Evolutionary Credibility Theory: A Generalized Linear Mixed Modeling Approach

North American Actuarial Journal
Volume 16, Issue 2, 2012
Tze Leung Lai & Kevin Haoyu Sun

Abstract

The conventional approach to evolutionary credibility theory assumes a linear state-space model for the longitudinal claims data so that Kalman filters can be used to estimate the claims’ expected values, which are assumed to form an autoregressive time series. We propose a class of linear mixed models as an alternative to linear state-space models for evolutionary credibility and show that the predictive performance is comparable to that of the Kalman filter when the claims are generated by a linear state-space model. More importantly, this approach can be readily extended to generalized linear mixed models for the longitudinal claims data. We illustrate its applications by addressing the “excess zeros” issue that a substantial fraction of policies does not have claims at various times in the period under consideration.

Download Full Text (Members)

Download Full Text (Non-Members)