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Abstract 
 

This paper develops the binomial version of the Lee-Carter model and provides a 

comparative study of simulation strategies for assessing risk in mortality rate predictions 

and associated estimates of life expectancy and annuity values in both period and cohort 

frameworks. 
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1. Introduction 
 
 The Lee-Carter model for modelling mortality rates, introduced by Lee and Carter 

(1992), has become one of the most widely used reference techniques, being adopted by 

various demographic agencies, and the leading statistical mortality model in the 

demographic literature: Deaton and Paxson (2001). 

 

 As noted by Lee and Carter (1992) and later researchers, it is important to be able 

to quantify the uncertainty in projections through the computation of prediction intervals. 

This is particularly relevant for insurance companies and pensions institutions which are 

transacting annuity type products and which need to understand and quantify the risks 

inherent in any portfolio and demonstrate appropriate risk management strategies to 

regulators, customers, pension plan members, shareholders and other stakeholders.  

 

Analytical derivations are rarely possible for the LC family of models. This is 

because two different sources of uncertainty need to be combined: errors in the 

estimation of the parameters of the LC model, and forecast errors in the projected 

ARIMA parameters. Also the indices of interest (e.g., hazard rates, life expectancies, 

expected annuity values) are complex, non-linear functions of the Lee-Carter parameters 

αx,βx,κt and the ARIMA parameters used for modelling the time dependence of κt.  

 

In order to address this problem, the suggestion in the literature is to use 

simulation techniques (Brouhns et al. (2002), (2005); Koissi et al. (2006)) as a means of 

measuring risk when modelling dynamic mortality rates and their impact on future 

predictions of life expectancy and annuity values. Renshaw and Haberman (2008) have 

conducted an extensive comparative study of three such simulation strategies (denoted A, 

B, C), in the context of Poisson bilinear (Lee-Carter) modelling and linear modelling, 

both of which involve extrapolation. In this paper, we extend the study to binomial 

bilinear and linear modelling with extrapolation. However, as noted by Renshaw and 

Haberman (2008), simulation Strategy B (parametric Monte-Carlo) should not be used 

for risk assessment purposes since different choices of the constraints which are needed 

to fit the Lee-Carter model result in widely differing confidence and prediction intervals. 



 

Hence, in this paper, we do not present Strategy B but we continue to refer to the other 

two strategies as Strategy A (semi parametric bootstrap) and Strategy C (residual 

bootstrap), for continuity of description. 

 

 The binomial model specifications, involving three different link functions in 

combination with bilinear and linear parametric structures, are described in Section 2, 

together with modelling, fitting, model extrapolation and the two simulation strategies. In 

Section 3, a comparative study of simulated life expectancy and fixed rate annuity, 

confidence and prediction intervals, for the U.K. male pensioner 1983-2003 mortality 

experience, is presented as an illustration. In addition to comparing the range of binomial 

based intervals, the corresponding Poisson based intervals are included for comparison. 

In Section 4, we describe how to conduct binomial modelling with extra provision for 

variable dispersion and investigate the effect which this has on Strategy C, in terms of 

simulated confidence and prediction intervals, for the U.K. male pensioner 1983-2003 

mortality experience, in Section 5. In Section 6, we offer some concluding comments. 

 

2. Methodology 

2.1 Model Specification 

 Let the random variable xtD  denote the number of deaths in a population at age x 

in period t. It is envisaged that a rectangular data array ( ), i
xt xtd e  is available for analysis, 

comprising the respective numbers of deaths and matching initial exposures to the risk of 

death. Cross-classification is by individual year of age 1 2, ,..., kx x x x=  and by individual 

calendar year 1 2, ,..., nt t t t= . Empty data cells (zero exposure) are identified by the 

allocation of zero-one indicator weights, denoted 1xtω =  if >0i
xte  and 0xtω =  if =0i

xte . 

  

We target the probability of death xtq  by modelling the numbers of deaths as 

independent binomial variables ( ),i
xt xt xtD bin e q� , and write 

 



 

 ( ) ( ) ( )( ) ( )
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with a scale parameter 1ϕ =  and characteristic variance function V. We are interested in 

the following two parametric predictor structures: 

 

LC: ;  1,  0
nxt x x t x t

x

η α β κ β κ= + = =∑             (1) 

 

LP: ( ) ( )
1

;  1,  0
nxt x x n t n x t t

x

t t t tη α β γ β γ γ= + − + − = = =∑           (2) 

 

The non-linear (LC) structure is that generally attributed to Lee and Carter (1992), 

subject to a change in the pair of parameter constraints that are normally chosen (see 

later). This binomial version of the Lee-Carter model has been explored also by Cossette 

et al. (2007). The linear predictor (LP) structure has been suggested and explored 

previously in a similar context by Renshaw and Haberman (2003). The purpose of the 

term involving tγ  under LP modelling is to ensure that the annual actual and expected 

total deaths are the same, (in addition to improving the quality of the fit); these terms play 

no role when the model is used for extrapolation (see later). The structures in (1) and (2) 

are linked to ( )E xtD , by one of the following 1-1 functions: 

 

I: complementary log-log link- 

( ){ } ( )log log 1 1 exp expxt xt xt xtq qη η= − − ⇔ = − −          (3) 

 

II: log-odds link- explog
1 1 exp

xt xt
xt xt

xt xt

q q
q

ηη
η

⎛ ⎞
= ⇔ =⎜ ⎟− +⎝ ⎠

          (4) 

 

III: probit link- ( ) ( )1
xt xt xt xtq qη η−= Φ ⇔ = Φ .           (5) 

 



 

 

2.2 Force of Mortality 

When mapping xtq  to the associated force of mortality xtμ , we use the 

approximate relationship 

 

( ) ( )log 1 1 expxt xt xt xtq qμ μ≈ − − ⇔ ≈ − −             (6) 

 

throughout, irrespective of the choice of both the parameterised predictor ((1) or (2)) and 

the link function ((3) –(5)). Thus, as a special case, under the non-linear LC predictor (1) 

in combination with the complementary log-log link (3), but not otherwise, it follows that 

 

 ( )expxt x x tμ α β κ= +  

 

which is the structure of the standard Lee-Carter Poisson model, incorporating the log 

link, described in Lee and Carter (1992), Renshaw and Haberman (2008) and elsewhere 

in the literature. 

 

2.3 Model Fitting 
 Model fitting is by maximising the binomial log likelihood, or, equivalently, 

minimising the binomial deviance 

 

( ) ( )
,

, 2 log log
i

i ixt xt xt
xt xt xt xt xt xt xti i i

x t xt xt xt xt t

d e dD d e q d e d
e q e e q

ω
⎧ ⎫⎛ ⎞ ⎛ ⎞−⎪ ⎪= + −⎨ ⎬⎜ ⎟ ⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ .        (7) 

 

 For LC modelling, in combination with any of the three links (3)-(5), because of 

the non-linear nature of the parametric predictor (1), we use the following iterative fitting 

procedure: 

 

 



 

set starting values ˆˆ ˆ, ,x x tα β κ ; compute ˆ ˆi
xt xt xtd e q=  

↓  

update ˆxα , compute ˆ
xtd  

update ˆtκ , adjust s.t. ˆ 0t
t

κ =∑ , compute ˆ
xtd  

update ˆ
xβ , compute ˆ

xtd  

compute ( )ˆ,xt xtD d d  

↓  

repeat the above cycle, stop when ( )ˆ,xt xtD d d  converges 

 

The adjustment ˆ 0t
t

κ =∑  in the core of the procedure, complies with the more usual LC 

parametric identification constraints 1,  0x t
x t

β κ= =∑ ∑ , which are finally adjusted to 

comply with (1) using the appropriate xtη  invariance transformations, once convergence 

has been achieved. Typical starting values are: 

 

 1 1ˆˆ ˆlog ,  ,  0xt
x xt x t

t xt

d
n e k

α ω β κ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

∑ . 

 

Details of the updating relationships, determined according to 

 

 ( )
2

2
D Du θ θ
θ θ
∂ ∂

= −
∂ ∂

 

 

are given in Table 1. Here, ( )u θ  denotes the updated version of the typical parameter θ  

and this requires the first and second order partial derivatives of the model deviance D. 

 

 



 

TABLE 1 

LC Parameter Updating Relationships 
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Probit link 
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i
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⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

. 

 

Under LP modelling, in combination with any of the three links, we note that the 

predictor (2) is linear in the parameters, and so the model may be fitted using any 

statistical package with the facility for fitting GLMs, such as GLIM (Francis et al. 

(1993)). While the constraint 1x
x

β =∑  does not feature as part of the fitting process, it is 

imposed in (2), (subject to the invariance of xtη ), in order to facilitate parameter 

comparison with (1). 

 

2.4 Model Extrapolation 
 Denoting the link functions (3)-(5) collectively by g, so that 

 

( ) ( )1
xt xt xt xtg q q gη η−= ⇔ = , 

 

we conduct the extrapolation according to 

 

 ( )1
,

ˆˆLC : ,  0
n nx t s x x t sq g sα β κ−
+ += + >&&  

 

 ( )1
,

ˆˆLP : ,  0
nx t s x xq g s sα β−
+ = − >& .             (8) 

 

Under LC modelling, ,  0
nt s sκ + >&  denotes the forecast value generated in the analysis of 

the time series{ }1 2ˆ : , ,...,t nt t t tκ = , typically obtained using an ARIMA model. Under LP 

modelling, based on expression (2), we extrapolate the main period effects term 



 

( )ˆ
x nt tβ − , while setting the extrapolation of the period fitting adjustment term ( )ˆt nt tγ −  

equal to zero. Under LC modelling, for the special case, when the time series analysis 

leads to the adoption of a random walk with drift parameter θ  

 

 ( ) ( )
1

1
, 1

ˆ ˆˆ ˆLC : ,  0;  
nx t s x x t nq g s s t tα θβ θ κ−
+ = − > = −& , 

 

which is directly comparable with extrapolation under the LP model, represented by (8). 

 

2.5 Simulation Strategies 
 We are primarily concerned with the simulation of confidence and prediction 

intervals for the age-period statistics of interest: life expectancy ( )xe t  and fixed rate 

annuity ( )xa t  with a discount factor v, under both the cohort method of computing, so 

that 
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where 

 

 ( ) ( ){ } ( )1 ˆ1 1x x xl t q t l t+ + = − , 

 

and the period method of computing, in which the variation in t in these expressions is 

suppressed.  

 

Following Renshaw and Haberman (2008), we consider two of the three possible 

simulation strategies that have been discussed in the literature. These may be re-

expressed for binomial Lee-Carter modelling purposes as follows:  at each simulation j (= 

1, 2, …, N) 

 



 

 A: simulate responses ( )j
xtd  by sampling ( )ˆ,i

xt xtbin e q , 

      then compute ( )j
xtq  by fitting ( )( ) ( )~ ,j i j

xt xt xtD bin e q , 

      all subject to the preservation of empty data cells, 

      before computing the statistics of interest. 

 

 C: simulate residuals ( )j
xtr  by sampling { }xtr  with replacement, 

      map the simulated residuals to simulated responses ( ) ( )j j
xt xtr da , 

      then compute ( )j
xtq  by fitting ( )( ) ( )~ ,j i j

xt xt xtD bin e q , 

      all subject to the preservation of empty data cells, 

      before computing the statistics of interest. 

 

Under Strategy C, the bootstrap deviance residuals ( )j
xtr  are mapped by solving the 

relationship 

 

( ) ( )( ) ˆ 2 log logˆ ˆ
i

j ixt xt xt
xt xt xt xt xt xt i

xt xt xt

d e dr sign d d d e d
d e d

⎛ ⎞ ⎛ ⎞−
= − + −⎜ ⎟ ⎜ ⎟
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for xtd  given ˆ , i
xt xtd e . Hence, for clarity of notation, on suppressing the suffices x and t 

and using the prefix * instead of (j) to denote bootstrap values, this implies we require the 

appropriate root *d  of 

 

( ) ( ) ( ) *ˆ ˆlog logi ig d d d e d e d bd c= + − − − −  

 

where 

 

 ( )ˆ ˆ ˆlog log ib d e d= − − , ( )
*2

* ˆˆ log
2

i irc e e d= + −  

 



 

when mapping * *r da . The derivatives of g 

 

( ) ( ) ˆlog log ig d d e d b′ = − − − ,  ( ) ( ) 0  0
i

i

i

eg d d e
d e d

′′ = > ∀ < <
−

 

 

imply that ˆd d= , where ( )ˆ 0g d < , is a minimum and the graph of ( )   g d vs d  

( )0 id e< <  is concave. There are either one or two roots in this range. The required root 

is determined by the sign of the residual *r , satisfying ˆd d>  when * 0r >  and ˆd d<  

when * 0r < . The root is readily determined by the Newton-Raphson iterative process 

using starting values for d which match the above constraints, within the limits of the 

domain{ }: 0 id d e< < . 

 

3. Application: UK Male Pensioner 1983-2003 Mortality Experience 
 This application uses data from the U.K. male pensioner 1983-2003 mortality 

experience, with ages ranging from 51 to 104 and with roughly 95 percent of the total 

exposure to the risk of death in the age range 62 to 89. Approximately 5 percent of the 

21 54×  data cells are empty. Insight into the data is provided by Figure 1, in which log 

crude mortality rates are plotted against period for select ages (continuous profiles). We 

have decided not to update the data, so that in addition to comparing the outcomes from 

binomial modelling under both predictor structures (1)-(2) in combination with each of 

the three link functions (3)-(5), we can additionally compare the outcomes under Poisson 

modelling in combination with both predictors and the log link, as reported in Renshaw 

and Haberman (2008). 

  

Model fitting proceeds as described in Section 2.3 and the resulting parameter 

estimates depicted in Figures 2a, 2b and 2c. Here, in each figure, we devote a separate 

row of picture frames for each link function (in the prescribed order I to III) while 

superimposing parameter estimates for the two predictors structures within the left hand 

frames, and depicting their differences in the matching right hand frames. Thus, the 



 

parameter estimates for xα ,  xβ  and tκ  (where, in this context, we refer loosely to 

t nt tκ = −  under LP modelling as a parameter), are shown respectively in Figures 2a, 2b 

and 2c. We note the near identical patterns in superimposed parameters throughout. 

However, the differences in the respective magnitudes of  ˆxα  and ˆtκ  for the probit link, 

compared with the other two links, are noteworthy. Obviously, such comparisons are 

only possible because of the equivalent parameter constraints placed on the two predictor 

structures (1) and (2). 

 

 The scaled versions, ˆ ( )t nt tγ − , of the remaining tγ  parameter estimates under LP 

modelling, are depicted in the right hand frames of Figure 3. In the left hand frames of 

Figure 3, we display the annual differences between the actual and expected total deaths, 

with plots superimposed by predictor type. Here, both the magnitude of the differences 

and the lack of any systematic patterns over period indicate a good model fit. On 

comparing like with like, the relative smaller differences under LP compared with LC 

modelling, for links I and III are noteworthy, together with the zero differences generated 

under LP modelling in the context of the log-odds link II. It is well known that this last 

feature is directly attributable to the inclusion of the parameters tγ  in the linear predictor 

(2) under Poisson log link modelling, known as the ‘Poisson trick,’ as reported for this 

data set in Renshaw and Haberman (2008). However, we are unclear as to whether this is 

a general property of binomial LP modelling under the canonical log-odds link. 

 

 Deviance residual plots under both predictor types (1)-(2) in combination with all 

three links (3)-(5) generate similar patterns when plotted. We illustrate these patterns, 

which are indicative of a good fit, for LP modelling under the complementary log-log 

link in Figure 4. Full details for the other cases are available from the authors. In 

addition, we have inserted the respective fitted log mortality rates under LC and LP 

binomial modelling, in combination with the complementary log-log link, against the 

background of the crude log mortality rates in Figure 1. 

 



 

 Mortality rates are extrapolated as described in Section 2.4, using the random 

walk with drift in the case of LC modelling and using the linear extrapolation of 

ˆ ( )x nt tβ − only in the case of LP modelling, while the right hand frames in Figure 3 are 

consistent with setting the extrapolation of ˆ ( )t nt tγ −  to zero (for LP modelling). There is 

an argument for using the ARIMA (1,1,0) model for males but on grounds of simplicity 

and convenience we have adopted the same ARIMA (0,1,0) model for both genders. 

 

 We compare the simulated point and prediction intervals for the U.K. male 

pensioner’s mortality experience for life expectancy and a fixed life annuity value, based 

on a 4 percent interest rate, for a life age 65, in 2003, the latest period for which data are 

reported. The results are summarised in Figure 5, in which we present the 2.5, 50 and 

97.5 percentiles for the statistics of interest, based on 5,000 simulations under the 

following cross-classification: 

• Simulation Strategy A or C (within each frame) 

• All three link functions (within each frame) 

• LC or LP predictors (respective left and matching right frames) 

• Computation of the statistics of interest by either the period or cohort methods 

(alternative rows of frames). 

Additionally, we include within each frame a fourth set of results, denoted as link 4—

these are the equivalent results for the log link, Poisson LC and LP model which has been 

reported in Renshaw and Haberman (2008), together with the relevant model based 

maximum likelihood estimates (m.l.e.).  

 

For computations by period, the m.l.e. 95 percent CIs displayed, are based on the 

approximate expressions for the respective variances: 
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(e.g., Benjamin and Pollard (1980), Chapter 17). The scales in adjacent frames are set 

consistently in order to facilitate comparison, with LC modelling on the left and LP 

modelling on the right. Computation of the statistics of interest by period and then by 

cohort, are represented in alternative rows of frames. 

 

 We note the following features: 

 

1. The symmetry of the simulated prediction and confidence intervals, reflected in 

the associated simulated histograms (not shown). 

2. Within each frame, the close agreement of the interval widths across all of the 

links (and with the width of the m.l.e. intervals, where applicable). 

3. Within each frame, the close vertical alignment of the simulated binomial 

complementary log-log link (link 1), the Poisson log link (link 4) and the 

estimated (m.l.e.) central or first moment measures. The theoretical explanation 

for this alignment, is to be found in the close association between the approximate 

relationship (6), used when mapping xtμ  to xtq , and the complementary log-log 

link, referred to in Section 2.2. 

4. Within each frame, the degree of lateral displacement in the central measures 

under binomial probit link modelling (link 3), compared with complementary log-

log link and Poisson log link modelling (links 1 & 4), which is appreciable for 

computations by cohort. This feature is directly attributable to the relative 

curvature of the respective link functions at the extremity of their domain. 

Historically, binomial complementary log-log modelling for xtq  and Poisson log 

link modelling for xtμ , have featured strongly in the construction of static 

actuarial life tables (for fixed t) and have included the well-known Gompertz law 

of mortality. Further, we note that the binomial probit link approach to modelling 



 

has only been given marginal attention in the actuarial literature (e.g., Forfar et al. 

(1988), Renshaw (1991)). 

5. Within each frame, the degree of agreement in the central measures under 

binomial log-odds link modelling (link 2), compared with links 1 & 4, for 

computations by period, and the modest lateral displacement for computations by 

cohort. 

6. Comparing like with like within horizontally adjacent frames, the close degree  of 

agreement between LC and LP modelling with respect to central measures, 

especially for computations by period, and with respect to interval widths in 

general. 

7. A comparison of like with like in vertically adjacent frames, indicates the degree 

of lateral displacement and measure of increased risk (interval widths), for 

computations by cohort, compared with computations by period. 

 

4. Age-Specific Scale Parameters and Joint Modelling 

 The binomial distribution ( )~ , iD bin q e  (with fixed initial exposure ie ), is 

characterised by the single first moment parameter q and has no inbuilt provision for the 

separate targeting of second moment properties (which would be useful in risk 

measurement); while model fitting requires the probability function or likelihood. We 

follow Renshaw (1992) and Renshaw and Haberman (2008) and resolve this issue 

through the introduction of variable dispersion parameters in order to capture second 

moment properties. At the same time, we retain the essential first order moment 

properties of the binomial distribution and apply (distribution free) two stage joint model 

fitting, as follows: 

 

 Stage 1: Model xtD  as independent binomial responses 

  ( ) ( ) ( ){ } ( ),  ;  1xti
xt xt xt xt xt i

xt xt
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ϕ
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 with variable dispersion parameters xtϕ , the link function I, II or III 

 and the LC or LP parametric predictor structures. 



 

 

Then, define 
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 Stage 2: Model xtR  as independent gamma responses 

  ( ) ( ) ( ){ } ( ) 2,  ;  xt
xt xt xt

xt

V E R
E R Var R V u uϕ τ

ω
= = =  

 with scale parameter τ , the log link 

  LG: log xt xϕ ς=  

 and linear predictor parametric structure in age effects, denoted LG. 

 

The joint modelling process is implemented by repeatedly fitting each stage 

alternatively, terminating with the convergence of both stage specific deviances: 

( )ˆ,xt xtD d d  as defined by (7) for Stage 1 and 
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for Stage 2. Stage 1 residuals form the Stage 2 gamma responses while the Stage 2 fitted 

values form the Stage 1 weights ˆxt xtω ϕ  where xtω , are the zero-one empty cell 

indicators. We set ˆ 1xtϕ =  as effective Stage 1 starting values. 

  

The theoretical justification for the approach to the joint modelling of first and 

second moment parameterised structures, is based on the optimisation of the pseudo (log) 

likelihood P where 
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The properties and applications of P are discussed in Carroll and Ruppert (1982), and in 

Davidian and Carroll (1987), (1988). 

 

5. Joint Modelling of the U.K. Male Pensioner Mortality Experience 
 Model fitting is as described in Section 4 for each Stage 1 predictor structure (1)-

(2) in combination with each link function (3)-(5). Typically, convergence of the Stage 1 

and Stage 2 deviances is rapid, (to a pre-specified level of accuracy), and occurs within 

10 or so iterations. The resulting Stage 1 parameter estimates are as depicted in Figures 

2a, b and c, and the right hand frames of Figure 3. The respective Stage 1 deviance 

residual plots are essentially identical to Figure 4 and are hence not duplicated. The 

patterns in the left hand frames in Figure 3, depicting the annual differences between the 

actual and expected total deaths under single stage modelling, differ from their counter-

parts under joint modelling and these are reproduced in the left hand frames of Figure 6. 

The feature that these differences are no longer zero under binomial LP log odds joint 

modelling, compared with single modelling, has its equivalence under Poisson LP log 

link modelling, which is illustrated in Renshaw and Haberman (2008). 

 

 The Stage 2 parameter estimates ˆ ˆ ˆlogxt x xϕ ϕ ς= = , encapsulating the second 

moment structure of the joint modelling process, are depicted in the right hand frames of 

Figure 6. For each link, within each frame, we have superimposed the results obtained 

under LC/LG and LP/LG joint modelling for comparison. We note the convex shape of 

the near identical matching profiles within each frame, a feature which is similar to the 

profiles obtained under Poisson log link joint modelling (Renshaw and Haberman 

(2007)). We also observe that under dispersion ( 1xϕ < ) occurs largely at the age 

extremities, a feature that coincides with the paucity of exposure to mortality risk at these 

ages. 

 

 Again focusing on lives age 65, period 2003, we conduct simulation Strategy C 

for each joint modelling predictor structure LC/LG and LP/LG, in combination with each 

Stage 1 link function (3)-(5), displaying the 2.5, 50, 97.5 (N = 5,000) percentiles for life 

expectancy and a fixed life annuity value (calculated using a 4 percent rate of interest) 



 

predictions, computed both by the period and cohort methods (Figure 7). Here, the layout 

of the individual frames is the same as Figure 5, and we reproduce the respective Strategy 

C single modelling results within each frame, for comparison. We have not attempted to 

implement the binomial joint modelling version of simulation Strategy A because, unlike 

Strategy C, which is distribution free, a two parameter probability distribution function 

representing the binomial distribution with dispersion is required in order to map the 

fitted responses on to the simulated responses. This issue is discussed further in the 

context of Poisson joint modelling by Renshaw and Haberman (2008). 

 

 Referring to Figure 7, we note the following: 

 

1. Comparing like with like, the increase in the simulated confidence and prediction 

intervals under joint modelling, compared to single modelling, throughout. 

2. Comparing like with like, within each frame, the consistent small lateral 

displacements of the central measures under joint modelling. These are due to the 

switch from single to joint modelling and occur also when joint modelling is 

conducted with a constant dispersion parameter viz. xς ς= . 

3. However, still comparing like with like within each frame, when joint modelling 

is conducted under constant dispersion, the widths of the simulated intervals are 

comparable with those under single modelling, so that the increased width under 

joint modelling is directly attributable to the age variation in the dispersion 

parameters. 

4. A number of the features identified under single modelling are preserved under 

joint modelling: the preservation of the alignment of simulated central measures 

under link 1 and link 4 and the relative displacements of the central measures 

under link 2 and link 3. 

5. The element of asymmetry, present in the simulated intervals under Poisson log 

link joint modelling (link 4), would appear to be limited to this choice of models. 

We are not sure of the explanation for this feature. 

 

 



 

6. Concluding Comments 
 We conclude with some comments about the effectiveness of the simulation 

strategies.  

 

We note that simulation strategy C requires a good fit at Stage 1, and this gives 

rise to a set of pattern-free residuals, from which we may sample (with replacement) at 

each simulation. The strategy is distribution free, which facilitates its use in the 

formulation and implementation of the joint modelling process. 

 

In contrast, simulation strategy A is not distribution free, and requires a 

distribution function to generate new (Stage 1) responses at each simulation; otherwise, it 

cannot be applied. 

 

We also highlight the following two points: 

 

• Joint modelling incorporates an extra provision for targeting second moment 

properties, compared to single stage modelling. This is reflected in wider 

simulated confidence and prediction intervals under Strategy A (both 

approaches) and Strategy C (joint modelling only), than would otherwise be 

the case.  

  

• LC modelling allows for greater variability in the period component than LP 

modelling. We have compared confidence and prediction intervals under LC 

modelling and under extrapolation by random walk with drift, with matching 

intervals under LP modelling and linear extrapolation. For the two simulation 

strategies investigated (A and C), in combination with both modelling 

approaches (single and joint), none of the matching simulated prediction 

intervals are materially wider in absolute terms under LC modelling compared 

with LP modelling. This may suggest that LC modelling fails to capture the 

full magnitude of the time series forecast error. 

 



 

Overall, we believe that further work is required to investigate the basis for using 

the bootstrap framework for simulating prediction intervals, in the presence of model 

extrapolation. 
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