distinct outcomes or response levels. The j-th 
covariate for the i-th individual is typically denoted as xij. However, given that the 
outcomes are discrete, it is more convenient to employ binary coding for the data such 
that yijl = 1 if xij = l and yijl = 0 if xij ≠ l. By convention, this coding rule sets yijl = 0 if the 
value of xij is unknown or is missing from the data, or if xij is undefined because the j-th 
covariate was properly skipped due to the i-th individual’s response on a prior 
screening question. 

 
From the J covariates, K latent dimensions can be identified, where K is the 

number of pure-type individuals or ideal states in the specified model. In the 
longitudinal application, K is the number of components or elements of the fixed frailty 
vector. Generally,  is a sufficient condition for identifiability of the GoM model / 2K J<
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(Woodbury et al. 1994). Practically, K-values very much smaller than J/2 lead to 
satisfactory models (Wachter 1999). 

 
For example, the longitudinal application in this paper uses K = 3, 4, or 5 with J = 

95, implying that K ≤ J/19 (where 19 = 95/5). For the four-pure-type model, the NLTCS 
data set provided 922,303 responses to support the estimation of 46,116 parameters for 
males and 1,587,710 responses to support 66,480 parameters for females (see Appendix). 
Although the number of parameters is large, the number of responses used in 
estimating those parameters is substantially larger by factors of 20.5 and 24.5, 
respectively. 

 
Two types of parameters are estimated in basic GoM. The first are the λkjl’s, 

which are the pure-type probabilities; the second are the gik’s, which are the GoM scores. 
 
Like the yijl’s, the λkjl’s are matched to the indexes (j and l) of the responses to the 

J covariates. The λkjl’s for the j-th covariate are multinomial probabilities, where each 
parameter λkjl is the probability that (only) the l-th response is observed for pure type k 
(or for an individual i who is exactly like pure type k) on variable j, subject to the 

convexity constraints 0 ≤ λkjl ≤ 1 and 
1

1
jL

kjl
l

λ
=

=∑ . 

The gik’s are state variables that quantify how well each individual’s observed 
state is described by each of the K pure-type dimensions or ideal states. An individual 
with gik = 1 for some index k is exactly like the k-th pure type. The gik’s are convexly 

constrained scores for individuals, that is, 0 ≤ gik ≤ 1 and 
1

1
K

ik
k

g
=

=∑  (Woodbury et al. 

1994). 
 
As noted above, the binary coded 0–1 variables for the l-th response to the j-th 

variable are indicated by yijl. The fundamental equation of the basic GoM model 
generates the probability of each discrete outcome (i.e., the probability that yijl = 1 or xij = 
l) from the “continuous” state variables (gik) using an inner product form 

1
Prob( 1)

K

ijl ik kjl
k

y g λ
=

= = ∑ . 

For a given set of observations, the likelihood, L, is expressed as the product over 
i, j, and l of the set {Prob(yilj = 1)} 

ijly

ik kjl
ki j l

L g λ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑∏∏∏ . 

The product form of the likelihood over the index i represents the standard 
assumption that individuals are statistically independent. The product form over the 
index j represents the fundamental assumption of the GoM model that the J covariates 
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are statistically independent conditional on the responses to any prior screening 
questions, and conditional on the GoM score vector gi. The binary coding of the yijl’s 
ensures that all but the one term indexed by l = xij will have unit value for each observed 
covariate, j, and hence will not affect parameter estimation.  

 
Parameter estimation follows Manton and Stallard (1984) or Woodbury et al. 

(1994). Parameter estimation may be conducted using fixed-point iteration procedures 
to update existing estimates of gik and λkjl as follows: 
 

 
   

ijlik kjl ijl
j l

ik
ijl

j l

g y p
g y

λ× ∑∑
← ∑∑     and    ,

kjl ijl ik ijl
i

kjl
ijl ik kjl ijl

l i

y g p

y g p

λ
λ

λ′ ′ ′
′

×
←

∑
 

∑∑
where 

  .ijl ik kjl
k

p g λ= ∑  

If the final values of the gik’s are known, then the formula for the λkjl’s may be 
used to iteratively solve for the final λ-values. Each iteration is structured so that the 
update computations are run for all combinations of the subscripts k, j, and l using a 
fixed set of λ-values, after which the λkjl’s are updated as a set. 

 
If the final values of the λkjl’s are known, then the formula for the gik’s may be 

used to iteratively solve for the final g-values. Each iteration is structured so that the 
update computations are run for all combinations of the subscripts i and k using a fixed 
set of g-values, after which the gik’s are updated as a set. 

 
If both the gik’s and λkjl’s are unknown, the formulas may be used by alternating 

between the g-values and λ-values. 
 
Once the GoM score vectors, gi, are estimated, they can be used as 

supplementary input data to conditional probability models for resource utilization, 
costs of services, and other health-related or survival-related measures. 
 
Longitudinal GoM Model 
 
 Under a longitudinal GoM model, each individual observed at multiple times in 
a longitudinal survey is viewed as following a distinct trajectory as he or she ages. The 
1984–1999 NLTCS provides the opportunity to evaluate 15 years of experience along 
these trajectories, sufficient time to characterize the trajectories for many disabled 
persons. 
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To generalize the basic GoM model for longitudinal data, one first needs to add 
an age (or time) index to the basic GoM score vector, gi, so that this vector is respecified 
as gia for individual i at age a. For the NLTCS the index a increases by five years with 
each new wave of the survey; for notational simplicity, however, one-year (or one-unit) 
age increments are used in the following development. 

 
One way to estimate a sequence of gia’s for individuals in the NLTCS is to apply 

the basic GoM model to pooled data from the available waves. In this case the observed 
data for each individual at each wave are jointly indexed by i and a; the observations 
corresponding to distinct combinations of i and a are treated as independent 
observations in the basic GoM likelihood function. In effect, the index i is replaced by 
the index pair ia in the model’s equations. 

 
This approach was used in Manton et al. (1992a) and Manton et al. (1994a). In 

both cases follow-up assessments of the changes in gia over age were required to 
complete the analyses. This was done using a linear dynamic form for the covariate 
changes, as assumed in the two-component Gaussian stochastic process model. Thus, 

( 1) ( 1)i a a ia i a+ += +g A g e , 
where ei(a+1) was a vector of randomly distributed residual values (i.e., errors or 
innovations) at age a + 1. Because the distribution of ei(a+1) was not Gaussian, ad hoc 
constraints were imposed on the diffusion process (see Manton et al. 1991). 

 
An alternative approach is to drop the residual term from the updates, obtaining 
 

( 1) 1i a a ia+ +′=g U g   or, equivalently,   ( 1)ia i a a−′ ′=g g U , 
where Ua is the Markov-chain transition matrix governing transitions in gi(a−1) from age a 
− 1 to a. New notation is needed to distinguish Ua from Aa, due to the transposed form 
of the revised update equation and the change in the age index. 

 
The longitudinal GoM model is specified using the sequence of updates to gia 

from age a0 to age a. The model defines a fixed frailty GoM vector, gi, as an age-
invariant vector of GoM scores or, equivalently, as an initial vector of GoM scores at age 
a0. It follows that 

0

a

ia i
a

i a

α
α =

⎧ ⎫⎪ ⎪′ ′= ⎨ ⎬
⎪ ⎪⎩ ⎭

′=

∏g g U

g V

, 

where 

0

a

a
a

α
α =

= ∏V U , 
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with  = I, an identity matrix. The model uses the V
0aU a-matrices to represent declining 

vitality. 
 
Operationally, the inner product form in the fundamental equation of the basic 

GoM model is replaced with a bilinear form: 

0

Prob( 1)  
jl jl

a

ijla i m i a m
a

y α
α =

⎧ ⎫⎪ ⎪′ ′= = =⎨ ⎬
⎪ ⎪⎩ ⎭
∏g U λ g V λ , 

where the vector subscript m is used to index the combination (j, l), and the subscript a 
is used to index age. The likelihood is the product over i, j, l, and a of the set {Prob(yijla = 
1)}: 

0

ijla

jl

y
a

i m
i j l a a

L α
α =

⎛ ⎞⎧ ⎫⎪ ⎪′= ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠
∏∏∏∏ ∏g U λ . 

Parameter estimation for the g-values and λ-values follows the fixed-point 
iteration procedures provided above. To implement those procedures, one needs to 
rewrite the above expression in an inner product form, isolating either the g-parameters 
or the λ-parameters as follows: 
Prob( 1) ( )

jl jlijla i a m i m ay ′ ′= = =g V λ g λ  

and 
Prob( 1) ( )

jl jlijla i a m ia my ′ ′= = =g V λ g λ . 

 
 Fixed-point iteration procedures can be implemented for the elements ukca of Ua, 

subject to the following convexity constraints: 0 ≤ ukca ≤ 1 and . The update 

equation for u
1

1
K

kca
c

u
=

=∑
kca is 

( 1) ( 1)

( 1) ( 1)

/
 

/

kca ijlt ik a cjl a t ijlt
t a i j l
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ijlt ik a kc a c jl a t ijlt

c t a i j l
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p

y g u p
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λ

− +
=

′ ′− +
′ =

×
←

∑∑∑∑
∑∑∑∑∑

, 

where 
( 1) ( 1)ijlt ik a kca cjl a t

k c
p g u λ− += ∑∑ , 

and λcjl(a + 1)t is the element in row c of the following vector: 

( 1)
1

jl jl

t

m a t s m
s a

+
= +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏λ U λ . 

 
The updating formulas may be used by alternating between the sets of g-values, 

u-values, and λ-values. All parameter updates are positive and meet the constraints of 
the model. Certain parameters converge to 0, and these are identifiable as infinitesimal 
values. Convergence can be tested by perturbing the estimates and verifying that 
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subsequent solutions converge to the same values. Improvements to the estimation 
procedures based on modified Newton-Raphson procedures are being investigated. 
 
Conditional GoM Model 
 
 Under a longitudinal GoM model, changes in the health statuses of individuals 
are described by changes over age or time of the GoM score vectors, and the utilization 
of resources, costs of services, and age-specific probabilities of death are described by a 
second model in which the GoM score vectors are assumed to be known. This second 
model is a conditional probability model because it depends on the first model to 
provide estimates of the GoM score vectors. The parameters of the conditional 
probability model can be estimated with a likelihood function identical in form to the 
likelihood functions shown above, the only difference being that the numerical values 
of the gik’s or gika’s are assumed to be known. 
 
Results 
 The longitudinal GoM model with three, four, and five pure types or ideal states 
(i.e., K = 3, 4, or 5) was independently estimated for 15,102 males and 21,890 females in 
the NLTCS using data on 95 independent variables characterizing the nature and 
intensity of limitations in ADLs, IADLs, physical functioning, and cognitive 
functioning, as well as indicators of behavioral characteristics, medical conditions, 
subjective health, age, race, sex, and institutional status. This required a total of six sets 
of parameter estimation. 

 
The selection of three, four, and five pure types was based on prior experience in 

applying a related form of this model to represent the natural history of Alzheimer’s 
disease in the period beginning immediately after the first symptoms (Kinosian et al. 
2000, 2004). In the Alzheimer’s application the temporal dimension was time since 
onset. In the present application the temporal dimension was age. The difference was 
that a large number of respondents in the NLTCS commenced follow-up after age 65–
69, raising the possibility that the age-dependent parameters may be unstable. 

 
Model selection was based on the likelihood ratio test statistics for K = 1 versus K 

= 3, 4, or 5 using the standard χ2 approximation (Wilks 1938). Combining the male and 
female results, the total χ2 value for K = 3 was 601,826 with 74,786 degrees of freedom 
(d.f.), indicating that K = 3 was significantly better than K = 1—that is, the null model for 
a homogeneous population. The incremental χ2 value for K = 4 versus K = 3 was 45,800 
with 37,414 d.f., which was statistically significant. The incremental χ2 value for K = 5 
versus K = 4 was 55,071 with 37,428 d.f., which was also statistically significant. 
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However, the male χ2 value of 10,433 with 15,320 d.f. was not statistically significant, 
indicating that five pure types were too many for males. 

 
All parameter estimates were constrained to lie within the closed interval [0, 1]. 

Self and Liang (1987) indicated that these constraints imply more complex forms for the 
distributions of the likelihood ratios than derived by Wilks (1938). As a result, the χ2 test 
statistics described above were conservatively biased, and the computed tail 
probabilities were larger than they should have been (Manton et al. 1994b). Corrections 
for such bias can be approximated by downward adjustments in the degrees of freedom 
for the likelihood ratio χ2 test statistics. 

 
Akaike (1974) indicated that the incremental χ2 value should be at least twice the 

degrees of freedom before accepting a more complex model. Using Akaike’s criterion, K 
= 3 would be the preferred model. Given the higher K-values indicated by the χ2 tests 
and the likely upward bias in the degrees of freedom employed in Akaike’s criterion, 
the model with K = 4 was selected as a reasonable compromise. 

 
Logarithms of the likelihood ratios, χ2 test statistics, and associated degrees of 

freedom for testing K = 4 versus K = 1 for the 95 variable are shown in the Appendix for 
males and females separately. The χ2 test statistics were statistically highly significant at 
conventional levels for all 95 variables. 

 
Geometrically, the boundary constraints on a four-pure-type GoM model imply 

that the entire process occurs within (or on the boundaries of) a three-dimensional 
object shaped as a regular tetrahedron (i.e., triangular pyramid). The base and side faces 
of this object are equilateral triangles. 

 
The temporal trajectories of the GoM scores represent paths within this regular 

tetrahedron along which individuals travel as they age. For example, if the vertex 
opposite the base corresponds to the healthiest pure type, then a typical trajectory for a 
healthy 65-year-old person would begin near the top vertex and gradually move toward 
the base as the person aged. Movement toward one or another base vertex would 
depend on the nature of the medical conditions and disabilities that the person acquired 
as well as the correspondence of each base vertex with the other pure types and the 
likelihood that these pure types would manifest specific medical conditions and 
disabilities. 

 
In contrast, the boundary constraints on a three-pure-type GoM model imply 

that the entire process occurs within (or on the sides of) a two-dimensional object 
shaped as an equilateral triangle; while the constraints on a two-pure-type GoM model 
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imply that the entire process occurs on a one-dimensional line segment. Two is the 
minimum number of pure types needed to model fixed frailty with declining vitality. 
The use of four pure types in the current analysis allows for substantial heterogeneity in 
initial frailty as well as in the trajectories of declining vitality. 

 
Table 1 displays the average GoM scores for the four-pure-type model with 

stratifications by age at initial interview and sex. The GoM pure types are indexed by 
Roman numerals (I–IV). Type I has the highest average GoM scores, ranging from 48.0 
to 59.2 percent. The other types share the remaining portion of the membership. Males 
aged 80–84 and 85–89 show a jump in the Type I average in Table 1 compared to 
younger and older males; a corresponding jump occurs for females, but only at age 80–
84. 

 
The independent estimation of the model by sex means that the GoM pure types 

are sex-specific. The pure types do not necessarily mean the same thing for males and 
females. 

 
Comparison across ages indicates that all of the pure types are represented at all 

ages, although there are some noticeable discontinuities in the age trend (e.g., compare 
male Type III at ages 70–74 with ages 75–79 in Table 1). Some of the instability in age 
trend may be due to the commencement of follow-up after age 65–69. Type I has the 
lowest mortality risks. Hence, some upward trend in Type I, and downward trends in 
the other types, could be a result of the impact of mortality selection on the pure-type 
distribution. 

 
Table 2 provides summary statistics on the variances of the GoM scores, whose 

averages are shown in Table 1. The statistics selected for display are the age-specific 
Bernoulli relative variances (BRVs), defined as the ratio of the variance of the GoM 
scores for pure type k within the specified age category a to the maximum variance that 
can be attained in a population with the mean constrained to the corresponding value, 

akg , for age category a and pure type k reported in Table 1. Hence, 
[ ]var( ) / (1 )ak ak ak akBRV g g g= − . 

 
The BRVs lie in the range [0, 1], attaining a value of 0 when all persons have the 

average score and the value 1 when all persons have a score of 1 or 0 with the 
probabilities akg  and (1 )akg− , respectively. The BRVs in Table 2 indicate that the 
variances of the GoM scores span the middle three quintiles of the range. 

 
Tables 3 and 4 display the age-specific GoM transition matrices (Ua) and the 

resulting vitality matrices (Va) for the four-pure-type model for males and females, 
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respectively. The transition matrices govern the age changes in the GoM scores in a 
manner identical to a conventional age-inhomogeneous K-state Markov chain: that is, 
the GoM scores for each individual respondent to a given NLTCS interview can be 
arranged in a row vector that is postmultiplied by the appropriate age-specific 
transition matrix in Tables 3 or 4 to generate the GoM scores at the next interview. 

 
Each age-specific vitality matrix is a cumulative product of the transition 

matrices for all ages up to and including the specified age. Examination of the vitality 
matrices shows that the “membership mass” begins to move away from Types II and III 
at age 70–74 for females and age 75–79 for males and toward Type IV; by age 85–89 all 
of the membership for males and females in Types II and III has transitioned to Type IV. 

 
Membership in Type I persists for males to age 95–99, with transitions to Types II 

and III beginning at age 80–84 (and at age 75–79 for females). For both sexes 
membership in Type III from ages 80–84 to 100–104 is solely a result of transitions from 
Type I. 

 
These transitions produce vitality matrices at and above age 80–84 for females 

and age 85–89 for males in which the only nonzero elements are in the first row and last 
column, with a pattern resembling the number “7” or, upon transposing the matrices, 
the letter “L.” 

 
Given that the transition and vitality matrices at age 65–69 are diagonal in form, 

by assumption, the transformation to an L-pattern is a remarkably simple outcome. 
Understanding the implications of this transformation can yield significant insight into 
the nature of the aging process. 

 
Table 5 displays the annual probabilities of death by age and sex. These were 

estimated as λ-values using the conditional form of the longitudinal GoM model with 
the g-values and the u-values fixed at the values underlying Tables 1, 3, and 4. To 
exploit the available data fully, the annual mortality probabilities were estimated from 
all 20,717 deaths (for 8,747 males and 11,970 females) in the 17-year period following the 
1984 NLTCS, rather than just for the four one-year periods following each survey (i.e., 
1984, 1989, 1994, and 1999). This was done by linearly interpolating the individual GoM 
scores to single years of age (i.e., age at last birthday) and time, and then regrouping the 
annual observations into the eight quinquennial exposure-age categories shown in 
Table 5. 

 
For both sexes Type IV has the highest death probabilities, and Type III ranks 

second. Types I and II have probabilities close to 0, indicating that these are extremely 

 24



healthy types, except for males aged 95 or older, where the results are less credible due 
to small sample sizes. For females the corresponding probabilities were not estimable 
because the average GoM scores were equal to 0 within those cells. 

 
Table 6 displays the death probabilities after adjustment for declines in vitality, 

using the formula  to make the adjustment. Types II and III converge 

rapidly to the high death probabilities of Type IV. Type I maintains its advantage 
throughout the entire age range. 

jl jlm a a m=λ V λ

 
Figures 1 and 2 display the observed and predicted annual probabilities of death 

for males and females by age at last birthday at the start of the one-year follow-up 
period. The predicted probabilities were calculated by multiplying the age-specific 
probabilities in Table 6 by the corresponding age-specific average (interpolated) GoM 
scores. The observed and predicted probabilities are virtually identical. 

 
Also shown in Figures 1 and 2 are the age-specific probabilities reported in the 

U.S. decennial life tables (USDLT) for 1989–1991 (NCHS 1997), a period selected 
because it was close to the 1992–1993 midpoint of the 17-year period following the 1984 
NLTCS. The plotted points from the USDLT were annual probabilities of death for 
persons whose exact ages at last birthday at the start of the one-year follow-up period 
were at the midpoints of each quinquennial category. The comparisons with the 
observed/predicted rates indicate that the NLTCS mortality rates closely reproduced the 
age patterns of increase in the USDLT, which approximates Gompertz’s law. 

 
An exact match was not expected because the initial waves of the NLTCS 

oversampled the disabled population, a group that had mortality rates higher than the 
general population. On average, the excess mortality was about 1.7 percent for males 
and 4.4 percent for females. The NLTCS provided sampling weights that can be used to 
reweight the individual characteristics to exactly match population characteristics. 
However, such weights were neither needed nor used in the current analysis because 
the focus was on individual trajectories of disability and mortality, not population 
averages. 

 
Figures 1 and 2 demonstrate that the averages of the individual trajectories 

follow known age patterns (i.e., with increases approximated by Gompertz’s law) for 
human mortality above age 65. The averages of the individual trajectories also provide 
a basis for comparison with the age patterns for individual mortality above age 65, 
which are not well known. 
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Figures 3 and 4 display the adjusted individual annual probabilities of death 
shown in Table 6 for four categories of pure-type males and females by age at last 
birthday at the start of the one-year follow-up period. Also included in the figures are 
the average predicted probabilities for the NLTCS sample shown in Figures 1 and 2. 
The figures show that the pure-type probabilities of death increased slower than (Type 
IV), faster than (Types II–III, until reaching convergence with Type IV), or about the 
same rate (Type I) as predicted by Gompertz’s law, after adjusting for declines in 
vitality. The probabilities of death for Type IV were the highest at all ages. For females 
there were no ages for which the Type IV probabilities clearly accelerated faster than 
expected under Gompertz’s law; for males a rapid acceleration occurred between ages 
65–69 and 75–79, but not thereafter. The Type III probabilities converged quickly to 
those for Type IV, but the initial rate of increase was substantially faster than expected 
under Gompertz’s law, and faster than for Type IV for the younger males. 

 
Figures 5 and 6 display the unadjusted individual annual probabilities of death 

shown in Table 5 for four categories of pure-type males and females by age at last 
birthday at the start of the one-year follow-up period. Also included in the figures are 
the average predicted probabilities for the NLTCS sample shown in Figures 1 and 2. 
The unadjusted pure-type probabilities of death were either relatively constant (I–II, 
and III [females]) or increasing (IV and III [males]) over age at a rate slower than that of 
the average predicted probabilities (i.e., slower than expected under Gompertz’s law). 
The Type I value for males aged 95–99 was 1.00 (which was off the graph), but this 
declined to 0.27 at age 100–104. These latter two results were less credible due to small 
sample sizes at these ages (see Table 5). 

 
Table 7 displays the average adjusted GoM scores in the four-pure-type model 

for males and females by age. The averages are displayed graphically in Figures 7 and 8 
using a 100 percent stacked-line format to highlight the depletion or exhaustion 
(females only) of Types I and II over age, and the corresponding increases in Types III 
and IV over age. The GoM scores are constrained to sum to 1.0 (100 percent) so that the 
reductions in the average scores for Types I and II necessitate corresponding increases 
in the average scores for Types III and IV. 

 
The low average Type I and II GoM scores for males at ages 95 and older in Table 

7 combined with the small numbers of person-years at risk for males at ages 95 and 
older in Table 5 account for the instability noted above for the probabilities of death in 
Table 5 for Types I and II. The complete absence of females with nonzero Type I and II 
GoM scores at ages 85–89 or 90–94 and older in Table 7 accounts for the inability to 
estimate the corresponding unadjusted probabilities of death in Table 5. The use of 
linear interpolation of the GoM scores allowed one additional probability to be 
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computed in Table 5 for Types I and II than would be the case if the noninterpolated 
data in Table 7 were used. 

 
Figures 9 and 10 display the average unadjusted GoM scores shown in Table 1 

for the four-pure-type model for males and females by age, using a 100 percent stacked-
line format to highlight the age pattern. Ideally, one would have expected Types I and II 
to increase over age due to differential mortality selection. Under such selection persons 
who survive to the oldest ages are those who faced the lowest mortality probabilities at 
younger ages. This expectation is partially fulfilled up to about age 80–84. Beyond that 
age Type IV exhibits an unanticipated increase. 

 
The increase in Type IV may be an artifact of the structure of the vitality matrices 

in Tables 3 and 4 in which most of the initial pure-type membership for Types I and II is 
converted to Types III and IV beyond age 85–89. With such conversion the declines in 
Types I and II have no impact on the likelihood function for females and little impact 
for males because the GoM scores for these two pure types convert to Types III and IV 
after adjustment by the vitality matrices. 

 
Table 8 displays the average adjusted GoM scores in the four-pure-type model 

for males and females at the initial NLTCS interview, stratified by the number of ADLs 
expected to meet the HIPAA ADL disability criterion using an adaptation of the NLTCS 
procedures detailed in Stallard and Yee (2000). Dramatic changes in the membership 
levels for Type IV can be seen as one moves from 0 to 1 to 2 HIPAA ADLs. Beyond that 
point the GoM membership continues to move toward Type IV, but at a more gradual 
pace. 

 
Table 9 displays the average adjusted GoM scores in the four-pure-type model 

for males and females at the initial NLTCS interview, stratified by the number of IADLs 
that meet the NLTCS triggering criteria. The overall pattern is similar to that seen in 
Table 8, except that the changes at the lowest IADL counts are more gradual than for 
the lowest ADL counts. 

 
The shift in membership from Types I–III to Type IV with increasing ADL and 

IADL disability counts was consistent with the finding (not shown) that Type IV was 
the only pure type that had nontrivial λ-values for the ADL and IADL disability 
responses. 

 
Alternatively, Types I–III had 0 or trivial λ-values for all of the ADL and IADL 

disability responses. This was consistent with the low mortality probabilities for Types I 
and II, the disappearance of these pure types for females above age 85–89, and the near-
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disappearance of these pure types for males at these ages. The average GoM scores for 
Type III for males and females aged 85–89 and older with no HIPAA ADLs were 0.545 
and 0.731, respectively. The corresponding averages for Type IV for males and females 
with no HIPAA ADLs were 0.109 and 0.173, respectively. These results indicated that 
membership in Type III at the oldest ages was associated with greatly reduced risk of 
ADL and IADL disabilities. 
 
Discussion 
 
 This paper had two goals: to introduce the reader to a broad range of research on 
survival at advanced ages, and to integrate the findings of that research into a coherent 
model of the trajectories of change in health and survival characteristics of individuals. 
The model was structured to simultaneously represent the essential features of the fixed 
frailty model (Vaupel et al. 1979) and the model of linearly declining vitality (Strehler 
and Mildvan 1960). Unlike those models, however, the new model was designed for 
easy and direct application to existing longitudinal data sets. 

 
The application was successful in characterizing the health and survival 

experience of respondents to the NLTCS. The model was structured to represent the 
effects of variables that directly measured individual health, disability, and health-
related behaviors. The results of the analysis indicated that the four-pure-type 
longitudinal GoM model is a parsimonious and powerful model of the changes in 
health and survival characteristics of individuals. 

 
Several findings were noteworthy: 
 
The likelihood ratio statistical tests comparing K = 1 with K = 3, 4, or 5 

demonstrated that the elderly population is not homogeneous. This seems obvious, but 
it is a critical step in establishing the dimensionality of the longitudinal GoM model. 

The GoM scores exhibited substantial variability relative to the Bernoulli bounds. 
The GoM scores varied over individuals, but they were not exclusively clustered at the 
boundaries with values of 0 or 1. 

 
Approximately 20–35 percent of the initial age-invariant GoM membership was 

in Types III and IV, the pure types with the highest mortality rates. Membership in 
these pure types indicated impaired health at age 65. 

 
The distributions of the initial age-invariant GoM scores provided an effective 

and quantifiable implementation of the concept of fixed frailty. 
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The cumulative transition or vitality matrices at and above age 80–84 for females 
and age 85–89 for males had patterns in which only the first row and last column 
contained nonzero values, forming a pattern resembling a transposed “L.” 

 
A transposed L-shape also occurred for males and females with the three-pure-

type model and for females with the five-pure-type model. For males the transposed L-
shape also occurred with the five-pure-type model except for terms on the second 
diagonal (for Type II). The transposed L-shapes of the vitality matrices were robust with 
respect to the dimensionality of the model. 

 
The cumulative transition or vitality matrices provided an effective and 

quantifiable implementation of the concept of declining vitality. 
 
The combination of the initial distributions of GoM scores with the transposed L-

shapes of the vitality matrices was consistent with a multistage process with random 
initial defects. The transposed L-shape arose because membership in Types II and III at 
older ages represented “replacement” membership drawn from Type I, not persisting 
initial membership in Types II and III. 

 
The differences in mortality probabilities between the four pure types were 

substantial (see Figures 3 and 4). At age 65 these differences imply life expectancies that 
range from 5.4 to 22.9 years for males and from 6.2 to 25.9 years for females, based on 
the survival probabilities for Types IV and I, respectively. The substantially greater life 
expectancy for Type I is consistent with published data on centenarians that report 
substantially better health and less disability, on average, in the decades prior to 
reaching 100 than that of their contemporaries (Perls et al. 1999). 

 
The adjusted mortality probabilities for the four pure types (see Figures 3 and 4) 

exhibited patterns of increase that were slower than (Type IV), faster than (Types II–III, 
prior to convergence with Type IV), or about the same rate (Type I) as predicted by 
Gompertz’s law. Thus, Iachine et al.’s (1998) finding that the standard schedules of age-
specific forces of mortality faced by individuals in each birth cohort increased 
substantially faster than the Gompertz function may have been an artifact of the 
assumption of correlated gamma-distributed frailty among twins. Moreover, the 
relative ratios of the probabilities for Type IV versus Types I, II, and III declined 
substantially over age, indicating that the assumption that frailty operated 
multiplicatively on mortality may not be correct. The longitudinal GoM model made no 
assumptions about the parametric form of the frailty distribution or about the 
parametric form of the age-specific probabilities of death. 
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The unadjusted mortality probabilities were either relatively constant (I–II and III 
[females]) or increasing (IV and III [males]) over age at a rate slower than that of the 
average predicted probabilities (i.e., slower than expected under Gompertz’s law). This 
was consistent with the results in Manton (1994a), who found that the exponential 
growth constant in the two-component Gaussian stochastic process model was reduced 
substantially when covariates were included in the model. The difference in the current 
analysis was that most of the remaining increase was restricted to Type IV, especially 
for females. 

 
Further refinement of the GoM model should focus on the statistical stability and 

smoothness of the progression of the age-specific parameter estimates. This could be 
done by imposing additional constraints on the GoM transition matrices, by 
introducing additional parameters to represent period and cohort effects in the study 
population, and by expanding the longitudinal follow-up of the individual respondents 
when the 2004 NLTCS data become available. 

 
The NLTCS also provided contextual data that could be used to extend the 

model to better understand the causes and consequences of individual differences in the 
initial GoM scores and in the subsequent trajectories of health, disability, and mortality. 
These data include information on education, marital status, family structure, income 
and assets, military service, housing and neighborhood characteristics, health insurance, 
medical providers and prescription medicines, the number and relationship (to 
respondent) of caregivers, and caregiver hours/days and type of activity for which help 
is provided. 

 
Brown and McDaid (2003) conducted a comprehensive literature search, 

identifying 12 factors affecting retiree mortality that could be considered in developing 
risk classes for impaired life annuities in the individual annuity market. The 12 factors 
were age, gender, education, income, occupation, marital status, religion, smoking, 
alcohol, other health-related behaviors, obesity, and race/ethnicity. Seven of the 12 
factors (age, gender, smoking, alcohol, other health-related behaviors, obesity, and race) 
were included in the current analysis; five factors (education, income, occupation, 
marital status, and religion) were excluded because they did not directly measure 
individual health, disability, and health-related behaviors. Four of the five factors 
(education, income, marital status, and religion) were provided as contextual measures 
in the NLTCS and could be included in further analyses of these data. 

 
The Appendix provided statistical tests of the 95 variables in the analysis along 

with sex-specific rank orderings of the significance of each variable using ratios of χ2 
statistics to the associated degrees of freedom. The analysis was stratified by gender, 
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with age having a special role in structuring the transition matrices. The five factors 
considered by Brown and McDaid (2003) that were included in the Appendix were rank 
ordered for males and females, respectively, as follows: smoking (88 and 92), alcohol (69 
and 67), other health-related behaviors (51 and 53; for moderate exercise), obesity (49 
and 31), and race (16 and 41). While these five factors were significant, the most 
significant factors were the measures of physical functioning based on the list of IADLs, 
ADLs, and functional limitations. Measures of cognitive functioning based on the Short 
Portable Mental Status Questionnaire (SPMSQ) were also highly significant. 

 
The GoM model provided a solution to a problem identified by Brown and 

McDaid (2003, p. 41): how should one account for the joint effects of large numbers of 
risk factors that are potentially correlated or statistically dependent? The structure of 
the GoM model is such that the GoM scores are introduced as explanatory variables 
that resolve the correlations and statistical dependencies. Thus, conditional on the GoM 
scores, all risk factors are statistically independent. This condition was enforced in the 
current analysis via the product form of the GoM likelihood over all measured variables 
and tested by considering a sequence of models with increasing numbers of pure types 
(i.e., K-values). The statistical tests indicated that these conditions were achieved using a 
four-pure-type specification. 

 
The NLTCS provides a broad range of data on the use, cost, and intensity of 

long-term-care and Medicare-funded acute care services at or following the time of each 
of the four NLTCS interviews. Additional applications of the current model are being 
developed using the conditional form of the GoM model to analyze these measures for 
use in conjunction with the individual trajectories to estimate and project lifetime cost 
measures at the individual level. These individual level results will be aggregated into 
population estimates and projections using longitudinal sampling weights based on the 
NLTCS sampling design. 

 
Applications of the GoM model are not restricted to just the NLTCS. The model 

can be applied to any longitudinal data with sufficient numbers of variables measured 
on each subject to support parameter estimation. For example, prior work with the 
Framingham Heart Study (e.g., Manton et al. 1994a) suggests that it would be feasible to 
develop a longitudinal GoM model for these data. The Framingham Heart Study 
consisted of 25 biennial examinations with longitudinal follow-up over 48 years on a 
sample of 5,209 persons initially aged 28–62 years in 1948–1950. Each examination 
included information on a broad range of cardiovascular disease risk factors and 
disease events. The later waves of the study (beginning at Exam 14) introduced health, 
disability, and cognitive functioning measures comparable to those in the NLTCS, 
suggesting that, with appropriate coding of the common variables, one could conduct 
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pooled analyses of the two sets of data. Such analyses would double the size of the age 
range of the current model, with individual trajectories being tracked from age 30 
onwards. This would improve the characterization of the early stages of the 
disablement process using traditional cardiovascular disease risk factors as precursors 
to the morbidity and disability measures jointly provided by the NLTCS and the later 
waves of the Framingham Heart Study. 
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Appendix 
 

Table 1: Average GoM Scores in Four Pure-Type Model, by Age at 
Initial Interview 
              
      Males       
       
      Average Gom Score by Type 

Initial Age 
Number of 
Respondents   I       II III IV 

65-69 9,194   0.470 0.132 0.360 0.037 
70-74 2,863   0.428 0.252 0.241 0.079 
75-79 1,472   0.497 0.362 0.031 0.109 
80-84 864   0.656 0.168 0.032 0.143 
85-89 416   0.627 0.153 0.055 0.165 
90-94 151   0.476 0.092 0.077 0.355 
95-99 122   0.532 0.074 0.080 0.315 
100-104 20   0.369 0.054 0.121 0.456 
Total 15,102   0.480 0.179 0.273 0.068 
              
      Females       
       
      Average Gom Score by Type 

Initial Age 
Number of 
Respondents   I       II III IV 

65-69 11,355   0.639 0.203 0.118 0.040 
70-74 3,854   0.553 0.330 0.076 0.041 
75-79 2,469   0.540 0.288 0.109 0.063 
80-84 1,792   0.626 0.206 0.104 0.064 
85-89 1,223   0.509 0.044 0.348 0.099 
90-94 525   0.402 0.031 0.219 0.349 
95-99 575   0.416 0.037 0.123 0.424 
100-104 97   0.354 0.028 0.118 0.500 
Total 21,890   0.592 0.217 0.124 0.068 
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Table 2: Bernoulli Relative Variances of GoM Scores in Four 
Pure-Type Model, by Age at Initial Interview 
              
      Males       
       

      
Relative Variance of GoM Score 
by Type 

Initial Age 
Number of 
Respondents   I       II III IV 

65-69 9,194   0.770 0.639 0.802 0.584 
70-74 2,863   0.806 0.684 0.800 0.634 
75-79 1,472   0.728 0.641 0.143 0.663 
80-84 864   0.585 0.428 0.184 0.748 
85-89 416   0.586 0.493 0.267 0.760 
90-94 151   0.619 0.173 0.077 0.660 
95-99 122   0.688 0.161 0.125 0.677 
100-104 20   0.831 0.170 0.221 0.739 
Total 15,102   0.759 0.645 0.793 0.660 
              
      Females       
       

      
Relative Variance of GoM Score 
by Type 

Initial Age 
Number of 
Respondents   I       II III IV 

65-69 11,355   0.822 0.729 0.682 0.601 
70-74 3,854   0.700 0.675 0.450 0.432 
75-79 2,469   0.661 0.573 0.470 0.445 
80-84 1,792   0.555 0.631 0.406 0.332 
85-89 1,223   0.584 0.389 0.577 0.319 
90-94 525   0.633 0.237 0.580 0.395 
95-99 575   0.727 0.297 0.322 0.527 
100-104 97   0.867 0.303 0.271 0.634 
Total 21,890   0.742 0.688 0.597 0.540 
       
Source: Author's calculations based on data from the NLTCS. 
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5-Year Transition Matrix U    Attained Age Vitality Matrix V
To ...

I II III IV I II III IV
From ...

       65-69
I 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
II 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
III 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

       70-74
I 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
II 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
III 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        75-79
I 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
II 0.0000 0.5052 0.4948 0.0000 0.0000 0.5052 0.4948 0.0000
III 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        80-84
I 0.7119 0.0000 0.2881 0.0000 0.7119 0.0000 0.2881 0.0000
II 0.0000 0.7891 0.0000 0.2109 0.0000 0.3986 0.0000 0.6014
III 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        85-89
I 0.5299 0.0951 0.3750 0.0000 0.3772 0.0677 0.5551 0.0000
II 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        90-94
I 0.4552 0.0658 0.4742 0.0047 0.1717 0.0378 0.6993 0.0912
II 0.0000 0.1916 0.1181 0.6903 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 0.9231 0.0769 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        95-99
I 0.4503 0.1808 0.3610 0.0078 0.0773 0.0491 0.7524 0.1212
II 0.0000 0.4762 0.5102 0.0136 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 0.9597 0.0403 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        100-104
I 0.0000 0.0000 0.3234 0.6766 0.0000 0.0000 0.5911 0.4089
II 0.0000 0.0000 0.3269 0.6731 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 0.7311 0.2689 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

Source: Authors' calculations based on data from the NLTCS.

Table 3:  GoM Transition and Vitality Matrices, Four Pure-Type Model, Males
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5-Year Transition Matrix U    Attained Age Vitality Matrix V
To ...

I II III IV I II III IV
From ...

       65-69
I 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
II 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
III 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

       70-74
I 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
II 0.0000 0.7844 0.2156 0.0000 0.0000 0.7844 0.2156 0.0000
III 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        75-79
I 0.6020 0.3980 0.0000 0.0000 0.6020 0.3980 0.0000 0.0000
II 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
III 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        80-84
I 0.4199 0.1348 0.4453 0.0000 0.2528 0.4325 0.3147 0.0000
II 0.0000 0.8829 0.1171 0.0000 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        85-89
I 0.6003 0.0000 0.3997 0.0000 0.1518 0.0000 0.8482 0.0000
II 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        90-94
I 0.0000 0.0000 0.9571 0.0429 0.0000 0.0000 0.7355 0.2645
II 0.0000 0.0000 0.0506 0.9494 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 0.6958 0.3042 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        95-99
I 0.0000 0.0000 0.0693 0.9307 0.0000 0.0000 0.6729 0.3271
II 0.0000 0.0000 0.0685 0.9315 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 0.9149 0.0851 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

        100-104
I 0.0000 0.0000 0.0494 0.9506 0.0000 0.0000 0.4553 0.5447
II 0.0000 0.0000 0.0493 0.9507 0.0000 0.0000 0.0000 1.0000
III 0.0000 0.0000 0.6765 0.3235 0.0000 0.0000 0.0000 1.0000
IV 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

Source: Authors' calculations based on data from the NLTCS.

Table 4:  GoM Transition and Vitality Matrices, Four Pure-Type Model, Females
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Table 5: Probabilities of Death within One Year in Four Pure-Type GoM Model, by 
Attained Age at Time of Exposure 
                  
Males 
         
      Annual Probability by Type   

Exposure Age 

Number of 
Person-Years At 
Risk   I       II III IV 

Observed 
Probability 

Predicted 
Probability

65-69 25,250   0.001 0.004 0.077 0.152 0.030 0.030 
70-74 39,563   0.004 0.002 0.159 0.258 0.043 0.043 
75-79 31,291   0.008 0.003 0.189 0.354 0.067 0.067 
80-84 19,170   0.000 0.104 0.189 0.323 0.105 0.106 
85-89 8,117   0.000 0.000 0.218 0.296 0.154 0.154 
90-94 2,728   0.000 0.000 0.240 0.351 0.228 0.229 
95-99 793   0.298 1.000 0.144 0.452 0.301 0.301 
100-104 155   0.269 0.269 0.269 0.522 0.400 0.401 
Total 127,067   0.005 0.002 0.145 0.344 0.069 0.069 
         
      Females           
         
      Annual Probability by Type   

Exposure Age 

Number of 
Person-Years At 
Risk   I       II III IV 

Observed 
Probability 

Predicted 
Probability

65-69 31,095   0.003 0.001 0.085 0.141 0.017 0.018 
70-74 53,631   0.003 0.003 0.091 0.161 0.027 0.027 
75-79 48,498   0.004 0.000 0.083 0.191 0.043 0.043 
80-84 35,563   0.000 0.000 0.091 0.185 0.070 0.071 
85-89 20,404   0.000 0.032 0.087 0.218 0.115 0.115 
90-94 9,577   0.000 –– 0.100 0.282 0.183 0.183 
95-99 3,804   –– –– 0.101 0.378 0.264 0.264 
100-104 992   –– –– 0.043 0.472 0.325 0.325 
Total 203,564   0.003 0.001 0.091 0.214 0.059 0.060 
         
Note: "––" denotes cells with average GoM scores equal to zero for which probabilities can 
not be estimated.  
         

Source: Author's calculations based on data from the NLTCS.    
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Table 6: Probabilities of Death within One Year in Four Pure-Type GoM Model, 
Adjusted for Declines in Vitality, by Attained Age at Time of Exposure 
         
Males 
         
     Annual Probability by Type   

Exposure Age 

Number of 
Person-Years At 
Risk  I       II III IV 

Observed 
Probability 

Predicted 
Probability

65-69 25,250  0.001 0.004 0.077 0.152 0.030 0.030 
70-74 39,563  0.004 0.002 0.159 0.258 0.043 0.043 
75-79 31,291  0.008 0.095 0.354 0.354 0.067 0.067 
80-84 19,170  0.054 0.236 0.323 0.323 0.105 0.106 
85-89 8,117  0.121 0.296 0.296 0.296 0.154 0.154 
90-94 2,728  0.200 0.351 0.351 0.351 0.228 0.229 
95-99 793  0.235 0.452 0.452 0.452 0.301 0.301 
100-104 155  0.372 0.522 0.522 0.522 0.400 0.401 
Total 127,067  0.026 0.090 0.231 0.276 0.069 0.069 
         
Females 
         
     Annual Probability by Type   

Exposure Age 

Number of 
Person-Years At 
Risk  I       II III IV 

Observed 
Probability 

Predicted 
Probability

65-69 31,095  0.003 0.001 0.085 0.141 0.017 0.018 
70-74 53,631  0.003 0.022 0.161 0.161 0.027 0.027 
75-79 48,498  0.003 0.083 0.191 0.191 0.043 0.043 
80-84 35,563  0.028 0.185 0.185 0.185 0.070 0.071 
85-89 20,404  0.074 0.218 0.218 0.218 0.115 0.115 
90-94 9,577  0.148 0.282 0.282 0.282 0.183 0.183 
95-99 3,804  0.192 0.378 0.378 0.378 0.264 0.264 
100-104 992  0.277 0.472 0.472 0.472 0.325 0.325 
Total 203,564  0.026 0.102 0.178 0.186 0.059 0.060 
         
Source: Author's calculations based on data from the NLTCS.    
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Table 7: Average Adjusted GoM Scores at Initial Interview in Four 
Pure-Type Model, by Age at Initial Interview 
              
      Males       
       
      Average GoM Score by Type 

Initial Age 
Number of 
Respondents   I       II III IV 

65-69 9,194   0.470 0.132 0.360 0.037 
70-74 2,863   0.428 0.252 0.241 0.079 
75-79 1,472   0.497 0.183 0.179 0.140 
80-84 864   0.467 0.067 0.189 0.277 
85-89 416   0.237 0.042 0.348 0.373 
90-94 151   0.082 0.018 0.333 0.567 
95-99 122   0.041 0.026 0.400 0.533 
100-104 20   0.000 0.000 0.218 0.782 
Total 15,102   0.450 0.152 0.310 0.088 
              
      Females       
       
      Average GoM Score by Type 

Initial Age 
Number of 
Respondents   I       II III IV 

65-69 11,355   0.639 0.203 0.118 0.040 
70-74 3,854   0.553 0.259 0.071 0.117 
75-79 2,469   0.325 0.215 0.288 0.172 
80-84 1,792   0.158 0.271 0.197 0.374 
85-89 1,223   0.077 0.000 0.432 0.491 
90-94 525   0.000 0.000 0.295 0.705 
95-99 575   0.000 0.000 0.280 0.720 
100-104 97   0.000 0.000 0.161 0.839 
Total 21,890   0.483 0.197 0.162 0.158 
       
Source: Author's calculations based on data from the NLTCS.  
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Table 8: Average Adjusted GoM Scores at Initial Interview in Four 
Pure-Type Model, by HIPAA ADL Count at Initial Interview 
              
      Males       
       
      Average GoM Score by Type

Number of 
HIPAA ADLs1

Number of 
Respondents   I       II III IV 

0 13,587   0.489 0.156 0.331 0.024 
1 381   0.212 0.207 0.222 0.358 
2 225   0.130 0.160 0.196 0.514 
3 145   0.122 0.148 0.136 0.594 
4 193   0.082 0.087 0.078 0.753 
5 276   0.044 0.057 0.040 0.859 
6 290   0.012 0.012 0.008 0.968 
Total 15,097   0.450 0.152 0.310 0.088 
              
      Females       
       
      Average GoM Score by Type

Number of 
HIPAA ADLs 

Number of 
Respondents   I       II III IV 

0 18,332   0.560 0.225 0.170 0.046 
1 933   0.180 0.120 0.245 0.454 
2 452   0.134 0.073 0.201 0.591 
3 370   0.089 0.055 0.131 0.725 
4 411   0.057 0.038 0.076 0.829 
5 596   0.032 0.021 0.033 0.914 
6 786   0.004 0.005 0.007 0.984 
Total 21,880   0.483 0.197 0.162 0.158 
       
Note 1:  Number of ADLs for which the respondent requires either
standby or active personal assistance.  See Stallard and Yee (2000) for 
details. 
       
Source: Author's calculations based on data from the NLTCS.  
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Table 9: Average Adjusted GoM Scores at Initial Interview in Four 
Pure-Type Model, by IADL Count at Initial Interview 
              
      Males       
       
      Average GoM Score by Type 
Number of  
IADLs1

Number of 
Respondents   I       II III IV 

0 12,638   0.505 0.152 0.336 0.008 
1 509   0.335 0.242 0.271 0.152 
2 235   0.256 0.259 0.250 0.235 
3 210   0.203 0.221 0.264 0.312 
4 177   0.192 0.194 0.219 0.395 
5 183   0.166 0.164 0.215 0.454 
6 168   0.132 0.156 0.151 0.562 
7 150   0.094 0.090 0.098 0.718 
8 131   0.056 0.057 0.068 0.819 
9 176   0.021 0.016 0.031 0.933 
Total 14,577   0.464 0.155 0.317 0.064 
              
      Females       
       
      Average GoM Score by Type 
Number of  
IADLs 

Number of 
Respondents   I       II III IV 

0 16,274   0.600 0.232 0.154 0.015 
1 830   0.329 0.221 0.274 0.176 
2 626   0.291 0.153 0.269 0.287 
3 634   0.226 0.140 0.257 0.376 
4 478   0.155 0.108 0.268 0.470 
5 312   0.135 0.081 0.225 0.560 
6 320   0.094 0.066 0.176 0.663 
7 254   0.050 0.047 0.121 0.782 
8 257   0.030 0.033 0.088 0.849 
9 268   0.007 0.008 0.046 0.940 
Total 20,253   0.520 0.210 0.167 0.103 
       
Note 1:  Number of IADLs for which the respondent requires 
assistance because of a disability or health problem.  See Stallard and
Yee (2000) for details. 
       
Source: Author's calculations based on data from the NLTCS.  
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Figure 1 – Probability of Death Within One Year 
Males
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Figure 2 – Probability of Death Within One Year 
Females
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Figure 3 – Adjusted Annual Probabilities of Death in 
Four Pure-Type Model, Males
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Figure 4 – Adjusted Annual Probabilities of Death in Four Pure-
Type Model, Females
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Figure 5 – Unadjusted Annual Probabilities of Death in Four 
Pure-Type Model, Males

0.00

0.10

0.20

0.30

0.40

0.50

0.60

65-69 70-74 75-79 80-84 85-89 90-94 95-99 100-104

Age

Pr
ob

ab
ili

ty

I      
II
III
IV
Predicted

 

 51



Figure 6 – Unadjusted Annual Probabilities of Death in 
Four Pure-Type Model, Females
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Figure 7 – Adjusted Age-Specific GoM-Score 
Distribution, Males
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Figure 8 – Adjusted Age-Specific GoM-Score 
Distribution, Females
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Figure 9 – Unadjusted Age-Specific GoM-Score 
Distribution, Males
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# Variable Name/Description

Number of 
Respond-

ents

Log of 
Likelihood-

Ratio for 
K=4 vs. K=1

Approximate 
Chi-Squared 

Statistic for 
K=4 vs. K=1

d.f for 
Testing 
K=4 vs. 

K=12

Chi-
Squared 

per d.f.

Rank 
Order of 

Chi-
Squared 

per d.f.

Number of 
Respond-

ents

Log of 
Likelihood-

Ratio for 
K=4 vs. K=1

Approximate 
Chi-Squared 

Statistic for 
K=4 vs. K=1

d.f for 
Testing 
K=4 vs. 

K=12

Chi-
Squared 

per d.f.

Rank 
Order of 

Chi-
Squared 

per d.f.
1 5-Year Survival Status1 2 24,207 6,394.70 12,789.41 3 4,263.14 1 38,280 7,764.52 15,529.04 3 5,176.35 5
2 Respondent is Proxy 2 8,329 756.25 1,512.49 3 504.16 20 17,633 2,077.06 4,154.13 3 1,384.71 18
3 Race                                     3 39,047 2,210.77 4,421.54 6 736.92 16 59,687 953.50 1,906.99 6 317.83 41
4 Residence Type: Institutional vs.non-institutional       2 27,819 2,519.16 5,038.32 3 1,679.44 10 43,764 6,303.42 12,606.84 3 4,202.28 6
5 Height                             5 3,400 47.63 95.26 12 7.94 91 6,392 58.77 117.53 12 9.79 93
6 Body Mass Index – Current BMI class                        4 3,349 346.26 692.52 9 76.95 65 6,218 679.52 1,359.04 9 151.00 59
7 Body Mass Index – BMI class at age 50 years                     4 3,113 188.82 377.63 9 41.96 73 5,635 246.35 492.71 9 54.75 74
8 Body Mass Index – BMI class 12 months prior to interview          4 3,250 333.92 667.85 9 74.21 66 5,983 647.74 1,295.48 9 143.94 61
9 Alcohol use                            3 3,483 186.70 373.40 6 62.23 69 6,578 222.67 445.33 6 74.22 67

10 Cigarette use                         3 3,491 39.01 78.01 6 13.00 88 6,588 30.19 60.38 6 10.06 92
11 Exercise – Hours/minutes of vigorous activities 5 3,424 437.57 875.13 12 72.93 67 6,450 411.00 821.99 12 68.50 68
12 Exercise – Hours/minutes of moderate activities 5 3,397 784.42 1,568.85 12 130.74 51 6,410 1,193.40 2,386.81 12 198.90 53
13 Exercise – Hours/minutes of light activities  5 3,364 558.69 1,117.38 12 93.12 61 6,291 824.12 1,648.25 12 137.35 63
14 Medical – Rheumatism or arthritis                2 7,026 274.71 549.41 3 183.14 45 13,514 329.91 659.83 3 219.94 51
15 Medical – Other permanent numbness or stiffness 2 7,021 399.75 799.49 3 266.50 32 13,487 456.86 913.72 3 304.57 42
16 Medical – Paralysis                              2 7,030 359.39 718.78 3 239.59 37 13,518 429.43 858.86 3 286.29 46
17 Medical – Multiple sclerosis                     2 7,028 11.40 22.79 3 7.60 92 13,520 30.28 60.55 3 20.18 87
18 Medical – Cerebral palsy                         2 7,029 8.07 16.14 3 5.38 94 13,517 12.59 25.18 3 8.39 94
19 Medical – Epilepsy                               2 7,023 16.59 33.18 3 11.06 90 13,514 28.17 56.35 3 18.78 88
20 Medical – Parkinson's disease                    2 7,028 79.51 159.02 3 53.01 70 13,510 86.21 172.43 3 57.48 72
21 Medical – Glaucoma                               2 7,023 28.96 57.92 3 19.31 80 13,500 64.62 129.23 3 43.08 79
22 Medical – Diabetes                               2 7,026 101.99 203.98 3 67.99 68 13,509 296.11 592.22 3 197.41 54
23 Medical – Cancer                                 2 7,023 19.86 39.72 3 13.24 87 13,499 23.93 47.86 3 15.95 89
24 Medical – Frequent constipation                  2 7,002 312.58 625.16 3 208.39 40 13,485 455.52 911.04 3 303.68 43
25 Medical – Frequent trouble sleeping              2 7,017 500.56 1,001.12 3 333.71 26 13,491 542.75 1,085.49 3 361.83 39
26 Medical – Frequent severe headaches              2 7,010 265.02 530.05 3 176.68 46 13,496 410.22 820.44 3 273.48 47
27 Medical – Obesity or medically overweight        2 7,021 221.50 443.00 3 147.67 49 13,490 834.00 1,668.01 3 556.00 31
28 Medical – Arteriosclerosis or hardening of the arteries 2 6,956 284.93 569.85 3 189.95 42 13,406 449.35 898.71 3 299.57 45
29 Medical – A heart attack in 12 months  prior to interview                     2 7,010 62.95 125.90 3 41.97 72 13,477 84.37 168.74 3 56.25 73
30 Medical – Any other heart problem in 12 months prior to interview             2 7,012 200.93 401.87 3 133.96 50 13,487 322.71 645.42 3 215.14 52
31 Medical – Hypertension or high blood pressure in 12 months prior to interview  2 7,012 187.94 375.89 3 125.30 52 13,472 224.95 449.89 3 149.96 60
32 Medical – A stroke in 12 months prior to interview                           2 7,010 171.47 342.94 3 114.31 55 13,471 285.10 570.21 3 190.07 55
33 Medical – Circulation trouble in arms or leg in 12 months prior to interview  2 7,003 812.96 1,625.92 3 541.97 19 13,464 955.82 1,911.65 3 637.22 25
34 Medical – Pneumonia in 12 months prior to interview                            2 7,010 118.15 236.30 3 78.77 63 13,457 92.66 185.33 3 61.78 71
35 Medical – Flu or influenza in 12 months prior to interview                   2 7,012 117.40 234.80 3 78.27 64 13,471 208.18 416.37 3 138.79 62
36 Medical – Bronchitis in 12 months prior to interview                        2 7,012 178.36 356.73 3 118.91 53 13,474 259.99 519.98 3 173.33 56
37 Medical – Emphysema in 12 months prior to interview                            2 7,015 262.15 524.29 3 174.76 47 13,471 94.07 188.13 3 62.71 70
38 Medical – Asthma in 12 months prior to interview                               2 7,015 168.26 336.52 3 112.17 56 13,483 187.80 375.60 3 125.20 64
39 Medical – A broken hip in 12 months prior to interview                  2 7,012 28.21 56.42 3 18.81 81 13,482 68.42 136.84 3 45.61 76
40 Medical – Other broken bones in 12 months prior to interview                 2 7,007 17.83 35.66 3 11.89 89 13,469 23.47 46.95 3 15.65 90
41 Medical – Senility                              2 7,181 420.53 841.06 3 280.35 31 14,176 847.25 1,694.50 3 564.83 30
42 Medical – Alzheimer's disease                   2 5,175 148.37 296.74 3 98.91 58 10,342 342.81 685.61 3 228.54 50
43 Medical – Mental Retardation                    2 7,182 55.46 110.92 3 36.97 75 14,180 73.10 146.20 3 48.73 75
44 See well enough to read newspaper        2 6,965 435.73 871.46 3 290.49 29 13,413 737.90 1,475.81 3 491.94 35
45 Subjective Health Status                 4 6,543 1,392.69 2,785.38 9 309.49 27 12,782 1,649.06 3,298.12 9 366.46 38
46 ADL Personal Assistance Level – Bathing      6 27,814 7,258.32 14,516.65 15 967.78 12 43,753 14,783.77 29,567.54 15 1,971.17 11
47 ADL Personal Assistance Level – Dressing     6 27,814 5,322.59 10,645.19 15 709.68 17 43,753 10,444.85 20,889.71 15 1,392.65 16
48 ADL Personal Assistance Level – Toileting    6 27,814 4,947.94 9,895.88 15 659.73 18 43,753 10,416.89 20,833.77 15 1,388.92 17
49 ADL Personal Assistance Level – Transferring in/out bed   6 27,814 6,046.80 12,093.61 15 806.24 14 43,753 12,178.80 24,357.60 15 1,623.84 14
50 ADL Personal Assistance Level – Eating       6 27,814 2,789.04 5,578.09 15 371.87 25 43,753 5,451.76 10,903.53 15 726.90 22
51 ADL Personal Assistance Level – Continence   4 27,814 3,369.48 6,738.97 9 748.77 15 43,753 6,825.72 13,651.45 9 1,516.83 15
52 ADL Personal Assistance Level – Indoor mobility 6 27,814 6,802.78 13,605.56 15 907.04 13 43,753 13,720.91 27,441.82 15 1,829.45 12

Appendix: NLTCS Variables, Log-Likelihood Values, and Chi-Squared Statistics by Variable, by Sex
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53 IADL Limitations – Light housework             2 26,528 3,832.14 7,664.27 3 2,554.76 7 39,646 4,919.21 9,838.43 3 3,279.48 9
54 IADL Limitations – Laundry                     2 26,528 4,996.93 9,993.87 3 3,331.29 4 39,646 7,865.91 15,731.83 3 5,243.94 4
55 IADL Limitations – Cooking                     2 26,528 4,201.96 8,403.93 3 2,801.31 6 39,646 5,940.95 11,881.89 3 3,960.63 7
56 IADL Limitations – Grocery shopping            2 26,528 5,444.45 10,888.91 3 3,629.64 3 39,646 10,303.69 20,607.37 3 6,869.12 2
57 IADL Limitations – Outside mobility            2 26,758 5,876.35 11,752.70 3 3,917.57 2 40,447 10,827.49 21,654.99 3 7,218.33 1
58 IADL Limitations – Travel                      2 26,528 4,893.02 9,786.04 3 3,262.01 5 39,646 10,024.35 20,048.70 3 6,682.90 3
59 IADL Limitations – Managing money              2 26,528 3,103.56 6,207.13 3 2,069.04 9 39,646 5,035.84 10,071.67 3 3,357.22 8
60 IADL Limitations – Taking medicines            2 26,528 3,375.14 6,750.29 3 2,250.10 8 39,646 4,544.16 9,088.32 3 3,029.44 10
61 IADL Limitations – Phoning                     2 26,528 2,239.50 4,479.01 3 1,493.00 11 39,646 2,711.92 5,423.84 3 1,807.95 13
62 Functional Limitations – Climbing 1 flight of stairs                 4 6,590 2,063.74 4,127.47 9 458.61 22 12,625 2,786.30 5,572.59 9 619.18 26
63 Functional Limitations – Bending to put on socks or stockings        4 6,933 1,804.96 3,609.92 9 401.10 23 13,287 2,776.28 5,552.57 9 616.95 27
64 Functional Limitations – Lifting and holding a 10 lb. package           4 6,914 2,174.98 4,349.96 9 483.33 21 13,240 3,287.98 6,575.96 9 730.66 21
65 Functional Limitations – Reaching above head                         4 6,983 1,179.12 2,358.25 9 262.03 33 13,416 1,996.57 3,993.13 9 443.68 36
66 Functional Limitations – Combing or brushing hair                       4 6,998 966.05 1,932.10 9 214.68 39 13,450 2,227.36 4,454.71 9 494.97 33
67 Functional Limitations – Washing hair                                4 6,990 1,701.00 3,402.00 9 378.00 24 13,420 3,432.01 6,864.01 9 762.67 19
68 Functional Limitations – Using fingers to grasp and handle small objects 4 6,987 933.87 1,867.74 9 207.53 41 13,439 1,355.24 2,710.49 9 301.17 44
69 SPMSQ – What is the date today?                  2 5,361 421.15 842.31 3 280.77 30 11,874 1,131.49 2,262.97 3 754.32 20
70 SPMSQ – What day of week is this?                2 5,354 363.09 726.17 3 242.06 35 11,860 877.09 1,754.19 3 584.73 29
71 SPMSQ – What is your street address?             2 5,355 458.50 917.01 3 305.67 28 11,847 1,042.45 2,084.90 3 694.97 23
72 SPMSQ – In what State is this?                   2 4,401 171.99 343.99 3 114.66 54 9,959 523.20 1,046.39 3 348.80 40
73 SPMSQ – How old are you?                         2 4,407 348.36 696.71 3 232.24 38 9,961 752.45 1,504.90 3 501.63 32
74 SPMSQ – When were you born? (month, day, year)   2 5,132 252.52 505.03 3 168.34 48 11,295 739.94 1,479.89 3 493.30 34
75 SPMSQ – Who is the President of the United States now? 2 4,404 362.37 724.74 3 241.58 36 9,958 999.07 1,998.14 3 666.05 24
76 SPMSQ – Who was the President just before him?   2 4,403 380.92 761.84 3 253.95 34 9,960 905.36 1,810.71 3 603.57 28
77 SPMSQ – What was your mother's maiden name?      2 4,385 142.71 285.43 3 95.14 59 9,923 374.38 748.75 3 249.58 48
78 SPMSQ – Subtract 3 from 20 & keep subtracting ... 2 4,409 280.67 561.34 3 187.11 44 9,951 645.13 1,290.26 3 430.09 37
79 Behavior – Lose temper & throw, kick, slam, destroy things 3 6,951 93.21 186.43 6 31.07 76 13,374 64.07 128.14 6 21.36 86
80 Behavior – Lose your way and not find your way back 2 6,964 118.33 236.66 3 78.89 62 13,385 102.56 205.13 3 68.38 69
81 Behavior – Take anything not yours without realizing 2 6,955 31.17 62.34 3 20.78 77 13,375 66.23 132.46 3 44.15 77
82 Behavior – Forget to do important things like eating 2 6,956 283.86 567.72 3 189.24 43 13,369 372.83 745.67 3 248.56 49
83 Memory – List as many animals as possible in one minute 4 723 28.66 57.31 9 6.37 93 1,341 54.77 109.53 9 12.17 91
84 Memory – Delayed 12-Word Recall                    12 714 51.32 102.63 33 3.11 95 1,314 86.09 172.18 33 5.22 95
85 MMSE – Orientation: Day, date, month, year, season 6 1,022 104.66 209.31 15 13.95 85 2,115 259.25 518.50 15 34.57 82
86 MMSE – Orientation: Country, city, street, floor #, address 6 1,022 145.88 291.77 15 19.45 79 2,115 323.25 646.49 15 43.10 78
87 MMSE – Registration: 3-word memory 4 1,022 63.46 126.92 9 14.10 84 2,115 121.99 243.98 9 27.11 84
88 MMSE – Attention: Subtract 7 from 100 & keep subtracting ... 6 1,022 134.62 269.25 15 17.95 82 2,115 224.85 449.70 15 29.98 83
89 MMSE – Recall: 3-word memory 4 1,022 65.48 130.97 9 14.55 83 2,115 156.91 313.82 9 34.87 81
90 MMSE – Language: Point and name 3 1,022 40.47 80.94 6 13.49 86 2,115 74.86 149.72 6 24.95 85
91 MMSE – Language: Repeat phrase 2 1,022 59.35 118.70 3 39.57 74 2,115 121.89 243.79 3 81.26 66
92 MMSE – Language: 3-stage command 4 1,022 89.98 179.95 9 19.99 78 2,115 170.32 340.64 9 37.85 80
93 MMSE – Language: Read and obey 2 1,022 69.27 138.54 3 46.18 71 2,115 143.46 286.93 3 95.64 65
94 MMSE – Language: Sentence writing 2 1,022 140.30 280.59 3 93.53 60 2,115 232.93 465.86 3 155.29 58
95 MMSE – Language: Figure drawing 2 1,022 161.65 323.29 3 107.76 57 2,115 253.33 506.65 3 168.88 57

Total 285 922,303 112,656 225,312 570 395.28 1,587,710 196,998 393,996 570 691.22

Source: Author's calculations based on data from the NLTCS.

Note 2:  Incremental degrees of freedom refer to the difference in the number of λ-values between the 4 pure-type model and the 1 pure-type model for the indicated variable.  The total of the incremental degrees of freedom does not 
include 45,306 degrees of freedom for the GoM scores and 42 degrees of freedom for the transition matrix parameters.  The chi-squared statistics indicate the incremental effect of each variable assuming that it was the last variable 
added to the model.  Equivalently, the chi-squared statistics indicate the effect of constraining the  λ-values for each variable to be equal across the 4 pure types of the 4 pure-type model.

Note 1:  5-Year Survival Status was included in the analysis to code for missing data due to death at follow-up.  For this one variable the predicted probabilities were computed using GoM scores at both the start and end of each follow-up 
interval to approximate the GoM score changes during the interval.  A separate survival analysis with age-specific annual probabilities of death was conducted using the outputs of the initial analysis.  See text for details.
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