
Making Predictive Analytics 
Our Own
By Joan C. Barrett

Predictive 
Analytics 
and Futurism

ISSUE 14 •  DECEMBER 2016

18 Abstractions & Working 
Eff ectively Alongside Artificial 
Intellects
By Dodzi Attimu and Bryon 

Robidoux

24 Machine Learning: An 
Analytical Invitation to 
Actuaries
By Syed Danish Ali

28 Use Tree-based Algorithm 
for Predictive Modeling in 
Insurance
By Dihui Lai, Bingfeng Lu

32 Creating a Useful Training 
Data Set for Predictive 
Modeling
By Anders Larson

35 The random GLM Algorithm: A 
Better Ensemble?
By Michael Niemerg

3 From the Editor: Insights 
from a Dead Salmon!

 By Dave Snell and Kevin Jones

4 Chairperson’s Corner: On 
Volunteering, Learning, and a 
Sense of Community

 By Ricky Trachtman

6 Looking Back and Ahead
 By Brian Holland

8 Making Predictive Analytics 
Our Own

 By Joan C. Barrett

10 Deciding What to Research: 
How to Spot and Avoid Bias

 By Kurt Wrobel

14 Five Myths and Facts about 
Artificial Intelligence

 By Dr. Anand S. Rao

38 Collaborative Filtering for 
Medical Conditions

 By Shea Parkes and Ben 

Copeland

42 Getting Started with Deep 
Learning and TensorFlow

 By Jeff  Heaton

46 Guide to Deep Learning
 By Syed Danish Ali

48 Introduction to Using 
Graphical Processing 
Units for Variable Annuity 
Guarantee Modeling

 By Bryon Robidoux



Predictive 
Analytics and 

Futurism

2016
SECTION
LEADERSHIP

Off icers

Chairperson
Brian Holland, FSA, MAAA
brian.holland@aig.com
 
Vice Chairperson
Ricky Trachtman, FSA, MAAA
ricardo.trachtman@milliman.com
 
Secretary/Treasurer
Anders Larson, FSA, MAAA
anders.larson@milliman.com

Council Members 

Vincent  J. Granieri, FSA, EA, MAAA
vgranieri@predictiveresources.com

Geoffrey Hileman, FSA, MAAA
ghileman@kennellinc.com

Sheamus Kee Parkes, FSA, MAAA
sheamus.parkes@milliman.com

Bryon Robidoux, FSA, MAAA
bryon.robidoux@aig.com

Qiang Wu, ASA, Ph.D.
qiang.wu@mtsu.edu

Haofeng Yu, FSA, CERA, Ph.D.
haofeng.yu@aig.com

Newsletter Editors

David Snell, ASA, MAAA
dave@ActuariesAndTechnology.com

Kevin Jones, FSA, CERA
Associate Editor
kevin.jones@milliman.com

Board Partner 

Joan Barrett, FSA, MAAA
joan.barrett@axenehp.com

SOA Staff 

Andrew J. Peterson, FSA, EA, FCA, MAAA
Staff Partner
apeterson@soa.org

Jessica Boyke, Section Specialist
jboyke@soa.org

Julia Anderson Bauer, Publications Manager
jandersonbauer@soa.org

Sam Phillips, Staff Editor
sphillips@soa.org

Erin Pierce, Graphic Designer
epierce@soa.org

This newsletter is free to section 
members. Current issues are available on 

the SOA website (www.soa.org).

To join the section, SOA members and 
non-members can locate a membership 

form on the Predictive Analytics and 
Futurism Section Web page at http://

www.soa.org/predictive-analytics-and-
futurism/.

This publication is provided for 
informational and educational purposes 

only. Neither the Society of Actuaries 
nor the respective authors’ employers 

make any endorsement, representation 
or guarantee with regard to any content, 

and disclaim any liability in connection 
with the use or misuse of any information 
provided herein. This publication should 

not be construed as professional or 
financial advice. Statements of fact 
and opinions expressed herein are 

those of the individual authors and are 
not necessarily those of the Society of 

Actuaries or the respective authors’ 
employers.  

 
Copyright © 2016 Society of Actuaries. 

All rights reserved.  

Issue Number 14 • DECEMBER 2016

Published by The Predictive Analytics and Futurism 
Section Council of the Society of Actuaries

475 N. Martingale Road, Suite 600
Schaumburg, Ill 60173-2226

Phone: 847.706.3500 Fax: 847.706.3599

SOA.ORG

2  |  DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM    



Our SOA Cultivate Opportunities Team, and the PAF 
section have been saying for a long time that actuaries 
provide some valuable insurance and risk management 

knowledge that some of the other quants (MBAs, CFAs, CPAs, 
… substitute you’re favorite xxAs), competing on the predictive 
analytics fronts with us cannot contribute. We feel that this is an 
important differentiator.

At last, the media has described the folly of analytics without 
subject matter expertise: Apparently, tens of thousands of stud-
ies have been published that cite fMRIs (functional MRI scans) 
as their justification; yet the underlying software for analysis of 
fMRIs had a software glitch that may have created false positives 
up to 70 percent of the time.

“A graduate student conducted an fM.R.I. scan of a dead salmon 
and found neural activity in its brain when it was shown pho-
tographs of humans in social situations. Again, it was a salmon. 
And it was dead.”

http://www.nytimes.com/2016/08/28/opinion/sunday/do-you-
believe-in-god-or-is-that-a-software-glitch.html?action=click&pgty
pe=Homepage&clickSource=story-heading&module=opinion-c-col-
right-region&region=opinion-c-col-right-region&WT.nav=opinion-
c-col-right-region&_r=0

This issue offers you a collection of basic and leading edge pre-
dictive analytics. It also gives you insurance applications and 
some insights into how to employ the analytics in a more useful 
manner—one that minimizes the chance of dead salmon results.

“Chairperson’s Corner: On Volunteering, Learning, and a 
Sense of Community,” by Ricky Trachtman: Our incoming 
chairperson, Ricky, writes about a common theme throughout 
the PAF section: community. This may be viewed as a temporal 
update to the “it takes a village” concept. Ricky tells how the 
PAF community (then F&F—forecasting & futurism) helped 
him get involved, and how the volunteer spirit of our com-
munity becomes contagious—in a very good way. Yes, you put 
in a lot of time without direct compensation; but the result is 
highly rewarding!

From the Editor: Insights 
from a Dead Salmon!
By Dave Snell and Kevin Jones

“Looking Back and Ahead,” by Brian Holland: Brian gives us 
a reminder of the many cool accomplishments of our section just 
in the last year. It is an impressive list of results from our tireless 
and enthusiastic volunteers. It is extra work to volunteer your 
time and expertise; but the rewards are well worth it for others 
and for yourself. As Brian says, “A lot of the SOA is what we 
make of it, and the sections are a great way to pitch in and make 
the SOA what you want it to be.”

“Making Predictive Analytics Our Own,” by Joan C. Bar-
rett: The Society of Actuaries is embracing predictive analytics 
enthusiastically now; and our board partner, Joan, provides sage 
advice on how we can take back much of the predictive analytics 
space in the financial services industries. She tells us how she 
personally shows that actuaries add value beyond the mathemat-
ical mechanics of modeling. She stresses monitoring experience 
(with several cogent examples) and employing behavioral eco-
nomics (again, with examples) to check the sensibility of model 
results, and improve the models.

“Deciding What to Research: How to Spot and Avoid Bias,” 
by Kurt Wrobel: Kurt provides an article without even one math-
ematical formula in it; yet it contains essential advice for any actu-
ary involved in predictive modeling. He explains how studies can 
become biased; and how you can watch for and avoid or minimize 

CONTINUED ON PAGE 5
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A few years ago, I started on a path of volunteering to try to 
give back to an organization that had given much to me.  By 
“much,” I am not talking about the anxiety, sleepless nights, 

stress, heartburn, and coffee addiction that are the oh-so-common 
side effects of the exam process. Nor do I mean the joy that all 
those confused faces bring me after mentioning in a conversation 
that I am an actuary, which is then followed by, “You’re a what?” by 
“much,” I mean, all the knowledge, perseverance, and self-learning 
skills that I have acquired through the SOA, and most of all how it 
has given me my profession.  This path of volunteering eventually 
brought me to Ben Wolzenski, who asked me to put my name down 
to become part of the Forecasting and Futurism Council. I had al-
ways been interested in forecasting techniques, so I agreed. Soon 
after, I was elected as a council member and became the secretary/
treasurer. I did not know exactly what to expect of the council and 
the section as a whole, but I can tell you that what I have experi-
enced during the last couple of years being part of the council, is 
something I never expected. I was completely surprised.

What I found is a group of very involved individuals who care 
deeply about learning and innovating. They are passionate about 
predictive analytics and the technology that surrounds it. These 
are people who have created an environment that welcomed 
questions, focused on sharing their knowledge, and inspired oth-
ers to do the same. This is a group of people who are willing to 
provide their time, effort, and knowledge to the rest of us. While 
I knew that we had more than a council and more than a section, 
I did not know how to describe us. So I did what any reasonable 
member of the predictive analytics and futurism (PAF) section 
would do, I used technology to find the answer. I opened my 
browser and started to type words into a google search, words 
such as group, innovation, members, learning, teaching, wel-
coming of questions, and volunteering. Eventually, a common 
word keep coming up and that word was “community.”

I then typed “community” into my google search and the 
first thing google brought back was references to the sitcom, 

“Community,” which is a funny show, but not what I was look-
ing for. Isn’t Google supposed to know what I want to know 
all the time? I continued scrolling down the result page some 
more until I found definitions of the word community that 
confirmed my suspicions. The PAF is more than just a section. 
It is a community that supports and nurtures knowledge.

As such I want to thank the members of the council, the friends 
of the council, the section volunteers, our section specialist Jes-
sica Boyke, our SOA staff partner Andy Peterson, and our board 
partner Joan Barrett, for making this community what it cur-
rently is. While being part of the council I have had the privilege 
to work with two great chairs, Doug Norris and Brian Holland. 
Thank you both for all your great work and encouragement.

This sense of community has made volunteering a rewarding 
activity from which I have received more than I can possibly 
give back. I have made friends, learned many things and gained 
experience in leadership that I can bring back to my day-to-day 
work. I hope this short note inspires and encourages you to 
volunteer and continue to help our section be the great success 
that it already is. 

I would like to give a special thanks to our great newsletter 
editors, Dave Snell and Kevin Jones, for all the hard work they 
do so we can all enjoy this publication.  n

Chairperson’s Corner: 
On Volunteering, 
Learning, and a Sense of 
Community
By Ricky Trachtman

Ricky Trachtman, FSA, MAAA, is a principal and 
consulting actuary at Milliman.  He is currently the 
chairperson of the SOA Predictive Analytics and 
Futurism section council.  He can be reached at 
ricardo.trachtman@milliman.com.
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bias in your work. His tips can serve as a guideline for making sure 
you have objectivity, quality, and relevance in your modeling work.

“Five Myths and Facts about Artificial Intelligence,” by 
Anand Rao: Movies and television have perpetuated many mis-
conceptions about Artificial Intelligence in the name of drama, 
but Anand is stepping forward to clear up a few of these. In order 
to see its future in the insurance industry, one has to understand 
what AI is, what it can do, and what its relationship will be to 
human beings. It may not produce magical solutions to all prob-
lems, but has great potential to enhance decisions.

“Abstractions and Working Effectively Alongside Artificial 
Intellects,” by Dodzi Attimu and Bryon Robidoux: In any 
technical field, abstraction is necessary to communicate ideas 
without getting bogged down in details. Dodzi and Bryon out-
line different types of abstraction and explore their uses in a 
software setting. They push this even further into layers of ab-
straction in machine learning. Remarkably, the human brain’s 
approach of Sparse Distributed Representations (SDRs) can be 
used to create a robust learning solution.

“Machine Learning: An Analytical Invitation to Actuaries,” 
by Syed Danish Ali: In ratemaking, do we trade specific risk for 
systematic risk? Machine learning can give new understanding 
in that question. Danish shows how it can be applied in explor-
ing data, predictive modeling, and unstructured data mining. 
Moreover, it’s important in understanding big data and its effect 
on the insurance industry.

“Use Tree-based Algorithm for Predictive Modeling in In-
surance,” by Dihui Lai and Bingfeng Lu: They provide a clear 
explanation of tree-based models, starting from a simple binary 
tree, through CART (classification and regression tree), to an en-
semble of trees in a random forest, or boosted tree. In addition, 
they give advice on when to use which type, what their particu-
lar strengths are, and when a tree is not the best choice for your 
model.

“Creating a Useful Training Data Set for Predictive Model-
ing,” by Anders Larson: Data scientists (and actuaries involved 
in predictive analytics) rant about the value of clean data of suffi-
cient quality and quantity for statistical significance. As Anders says, 
“This goes beyond the simple ‘garbage in, garbage out’ principle,” 
but what is actually meant by good data, and how do you obtain it? 
Read here the key terms that define a good training set; and how to 
create and use training sets that will provide insights on situations 
involving transactional data, and expanding populations.

“The Random GLM Algorithm: A Better Ensemble?” by 
Michael Niemerg: What if you could combine the benefits of 
a generalized linear model (GLM) with those of a random for-
est? Michael describes a lesser-known technique that attempts 
to do this—the random generalized linear model (RGLM). It 
uses randomization and bagging (often associated with random 
forests) and applies them to a GLM. He compares the RGLM 

Insights from a Dead Salmon! |  CONTINUED FROM PAGE 3

to random forest results, and provides overall observations about 
the strengths and weaknesses of this method.

“Collaborative Filtering for Medical Conditions,” by Shea 
Parkes and Ben Copeland: Collaborative filtering systems, 
known to some of us as recommender systems, are used by Am-
azon, Netflix, Google, and many others to determine what you 
might wish to see or buy based on what others like you have seen 
or bought, and on what other items are similar to ones you already 
saw or bought. Shea and Ben take us beyond the simple discovery 
of frequent item sets, and introduce ratings based upon estimated 
latent factors. Their example for a diabetes patient shows how this 
approach can improve the coding of patient comorbidities.

“Getting Started with Deep Learning and TensorFlow,” by 
Jeff Heaton: Deep Learning is the machine learning technique of 
choice for most image recognition and time series predictive ana-
lytics models. Jeff names the four powerhouse open source toolkits 
from Amazon, Baidu, Google, and Microsoft; and then he describes 
the Google product, TensorFlow, in more depth. TensorFlow, was 
introduced in 2015. It is new, and hot! Jeff shows us how to use it—
with code examples to get started. Follow Jeff’s article, based on the 
graduate course he is teaching at Washington University.

“Guide to Deep Learning,” by Syed Danish Ali: Unstruc-
tured data presents data scientists with many challenges, but 
Deep Learning can be a valuable tool for insight here. Here, 
Danish gives an overview of the purpose and structure of Deep 
Learning, as well as the challenges. There are also many variants 
on deep architectures outlined.

“Introduction to Using Graphical Processing Units for 
Variable Annuity Guarantee Modeling,” by Bryon Robi-
doux: The need for faster processing has run into a bottleneck 
with traditional central processing units (CPUs) and the graph-
ical processing unit (GPU), where dozens or even thousands of 
special purpose calculation engines can work in parallel, offers 
the potential for breakthrough speed improvements. However, 
it is not as simple as buying and inserting a high-end GPU card. 
Bryon takes us through a reality check on how, and when, to use 
these powerful processors effectively. n
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excellent article in Issue 12 for more. I’ve been very encouraged 
that he has taken time this year to call-in every month and be 
there as a sounding board for me—that’s one more friend of the 
council who has been active.

I look forward to seeing what the section does in 2017. With the 
experience and interests on the council and your interests, with 
Ricky’s leadership, it will remain a fun and collegial group. I’ll 
remind you what I’m reminding myself: there is room to pitch in 
and support your interests while making friends. Do you want to 
see a webcast on a particular topic, or research done in a partic-
ular direction? The odds are, you’re not alone. I encourage you 
to speak up and connect with others, maybe even organize some 
content or guide us to it. A lot of the SOA is what we make of it, 
and the sections are a great way to pitch in and make the SOA 
what you want it to be. n

It has been a privilege and an honor to serve on the PAF Sec-
tion Council and as chair for the last year. It has been a de-
light to work with the other councilors whom you have elect-

ed and also with our quite active community of Friends of the 
Council. From my corner it looks like a particularly productive 
group. In 2016 we have a few accomplishments:

• Podcasts  on special topics related to predictive analytics (find 
them on our SOA page);

• The first Practical Predictive Analytics Seminar, which fol-
lowed the Life and Annuity Symposium;

• Two nice, thick newsletters;

• Virtual Open Forums, facilitating connections between mem-
bers and newsletter contributors; 

• A record number of sponsored sessions at SOA meetings, in-
cluding two at ValAct this year; and 

• Some exciting webcasts in the works.

Friends of the council are playing a major role: 

• Dorothy Andrews—serving as ValAct coordinator

• Richard Xu—leading Annual Meeting coordination

• Dave Snell, Kevin Jones—editing the newsletter

• Eileen Burns, Matthias Kullowatz—presenting aseminar, vol-
unteering much time and creative energy on this effort

• Ben Wolzenski—organizing volunteer activities

I have to give Satadru Sengupta a shout-out as well for present-
ing at the seminar. He is a data scientist, not an actuary. Reach-
ing out to other experts is important to us, and we were glad he 
could present.

Changing our name has communicated our work to more actu-
aries and membership has shot up. We have even more members 
to serve. Our business is so complex and everyone is so busy, 
there is surely time for you to pitch in! Please see Doug Norris’ 

Looking Back and Ahead
By Brian Holland

Brian D. Holland is the outgoing chairperson of 
the PAF council. He is director and actuary at 
AIG Life & Retirement in Atlanta, Ga. He can be 
reached at Brian.Holland@aig.com.
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siduals to calculate the probabilities. Of course, as the projection 
gets more complicated, so does the probability calculations.

Pricing Risk. We have all studied risk analysis as part of the 
exam process. In most cases, the underlying theory is based on 
the assumption that we have a single distribution that defines 
the “total risk” and all the risk-related calculations are based on 
that distribution. In reality, the hardest part of what we do is to 
determine the total risk. As a health actuary, determining the 
trend is almost always the key pricing assumption. A health actu-
ary will have a real problem if pricing is based on the assumption 
that the average health care costs will increase by 5 percent next 
year only to find out later that they increased by 10 percent. 
Given this sensitivity to trends, the questions I am asked most 
often include:

• If we add a 1 percent margin to our best estimate, what are the 
chances we will lose money anyway?

• If we cut rates by 2 percent in order to be competitive, then 
how much can we expect to lose?

• How comfortable are you really with your best estimate?

• What are the chances we will lose more than $1 million?

To answer these questions, we really need to think of risk in two 
components: A pricing risk and a random variation risk. The ran-
dom variation risk is the risk associated with fluctuations if the 
overall pricing assumptions were exactly right. If a projection is 
based on a simple linear regression, then the random variation risk 
is the risk as calculated using the variance of the residuals. Sup-
pose, for example, that an insurer used a simple linear regression 
to determine that their best estimate of claims costs was $1,000 
per life with a standard deviation of $50. To be conservative, they 
added a $50 provision for adverse deviation for a total of $1,050. 
The expected gain is the margin, $50. But, since the margin and 
the standard deviation are the same, then the probability of a loss 
is about 16 percent. Is this sufficient to meet the concerns of the 
insurer or is it too conservative for marketing purposes?

The pricing risk is the risk, or opportunity, that happens if the 
overall claims are missed either intentionally or not intention-
ally. In the prior example, suppose the original projection was 
wrong and the true best estimate is $1,030, then the expected 
net gain is now only $20, but the probability of losing money has 
gone up to 35 percent. Is this safe enough? Too conservative? 
And what is the probability of missing the trend by 3 percent 
anyway? In this case, the pricing risk for the scenario is $30, the 
value of the miss. The overall impact of this scenario is $30 x the 
probability of a $30 miss. If a simple linear regression is used, 
then that probability can be determined using the variance of 
the slope estimator. The total pricing risk is the sum of the pric-
ing risk over all scenarios.

Over the past few years, many quantitative roles in insur-
ance companies have been filled by data scientists, econ-
omists and other near-professions rather than actuaries. 

In my area of practice, health care, the focus of these roles has 
been to produce studies that determine whether a recommenda-
tion to reduce costs or increase quality, such as a disease manage-
ment program or an employee wellness program, is effective or 
not. With health care at 17 percent of the GDP, well-controlled, 
reliable statistical studies provide critical insights and back-
ground information for clinicians and business leaders alike. As 
an actuary, I regularly review every study I can get my hands on 
as a starting point for pricing a new product or for evaluating the 
impact that a change in technology may have on future health 
care costs. While I find these studies to be a useful starting point, 
most of them are just too specific, too complicated and too dated 
to use directly in my work. Instead, I devise something that is 
simple to apply and easy to explain. Of course, I caveat my work, 
describe the risks, monitor the results and update as needed.

Each time I go through this process, I ask myself the question 
“Is there any way to apply the power of predictive analytics in 
this process?” I have concluded that the answer to this question 
is yes and that the result will be the next generation of predictive 
analytics. But what do we need to know or learn to make this 
happen? Here are some examples.

Monitoring Experience. As actuaries, we routinely monitor 
experience for almost all our work, especially repeatable tasks 
like pricing and reserving. The most difficult part of that work is 
often deciding what to do once the results are tallied: Should we 
lower the rates? Should we raise the reserves? What happens if 
we wait for more data? The big fear for every actuary, of course, 
is that we will take some kind of action based on recent experi-
ence, only to find out later that the original projection was cor-
rect all along. If the original projection was based on a statistical 
model, then we can answer the question, “What are the chances 
I would see these results if my original projection is correct?” 
The answer to that question can provide valuable guidance in 
the decision-making process.

If a simple linear regression analysis was used for the original 
projection, the math is easy. We can use the variance of the re-

Making Predictive 
Analytics Our Own 
By Joan C. Barrett
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Admittedly, the examples above are simple and lead to an obvi-
ous question: Why do we need to do this when in all likelihood 
the chances of a 3 percent understatement are the same as a 3 
percent overstatement and it will eventually come down to the 
best estimate scenario anyway? So, even if the pricing scenarios 
are symmetrical, which is a big if, the underlying risk may or 
may not be symmetrical, especially if there is any type of rein-
surance or policy limits involved.

Behavioral Economics. Actuaries have been talking about 
the impact of consumer behavior on experience for some time 
now. Historically, the emphasis has been mostly on avoiding an-
ti-selection, but more recently there has been more and more 
discussion on the impact of consumer behavior on insurance 
products. Life actuaries, for example, are looking at ways to use 
information about whether or not a prospect goes to the doctor 
regularly as an underwriting tool. Health actuaries often look at 
the effectiveness of using financial and other incentives in en-
couraging consumers to participate in well programs and other 
efforts to reduce cost or increase quality.

Well-controlled studies are key to measuring the impact of 
consumer behavior on past experience. The major question is, 
however, “How can we design a new program or product to get 
the optimal impact?” This is where behavioral finance comes in. 
Behavioral economics is a relatively new field that looks at the 
effects that psychological, social and emotional factors have on 
how consumers make financial decisions. This concept has been 
popularized in books like “Nudge” and “Predictably Irrational.” 
One of the major take-aways from this field is that consumers 
tend to be somewhat irrational and are often influenced by the 

way alternatives are presented. Understanding this concept 
more fully can have a major impact on product development, 
especially if products can be designed in a way that reduces an-
ti-selection.

Currently, most of the quantitative work in this field has been 
based on theoretical experiments: Is a consumer more likely to 
trade a sure $100,000 for a 10 percent chance for $1,000,000? If 
you give someone a free candy bar, will they give it away for free 
or charge for it? Although these experiments are fun and some-
what useful to an actuary, they do not reflect how consumers will 
react in a real situation where the health and financial security 
of their family may be at stake. Since actuaries have access to a 
considerable amount of data and a keen knowledge of the un-
derlying business context, actuaries are in a unique position to 
capitalize on this as an area for personal growth and the growth 
for the profession.

So, can actuaries really make predictive analytics their own? Of 
course we can. Many actuaries are already using the techniques 
described above in their work. We can expect these actuaries 
to begin sharing their work and their findings more and more 
through the SOA continuing education and research infrastruc-
ture.  n

Joan C. Barrett, FSA, MAAA, is consulting actuary 
at Axene Health Partners, in Tolland, Conn. She 
can be reached at joan.barrett@axenehp.com.
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This article will focus on characteristics that are most likely to 
lead to a biased research study—or a perception of such bias—
and offer two case studies where an impartial analysis with mean-
ingful results would be difficult if not impossible to accomplish.

HOW TO SPOT A RESEARCH TOPIC WITH 
THE GREATEST POTENTIAL FOR BIAS
As we consider research areas that could produce a biased 
analysis, several characteristics should raise concern about 
our involvement. Although any individual characteristic may 
not inherently lead to a biased research study, in many cases, 
a combination of these factors is much more likely to become 
the foundation for a biased study.

Disparate data sources with an inconsistent data collection 
process: Because accurate data will ultimately provide the 
foundation of any objective analysis, we should be careful to 
insist on meaningful and accurate data before going to the next 
step of analyzing this information.

Limited data: In addition to accurate data, a sufficient amount 
of information needs to be available to draw robust conclu-
sions. With insufficient information, an analysis is little more 
than a guess with little actual value.  In addition, a lack of in-
formation is much more likely to lead a researcher to substitute 
preconceived opinions to fill in the gaps of missing data.

Attempts to explain the expected outcome of a complex system 
over an extended period of time: To the extent a system has 
multiple causal variables that can affect the broader system and 
other causal variables, we should be very careful about assess-
ing future events in these research areas. In these cases, a de-
tailed analytic review will provide little additional insight into 
explaining the system and could provide unwarranted confi-
dence in predicting the underlying system—particularly if the 
estimates are presented as a single-point estimate rather than a 
range of potential outcomes.

A politically charged question where a definitive answer to the 
research will not ever be known with any degree of accuracy: 
These research questions are best suited for those who have an 
interest in the outcome of the research question and not for un-
biased truth-seekers. In addition, the lack of a definitive policy 
conclusion makes research in this area much less meaningful.

The challenge, of course, is that we often encounter gray areas 
where an analysis may have aspects that are far less than ideal, 
including imperfect data or the necessity to make projections 
of a very complex underlying model. In highlighting these lim-
itations, I’m not suggesting that we never conduct an analysis 
that has some of these limitations, but rather that these limita-
tions be weighed holistically as we consider whether a project 
warrants an actuarial review.

Our profession provides advice for the most visible and 
important public programs and insurance products, in-
cluding health insurance, life insurance, and pensions. 

With significant policy changes occurring in these fields, our 
advice has the potential to have an even more meaningful im-
pact on the long-term sustainability of these programs. This 
environment has given our profession the unique opportunity 
to work on a wide variety of research topics that have a pro-
found impact on people’s lives—whether the research involves 
the changes brought about by the Affordable Care Act or poli-
cies regarding the funding of pension liabilities.

Beyond our familiarity with the technical features of insurance 
products and regulation, we have an opportunity to contribute 
to improving policies because of our reputation for providing 
impartial advice based on facts and reliable data. As we consid-

Deciding What to 
Research: How to Spot 
and Avoid Bias
By Kurt Wrobel

Beyond our familiarity with 
the technical features of 
insurance products and 
regulation, we have an 
opportunity to contribute to 
improving policies. ...

er our broader role in informing public policy, I also think it’s 
important to carefully choose our research focus—particularly 
with the wide range of opportunities available to our profession.

In picking our spots, we need to be very careful in performing 
research in topical areas that are the most likely to result in 
biased research, including the exclusion of inconvenient data, 
conclusions drawn from only a subset of results, and extrapola-
tion to a desired result. Even if our own research is conducted 
without bias, the results have the greatest potential to be dis-
missed along with much of the other research in a topical area, 
as simply confirming an already held political position.
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The above criteria are also very much consistent with the Soci-
ety of Actuaries Public Policy Research and Analysis Statement 
and the goals of the Project Oversight Groups that help guide 
the research by the Society of Actuaries. The attached sidebar 
includes an excerpt from this statement that highlight the goals 
of SOA research. 

HEALTH SYSTEM COMPARISONS 
ACROSS COUNTRIES
To better highlight the problem, the following discussion high-
lights an area of research that best exemplifies this problem 
with biased analysis—comparisons of country-specific health 
systems based on health outcomes. This research has long in-
terested economists and other researchers who seek to explain 
differences in health outcomes among different countries.

While the data and methods vary, the research usually in-
volves comparing an outcome (infant mortality, for example) 
over several countries with several variables that could explain 
the outcome without assuming a specific treatment that could 
be driving the result. In much of this research, the results will 
highlight the United States as an outlier with greater expendi-
ture (as a percentage of GDP) and worse results (higher infant 
mortality, for example) and then suggest various policy solu-
tions to help improve its position.

This research is instructive because it highlights all four ele-
ments of a research study that should be avoided:

• The data often comes from disparate sources with an in-
consistent data collection process: As highlighted in many 
research studies, the data collection methods, the definition 
of specific outcomes, and the measurement of such outcomes 
can vary widely among different countries. Instead of using 
data reported by health care professionals with strict defini-
tions in a consistent manner, some countries use surveys and 
family-reported data with definitions that are not uniformly 
applied across all countries. The data can be further affected 
by the extent of the medical treatment, with those countries 
with aggressive medical practices for costly conditions re-
porting results differently than other countries.

• Limited data: The research is often focused on a limited num-
ber of actual data points to perform the actual analysis. In 
many cases, the research focus is largely dependent on out-
comes from the United States using fewer than 50 data points.

• Attempts to explain the expected outcome of a complex 
system over an extended period of time: The causal factors 
contributing to a health outcome could include diet, lifestyle 
choices, genetic factors, income, education, culture, and the 
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other country, a true definitive answer to the research is sim-
ply not possible. Without a clear, definitive conclusion, this 
research has limited use and it is much more likely to lead the 
researcher to develop a conclusion consistent with his or her 
political beliefs or a preconceived expectation.

And finally, in this macro-level research, we are less likely to 
have the opportunity to use our knowledge of the regulatory 
systems or health system specific information to make an eval-
uation of the differences. 

While this research focus—comparing health outcomes across 
various national systems—may not be appropriate for our pro-
fession, I am confident that many in the actuarial profession 
would find the topic interesting. The differences in how care is 
delivered and financed and how it impacts outcomes can make 
for an interesting philosophical discussion. However, this phil-
osophical interest should not lead our profession to engage in 
research that has the potential to impact our reputation and 
has little policy importance.

CLIMATE CHANGE 
Similar to the cross-country comparative research, the climate 
change debate has many attributes that have the potential to ul-
timately lead to a biased analysis or less-than-meaningful results.

• The data used are collected from disparate sources and are 
subject to significant error. The historical temperature record 
has been obtained from a wide variety of sources with dif-
fering data quality, including Victorian-era sailors dragging 
thermometers behind their ships, ocean buoys, readings on 
land with readings between different sites taken at different 
intervals in different times of the day, and satellites measuring 
surface and lower troposphere temperatures.

• The data is limited, particularly in unpopulated and pre-de-
velopment sections of the globe. As a result, much of the re-
cord prior to widespread distribution of the thermometer is 
based on proxy determinations, such as tree rings. Even in the 
more recent historical era, the raw data is then extensively 
modified in an attempt to homogenize it, such as filling in 
gaps for missed readings, adjusting results to estimate the ef-
fect of different recording processes, and estimating the effect 
of urban heat islands.

• The underlying system explaining global warming is very 
complex and dependent on many causal variables that could 
impact global temperature, and excludes many causal vari-
ables that likely affect global temperatures but are too com-
plex to model, such as the effect of clouds. This complexity 
ultimately makes any modeling effort subject to significant 
error and leads to widely divergent expected results among 
researchers.

Deciding What to Research  ...

SOCIETY OF ACTUARIES PUBLIC 
POLICY RESEARCH AND ANALYSIS 
STATEMENT (APPENDIX 1)

The following excerpt highlights the Society of Actuaries 
stated goal regarding research:

The SOA has a history of working with public policymak-
ers and regulators in developing historical experience stud-
ies and projection techniques as well as individual reports 
on health care, retirement and other topics. The SOA’s 
research is intended to aid the work of policymakers and 
regulators and follow certain core principles:

Objectivity: The SOA’s research informs and provides 
analysis that can be relied upon by other individuals or or-
ganizations involved in public policy discussions.  The SOA 
avoids taking advocacy positions or lobbying specific policy 
proposals.  (This objectivity is emphasized in the selection 
of the Project Oversight Group participants.)

Quality: The SOA aspires to the highest ethical and quali-
ty standards in all of its research and analysis. Our research 
is overseen by experienced actuaries and non-actuaries 
from a range of industry sectors and organizations. A rig-
orous peer review process ensures the quality and integrity 
of our work.

Relevance: The SOA provides timely research on public 
policy issues. Our research advances actuarial knowledge 
while providing critical insights on key policy issues, and 
thereby proving value to stakeholders and decision makers.

Quantification: The SOA leverages the diverse skill sets 
of actuaries to provide research and findings that are driv-
en by the best available data and methods. Actuaries use 
detailed modeling to analyze financial risk and provide dis-
tinct insight and quantification. Further, actuarial standards 
require transparency and the disclosure of assumptions and 
analytic approach underlying the work.

country’s health system and financing. Although some of 
these factors can be controlled for in the research, it remains 
extremely difficult to reliably control for these factors over 
several countries and account for all the factors that could 
contribute to a particular outcome.

• A politically charged question where a definitive answer to 
the research will not ever be known with any degree of accu-
racy: Because an experiment cannot be developed to directly 
compare one health care system with a population from an-
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• The extent of global warming will not likely have a definitive 
conclusion for a long period of time, and the expected impact 
differs widely among researchers. Similarly, the attribution of 
any effects of the changing climate between natural versus 
manmade sources will not be known—nor are these effects 
reliably predictable—making it difficult to provide objective 
advice to policymakers.

And importantly, much of the research is already being per-
formed by scientists and those with the expertise in climate 
change who are much better positioned to answer this question 
than actuaries.

In saying this, I’m not advocating a position, suggesting that 
this topic is not important, or that actuaries should not make 
some consideration of the potential for climate change or 
variability in our future estimates using studies from oth-
er disciplines. Instead, I believe the characteristics of the 
climate change question naturally lend themselves to areas 
of expertise outside the actuarial profession, and any con-
clusions and recommendations made by actuaries will not 
benefit our profession—particularly as we attempt to ex-
pand our influence in other areas of research that are more 
closely linked to our expertise.

CONCLUSION
Our profession has built a reputation as unbiased truth-seekers 
focused on questions that are important to the financial securi-
ty of individuals, companies and governments. In building this 
reputation, we have focused on the aspects of our experience 
that are most important in developing a well-reasoned policy 
decision, including our technical skills, knowledge of detailed 
regulatory rules, and our access to important real-time infor-
mation. As we look to expand our influence in a wide range of 
research areas with growing importance, I also believe we need 
to proceed carefully in areas that have historically produced 
biased analysis and are unlikely to produce meaningful results.

Instead of benefiting our profession, these research areas have 
the potential to lead us away from the work that built our rep-
utation and toward advocacy positions that have done little to 
expand the influence of other professions.  n

Kurt J. Wrobel, FSA, MAAA, is chief financial off icer 
and chief actuary of Geisinger Health Plan in 
Danville, Penn. He can be reached at kjwrobel@
thehealthplan.com.
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We are currently in a new AI spring, in which hype about the 
“triumph of AI” and the “fall of yet another human activity to 
AI” is incessant. While some of the latter claims are realistic and 
do reflect significant advancements in AI, most are hyperbole. 
The media, in its quest to simplify things for the layman, tends 
to equate AI with a specific subfield of AI to the complete exclu-
sion of everything else.

For example, in light of the important advances taking place in 
machine learning and deep learning, many articles that address 
advances in these areas equate AI only with those two areas of 
AI. Similarly, an article on robotics will claim that AI is simply 
robotics or robotic process automation or conversational agents. 
This gives the reader—including business executives—a very 
limited perspective and typically leaves him wondering just what 
AI is and what it is not.

FACT #1: ARTIFICIAL INTELLIGENCE IS 
AN INTER-DISCIPLINARY AREA WITH 
MANY DISTINCT SUBFIELDS.
In the words of John McCarthy, one of the founding fathers of 
artificial intelligence, “AI is the science and engineering of mak-
ing computers intelligent.” Given the lack of consensus on what 
is “intelligent,” AI researchers  have pursued a number of areas of 
human intelligence, including pattern recognition, understand-
ing, learning, problem solving, reasoning, and decision making. 
With a view towards unifying these disparate areas, Russell and 
Norvig,8 in their classic text define AI as “the study and design 
of intelligent agents where an intelligent agent is a system that 
perceives its environment and takes actions which maximizes its 
chances of success.”

Artificial intelligence (AI) is splashed throughout the head-
lines these days. AI recently beat the human Go cham-
pion, autonomous cars can drive themselves, social bots 

can mimic human interactions and converse with others in social 
networks, and AI totally manages some hedge funds.1 

However, countering all of this exciting news is fear about the 
potential for AI to take the place of and even pose an existential 
threat to humans. In a seminal paper published in 2013, Frey 
and Osborne2 estimate that nearly 47 percent of U.S. employ-
ment is susceptible to computerization and automation. More-
over, insurance agents, sales, underwriters, and claims adjusters 
are some of the jobs that have a high potential for automation.

AI will play—and arguably is already playing—a prominent role 
in insurance.3 In personal insurance,4 commercial insurance,5  
and life insurance,6 AI has already had an impact on how insurers 
1) underwrite, price, market, and manage coverage, 2) target and 
manage their customers, and 3) distribute products. And, while 
AI will automate within 10 years some of the routine tasks insur-
ance agents, underwriters, actuaries,7 and claims adjusters per-
form today, we believe that it offers a great opportunity for in-
surers to transform these roles. Far from just automating certain 
tasks, AI will augment human expertise with more sophisticated 
data, tools and algorithms. This will enable insurers to make 
faster, better and cheaper strategic and operational decisions. At 
the same time, human experts embody a wealth of knowledge 
of and experience with the economy, markets, customers’ needs 
and products and can play a critical role in training, testing and 
refining AI. 

However, to better explain what AI may mean for the future of 
the industry, we need to debunk some of the myths about AI and 
explain realities.

MYTH #1: ARTIFICIAL INTELLIGENCE IS A 
DISTINCT AND MONOLITHIC AREA OF STUDY.
The term “artificial intelligence” was coined only 60 years ago. 
It has been subject to periods of excitement (often called “AI 
spring”) followed by ones of despair (often called “AI winter”). 

Five Myths and 
Facts about Artificial 
Intelligence 
By Dr. Anand S. Rao 
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As of yet, there is no single unifying theory or practical solution 
to implement intelligent agents that can perceive and act in all 
environments as well as humans. AI researchers have typical-
ly adopted a “divide-and-conquer” approach that incorporates 
techniques from a variety of scientific disciplines, including com-
puter science, statistics, mathematics, physics, biology, philoso-
phy and logic. In addition, whenever any so called “intelligent” 
problem is solved by AI, it ceases to be called AI. For example, 
handwriting recognition, speech synthesis, or voice recognition 
were all considered AI in the 1980s, but as they became part of 
everyday solutions (e.g., handwriting recognition is now avail-
able on tablets, speech synthesis and voice recognition are now 
available on smartphones), they moved out of the AI realm. 

Figure 1 shows a number of subfields that come under the ban-
ner of AI. Note that these topics are not mutually exclusive and 
collectively exhaustive (MECE), but are researchers and busi-
nesses are actively pursuing them; moreover, they are mature 
enough to offer viable solutions to some practical problems.

MYTH #2: ALL TYPES OF PROBLEMS CAN 
BE SOLVED BY A SINGLE AI SOLUTION.
A more serious consequence of Myth #1 is that the media, busi-
ness executives, AI solution providers, and in some cases even AI 
researchers truly believe that a single AI subfield or a solution 
based on that subfield can solve any business problem. Part of 
the myth is due to a genuine ignorance of all AI’s different sub-
fields and what they can or cannot accomplish. Also, given the 
amount of venture capital and corporate funding that is going 

into AI, there is an increasing tendency to make claims that a 
particular AI solution is relevant to “all” business problems. This 
could have negative consequences for insurance companies and 
other organizations that are trying to pilot AI solutions. High 
hopes that AI solutions can be panaceas may well lead to disil-
lusionment when producers and users don’t change the world 
in one fell swoop. This could have ripple effects, such as failing 
start-ups and decreasing funds for AI (which, in turn, could lead 
to the next AI winter).

FACT #2: DIFFERENT TYPES OF PROBLEMS 
REQUIRE DIFFERENT TYPES OF AI TECHNIQUES.
The repertoire of human activity and intelligence is so vast that 
claiming a single AI solution—or even a combination of solu-
tions—can match, much less surpass them, seriously underesti-
mates the complexity of human cognition. Figure 2 outlines the 
key capabilities necessary for solving business problems. In spite 
of all the recent advances in AI, the world is still nowhere close 
to developing a unified theory or a single solution that incorpo-
rates all of the capabilities we outline. While the particular busi-
ness problem a given researcher or company is trying to solve 
may not require all of those capabilities, it is very likely to re-
quire at least some of them. Even if a business problem is narrow 
enough to require limited capabilities, an AI solution may not be 
able to fully address it. For example, a natural language question 
answering system may be suitable for holding a conversation 
with the customer in order to solve a service issue, but may not 
be able to simulate multiple strategic options and thereby help 
management identify an optimum business strategy.

FIGURE 1: ILLUSTRATIVE SUBFIELDS OF ARTIFICIAL INTELLIGENCE
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MYTH #3: MACHINE LEARNING 
AUTOMATICALLY LEARNS FROM DATA 
WITHOUT ANY HUMAN INTERVENTION.
In their enthusiasm to promote machine learning (and deep 
learning in particular), as well as to contrast it with other tech-
niques, researchers, companies, and media often portray ma-
chine learning as something magical; if one feeds data into the 
system, then it will learn all the patterns and be able to answer 
any future queries. This perception is not only inaccurate, but 
also can be counter-productive for companies adopting AI. We 
have seen companies suddenly shift focus from building robust 
data collection platforms to trying to build machine learning or 
deep learning systems. In our view, organizations should have a 
basic level of “data hygiene” and the foundational AI skills and 
culture before embarking on advanced analytics, machine learn-
ing and deep learning.

FACT #3: MACHINE LEARNING REQUIRES 
A LABORIOUS PROCESS OF ACQUIRING 
AND CLEANSING LARGE AMOUNTS 
OF DATA, AND SELECTING, TRAINING 
AND GUIDING THE ALGORITHM.
Herbert Simon, a leading AI researcher, defined machine learn-
ing as “computers that automatically improve their performance 
through experience.” The three key phrases here are “automati-
cally,” “experience” and “performance.” Unlike other types of AI 
that are programmed, machine learning learns patterns from the 
data it is given in order to improve its performance according to 
a specific criteria. Once the machine learning system has been 

Five Myths and Facts ...

“trained” to recognize certain patterns, it can be provided with 
new data that it should be able to recognize or classify.

Machine learning systems vary by their representation (e.g., 
neural networks, rules), how they navigate through the search 
space of all possible solutions, and optimization criteria. Most 
machine learning systems require large quantities of training 
data. In addition, based on the type of learning (e.g., supervised 
learning) many of them also require humans to provide labeled 
data (i.e., training data requires the “right” answers). Given the 
number of different machine learning techniques, human exper-
tise and judgement is critical in selecting the right techniques 
and fine-tuning relevant parameters. Deep learning, a specific 
type of machine learning based on multi-layered neural net-
works, has performed well on a number of image, video, audio 
and natural language processing tasks. However, the success of 
deep learning algorithms has depended largely on human in-
genuity, notably fine tuning and modularizing the algorithms 
and collecting and preparing the right labeled data to train the 
system. In one particular implementation,8 humans spend more 
than 70,000 hours collecting, analyzing, and labelling more than 
328,000 photos.

MYTH #4: IN THE WORLD OF AI, THERE IS NO ROLE 
FOR HUMAN EXPERTISE AND INTELLIGENCE.
Another common myth is that AI will replace humans and take 
away their jobs, leaving no role for human expertise and intel-
ligence in the future. Some data science and machine learning 
advocates claim that all they need is data, not human domain 

FIGURE 2: KEY BUSINESS CAPABILITIES
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SENSING, QUERYING & CONVERSING
Ability to search or query structured databases, text, audio, image, and 
video data. Ability to communicate and converse with the machine in 
natural language.

SIMULATING, ACTING, LEARNING 
& ADAPTING
Ability to simulate scenarios, autonomously act, 
learn from data and over time adapt to changing 
environmental conditions.

DESCRIBING, CLASSIFYING, 
UNDERSTANDING & VISUALIZING
Ability to describe, classify, understand and 
visualize structured data, natural language 
sentences or documents, audio files, image and 
video data.

RECOGNIZING, SENSING & 
RECOMMENDING
Recognizing features from datasets (structured, 
unstructured—text, audio, image, video), sensing 
the environment through sight and speech (smell, 
taste, touch in the future) and recommending 
actions to be taken.

DIAGNOSING, DECIDING & REASONING
Diagnosing root causes, deducing rules from 
existing data, and reasoning what happened and 
what is likely to happen.

TRENDING, FORECASTING, PROJECTING & PREDICTING
Ability to identify trends from past data, forecast the future from the 
past data, project into the future across multiple scenarios and make 
predictions.
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expertise or intelligence. While it is true data scientists who have 
no domain expertise in a given problem area have won data sci-
ence competitions, humans have had to frame problems, state 
hypotheses, set criteria for success, and finally evaluate the solu-
tions.

FACT #4: AUGMENTING HUMAN INTELLIGENCE 
WITH ARTIFICIAL INTELLIGENCE WILL LEAD 
TO BETTER RESULTS AND DECISIONS THAN 
EITHER ONE COULD ACHIEVE ON ITS OWN.
Artificial Intelligence has matured to the point that AI software 
can perform some common tasks and decisions (e.g., recogniz-
ing faces or landmarks in a photograph and tagging them appro-
priately). However, there are a number of more complex tasks 
and decisions in business and everyday life that still require hu-
man skills, expertise and ingenuity.

Accordingly, AI can play an important role in helping humans 
make better decisions. But, for example, evaluating a number 
of strategic options for an insurance company entering the 
“connected home” insurance market is not something that AI 
software can do autonomously today. However, we can build so-
phisticated AI models that capture the dynamics of consumer 
adoption, competitive dynamics and technology trends to pos-
tulate strategic options that AI software can evaluate. In such 
systems, based on criteria humans provide, AI software can eval-
uate and optimize a multitude of strategic scenarios—something 
that is impossible for human brains to do. As a result, augment-
ed intelligence, where AI systems are initially based on human 
knowledge and then inform humans in an endless feedback loop, 
will become the norm. (In fact, there are a number of evolving 
AI systems that approach this level of sophistication today.)

MYTH #5: AI POSES A LOOMING, 
EXISTENTIAL THREAT TO HUMANITY.
This myth would have not been part of this list unless some well-
known academics and business leaders publically announced 
that it’s a potentially serious issue. In his book On Superintel-
ligence, Nick Bostrom9 argues that an AI system which is able 
to create better and better versions of itself could very quickly 
surpass current levels of human intelligence. If this were to oc-
cur, he claims that we will be unable to predict or guarantee the 
values of this superintelligence. Stephen Hawking, Elon Musk, 
and Bill Gates10 also have recently echoed these concerns.

FACT #5: SUPERINTELLIGENCE IS NOT A 
TECHNICAL REALITY. AT LEAST NOT YET. 
Superintelligence is a fascinating concept, but is decades away 
from potential realization. Almost all of AI today fails to ap-
proach even general intelligence and is good for addressing only 
very specific problems (see Myth #2). Even the field of Artificial 
General Intelligence, which aims to build general purpose intel-

Anand S. Rao, PhD, is Partner, Innovation Lead, PwC 
Data and Analytics at PricewaterhouseCoopers in 
Boston, Ma. He can be reached at anand.s.rao@
pwc.com
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ligence, is still in its infancy. Andrew Ng,11 a leading AI research-
er, puts it succinctly: “The reason I say that I don’t worry about AI 
turning evil is the same reason I don’t worry about overpopulation on 
Mars. Hundreds of years from now I hope we’ve colonized Mars. But 
we’ve never set foot on the planet so how can we productively worry 
about this problem now?” Nevertheless, because of concerns that 
AI may go rogue at some point in the future, there are a number 
of researchers who are addressing how to build AI systems with 
sufficient safeguards and ethics.

CONCLUSION
As insurance companies evaluate the use of artificial intelligence 
in their organizations, they need to understand the true potential 
and limitations of today’s AI technology. While AI has matured 
substantially over the past couple of decades, it is still a long way 
from being a “silver bullet” for solving most problems, and it is 
incapable of completely replacing human labor and decisions. As 
a result, any deployment of AI needs to start with an understand-
ing of the types of business problems AI can actually address and 
the best AI subfield(s) and techniques for addressing them. n
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guage (e.g., C++, Java, C#) is an abstraction of a lower level 
language (assembly language). The user at the higher level 
language layer doesn’t have to worry about the low level as-
sembly language layer. Domain specific languages (DSLs) are 
also higher levels of abstraction of lower level languages that 
process them. In the field of artificial intelligence, the highest 
level of abstraction would be natural language.

2 Flexible Implementation—A direct consequence of (i) above 
is the opportunity to carve out the specific implementation 
details and appropriately deal with them in a lower layer. In 
a solution that outputs data for example, one could have an 
abstract representation of the data and deal with the details 
of the various physical output formats like, Excel, JSON, 
HTML, etc. The flexibility stems from the fact that different 
implementations can be built for the same general purpose.

Different layers of abstraction could be identified for a given con-
text/scenario. Typically, (i) would represent a higher level of ab-
straction and (ii) a lower level of abstraction. But it may be neces-
sary, to further carve out a lower level of abstraction from (ii) and 
so on. In addition, in the programming language example noted 
in (i), an assembly language is a level of abstraction above the ma-
chine language (a language whose syntax consists of 0’s and 1’s). 

In software development, one can identify three types of ab-
stractions: data abstraction, procedural abstraction and config-
uration abstraction. Data abstraction is concerned with unifying 
different input sources and coming up with a simplified and ge-
neric representation. Procedure abstraction is concerned with 
defining different types of functionality in generic ways without 
specifying the details. For example, if the actuary wants to value 
a future, swap or option, they define a common way of valuing 
a derivative. The details of valuing each individual are ignored 
at this level (of abstraction). This allows the ability to design 
functionality without getting overwhelmed in details and allows 
for easier extension to other types of derivatives in the future. 
Configuration abstraction deals with changing the behavior of 
the software without requiring more code modifications. At its 
simplest level, this minimizes or in some cases avoids completely 
the coding of any details needed for the model to run.

FIXED AND VARIABLE PARTS OF 
SOFTWARE SOLUTION
One can classify AI into the categories of classical, machine 
learning and machine intelligence. At the highest level of ab-
straction, AI is software. In that regard, let’s assume we have a 
system’s logic as SysLogic,  and the input (structure) that goes with 
the logic, SysInput2.  That will constitute a logic-input pair, i.e., 
(SysLogic,SysInput). For a given software system, Sys, we can consid-
er the input structure as a function of the logic, i.e.,  

I n the article “2036: An Actuarial Odyssey with AI” that ap-
peared in the July 2016 issue of Predictive Analytics and Fu-
turism, we explored the impact of artificial intelligence (AI) 

on actuarial work in particular and white collar work in general. 
Though there is the tendency to sensationalize the apocalyptic 
scenarios vis-à-vis, an “AI-calypse,” there is a still a possibility 
(even if small) that net outcomes could be, well, apocalyptic (e.g., 
drastic reduction in employment in traditional jobs without oth-
ers springing up, leading to social upheavals). Although the full 
implications cannot be forecast with certainty, we can say with 
certainty that the humans will increasingly continue to work 
alongside machines (artificial intellects1). Without a good frame-
work to conceptualize and implement the partnership between 
humans and machines, very suboptimal utilization of technology 
can occur. This article specifically is about how abstraction, an 
important software development concept, can help in this re-
gard. In addition, while there will be more emphasis on abstrac-
tions in the framework of software, the concept of abstraction is 
not limited to that domain.

ABSTRACTION
The concept of abstraction is ubiquitous. In everyday commu-
nication, it is summed up in the notion of communication based 
on one’s audience. Another use of this notion is captured in the 
phrase “keeping information at a high-level.” One definition of 
the word abstraction (See [3]) is: “The process of formulating 
generalized ideas or concepts by extracting common qualities 
from specific examples.”  Informally, abstraction can be said to 
be a way of specifying the “what” rather than the “how.” In soft-
ware development circles, abstractions are a means of managing 
complexity by thinking of software in terms of levels where each 
level has the right amount of information with more detailed 
information residing in the lower levels of the hierarchy. Ab-
stractions can serve two related purposes:

1 Generalization—The purpose here is to focus attention on 
relevant components in a given layer. By abstracting away the 
lower level details, one can focus on the key components in 
a given layer. As an example, a high-level programming lan-
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where τ is the function that translates the logic of system to its 
input structure.

Given two software designs A and B to solve a problem, we 
would have their mathematical representation as

and

respectively. The importance of the representation is that for a 
given system, there is a correspondence between the software 
code and the input structure. 

Conversely, observe that given an input structure, there is a logical 
model specification that works with the structure to meet system 
requirements. In other words, given an input structure SysInput, one 
can obtain the corresponding logic, via the inverse transformation 
SysLogic=τ←(SysInput). This begs the question whether there is a bet-
ter starting point viz  τ← and τ. Using a user experience (UX) par-
adigm (See [2]), the input design/structure should come first. In 
our context, it is the input structure that should be mapped first, 
i.e., τ←, should be the first focus as it maps the input to the logic. 
In addition, the exact details of how the input is structured can 
be abstracted away as well into another layer where emphasis is 
placed first on what data is required before getting to how (where) 
it is stored (e.g., txt file, xml, etc). We will consider the coded logic 
as the fixed part of the system and the input as the variable part. 
Designing a system where different behavior can be achieved via 
changes to input enhances flexibility and transparency in the use 

of the system. In model building projects for example, there is 
potential to get unnecessarily held up over choice of methodology 
but with the appropriate abstraction, the system can be designed 
to support alternative approaches via the inputs. This effectively 
defers and delegates the decision on the choice of methodology 
to the end user.

CLASSICAL AI—ABSTRACTION IN MODEL DESIGN
Designing flexible models is an imperative in the fast-paced 
world of actuaries these days. This is an area where effective ab-
stractions can be used to enhance flexibility of the system. An-
other important corollary of the pace of modeling requirements 
and ERM best practices is the uniformity of models across the 
enterprise. To achieve this, models should be designed leverag-
ing abstractions that support flexibility3 for different uses/pur-
poses. We illustrate with a relatively simple example. Consider 
a model that at any point in time evaluates a call option on an 
index.4 Mathematically, the formula for a European call on an 
underlying S with strike K in the generalized Black-Scholes5  

model is C(t,T;) given by:

 
In the formulae above, Y(t,T) is the yield from time t to T, and 
Σt,T is the “(implied) volatility” of the forward price of the index. 
The forward price of an index (underlying) S, is defined as  
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where P(t,T) is the price at time t of a zero-coupon bond paying 
a unit amount of currency at time T defined by P(t,T)=e-(T-t)Y(t,T) . 
This general model is actually more ideal for modeling purposes 
as the yield curve at any projection time step, t, 

is typically either an input or internally generated in actuarial 
models.

Under the classical Black-Scholes model, the formula for a call 
on the a stock index S is given by

Where the interest rate between t and T is assumed to be the 
constant short rate, rt, and the (implied) volatility of the stock 
index S between t and T is σt,T.

Though both models are idealizations of reality, the modeling 
needn’t be held-up over uncertainties/differences of opinion 

about what to implement. This is because one can find an ab-
straction that can handle both approaches making any debate 
essentially irrelevant to model development. To see this, it suf-
fices to note the relationship between the two approaches (or 
formulae). By inspection of the formulae in (2) and (1), the 
following relationships can be inferred:

•  Y(t,T)=rt —That is, the generalized model uses the yield be-
tween projection time step and maturity, whereas the clas-
sic model uses a constant short rate (could be proxied by the 
short end of the yield curve for example)

• Σt,T= σt,T —That is, for the generalized model, Σt,T is the “im-
plied volatility” of the forward price of the underlying index, 
(i.e., the variable   

 which incorporates the volatility in interest rates), whereas 
for the classical model, σt,T  is the “implied volatility” of the 
underlying index, S(t).

Consequently, building model components that utilize the fol-
lowing input:

• Projection time, t;

• Time of call expiry,T;

• The value of stock index at time projection time step, S(t);

• The strike price, K;

• Implied volatility parameter—this would be Σt,T for the gen-
eralized pricing formula and  σt,T for the classical pricing for-
mula; and

• Interest rate parameter—this would be Y(t,T) for the general 
case and rt for the classical case,

should be able to accommodate either approach based on the 
input structure (focus will be on the raw input structure here):

• Have a volatility surface which is a two dimensional matrix 
structure,                         the money-ness parameter and τ is 
the time to maturity; and

• At any projection time step have a parameter setting proce-
dure that determines how to source the values:

• In the case of classical Black-Scholes approach, choose the 
point on yield curve that will be used as short rate (default 
to the three-month rate, for example), otherwise, for the 
generalized case, choose the yield with tenor equal to matu-
rity. If interpolation of the yield curve is required, utilize an 
interpolation function to do so.

• For volatility, we would expect the user to enter the correct 
projected “implied volatility surface” corresponding to the 
approach desired, i.e., to use the classical paradigm, the in-
put          would be the projected surface for the stock index, 
whereas in the generalized case, it would be that of the for-
ward price of the index.

•  This structure naturally handles instances where the 
surface is flat along one or both dimensions of    (mon-
ey-ness) and τ (term structure).

From a model configuration perspective, we will expose a con-
figuration/input to the user, e.g., whether to use classical or gen-
eralized formula and in the case of the classical, which point on 
the yield curve to use as proxy for the “constant replicating short 
rate.” The above approach unifies both methodologies giving 
the user the flexibility to ultimately develop their assumptions 

In model building projects for 
example, there is potential to 
get unnecessarily held up over 
choice of methodology but with 
the appropriate abstraction, the 
system can be designed to support 
alternative approaches. ...
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and corresponding inputs (hence methodology).6 A very unpro-
ductive approach in our opinion is to create a tailored solution 
for one case only to later have to “change” it to another case. 
Consequently, by pushing the decision to the user (via inputs), 
time as well as energy is saved.

Finally, this example also illustrates how a modeling functional-
ity in particular and models in general can support sundry mod-
eling uses, e.g., pricing, valuation, risk management, etc. In par-
ticular, more sophisticated volatility assumptions may be utilized 
for pricing purposes compared to for valuation purposes and the 
abstraction handles each approach in the same generic way.

MACHINE LEARNING SYSTEMS
What is machine learning? At the highest level of abstraction, this 
is a mechanism of creating systems that performs a task through 
processing of data without being explicitly programmed. The 
concept is aptly summarized in Mitchell T (1997): “A computer 
program is said to learn from experience E with respect to some 
class of tasks T and performance measure P if its performance at 
tasks in T, as measured by P, improves with experience E.”

The experience relates to a data processing step which starts with 
a data abstraction using a generic vector x=(x1,…,xNfeat)  where 
Nfeat  represents the number of features for each data point. For 
example, to approximate the rate of inflation as a function of the 
90-day and the one-year treasury rates, we have x=(x1,x2), where 
x1,x2 represents the 90-day and one-year rates respectively.

Next, a helpful abstraction is to consider the different observa-
tions of x, with the processing of each observation constituting 
the experience E. Using subscripts to denote the observation 
number so that

��=�x��, … , x������� 
represents the kth input observation, an abstract representation 
of input data to a machine learning system is a matrix (or a table),

� � �
��⋮

�����
� � �

x�� ⋯ x������⋮ ⋱ ⋮
x����� ⋯ x����

�����
�	. 

 
In a supervised machine learning context, another input is the 
actual values corresponding to each of the input data observa-
tions. In our inflation prediction problem, these would corre-
spond to the inflation corresponding to each 90-day and one-
year treasury rate observation. We can represent the output a 
matrix, Y,  with Nobs rows, each row corresponding to a data ob-
servation, i.e., 

where Nout is the number of components of the output. In our 
inflation prediction case, Nout=1 and Y is a column vector.

Though machine learning encompasses more than artificial 
neural networks (ANNs), we will focus on ANNs as it is the 
approach to AI outside the classical methodology that is inspired 
(albeit in a very simplified way) on the working of the brain. 
In that regard, there are different artificial neural network ar-
chitectures, with a common architecture being the feed-forward 
architecture. The machine learning problem reduces to finding 
an approximating function that performs the task T.7 There are 
many libraries that provide implementations for the actual train-
ing step which is the iterative estimation of parameters (weights 
of the neurons in network) of the approximation function. In 
these settings, the user needs to specify the number of layers in 
the neural network as well as the number of neurons per layer.8 

This suggests a data structure of a vector 

�=�n�, … , n�������  n� 
where     represents the number of neurons in the k-th layer and 
Nlayer represents the number of layers in the network. With this 
abstraction we have a blueprint for engineering a neural net-
work system whose configuration is driven by inputs including  
X, Y and n. In so doing, we have abstracted away the low level 
details of the heavy lifting that would be carried out by a ma-
chine learning engine (e.g., an R package like neuralnet, Python 
package like scikit-learn, or first principle implementation) and 
all a user needs to utilize the system would be the data input data 
structure.

BIOLOGICAL NEURAL NETWORKS/
MACHINE INTELLIGENCE
One observation from the previous section is that abstractions 
play a key role in the world of traditional ANNs from the ge-
neric input structure to the generic processing of each input/
observation. In this section we point out the fact that the brain 
itself is a big abstraction leveraging mechanism.

As described in the article “2036: An Actuarial Odyssey with AI” by 
Attimu and Robidoux (Predictive Analytics and Futurism, July 2016), 
Machine Intelligence systems attempt to model how the brain 
works with the Hierarchical Temporal Memory (HTM) framework 
developed by Jeff Hawkins of numenta.org. As noted in Hawkins, 
et. al. (2016), Classic AI and ANNs are designed to solve specific 
problems, e.g., the model component and ANN structure illustrat-
ed earlier. The biology of the neocortex, which occupies about 75 
percent10 of the brain’s volume, is the basis of (HTM). Though one 
could be tempted to think that the neo cortex of the brain has very 
different algorithms for hearing, vision, touch, and other senses, 
this is not the case. The brain utilizes common algorithms for vi-
sion, hearing, touch, language and behavior.11 Within the context of 
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this article, we can infer that though the former approaches (classi-
cal AI and ANNs) do admit abstractions, these abstractions are not 
powerful enough to generalize the cognitive processes of the brain. 
In fact, the brain’s function is probably the best example of the use 
of abstraction to create a generalized computing framework.

Knowledge representation (representing facts and relationships in 
the world) is difficult using traditional computing approaches. The 
brain’s approach to knowledge representation utilizes a data struc-
ture called Sparse Distributed Representations (SDRs). The SDR 
is the perfect example of the brain using data abstraction to abstract 
different sensory inputs into a common data structure. Just like a 
computer word, an SDR is made up of 0 and 1 bits. Unlike comput-
er information, which could be represented using 8, 32, or 64 bits 
and for which semantic meaning of the information is captured in 
the bit representation as a whole, an SDR is made up of thousands 
of bits and they are sparsely activated (i.e., a small fraction of the 
bits are 1s) and each bit contributes to the semantic meaning of the 
representation. The SDR representation has some very powerful 
and useful properties including being robust to noise.

To illustrate the difference between sparse and dense representa-
tions, consider the ASCII code for the letter ‘x’ which is 01111000. 
When we flip the 4th digit, we obtain the representation 01101000 
which corresponds to the letter ‘h.’ This illustrates the fact that 
there is no semantic meaning inherent in the individual bits, but 
in the collection of all the bits. This representation is not robust to 
noise. On the other hand, consider an SDR representation scheme 
which consists of 1000 bits of which only 1 percent are 1s. The 
bits of SDRs carry semantic information. For example, the posi-
tions in the SDR could represent different characteristics of class 
of data represented. To illustrate, consider sound data where bits 
would capture pitch, amplitude, etc. Furthermore, two SDR’s that 

are semantically similar will have overlaps in their “on” (“1”) bits. 
Consider the information encapsulated by two SDRs shown below:

SDR� � ������������������������������������������������
����	����

	
SDR� � ������������������������������������������������

����	����
 

 There is an overlap in position of 80 percent of the “1” bits. Since 
the individual bits in an SDR have meaning, the x and y are closer 
semantically than x and another data point, z, for example, whose 
“1” bit positions overlap with 50 percent of those of x. In fact, SDRs 
have very important mathematical properties that traditional data 
structures lack and which make them a particularly powerful ab-
straction of information for modeling cognitive processes. One 
important property is their robustness to noise. Indeed, a subset of 
the on (“1’) bit positions can be used to identify an SDR with high 
accuracy.12 For details we refer the reader to Hawkins, et. al. (2016).

We revisit our earlier point about the cognitive (computation-
al) processes in the neocortex being homogenous. The key to 
learning via the neocortex of the brain is that every sense is 
responsible for putting its information into a sparse distribut-
ed representation (SDR). The SDR must capture the import-
ant characteristics for the task. At this point, the brain doesn’t 
have to worry about what created the data (SDR). It only has 
to concern itself with recognizing patterns. In effect, the details 
of the specific types of information input are abstracted away 
via SDRs. Consequently, a general algorithm can work on dif-
ferent types of cognitive processes e.g., smell, sight, touch, etc. 
A great example that illustrates this idea is the Brainport which 
is a sensor that sits upon the top of the tongue and allows blind 
individuals to “see” using the tongue.13 
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ENDNOTES

1 The term is borrowed from Kaplan(2015)

2 In this article, we consider configurations as inputs

3 This is related to the transformation τ← or τ discussed earlier  

4 This could be part of an Equity-Indexed Annuity projection engine

5 Unlike the classical Black-Scholes model that assumes constant (deterministic) interest 
rates, the generalized model dispenses of that restriction, being valid under stochastic 
interest rate assumption. See for example, pages 406-409 in  [5]

6 It is well known that both approaches are simplifications and may not be appropriate 
for some modeling situations

7 See Hornik et al (1989)

8 For an introduction to neural networks, see Hagan et al (2016). 

9 Other things that might be exposed to input include the performance measure P and 
other lower level implementation choices that are part of the core machine learning 
engine API employed

10 See Hawkings et al (2016)

11 This was first proposed by Vernon Mountcastle in 1979 (See [13])

12 In fact the human brain seems to identify entities with just a subset of information e.g. 
One may be able to identity another’s voice even if the voice is in a noisy background.

13 See [9]. Note that this example does not explicitly rely on the abstractions of HTM per 
say, it and is evidence of generality of cognitive algorithms utilized by the brain.
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The pattern recognition and learning is done within Hierar-
chical Temporal Memory (HTM). This is a perfect example 
of function abstraction in the brain. Each level of the hier-
archy works with the SDR data structure and performs the 
same learning algorithm. The difference is the level of the 
information. Imagine learning a language, you start by learn-
ing letters. You then learn words and then finally sentenc-
es. Each one of the learning tasks would be at each level in 
the hierarchy. Abstracting the learning in this way creates a 
generalized algorithm which reduces the training time and 
decreases the memory usage compared to using traditional 
methods of data processing.

The pattern recognition is done by first learning spatial patterns, 
which constitutes learning bits that often appear together. The 
temporal patterns learn how the spatial patterns appear through-
out time. After these patterns have been learned it can start using 
them to make inference on new data. These inferences can be used 
to predict what is likely to occur next. The nice part of this design 
is that you don’t have to separate learning from inference. They 
feed off of each other with this design. In the Numenta Platform 
for Intelligent Computing (NUPIC) library, encoders are used to 
change your data into an SDR. You feed the SDR to the Spatial 
Pooler and Temporal Pooler to start the learning process.

CONCLUSION
Abstractions are not only a means to create flexible and ro-
bust systems; they also help our understanding of concepts and 
how they relate to each other. Designing software solutions 
requires the use of appropriate abstractions to make systems 
both manageable and easy to use. From classical software to 
more modern AI oriented software, thinking in terms of ap-
propriate abstractions helps engineer more effective solutions 
to improve the human-machine collaboration we will increas-
ingly see in white-collar work in general and in actuarial work 
in particular.  n



from the rug it was shrugged in  during stressed market condi-
tions when high loss ratios then systematically prove the premi-
um rates to be underpriced and unsustainable.

In other words, are we causing the fat tail problem2 by our prac-
tices? Even if not, what can be done to reduce the fatness of such 
tails and bring the hidden uncertainties onto the surface explicitly?3

A fat tail exhibits large skew and kurtosis and so there is a higher 
probability for large losses compared to other distributions like 
normal distributions as shown by the diagram below. This high-
er loss tendency remains hidden under normal market condi-
tions only to resurface in times of higher volatility. Complexity 
scientists call fat tails the signature of unrecognized correlations. 
Fat tails are an indicator that cascading risks are influencing the 
probability distribution.

While our discussion does not provide an exhaustive guide to the 
machine learning tools and algorithms available to the actuary, it 
provides an outline of them while supplying a context for them in 
the ratemaking process.

We argue that what was perceived as uncertain can now be made less 
uncertain with machine learning. Also the uncertainty should be cap-
tured from where it was partly generated like risky classes were un-
derwritten which later lead to greater pricing uncertainty and so on.

Machine learning has brought about an explosion of algorithms 
in recent times. As actuaries are not traditionally trained for 

This post highlights the various value-additions that machine 
learning can provide to actuaries in their analytical work for 
insurance companies. As such, a key problem of swapping 

specific risk for systematic risk in general insurance ratemaking is 
highlighted along with key solutions and applications of machine 
learning algorithms to various insurance analytical problems.

“In pricing, are we swapping specific risk for systematic risk?”1

The hypothesis is that in normal market conditions, premiums 
are kept at low levels to increase revenues and market share. The 
traditional approach requires precise figures (point estimates) and 
so leads to understatement of uncertainty. This keeps a comfort 
level for us, but the hidden risk of underpricing in our premium 
estimates is hardly given the attention it merits. This crops up 

Machine Learning: An 
Analytical Invitation to 
Actuaries
By Syed Danish Ali

Source: MachineLearningMastery.com
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machine learning, and because there are so many algorithms, it 
can lead to ‘paralysis through analysis’ where one is confounded 
by so many choices (R’s Caret package of machine learning has 
147+models) and decides instead to do nothing but follow previ-
ous precedent. The mindmap above, still not exhaustive, made by 
Jason Brownlee at Machine Learning Mastery highlights a num-
ber of diverse classes and subclasses of algorithms and approaches 
applied in Machine Learning:4

Each of these models has a different bias, and hence its own 
strengths and weaknesses relative to other algorithms and areas 
of application. It is certainly not possible to discuss many of these 
algorithms so we will try to stick to “actionable insights” produced 
from focusing on a small number of relevant algorithms.

With regards to pricing uncertainty and ratemaking applications 
generally, machine learning can be applied in ratemaking in a 
number of ways:

• Exploring our data;
• Predictive modeling; and
• Unstructured data mining and text analytics.

EXPLORING OUR DATA
Decision trees such as hidden decision trees or random forests can 
allow us to see the map and the critical paths upon which the data 
is proceeding. Thus, the trend and nature of even huge datasets 
can be understood through decision trees.5 Decision trees are un-
supervised methods of learning which means that they expose the 
trends within the data without relying only on what the analyst is 
interested in querying.

Clustering, especially K-means clustering, is an imperative al-
gorithm that exposes different clusters operating within a given 
data.6 This can tell us the groupings within claim registers and 
premium registers like one cluster can be that bodily injuries are 
associated with third parties that are associated with non-luxury 
vehicles that are commercial and so on.

For time series decomposition, there are R codes available for 
running this decomposition algorithm. Basically, decomposition 
of time series takes a real-data time series and breaks it down into: 
1) trend (long term), 2) seasonal (medium term); and 3) random 
movements.7 Such decomposition can have huge potential in un-
derstanding trends in data. For instance, claims data have trends 
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that follow an underwriting cycle and mimic the economic cycle 
closely. An instance for a seasonal trend can be higher sales of 
travel insurance in spring break and summer breaks and so on.

PREDICTIVE MODELING
Aside from exploring the data, various uncertain elements of risks 
can be captured by predictive modeling as well.

Generalized Linear Models (GLMs) can be applied to arrive at a 
distribution of frequency and severity of claims. Mostly Gamma 
or Lognormal distributions are fitted to severity data and Poisson 
or Negative Binomial to frequency. Another approach is to direct-
ly apply Tweedie distribution on pure premium.

GLMM is a natural extension to GLM models as the linear pre-
dictor now contains random effects as well to incorporate fuzzi-
ness and give a stochastic feel for enhanced pricing.8

Predictive modeling using GLMs and GLMMs can also be as-
signed to categorize a particular policy into its proper risk catego-
ry, like into predictive risk for claim likelihood for a particular pol-
icy and so on (unacceptable risk, high risk, medium risk, low risk, 
etc.). Separate modeling can then be done for each major risk cat-
egory so as to expose greater insight into the ratemaking process.9 

The results from the separate models can act as a feedback loop 
to the risk and underwriting categories of how valid and reliable 
these categories are, and promote greater cooperation between 
underwriting function and the claim/reserving function, which is 
vital to generating adequate risk-adjusted premiums.

While it is important to select optimum risks for predictive mod-
eling and ratemaking on a broad level, it is also vital to take the 
notion of fairness into account. There have been a couple of back-
lashes around ratemaking such as a law not allowing the use of 
gender to quote prices, controversial social images of using credit 
scores to quote premiums and most recently, pricing optimiza-
tion where customers and regulators have pointed out that simply 
market dynamics like price elasticity and consumer preferences 
should not lead to different premiums and that only risk factors 
(and not market factors) should lead to premium differentiation.10

Complexity scientists also favor use of power law distributions, 
like the Pareto-Levy distribution, for any modeling purpose. This 
should be tried by the actuary to apply it on severity data and 
compare its results with other distributions to see if any improve-
ments have been achieved.11

UNSTRUCTURED DATA AND TEXT MINING
It is well known that 80 percent of data is unstructured. Unstruc-
tured data is the messy stuff every quantitative analyst tries to 
traditionally stay away from. It can include images of accidents, 
text notes of loss adjusters, social media comments, claim docu-
ments and review of medical doctors, etc. Unstructured data has 
massive potential, but has never been traditionally considered as a 
source of insight before. Deep learning is becoming the method 
of choice for its exceptional accuracy and capturing capacity for 
unstructured data. The traditional relational databases use rows 
and columns in handling data, but NoSQL (Not-Only-SQL) 
uses a number of other components such as giving unique key or 
hash tagging to every item in the data. Insurance companies can 
utilize NoSQL databases like MongoDB, Cloudera and Hadoop 

Machine Learning  ...
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because they capture so many elements of reserving that were 
deemed belonging to the domain of uncertainty before, as they 
were too messy and qualitative.12

Text mining utilizes a number of algorithms to make linguistic and 
contextual sense of the data. The usual techniques are text pars-
ing, tagging, flagging and natural language processing.13 There is 
a correlation between unstructured data and text mining as many 
unstructured data is qualitative free text like loss adjusters’ notes, 
notes in medical claims, underwriters’ notes, and critical remarks 
by claim administration on particular claims and so on. For in-
stance, a sudden surge in homeowners’ claims in a particular area 
might remain a mystery, but through text analytics, it can be seen 
that they are due to rapid growth in mold in those areas. Another 
useful instance is utilizing text analytics when lines have little data 
or are newly introduced, which is our research aim here.14

Sentiment analysis/opinion mining over expert judgment on level 
of uncertainty in reserves can also prove fruitful. Natural Lan-
guage Processing (such as in Stanford ‘CoreNLP’ software avail-
able free for download15) is a powerful source of making sense out 
of the texts.

Claim professionals often have more difficulty in assessing loss 
values associated with claims that are commonly referred to as 
“creeping cats.”16

These losses typically involve minor soft tissue injuries, which are 
reserved and handled as such. Initially, these soft tissue claims are 
viewed as routine. Over time, however, they develop negatively. 
For example, return-to-work dates get pushed back, stronger pain 
medication is prescribed, and surgery may take place down the 
road. Losses initially reserved at $8,000–$10,000 then become 
claims costing $200,000–$300,000 or more. Since these claims 
may develop over an extended time period, they can be difficult 
to identify. Creeping cat is a big problem for emerging liabilities 
because mostly, we do not fully know what we are dealing with. 
Emerging risks like cyber-attacks, terrorism, etc., have shown to 
have huge creeping cat potential.

As discussed, predictive models can review simulated claim data 
from agent-based modeling, network theory and other methods 
mentioned in this report for similarities and other factors shared 
by such losses, thereby alerting the claims professional to emerg-
ing risks that may have creeping cat potential. With this infor-
mation, strategies and resources can be applied at a point in time 
where they can be most effective in an effort to achieve the best 
possible outcome and control cost escalation. Additional loading 
on premiums can also be given on areas with higher creeping cat 
potential.

In conclusion, by measuring and exposing areas of uncertainty 
that are traditionally not considered, we can reduce our chanc-
es of swapping specific risk for systematic risk in our ratemaking 

procedures and lessen fatness of the tails and handle emerging 
liabilities in a more resilient manner.

Moving these data collection policies and the uses of this data 
from the subconscious to our consciousness is a first step in the 
process of potentially applying big data in a business context. The 
use of big data and analytics has rapidly evolved from a back-room 
niche to a strategic core competency.17

In conclusion, actuaries will have to understand and appreciate the 
growing use of big data and the potential disruptive impacts on 
the insurance industry. Actuaries will also need to become more 
proficient with the underlying technology and tools required to 
use big data in business processes.18  n
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WHAT IS A TREE-BASED MODEL?
The essences of a tree model, as one may have expected, are 
roots, branches and leaves. A tree model always starts with a root 
and grows into branches. Unlike a real tree, a model tree usually 
only has two splits on each branch. This is also known as a bi-
nary tree. The binary structure is powerful yet easy to describe 
mathematically. A binary tree keeps growing through a series of 
yes/no questions until the leaves are reached.

A tree-based model may contain multiple trees and form a tree 
ensemble. The techniques that are used for growing a tree en-
semble include bagging, random forest, gradient boosting, etc.

CLASSIFICATION AND REGRESSION TREE (CART)
The best way to understand a tree algorithm is to begin with 
the classification and regression tree (CART) model. Not sur-
prisingly, the model is commonly used to solve classification and 
regression problems. To grow a CART tree, an algorithm auto-
matically figures out at each branch the split that minimizes the 
overall impurities in the child nodes. The trees keep branch-
ing until the leaves are reached. Growing a tree without proper 
bounding will potentially lead to over-fitting. A technique called 
pruning is always used to prevent over-fitting.

To understand the power of a CART model, let us look at an 
upsell problem that a health insurance company is trying to 

Artificial intelligence (AI) has captured the attention of a 
broad audience recently. A creative use of an AI algorithm 
with “big data” could potentially bring revolutionary ben-

efits to many industries. Deep learning, for example, has brought 
great success in areas like auto-drive, voice/face recognition and 
the ancient game Go.

Among all the AI algorithms, the decision tree has been widely used 
for supervised learning and it shows great capability in solving clas-
sification and regression problems. The inherent structure of a tree 
algorithm makes it good for addressing rule-based problems, deter-
mining similarities among the objects and classifying groups. In this 
article, we will overview some popular tree-based models and un-
derstand how such models may be applied to the insurance industry.

Use Tree-based 
Algorithm for Predictive 
Modeling in Insurance
By Dihui Lai, Bingfeng Lu

FIGURE 1
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solve. In the scenario, the company tries to offer a certain new 
insurance product to their existing customers. To determine if 
an offer can be made, the underwriters have to look through a 
series of rules and assess the health risks of their customers. For 
the purpose of demonstration, we built a CART model based 
on existing customers with decisions made by underwriters and 
show that the model reproduces the underwriting decision with 
great accuracy.

Here we only consider a subset of all the rules in the underwrit-
ing manual, including only five variables (i.e., age, health index 
and three other evidence variables). The target variable is the 
underwriting decision, which can be either “offer” or “no offer.” 
Without understanding the medical knowledge behind the un-
derwriting rules, the CART model (Figure 1) successfully repro-
duces the underwriting decisions with an accuracy greater than 
99.9 percent.

Looking into the splits that the tree model learned, we find them 
matching the underwriting rules very well. For example, the top 
splits correctly state the fact that this product only targets peo-
ple younger than 66. Besides the age restriction, the model also 
correctly learned more complex rules that are combinations of 
age, health index and a series of other evidences. 

Figure 1: A CART tree for predicting the underwriting decision of 
a health product, based on age, health index and three other evidence 
variables. For each split, the model will go to the left branch if the label 
is true and to the right branch otherwise. For a certain input, the model 

tree keeps making decisions upon splits until a leaf, either “Offer” or 
“No Offer,” is reached.

As a comparison, we also built a logistic regression model for the 
same data set. The regression model has a slightly worse pre-
diction accuracy of 95 percent. It is not surprising as the under-
writing decision is made by answering a series of yes or no rules, 
which fits into the inherent structure of a tree model better than 
a regression model.

THE LIMIT OF CART MODEL
Apparently, the example above is oversimplified. A real underwrit-
ing manual considers far more than just five factors. Moreover, 
there could be hundreds of factors that determine a person’s health 
situation and a lot of them may not even be known to us. For exam-
ple, the contributing factors to cancer could be aging, tobacco, sun 
exposure, radiation exposure, chemicals, viruses, bacteria, etc. How-
ever, there is still a 10 percent to 30 percent chance1 that a person 
developed cancer due to “bad luck” (the unknown). Moreover, the 
occurrence of an event might result from complex intermingles of 
various factors that do not fit into a yes/no structure.

In facing complex problems, the performance of a CART model 
is not always satisfactory. More sophisticated approaches are of-
ten needed to tackle a real world problem.

TREE ENSEMBLE
Random Forest: The occurrence of an event might be due to 
numerous factors in a complex way. If one single tree cannot 
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handle the complexity, would a number of them do? The answer 
is often yes. In a random forest algorithm, all trees are grown in 
parallel to predict the same target, but each tree is only provided 
with a subset of all information available. It may sound a little 
counter-intuitive that the algorithm is trying to build a better 
model with less information. In fact, although each single tree 
grown this way is a weaker predictor by itself, the final decision 
that is made through a voting mechanism from the tree crowd 
normally ends up better.2

Boosted Tree is another popular way of growing a tree ensem-
ble. Unlike Random Forest where all trees are grown to predict 
the same target, boosting algorithms approach the target se-
quentially. Specifically, the algorithm starts by growing a simple 
base tree that tries to make a good approximation of the target 
function. It is fine if the base tree cannot make accurate predic-
tions as a subsequent tree will grow to make improvement on 
top of the existing one. The variation that cannot be explained 
by the base tree will be the target of the second tree (Figure 
2). If discrepancy between the trees’ prediction and the target 
remains, a third tree will grow. The process continues iteratively 
until a converging point is reached. Loosely speaking, the algo-
rithm grows trees one-by-one and each tree is grown to correct 
the error that results from its precedents.

Boosted Tree often has a great performance accuracy3 as it can 
capture complex nonlinear patterns effectively. However, an 
intuitive interpretation of the trees grown from boosting algo-
rithms is usually hard because the trees (except the base tree) are 
not actually predicting the target directly. 

Figure 2: A schematic draw for Boosted Tree Algorithm. A base tree 
(Tree 1) is grown targeting on the objective function. A following tree 
(Tree 2, Tree 3) is then grown to explain the discrepancy between the 
target and the existing trees. The process continues until a converging 
point is reached.

WHICH ALGORITHM TO CHOOSE?
With all the tree and forest descriptions, it is probably a good 

FIGURE 2

time to make a decision on which algorithm to pick. Should 
one use a single tree, a forest of trees, or other AIs? As we have 
demonstrated in our CART model, a tree algorithm is general-
ly good at reproducing a system that is designed upon discrete 
rules (e.g., underwriting decisions), especially if the rules follow 
a binary structure. The tree algorithm naturally puts data into 
blocks and is therefore ideal for business problems like segmen-
tations, categorization, etc. When you wish to solve problems 
that consist mainly of continuous changes (e.g., mortality risks, 
claim incident), algorithms like GLM (generalized linear mod-
el), or survival analysis might be better choices. Neural network 
based algorithms like deep learning are normally good at solving 
problems that involve image processing, handwriting recogni-
tion, face recognition, etc., which are not often confronted in 
insurance.  n

Dihui Lai, Ph.D., is a data scientist at RGA 
Reinsurance Company in Chesterfield, Mo. He can 
be reached at dlai@rgare.com.

30  |  DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM    

Use Tree-Based Algorithm  ...





apologize in advance for my own not-so-subtle bias toward ex-
amples from the health care world.

LIMITATIONS ON PATIENTS WITH CLAIMS HISTORIES
Accountable care organizations (ACOs) participating in the 
Medicare Shared Savings Program (MSSP) receive full claims 
detail from the Centers for Medicare and Medicaid Services 
(CMS) on all of the patients assigned to it. In an ACO’s first year, 
CMS provides claims histories for all currently assigned patients, 
extending back one year prior to the start of the ACO. The data 
is clean, consistent, and reliable, and given that all ACOs should 
have at least 5,000 patients, there are plenty of observations with 
which to train a predictive model. However, there is one catch: 
CMS does not provide any claims history for patients who died 
prior to the start of the ACO’s first year (decedents).

For most Medicare ACOs, approximately 5 percent of patients 
alive at the start of the year will die by the end of the year, and 

In the past decade, the capabilities of predictive analytics have 
improved dramatically thanks to greater availability of large 
data sources, increased computing power, and innovation 

from the statisticians, data scientists, and actuaries at the fore-
front of the field. As a result, there has been more and more 
interest from companies across nearly every industry to harness 
the power of machine learning and other advanced predictive 
modeling techniques.

For all the advancements that have been made, the ability to 
produce useful and accurate results with any of these techniques 
is still ultimately reliant on one thing: robust and appropriate 
data with which to train the model. This goes beyond the simple 
“garbage in, garbage out” principle. There’s no doubt that data 
with blatantly incorrect or sparsely populated information won’t 
do us much good in building a predictive model. It should go 
without saying that data cleaning is an essential step in the mod-
el building process.

We could train a model with an immaculately clean data set with 
500 million records and 100 variables, then use that model to 
make predictions using an equally clean data set with the exact 
same set of 100 variables, and we could still end up with awful 
predictions if the model is based on faulty assumptions. In fact, 
this is perhaps one of the most dangerous situations, when it 
seems for all the world like we have a model we can trust, and so 
we do trust it, until it’s too late, when it becomes clear that our 
predictions were just … bad.

One of the most important elements of a useful training data 
set is that it is a reasonable representation of the data we’ll be 
using to make predictions about the future. In general, we want 
the same data generating process underlying the training data to 
plausibly apply to any new data fed to the model when making 
predictions. Even with clean data, there are often subtle biases 
in training data that can cause us to build a model that is inap-
propriate to apply to new data. To help provide more clarity, I’m 
going to describe a few specific examples in more detail. What 
I hope to accomplish here is to heighten awareness, so that, the 
next time you begin building a training data set, you can be on 
the lookout for the dangers that might be hiding in the data. I 

Creating a Useful Training 
Data Set for Predictive 
Modeling
By Anders Larson

DEFINING KEY TERMS

Training data set—The set of records used to calibrate 
a predictive model and determine relationships between 
characteristics (features) and a particular outcome (re-
sponse). The data should be divided into two subsets, often 
based on a time or date variable. The two subsets are:

• Feature: The data used to gather characteristics that 
will be used as features in the model. For instance, in a 
model that predicts health care costs, this time period 
would be used to determine things like clinical condi-
tions, historical costs, and historical utilization of ser-
vices. In a standard, prospective predictive model, this 
data would come from an earlier time period than the 
response set described below.

• Response: The data used to observe the outcome you 
are looking to predict. For purposes of calibrating the 
model, this data set should not be used to determine any 
of the characteristics that will be used as features. In a 
standard, prospective predictive model, this data would 
come from a later time period than the feature set de-
scribed above.

Prediction data set: The set of records used to make new 
predictions using the model calibrated on the training data 
set. This data set is similar to the training feature data, but 
likely for a more recent time period (often the most recent 
time period). It is used to gather the same characteristics as 
the feature portion of the training data above.   n
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DIFFICULTIES WITH NEW AND 
EXPANDING POPULATIONS
The ever-evolving health care landscape in the United States 
presents opportunities for predictive modelers, but not with-
out additional challenges. One situation that can be particularly 
tricky is when a new class of patient is introduced into a popula-
tion. The expansion of the Medicaid program in many states is a 
particularly instructive example.

In most states, the Medicaid population prior to 2014 was com-
prised of disabled adults and low-income families and children. Un-
der the Patient Protection and Affordable Care Act (ACA), states 
are encouraged to extend eligibility to low-income adults who did 
not otherwise qualify. The morbidity levels of these newly eligible 
patients was a huge unknown prior to the start of the program be-
cause many of these patients had been previously uninsured.

But let’s take a step forward and look at the situation even after 
a year has passed since the expansion of Medicaid in a particular 
state. Assume you are constructing a predictive model to predict 
individual and population-level costs for a managed Medicaid 
plan. You can use the past year of history to build a training data 
set, but that training data set may have biases built into it. All of 
the patients who were newly eligible for Medicaid did not enroll 
immediately, and those who do enroll right away may not be 
representative of the type of patients who will ultimately enroll 
(for instance, the early enrollees may have higher morbidity on 
average or have pent-up demand for services).

Compounding this problem is the fact that there was a relatively 
small number of these patients in the training data set, and yet 

these patients generally incur very high costs in the last few 
months of life.1 When constructing a training data set, it would 
make sense to remove patients who died during the feature peri-
od, because there would be no need to predict their future costs. 
However, you would want to include patients who died during the 
response period, because it is likely that some patients for whom 
you will make predictions will die in the predictions period.

Unfortunately, in this situation we have no decedents available in 
the training response period, which creates a bias in the training 
data set. The patients selected for inclusion in the training data 
set are, on average, healthier and lower-cost than the patients 
for whom you will be making predictions. This is true even after 
accounting for other patient characteristics, such as the presence 
of chronic conditions. The average patient with congestive heart 
failure who does not die in the next six months is still much less 
costly than the average patient with congestive heart failure who 
does die in the next six months.

As a result, the predicted costs will be understated for a mod-
el trained on this data set. Communicating the limitations of 
the model to the end user will be particularly important in this 
situation (and complicated). The predictive models can still be 
quite useful, as long as the focus is more on the rank order of 
the predicted costs rather than the specific level of predicted 
costs. Conversely, using this model to predict population-level 
costs would likely be inappropriate. Ultimately, as time passes, 
the ACO will receive enough data on patients who die after the 
start of the performance year, and a more appropriate model can 
be retrained.
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the population now represents a much larger portion of the pre-
diction data set. The predictive model you construct is going to ex-
trapolate the learnings from that small sample to make predictions 
for a much larger group, which will exacerbate any biases you have 
in your training data set. As actuaries, exercising judgment in this 
situation is essential. Placing too much trust in a model that is not 
necessarily aware of outside influences, such as pent-up demand, is 
a serious risk. One option in this case would be to look at outcomes 
in other states that expanded Medicaid previously. When viewed 
at a population level, do the results of your predictive model look 
reasonable compared with experience elsewhere?

CHALLENGES WITH TRANSACTIONAL DATA
The challenge of creating a training data set becomes more 
complicated when dealing with transactional data. In the exam-
ples above, we have a way to measure the number of patients (or 
more generally, the exposure units) that are associated with the 
claims or other utilization measures that occur. In some cases, 
data is simply provided about transactions (claims, services, pay-
ments, etc.) as they occur, with no corresponding information 
about which patients were eligible to have these transactions.

Using enrollment or exposure information, rather than claims 
information, to select patients for the training data set general-
ly makes the most sense. This enables an understanding of the 
difference between patients who could have used services and pa-
tients who did not use any services because they were not eligi-
ble (or were not included in the original data). With transactional 
data, such as an electronic health record, the predictive modeler 
often has to make an attempt to infer some type of exposure met-
ric. One option is to look for the first date that a patient appeared 
in the electronic health record and assume that the patient was 
“eligible” to receive services from that point forward.

These inferred enrollment estimates will also be needed to select 
patients for inclusion in the training data set. In these situations, 
particular caution must be used to avoid biasing the training data 
set. In general, it is dangerous to use anything learned in the 
training response period to determine which records to include 

in the training data set. Rather, pretend that your response peri-
od is truly unknown, just like the future you’re trying to predict. 
In this example, our best approach would be to include patients 
whose inferred enrollment began prior to the start of the train-
ing response period and were therefore “eligible” to receive ser-
vices in the training response period.

This approach will still yield less-than-perfect results. For in-
stance, assume the data provided to you includes all services in 
the past 24 months. Then assume there is a patient who had 
only one service in the data, and it occurred three months ago, 
but this patient also had a service 30 months ago, which is not in 
the data. Let’s say you are training the model to predict services 
over a 12-month span, so you set the training response period 
to begin 12 months ago. This patient would be excluded from 
the training data set because it was assumed that person was not 
eligible to receive a service. Had the data been cut six months 
earlier, you would have observed that initial visit 30 month ago, 
and the patient would have been included in the training data set 
with no services in the training response period.

Unfortunately, there is no magic bullet for handling transac-
tional data with no exposure information. Getting a thorough 
understanding of the data-generating process underlying the 
data will help, but it is critical to be aware of the limitations and 
potential uncertainty of a model built on this type of data.

CONCLUSION
The examples in this article are by no means exhaustive. Every 
predictive modeling scenario has its own unique challenges, and 
arguably it’s never possible to put together a training data set 
that is a perfect representation of the prediction data set. But 
taking care to create a useful and appropriate training data set is 
an often underappreciated step in the predictive modeling pro-
cess. There’s no question that expertise in selecting and calibrat-
ing the model itself is a vital skill, as is the ability to communi-
cate and interpret the results, but any model will be imperiled 
from the start without a solid understanding of the data used to 
train it.  n
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Creating a Useful Training Data Set ...

The ability to produce useful and 
accurate results with any of these 
techniques is still ultimately reliant on 
one thing: robust and appropriate data 
with which to train the model. This 
goes beyond the simple “garbage in, 
garbage out” principle.
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Random forests have many advantages as an algorithm: they can 
handle both classification and regression, can be trained rapidly, 
require modest amounts of model tuning, and do a good job 
of handling nonlinear interactions. Overall, the combination of 
these characteristics of random forests make it a powerful algo-
rithm. One of the biggest drawbacks is that while an individual 
decision tree is easy to interpret, when you aggregate many of 
them in a random forest you lose that interpretability. However, 
random forests are still able to give you some insight into their 
inner workings through variable importance measures. 

Now, let’s shift focus to RGLM itself. In a sense, RGLM is a 
cross-breed between GLMs and random forests. Like random 
forests, the ultimate model is an ensemble. However, it’s trying 
to take the advantages of random forests and apply them us-
ing linear models. That is, each base learner that makes up the 
ensemble in RGLM is a regression, not a decision tree. Like a 
random forest, however, RGLM still builds its component mod-
els from bootstrapping and by using a randomized subset of fea-
tures in each base learner.

The random generalized linear model (RGLM) is a predic-
tive algorithm based upon the idea of putting linear mod-
els in an ensemble. It does this by taking some of the fea-

tures of random forests––randomization, bagging––and applies 
them, as the name implies, to generalized linear models. This is a 
seductive premise, but does it make for a competitive algorithm?

Before introducing the RGLM algorithm in more depth, let’s 
talk about its two closely related algorithms: linear models and 
random forests. This will give us some background to under-
stand both how the RGLM is put together and give us some 
intuition on how the algorithm might or might not be a good 
predictor. I will also use random forest as a basis of comparison 
when I test the model out later on some sample datasets.  

For the most part, RGLM is using the linear regression we 
all know and love (more on how it does this later). It also al-
lows generalized linear models of the logistic, multinomial, and 
Poisson variety. These allow us to model binary classification, 
classification, and counts in linear regression form respectively. 
Linear models have many advantages including ease of inter-
pretability and use, fast training time, and overall versatility. For 
linear models, variable selection, interactions, and higher-order 
effects should be considered in the model-building process. Two 
possible ways to do this could be manually by looking at regres-
sion statistics and using good judgement or through stepwise 
selection procedures that attempt to do so in a more automat-
ed fashion through an iterative approach of adding and/or re-
moving variables depending on how they improve a statistical 
measure. As we will see later, stepwise selection procedures will 
prove foundational to how RGLM is constructed.  

Next up, a quick overview of random forests. Random forests 
are an ensemble model based upon decision trees. The random 
forest algorithm involves growing a “forest” of many indepen-
dent decision trees where each decision tree is based upon boot-
strapping (independent sampling with replacement) the dataset 
being modeled. Additionally, when building the decision trees, 
each candidate split is based upon a random subset of predictors.  
Once all the decision trees are created, they are then aggregat-
ed via majority voting (classification) or averaged (regression) to 
get a single prediction. 

The Random GLM 
Algorithm: A Better 
Ensemble? 
By Michael Niemerg
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Each one of the base learners is built as follows: 1) A bootstrap 
sample is selected from the dataset; 2) A randomized set of pre-
dictors get selected; 3) The predictors get ranked according to 
their association with the variable being predicted; 4) The high-
est ranked predictors become candidates for selection in a re-
gression model; and 5) Stepwise regression (specifically, forward 
selection) is applied to create a linear model. 

For a given model, somewhere between a dozen and several 
hundred base learners are built.  Since each one is built on a dif-
ferent sampling of the data and using a different set of candidate 
predictors, each one will be unique. Once each of the base mod-
els is created, they are then combined into the final ensemble 
model used for prediction using either averaging for regression 
or majority voting for classification. 

The intuition here is that by randomly sampling both the data-
sets and the predictors, the ensemble model is more powerful 
than a single model could be. Ideally, an ensemble allows for a 
good deal of flexibility in the model it creates, but avoids overfit-
ting since the noise tends to get washed out among the different 
models. However, RGLM is going to have a challenge in that 
an ensemble can only be as flexible as its base learner and linear 
regression base learners can only take this so far. 

The reason for this limitation is that the best model involves a 
trade-off between bias and variability and linear regression is 
a high bias, low variance procedure whereas ensembles benefit 
most from base learners that are the opposite. We need low bias 
base learners in our ensemble so that the resulting model has 
low bias. We need the “flexibility” that often comes from high 
variance base learners to ensure that the ensemble is capturing 
all the signal in the data. Any amount of overfitting caused by 
high variance within the base learners gets muffled by averaging 
them, so that the final model will actually have low variance. 

Because RGLM has a linear regression base learner, extreme 
outliers could still dominate even an ensemble while “wiggly-
ness” and complex relationships in the data could be hard for 
RGLM to capture. See, for example, the following charts which 
show a dataset that is very linear except with a highly nonlin-
ear subregion (Figure 1). A fitted linear regression produced 
by RGLM (which is virtually identical to the regression model 
that would be produced with an ordinary GLM) is shown in or-
ange while the random forest is shown in gray (Figure 2). While 
this example is obviously contrived, it conveys the difference in 
flexibility between the two models. The random forest is able 
to identify the anomalous subregion and is able to average out 
the behavior in that vicinity without much ado while the en-
tire intercept of the linear regression gets thrown off by those 
points (see how its prediction line hovers above most of the data 
points). The predictions are simply too high everywhere, except 
in the anomalous region where the model prediction is too low.

FIGURE 1: TEST DATASET

FIGURE 2: TEST DATASET WITH RGLM 
& RANDOM FOREST PREDICTION

All right, now that we’ve built some intuition on how RGLM 
works, let’s take it out for a test drive. I chose ten datasets: four 
suited for logistic regression and six for linear regression. 

To summarize the predictive accuracy for logistic regression, 
I used area under the curve (AUC). AUC is a common mea-
surement when comparing binary classification models. For any 
model that can return probabilistic output, a receiver operating 
characteristic (ROC) curve can be constructed. An ROC curve 
graphs the true positive rate vs. the false positive rate at the 
possible thresholds for classifying an observation. The AUC is 
then a measurement of the area under this curve. The higher 
the AUC the better. To compare predictive accuracy for linear 
regression datasets, R-squared was used. R-squared is a measure 
of the strength of linear association between two variables, again 
the higher the better. I will be calculating these statistics for each 
dataset on a testing set that was withheld from the model fitting 
process so that we can get a good sense of model generalizability 
on new data.

It turns out that random forest outperforms RGLM in the data-
sets I chose, sometimes by a wide margin. The difference varies 
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One caveat I feel compelled to mention: a truly fair and robust 
comparison would require a larger sample of datasets. In fact, a 
much more robust comparison of RGLM to other methods was 
performed in the paper by Song and Horvath this article was 
based upon (see the references at the end). In their results, the 
creators of RGLM were able to get superior performance on 
RGLM even when comparing it to many of the most common 
algorithms used today in predictive analytics. 

Overall, I haven’t seen RGLM used much in practice. Based on 
Song and Horvath, it seems it can offer superior performance on 
some datasets, but I’m skeptical of its ability to do so reliably on a 
wide range of applications. Also, due to its rather lengthy compu-
tation time, I’d be hard-pressed to recommend it as an all-purpose 
algorithm. It’s an interesting concept, but I can’t help but think it 
needs some alterations––some way to be a little more like a ran-
dom forest, some way to alter its base learners to add flexibility, 
capture nonlinear features, and better benefit from the ensemble 
approach––before being able to be a top tier contender.  n

by dataset with RGLM coming in very competitively for some 
of the datasets and random forest coming in as an easy winner 
on others. One RGLM, trained on dataset 9, just barely beat the 
random forest, and its accuracy rounded up to 100 percent. In 
terms of computation time, random forest was a clear winner 
across the board, being an order of magnitude faster to train.

One thing to note is that I tried various configurations of 
RGLM. The above chart doesn’t represent the absolute best I 
was able to get out of RGLM, but involves a compromise of 
predictive accuracy and runtime (the parameters are 50 base 
learners, interactions up to level two, and with each model con-
sidering half of its predictors in the base learner as a candidate 
for forward selection). Some further optimization is able to close 
some of the gap¬¬¬¬––and RGLM was able to ever so slightly 
outperform random forest on another dataset with some addi-
tional model tuning––but the overall gap remains. I wasn’t able 
to come up with any configuration that made RGLM the clear 
winner over random forest. Meanwhile, I didn’t do any tuning 
or optimization to the random forest (I simply started with 40 
trees and default settings). Furthermore, parameter tuning can 
only get you so far with RGLM. There aren’t that many param-
eters to tune to begin with. At the end of the day, I think the true 
drawback is that RGLM is still a linear model which means that 
it is somewhat limited in its ability to capture highly nonlinear 
interactions, as mentioned earlier. 

To elaborate on that point some more: ultimately, any RGLM 
ensemble is really just a linear model itself (a combination of 
linear models is itself a linear model) and so it is inherently lim-
ited by all the things that linear models are limited by. In fact, 
RGLM is probably even more limited to the extent that it is 
simpler to add higher-order terms and transformations onto a 
typical linear model than to an RGLM.

RANDOM FOREST RGLM

Dataset Model Type Observations Predictors RunTime 
(seconds)

Evaluation 
Metric*

RunTime 
(seconds)

Evaluation 
Metric*

1 Classification 45000 16 8.15 92.4% 402.22 81.2%

2 Classification 27000 10 2.17 87.1% 142.64 79.6%

3 Classification 27000 100 19.92 88.5% 4463.66 76.2%

4 Classification 800 8 0.05 80.1% 44.98 79.5%

5 Regression 1500 5 0.16 76.9% 5.12 56.9%

6 Regression 9000 12 4.83 99.8% 55.96 93.7%

7 Regression 6000 19 0.64 69.7% 23.18 14.8%

8 Regression 1000 8 0.11 87.4% 5.91 51.0%

9 Regression 10000 4 1.58 99.3% 18.57 100.0%

10 Regression 5000 11 1.61 48.7% 27.39 19.2%
* The evealuation Metric is AUC for classification and R-squared for regression

The results, as well as a description of the datasets used, are shown in the following table:

Michael Niemerg, FSA, MAAA, is an actuary 
at Milliman in Chicago. He can be reached at 
michael.niemerg@milliman.com.
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approach works well at giving personalized lists of potential co-
morbid conditions from the patient perspective.

WHAT IS A COLLABORATIVE FILTERING SYSTEM?
If you have ever viewed a product on Amazon or watched a show 
on Netflix, then you have been a part of a collaborative filter-
ing system, also known as a recommender system. Collaborative 
filtering systems are commonly applied to help users identify 
potentially interesting products among a large list of options, 
through the use of historical viewing or rating information. For 
example, Netflix will recommend certain shows to you based on 
your previous viewings. These recommendations are built using 
viewing or rating data from other users who have viewed the 
same shows as you.

Collaborative filtering often takes three forms: user-based, item-
based, or matrix factorization. User-based collaborative filtering 
seeks to find users that have rated items similarly, and predict 
preferences for other items that similar users liked. Item-based 
collaborative filtering seeks to find similarities among items 
themselves, and then suggest items that are similar to a user’s 
highly rated items. Matrix factorization estimates latent factors 
for each user and item and then uses these latent factors to find 
items that hopefully align with a user’s preferences.

For an illustration of collaborative filtering in a clinical setting, 
consider the hypothetical patient panel in Figure 1.

Recent trends in health care legislation have led to a rise in 
risk-bearing health care provider organizations, such as 
accountable care organizations (ACOs). Entrusted with 

the care of thousands of patients, these organizations must lever-
age data-driven approaches to population health management in 
order to improve quality of care and reduce costs.

One area of concern for data-driven analysis involves the accuracy 
of a patient’s clinical documentation. Efforts to improve accuracy 
in a population’s clinical records are often referred to as clinical 
documentation improvement or coding improvement. From a 
clinical standpoint, the benefit from coding improvement is ob-
vious. A patient record that contains the entirety of the patient’s 
illnesses will result in a more appropriate treatment plan.

However, there can be financial incentives in coding improve-
ment. Alternative payment models often account for the health 
status of a patient population, through the use of risk scores, 
when reimbursing a health care provider for services. A more ac-
curate clinical record ensures that risk-bearing health care pro-
viders are appropriately compensated when they care for sicker 
or healthier populations.

Coding improvement initiatives often start by looking through a 
given patient’s records for explicit evidence of conditions that did 
not make it into the official diagnosis information: conditions 
coded on claims in prior years, or mentioned in the unstructured 
text of an electronic medical record. After these explicit sources 
of coding improvement are exhausted, more analytical methods 
can evaluate a patient for comorbidities to consider adding (or 
removing). One approach is to find explicit evidence of missed 
codings in large reference data sets and train predictive models 
that can be then be applied to other, potentially slimmer sources. 
This can work well for predicting specific chronic conditions in 
a population, even when only a short claims history is available.

Collaborative filtering can provide a different approach to iden-
tifying uncoded conditions by identifying common clinical pat-
terns among patients in a population. Analysts can then make 
patient-level lists of conditions to review based upon comorbid-
ities experienced by similar patients. The collaborative filtering 

Collaborative Filtering for 
Medical Conditions
By Shea Parkes and Ben Copeland
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FIGURE 1: EXAMPLE PATIENT PANEL
Condition Patient 1 Patient 2 Patient 3 Patient 4

Diabetes X X

Hypertension X X

Coronary Artery 
Disease

X

Hyperlipidemia X X X

COPD X X

Patient 1 appears to be most similar to Patient 2. Thus, for Pa-
tient 1, hyperlipidemia might be considered as a potential co-
morbidity. Likewise, Patient 4 is most similar to Patient 3, so 
coronary artery disease might be considered as a potential co-
morbidity.

FIGURE 2: EXAMPLE PATIENT PANEL, 
CONDITIONS TO CONSIDER

Condition Patient 1 Patient 2 Patient 3 Patient 4

Diabetes X X

Hypertension X X

Coronary Artery 
Disease

X O

Hyperlipidemia O X X X

COPD X X

The preference inputs in collaborative filtering may take two 
forms: explicit ratings or implicit ratings. Explicit ratings are 
generated when the users themselves identify their preferences, 
such as giving a rating to a movie or a product. While explicit 
ratings carry a higher level of confidence for a user’s preference, 
they are often not available. More commonly, implicit ratings 
are inferred from a user’s actions, such as viewing a movie or 
buying a product.

The implementation explored in this article utilizes an implicit 
rating, matrix-factorization model to identify relative likelihood 
ratings for uncoded conditions. Each patient is a “user,” with 
potential comorbid conditions being suggested as the “items.” 
Implicit condition confidence values, or ratings, are inferred 

from the medical history of each patient in a population. These 
patient, condition, and confidence inputs are processed to gen-
erate latent factors for each patient and condition. These latent 
factors, an abstract representation of similarities among patients 
and conditions, can be combined to generate a rating for each 
patient-condition pairing.

The hypothetical example in Figure 3 illustrates using the es-
timated latent factors to generate condition ratings for a single 
patient.

A condition’s rating for a given patient is calculated as the dot 
product of the patient’s latent factors and the respective condi-
tion’s latent factors (e.g., Diabetes Rating = 0.8x0.2 + 0.4x0.6 + 
-0.5x0.1 + 0.6x-0.2). Here, hypertension would be identified as 
the most likely potential comorbidity to consider. While latent 
factors are not easily interpretable, one could roughly associate 
each latent factor with a patient characteristic. Latent factor 1 
could be gender-related because it has a strong coefficient for 
menopause. Latent factor 2 may be related to blood pressure, 
considering the high coefficients of both diabetes and hyper-
tension, while latent factor 4 may be related to lung issues. Most 
real matrix factorization models use so many latent factors it 
would not be reasonable to try to actually attach interpretations 
to them.

A matrix factorization approach provides some useful benefits. 
The model is fast and simple to train, and thus can realistically 
be tuned to find unique relationships for each patient popula-
tion. There are implementations available in cluster computing 
frameworks that gain additional speed by distributing the calcu-
lations (e.g., Apache Spark). Matrix factorization works well with 
the sparse nature of patient condition information (e.g., most 
patients only have a handful of conditions). Finally, the comor-
bid nature of many conditions can be naturally expressed via la-
tent factors (e.g., a latent factor related to cardiovascular disease 
can usefully explain many conditions).

FEATURE ENGINEERING
There are two important considerations for generating useful 
input data: which features will be used, and how will confidence 
values for these features be determined. The features chosen 
here are a combination of historical condition information and 

demographic information. These features 
and their confidence values are generated 
from a patient population’s clinical history.

For condition features, diagnoses in a pa-
tient’s clinical history are grouped into 
clinically meaningful categories, or con-
ditions, using the Clinical Classifications 
Software (CCS) of the Agency for Health-
care Research and Quality (AHRQ). Pa-

FIGURE 3: CONDITION RATINGS BASED ON ESTIMATED LATENT FACTORS
Latent Factor Patient Diabetes Hypertension COPD Menopause

1 0.8 0.2 0.3 0.1 -1.0

2 0.4 0.6 0.8 0.1 0.1

3 -0.5 0.1 -0.1 -0.1 0.1

4 0.6 -0.2 0.2 0.5 -0.1

Patient Rating --- 0.23 0.73 0.47 -0.87
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in each patient’s 10 highest-rated uncoded conditions. Using the 
best performing hyper-parameter values, a final model is trained 
with all of the available data to make up-to-date patient-level 
lists of the highest-rated conditions.

This whole tuning process is fast enough to calibrate hyper-pa-
rameters for each unique patient population.

MODEL PERFORMANCE
When using any advanced analytics, it is always important to 
have a useful baseline model to compare against. For a collabo-
rative filtering model, the most basic reference model would be 
a simple popularity model that identifies the population’s most 
common conditions, excluding conditions that have already 
been coded for a patient. For example, a popularity model would 
identify the most common condition, such as hypertension, as 
the highest-rated condition to consider for all patients that do 
not already have hypertension coded.

The illustration in Figure 4 compares model accuracy on a 
sample population for the collaborative filtering model (Matrix 
Factorization) versus the simpler Popularity model. The vertical 
axis shows the estimate of accuracy discussed above: the percent-
age of newly coded conditions from the hold-out set that were 
among the predicted conditions for each patient. The horizontal 
axis displays accuracy for different numbers of predicted condi

FIGURE 4: MODEL ACCURACY ON 
TWO-MONTH HOLD-OUT

tions per patient.

FIGURE 4: MODEL ACCURACY 
ON TWO-MONTH HOLD-OU

The left side focuses on chronic conditions, which are more 
likely to go uncoded if they are not the primary reason that a 
patient seeks care. The right side focuses on non-chronic con-
ditions. Because of the higher intensity level required in care, 
non-chronic conditions are more likely to be coded at the time 
the illnesses arise. For both the chronic and non-chronic condi-
tions, the matrix factorization model consistently outperforms 
the popularity model.

Collaborative Filtering  ...

tients who are seen for the same condition multiple times are 
given a higher confidence value. More confidence is given for 
conditions that have been coded more recently. Additionally, 
more confidence is given for conditions that were coded in an 
inpatient setting rather than an outpatient setting.

The two main demographic features are age and gender. Un-
like condition features, demographic features are given the same 
confidence level across all patients. The confidence value is 
determined such that demographic importance does not over-
power condition information. However, these confidence values 
must also be large enough that gender-specific and age-specific 
conditions are modeled appropriately.

FITTING THE MODEL
The two most important hyper-parameters are lambda, the reg-
ularization parameter, and rank, the number of latent factors. 
Lambda should be strong enough to avoid overfitting in the 
training data, while also still allowing for meaningful person-
alization in predictions. Rank must be high enough to allow for 
meaningful groupings in latent factors, while avoiding the com-
putational burden of higher rank models.

The goal is to identify the hyper-parameter values that are most 
useful for identifying uncoded comorbidities. To accomplish 
this, a tuning data set that excludes the most recent months of 
data is created. The hold-out data is analyzed to find conditions 
coded for the first time in a patient’s medical history. A variety 
of models are trained on the tuning dataset with different hy-
per-parameter values. For each model, the hold-out data is used 
to calculate the percentage of newly coded conditions appearing 
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FIGURE 7: CONTRIBUTING FEATURES, 
THYROID DISORDERS

THYROID DISORDERS - CONTRIBUTING 
FEATURES

CONTRIBUTION

Subscriber Relationship- Policyholder

Essential hypertension

Diabetes mellitus with complications- Chronic

Age- 45

Disorders of lipid metabolism

Other nutritional; endocrine; and metabolic 
disorders- Chronic

Diabetes mellitus without complication- Chronic

Gender- Male

The demographic features have a high contribution to the rat-
ing, which is partially due to the high confidence value associ-
ated with these features. Hypertension and diabetes are other 
strong contributing factors. Male gender appears to be slightly 
negatively associated with thyroid disorders.

CONCLUSION
These lists of potential comorbid conditions can be used in a 
number of work-flows. Most importantly, these condition lists 
could be used to remind clinicians of common comorbidities to 
consider coding at the time of service.

In addition to identifying new conditions, the same model can 
be used to identify potential outliers in the conditions that have 
already been coded. Estimated ratings for existing conditions 
can be calculated, and those with extremely low values might 
represent codings that should be reconsidered to ensure there 
was not perhaps a mistake during data entry.

Accurately documenting a patient’s clinical status will be increas-
ingly important as more health care providers enter into alterna-
tive payment arrangements. Provider organizations face a growing 
scrutiny on the quality and cost of care. As a result, advanced analyt-
ics must find their way into daily workflows. Collaborative filtering 
systems provide a unique perspective toward coding improvements 
that produce useful suggestions of uncoded conditions.  n

Shea Parkes, FSA, MAAA, is an actuary at Milliman 
in Indianapolis. He can be reached at shea.
parkes@milliman.com.

CASE STUDY
This case study will examine model inputs and model results for a 
sample patient with diabetes. For this patient, the input features, 
the top 10 highest-rated conditions, and a breakdown of the con-
tribution towards the highest-rated condition will be explored.

DIABETES PATIENT
The table in Figure 5 shows the input features and their respec-
tive confidence values. Demographic features are given a con-
stant confidence value, whereas the confidence values for condi-
tion features are a factor of the patient medical history.

FIGURE 5: INPUT FEATURES AND 
CONFIDENCE VALUES

FEATURE CONFIDENCE

Age- 45

Gender- Male

Subscriber Relationship- Policyholder

Diabetes mellitus with complications- Chronic

Essential hypertension

Disorders of lipid metabolism

Other nutritional; endocrine; and metabolic 
disorders- Chronic

Diabetes mellitus without complication- Chronic

The table in Figure 6 shows the top 10 highest-rated conditions 
and their relative ratings for this patient. The ratings are deter-
mined through a recombination of latent factors for the patient 
and the respective condition.

FIGURE 6: HIGHEST-RATED CONDITIONS
HIGHEST-RATED CONDITIONS RATING

Thyroid disorders- Chronic

Mood disorders- Chronic

Anxiety disorders- Chronic

Other upper respiratory disease- Chronic

Esophageal disorders- Chronic

Nutritional deficiencies- Chronic

Other nervous system disorders- Chronic

Osteoarthritis- Chronic

Spondylosis; intervertebral disc disorders; other 
back problems- Chronic

Asthma

The table in Figure 7 breaks down the relative contribution for 
the highest-rated condition, thyroid disorders. A condition’s rat-
ing can be decomposed into contributions from each of the input 
features, based on the feature’s confidence value and latent factors.

Ben Copeland is a data scientist and actuarial 
student at Milliman in Indianapolis. He can be 
reached at ben.copeland@milliman.com
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defined as TensorFlow compute graphs that define the order that 
calculations must occur in order to calculate a model. For exam-
ple, a GLM would be defined as dot products feeding into a link 
function. The graph ensures that the link function is not calculated 
until the precursor dot products have been calculated. Similarly, 
neural networks are layers of dot product calculations and activa-
tion functions. The graph defines the exact order of these calcula-
tions. Python code is used to define this compute graph. However, 
Python would be too slow to calculate and fit these models in any 
acceptable timeframe. Rather, TensorFlow transforms these com-
pute graphs into highly efficient C++ and Graphical Processing 
Unit (GPU) code. Deep learning is very well adapted to GPUs, 
and TensorFlow contains extensive support for GPUs.

INSTALLING TENSORFLOW
Because performance is paramount in deep learning, every rea-
sonable optimization has been employed in its design. Many of 
these optimizations are platform specific. Currently, TensorFlow 
officially supports the Macintosh OSX and Linux operating sys-
tems. Windows is not currently supported. Google suggests 
using a virtual machine or Docker (a software containerization 
platform) if you must make use of the Windows operating sys-
tem. At some point, TensorFlow might support windows na-
tively. However, that time has not yet arrived. Google provides 
installation instructions for TensorFlow for Mac, Linux, and 
Windows (using an emulator).5 

It is also possible to use TensorFlow entirely from the cloud in a 
web browser. This frees you from the complexities of installing 
binary Python packages. Jupyter notebooks provide a convenient 
web-hosted environment to program Python. IBM provides a 
free Jupyter notebook that can be used directly from the web. The 
Data Scientist Workbench6 is a free and open Jupyter notebook 
that can be used to run the examples provided in this article.

USING TENSORFLOW
To make use of TensorFlow you must import it into Python. The 
following two lines of code import TensorFlow and report what 
version of it you are using.

import tensorflow as tf

print(“Tensor Flow Version: {}”.
format(tf.__version__))

The above code should report that you are using TensorFlow 
0.8 or higher. The examples provided with this article were all 
created with 0.8 of TensorFlow. These examples are stored at 
GitHub and will likely be updated for future versions of Ten-
sorFlow.7 The reference link refers to a deep learning class at 
Washington University in St. Louis that is taught by the author 
of this article.

Deep learning is a rapidly evolving machine learning tech-
nology. The world’s largest technology companies are 
investing heavily in deep learning. They are sharing this 

investment with the world by open sourcing their deep learning 
technologies. Currently the tech titans of the world have open-
sourced the following deep learning frameworks:

• Amazon – Deep Scalable Sparse Tensor Network Engine 
(DSSTNE)1  

• Baidu – PArallel Distributed Deep Learning (PADDLE)2 
• Google – TensorFlow3 

• Microsoft – Computational Network Toolkit (CNTK)4 

All of these frameworks have their complete source code avail-
able on GitHub, which is a web platform that allows everyone 
from individual programmers to Fortune 500 companies to 
share source code and collaborate. As of the late 2016 writing 
of this article, DSSTNE and PADDLE both only work with the 
Linux operating system. TensorFlow works both with Macin-
tosh and Linux. Not too surprisingly, Microsoft’s CNTK is the 
only one of the four to support Microsoft Windows. The plat-
forms supported by these frameworks will increase in the future. 
Work is already underway for Windows support in TensorFlow.

GOOGLE’S TENSORFLOW
Since its recent introduction in 2015, TensorFlow has taken 
the world of deep learning by storm. Though typically associ-
ated with deep learning, TensorFlow is actually a mathemat-
ics package specifically designed to leverage machine learning 
across CPU, GPU, and grid computing. Many machine learning 
models can be adapted to TensorFlow. It works best with neu-
ral network-like models, such as deep belief neural networks, 
generalized linear regression (GLM), support vector machines 
(SVM), and Long Short Term Memory (LSTM). While it might 
be possible to adapt TensorFlow to tree-based models, such as 
Random Forests or Gradient Boosting Machines (GBMs), these 
are not a focus for current versions of TensorFlow.

Python is the most widely supported language for TensorFlow. 
TensorFlow itself is implemented in C++, so it is also possible to 
directly access TensorFlow from a less widely known C++ based 
application programming interface (API). Typically, models are 

Getting Started with 
Deep Learning and 
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ENCODING CATEGORICAL DATA FOR 
A DEEP NEURAL NETWORK
Neural networks function similarly to traditional classification 
and regression models. An input vector (x) of predictors is pro-
vided to the neural network and a result (y) is returned from the 
network. The data provided to the neural network’s input vector 
must be encoded to numeric form. If a categorical value is a pre-
dictor, meaning it is part of the information given to the neural 
network to make a prediction, then it should be encoded into 
dummy variables. The following Python function can be used to 
encode a dummy variable:

def encode_text_dummy(df,name):
    dummies = pd.get_dummies(df[name])
    for x in dummies.columns:
        dummy_name = “{}-{}”.format(name,x)
        df[dummy_name] = dummies[x]
    df.drop(name, axis=1, inplace=True)

For example, to encode a dummy variable named “state,” in the 
dataframe “df,” use the following call:

encode_text_dummy( df, “state”)

This will remove the column “state” from your dataframe and 
replace it with 50 dummy variables that represent each of the 
50 U.S. states (assuming all 50 were present in your dataset). 
Dummy variables replace a categorical variable with a number 
of 1/0 (true/false) columns that represent the categorical value. 

For each row, there would be 50 such fields, all of which would 
be zero, except for the state that the row corresponds to.

If we were predicting the state, and it were on the y side of the 
model, then we must encode this categorical value to an index. 
The following code accomplishes this:

def encode_text_index(df,name): 
    le = preprocessing.LabelEncoder()
    df[name] = le.fit_transform(df[name])
    return le.classes_

The following code would encode the state to an index:

encode_text_index(df, “state”)

Encoding to an index removes textual state abbreviations and 
assigns an index to each. Rather than getting 50 dummy vari-
ables, you have a single column variable. It is important that you 
not encode predictors as indexes. This will introduce bias. For 
example, two states might have indexes that are very close to 
each other. The distance between state indexes would convey 
undesired bias information to the network. This limitation does 
not exist for the output (y) values as TensorFlow simply treats 
each output as a separate independent category.

ENCODING CONTINUOUS DATA FOR 
A DEEP NEURAL NETWORK
Neural networks prefer their input columns to be centered near 
zero. They do not need to be normally distributed, but the zero 
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centering has been shown to help with neural network accuracy. 
Statistical z-scores are a great way to accomplish this. The fol-
lowing function will normalize a column to z-scores:

def encode_numeric_
zscore(df,name,mean=None,sd=None):
    if mean is None:
        mean = df[name].mean()      

    if sd is None:
        sd = df[name].std()   

    df[name] = (df[name]-mean)/sd

This function allows the mean and standard deviation to either 
be passed in or calculated. If you are training the initial data-
set you should not provide mean and standard deviation, as you 
have enough data to calculate them. However, later you might 
have only a few values to generate predictions on, so it is helpful 
to provide the mean and standard deviations from the original 
training set. To convert the column “income” to z-scores use the 
following call:

encode_numeric_zscore(df,”income”)

Later, if you wanted to normalize just a few rows, and you al-
ready knew the mean and standard deviation were 50,000 and 
15,000, you would call:

encode_numeric_zscore(df,”income”, 50000, 
15000)

Once all of the input columns have been normalized correctly, 
you are ready to train a neural network.

TRAINING A DEEP NEURAL NETWORK
A TensorFlow network is trained using two sets of data named 
x and y. The dataframe (df) must be separated into these predic-
tors (x) and the expected output (y). The following function can 
be used to do this:

def to_xy(df,target):
    result = []
    for x in df.columns:
        if x != target:
            result.append(x)
    return df.as_matrix(result),df[target]

If you wanted to predict (y) the income column for the data-
frame (df) you would use the following call to separate into x 
and y:

x, y = to_xy(df,”income”)

Now that the dataframe is separated, the neural network can be 
created and then trained.

Getting Started with Deep Learning  ...
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To create and train a neural network for classification, use the 
following code:

classifier = skflow.TensorFlowDNNClassifier(
    hidden_units=[30, 20, 10], 
    n_classes=3,steps=200)
classifier.fit(x, y)

The above neural network would have hidden layers with 30, 20 
and 10 hidden neurons. The number of hidden neurons can affect 
the accuracy of the neural network. Usually you will start with 
a larger number of hidden neurons (30) and add layers working 
down to a smaller number (10). This network would be able to 
classify three classes, and 200 steps would be used to train it.

To create and train a neural network for regression, use the fol-
lowing code:

regressor = skflow.TensorFlowDNNRegressor(
    hidden_units=[10, 20, 10], 
    steps=200)
regressor.fit(x, y)

Fitting the neural network may take a while, depending on how 
many steps you have specified. The more steps, the more accu-
rate the neural network will become.

EVALUATING A DEEP NEURAL NETWORK
There are a variety of ways to evaluate a neural network. Two of 
the most simple are root mean square error (RMSE) for regres-
sion and accuracy for classification. The following calculates the 
RMSE score:

score = \
  np.sqrt(metrics.mean_squared_
error(regressor.predict(x),y))
print(“Final score (RMSE): {}”.
format(score))

The RMSE error simply measures the magnitude of the average 
difference between the expected outcome and the actual out-
come. Lower RMSE scores are better.

Accuracy is measured similarly:

score = metrics.accuracy_score(y, 
classifier.predict(x))
print(“Final score: {}”.format(score))

Accuracy is simply the percent of data items that were classified 
correctly. Higher accuracy scores are better.

OTHER APPLICATIONS OF DEEP LEARNING
Deep neural networks can accomplish the same type of classifi-
cation and regression tasks that other models like support vector 
machines, GLMs and decision trees are used for. While deep neu-
ral networks might sometimes provide better results than other 
model types, there are two important areas where deep neural 
networks really shine: computer vision and time series prediction.

Computer vision might seem like a technology more suited to 
a Google self-driving car than an insurance company. However, 
there are cases where computer vision can be very useful to an 
insurance company. Two recent Kaggle competitions highlight-
ed these areas. The first was the Kaggle Diabetic Retinopathy 
Detection.8 This challenge used predictive models to look at 
retinopathy images and predict if an individual had diabetes. 
Additionally, State Farm ran a Kaggle competition to analyze 
images and detect distracted drivers.9 Both of these computer 
vision applications could help insurers to determine risk.

Time series is another area where neural networks are partic-
ularly adept. This is because neural networks can be recurrent. 
By allowing connections backwards through the neural network 
they are able to learn to predict patterns in a series of inputs, 
not just patterns within individual input. A neural network could 
have two inputs to read the systolic and diastolic blood pressures. 
However, a traditional model would always output the same for 
a given reading. A recurrent neural network could detect a pat-
tern in a series of readings. Two of the most current types of re-
current neural networks are the LSTMand gated recurrent unit 
(GRU) networks. Time series and neural networks will be the 
topic of a future article for this newsletter.  n

Jeff  Heaton is a lead data scientist at RGA 
Reinsurance Company in Chesterfield, Mo. He can 
be reached at jheaton@rgare.com
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8 https://www.kaggle.com/c/diabetic-retinopathy-detection

9 https://www.kaggle.com/c/state-farm-distracted-driver-detection

     DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM  |  45



certainly not new. However, revival of deep learning was possible 
after 2010 and onwards due to drastically more computational 
power from GPUs, bigger datasets, and some key algorithm 
tweaks—mainly dropout and AdaGrad to increase accuracy 
rates. Moreover, the unique feature of deep learning is that it 
allows individual parts of the model to be trained independently 
of the other parts.5

Deep learning models can recognize human faces with more 
than 97 percent accuracy, as well as recognize arbitrary images 
and even moving videos. Deep learning systems now can pro-
cess real-time video, interpret it, and provide a natural language 
description. It is becoming increasingly established that deep 
learning can perform exceptionally well on problems involving 
perceptual data like speech recognition image classification and 
text analytics.6

Up until the recent past, the artificial intelligence (AI) 
portion of data science was looked upon cautiously due 
to its history of booms and flops.1 In the latest stream 

of events, major improvements have taken place in this field 
and now deep learning, the new leading front for AI, presents a 
promising prospect for overcoming problems of big data. Deep 
learning is a method of machine learning that undertakes calcu-
lations in a layered fashion starting from high level abstractions 
(vision, language and other AI related tasks) to more and more 
specific features2. Deep learning algorithms essentially attempt 
to model high-level abstractions of the data using architectures 
composed of multiple non-linear transformations. The machine 
is able to progressively learn as it digests more and more data, 
and its ability to transform abstract concepts into concrete real-
ities has opened up a diverse plethora of areas where it can be 
utilized. Deep learning has various architectures such as deep 
neural networks, deep belief networks, Deep Boltzmann ma-
chines and so on that are able to handle and decode complex 
structures that have multiple non-linear features.3

Deep learning offers us considerable insight into the relatively 
unknown unstructured data which is 80 percent of the data that 
we generate as per IBM.4 While traditional data analysis before 
2005 focused on just the tip of the iceberg, the big data revolu-
tion sprang up and now deep learning offers us a better glimpse 
into the unconscious segment of data that we know exists, but is 
constrained in realizing its true potential. Deep learning helps 
us in both exploring the data and identifying connections in 
descriptive analytics for ratemaking, but these connections also 
help us in price forecasting what the result will likely be, given 
the particular combination as the machine learns from the data.

Deep learning has inputs, hidden layers where they are trans-
formed by the weights/biases and output which is achieved 
through choice of activation function from various functions 
available (Softmax, sigmoid, hyperbolic tangent, rectified linear, 
maxout and so on). The weights/biases are learned by feeding 
training data to the particular deep learning architecture. 

A de-mystified foundation of deep learning is that deep learning 
is mostly a way of using backpropagation with gradient descent 
and a larger number of hidden neural network layers, which is 

Guide to Deep Learning
By Syed Danish Ali
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In a single formula, this is the formula for neural networks (for 
hyperbolic tangent activation function).7

So that essentially, p(x) = linear + non- linear.

Aside from exposures, the other side of ratemaking of general 
insurance is losses and loss trends. By building deep learning 
models we can analyze images to estimate repair costs. Also deep 
learning techniques can be applied to automatically categorize 
the severity of damage to vehicles involved in accidents. This 
will more quickly update us with more accurate severity data for 
modeling pure premiums.8

Deep learning is becoming the method of choice for its excep-
tional accuracy and capturing capacity for unstructured data. 
This is also emphasized ahead in the section machine learn-
ing-unstructured data mining and text analytics.9

One issue, however, with deep learning is trying to find the 
hyper-parameters that are optimal. The possible space for con-
sideration is very large and it is difficult and computationally 
intensive to understand each hyper parameter in depth. One 
potential solution that the author of this report identifies is the 
possible use of a genetic algorithm to find optimal hyper pa-
rameters. Genetic algorithms are already used on GLMs on R 
“glmulti” packages to select optimum GLM equation as per a 
given criteria usually Akaike Information Criterion or Bayesian 
Information Criterion.

Moreover, another algorithm has been used to optimize both 
structure and weights of a neural network. ES HyperNEAT is 
Evolving Substrate Hyperbolic Neuroevolution Of Augmenting 
Topologies developed by Ken Stanley. It uses a genetic algorithm 
to optimize both the structure and weights of a neural network. 
Following from this, maybe the ES HyperNEAT framework can 
be extended to deep learning so that a genetic algorithm can 
optimize both the structure and weights of the neural networks 
in deep learning as well.10

Another problem is over-fitting. Machine unlearning can be 
used to solve this. We will try to explain machine unlearning in 
one sentence. Machine unlearning puts a new layer of a small 
number of summations between the training data and the learn-
ing algorithm so that the dependency between these two is elim-
inated. Now the learning algorithms depend only on the sum-
mations instead of the individual data from which over-fitting 
can arise more easily. No retraining or remodeling is required.11

Finally, there are huge numbers of variants of deep architectures 
as it’s a fast developing field and so it helps to mention other 
leading algorithms. This list is intended to be comprehensive 

Syed Danish Ali is a senior consultant at SIR 
consultants, a leading actuarial consultancy in the 
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but not exhaustive since so many algorithms are being devel-
oped.12, 13

1.  Deep High-order Neural Network with Structured Output 
(HNNSO)

2. Deep convex networks
3. Spectral networks
4.  noBackTrack algorithm to solve the online training of RNN 

(recurrent neural networks) problem
5. Neural reasoner
6. Reccurrent Neural Networks
7. Long short term memory
8. Hidden Markov Models
9. Deep belief networks
10. Convolutional deep networks
11. LAMSTAR 
12.  a) Large memory storage and retrieval neural networks
13.   b) Increasingly being used in medical and financial appli-

cations
14. Deep Q-network agent 
15.  a) Used by Google DeepMIND 
16.   b) Based on reinforcement learning, which is a major 

branch of psychology, aside from evolution  n
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tific professions, but I don’t think this is true yet for the actuarial 
profession.  

As I have been approached about working on various GPU proj-
ects, the person touting the project usually describes it as fairly 
straightforward. They state that all that is required is to take 
the existing model, change a few lines of code, and abracadabra 
the new calculations will run just as fast as a compute cluster. 
This could not be further from the truth! This mentality may 
get something to work, but it will be nowhere near the speed 
advertised or possible. It may actually be slower than no GPUs 
at all! Building a variable annuity guarantee model is way differ-
ent than building a predictive model, but at the same time, you 
will potentially run into similar types of bottlenecks and issues. 
Even though 99 percent of the time you will be using a library 
such as Theano, which is a high-level python library, or Thrust, 
which is a C++ library, to do the predictive modeling on GPUs, 
understanding the finer points of GPU architecture will help 
you understand why a particular model is running slower than 
anticipated or why it may not be able to be ported to a GPU. 
The first part of this article will give a high level overview of the 
GPU architecture. The second part of the article will describe 
different aspects of modeling a variable annuity guarantee. The 
third part of the article will try to combine the constraints of 
the GPU architecture with the common features of the variable 
annuity guarantee model to create solutions to likely bottlenecks 
in the variable annuity guarantee model.

In GPU literature, the CPU is called the host, whereas the GPU 
is called the device. Other than the host calling functions to exe-
cute on the device, the host and device run separately from each 
other. The host and device have their own memory also. To use 
the device, the data must be migrated from the host memory 
into the device’s global memory. This is one of the first barriers 
to using a GPU. It can take longer to transfer data to and from 

Recently, I was asked to give a webcast on using Graphical Pro-
cessing Unit (GPU) for predictive modeling. This paper will 
be an introduction to the GPU and will be a precursor for the 
webcast. A GPU is nothing more than the graphics card in your 
computer which creates the images on your monitor. The laptop 
I am working on now has four cores in its Central Processing 
Unit (CPU) where a GPU will have thousands of cores. Each 
core allows calculations to be done in parallel. It became appar-
ent to scientists that a computer’s GPU was a cheap way to get 
massive parallelization on a desktop computer. NVIDIA, a com-
pany that manufactures GPU cards for computers, introduced 
CUDA (originally, an acronym for Compute Unified Device 
Architecture) extensions to the C programming language and 
CUDA cores to encourage scientists to use GPUs for scientific 
computing. Originally scientists had to transform their calcula-
tions to fool the GPU, but now most NVIDIA graphics cards 
are CUDA compliant. This manor of using a GPU is quickly 
going from cutting-edge to mainstream in many different scien-

Introduction to Using 
Graphical Processing 
Units for Variable Annuity 
Guarantee Modeling
By Bryon Robidoux

FEATURE* TESLA K80 FEATURE KEPLER GK210

GPU Chip(s) 2x Kepler GK210 Compute Capability 3.7

Peak Single Precision (base clocks) 5.60 TFLOPS (both GPUs combined) Threads per Warp 32

Peak Double Precision (base clocks) 1.87 TFLOPS (both GPUs combined) Max Warps per SM 64

Peak Single Precision (GPU Boost) 8.73 TFLOPS (both GPUs combined) Max Threads per SM 2048

Peak Double Precision (GPU Boost) 2.91 TFLOPS (both GPUs combined) Max Thread Blocks per SM 16

Onboard GDDR5 Memory1 24GB (12GB per GPU) 32-bit Registers per SM 128K

Memory Bandwidth1 480 GB/s (240 GB/s per GPU) Max Registers per Thread Block 64K

Achievable PCI-E transfer bandwidth 12 GB/s Max Registers per Thread 255

# of SMX Units 15 Max Threads per Thread Block 1024

# of CUDA Cores 2880 Shared Memory Configurations 16KB + 112KB L1 Cache

Memory Clock 3004 MHz Max Shared Memory per Thread Block 48KB

GPU Base Clock 745 MHz   

*table from https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla-kepler-gpu-accelerators/
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the host and device than it does to run the actual calculation. 
In these types of situations, it is best not to use the device. The 
device contains one or more kernels. Kernels are major func-
tions used to run code on the device. It consists of many blocks 
that work independently of each other. Each block consists of a 
user defined number of threads. The threads are what actually 
execute the code.

The key to understanding the bottlenecks when developing 
for GPUs is to understand how the threads get scheduled and 
the memory resources available to the threads. There are mul-
tiple layers of schedulers. The top level is GigaThread global 
scheduler which controls the scheduling of the kernels and the 
streaming multiprocessors (SM). Within the global scheduler, 
the SMs control the scheduling of the blocks. Each SM sched-
ules its blocks independently of the other SMs. This is why if 
synchronization is required among threads, it must happen 
within the block. The SM’s basic unit of scheduling threads is 
the warp, which is a block of 32 threads. The compute capaci-
ty is defined by NVIDIA as the maximum number of resident 
threads per SM.1 The larger the compute capacity the better the 
GPU is suited for scientific calculations.

For this article I am going to use the Kepler K80 GPU for the 
example. This is worthy of doing actuarial modeling. Don’t be 

fooled into thinking that your gaming graphics card is good for 
actuarial modeling. Even though it probably contains CUDA 
cores, the compute capacity is not sufficient. It would be worthy 
for proof of concept, but not production requirements. The fol-
lowing table shows the specifications for the K80.

A GPU is a Single Instruction Multiple Data (SIMD) device. 
This means that all the threads within a warp must process the 
same instruction in order to run in parallel and only the data 
can be different. Warp divergence occurs if all the threads in the 
warp are not running the same instruction. This means that an 
“if statement” can have a huge impact on speed because this is 
a natural place for instructions to diverge. In a worst case sce-
nario, each thread within the warp will have to be run serially 
because each thread has to run a separate instruction, in the case 
of the K80, causing a potential 32X slowdown to occur.1 The 
next large hurdle is memory resources.

The following table gives the specifications on different types 
of memory within the GPU. The important information to get 
from the table is where the memory is located and its bandwidth. 
For this article, the local memory will be restricted to just L1-
Cache. (A level 1 cache (L1 cache) is a memory cache that is 
directly built into the microprocessor, which is used for storing 
the microprocessor’s recently accessed information, thus it is 
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also called the primary cache.2) The on-chip memory is inside 
the SM, whereas off-chip memory sits outside of the SM. It is 
easy to see that on-chip memory is faster than off-chip memory. 
The problem is that the faster the memory, the less of it there 
is available. 

From the K80 specification table, the global memory size is 
24GB whereas the register memory size is 128KB per SM. Reg-
ister memory is a very valuable and limited resource. The only 
memory fast enough to keep the GPU running at full capacity 
is the register memory. The global memory is nowhere near fast 
enough. For example, a very simple C++ code snippet would be 

for(i=0;i<N;++i) c[i]=a[i]+b[i]; 

where a, b and c are all in global memory and single precision 
4-byte variables. This simple little program requires two mem-

ory reads from a and b and one memory write to c. In order to 
keep the 5.6 trillion floating point operations (TFlop) busy on 
the K80, there would need to be 3 instructions * 4 bytes * 5.6 
Tflops = 67.2 Terabytes/second (TB/s) of memory bandwidth, 
but there is currently only 240 GB/s available.1 It is obvious 
that a major factor of making the device run faster is developing 
a good strategy for moving data from the global memory to the 
register memory. It is very easy to create a situation called reg-
ister spillover which occurs when a thread block requires more 
registers than are available. In early generations of the device, 
the register spillover went into global memory, but for later gen-
erations the spillover first goes to the L1-Cache and if that is 

exhausted it spills over into global memory. The L1-Cache is 
also a limited resource and needs to be managed carefully, but it 
does reduce some of the penalty of register spillover. The prob-
lem with the slow memory is that the warp will not schedule 
threads to run until all its resources are available. This means 
that very few warps can operate in parallel because the required 
data is in a traffic jam. The key strategy in GPU programming is 
to maximize data reuse, so you avoid unnecessary trips to fetch 
data from global memory. Now that we know some of the major 
constraints of the GPU it is time to move onto the modeling of 
the variable annuity.

This article will stay focused on the Guaranteed Minimum With-
drawal Benefit for Life (GMWBL) rider. The best way to ap-
proach it is to break down the rider into its fundamental modeling 
components so we can best try to map them to the GPU. From 
the top down, there is obviously the rider plan, policy, withdrawal 
cohorts for the policy, the time steps and lastly the order of trans-
actions within the time step. The withdrawal cohort is just spec-
ifying the likely time someone will exercise their benefit along 
with the probability of them doing it at that time. From all the 
models I have worked on, they follow Mary Hardy’s suggestion 
to make the time of withdrawal deterministic.3 At the very least, 
withdrawal cohorts are dimensioned by issue age, with four to 10 
per issue age, but I have also seen them dimensioned by quali-
fied and non-qualified status. Qualified status means the policy 
was purchased with proceeds from a before-tax account such as a 
401k. Qualified policies will have significantly different behavior 
from non-qualified policies. Depending on the time of withdraw-
al, the policyholder can be rewarded through a credit or penalized 
through a loss of benefit. The order of transactions is my way of 
generalizing Mary Hardy’s3 characterization of her two transac-
tion types, which were before fees and after fees. In practice, there 
are usually three or four transaction types. They are usually label 
beginning of period (BOP), middle of period (MOP), and end of 
period (EOP). BOP is when the market mechanics, such as fund 
returns, and withdrawal behavior are calculated. MOP is when 
fees are applied and any ratchets or rollups occur, if applicable. 
EOP is when the decrements are applied such as mortality and 
dynamic lapse. Now that the fundamental components of model-
ing have been established, it is time to combine the GPU and the 

MEMORY LOCATION CACHED ACCESS SCOPE BANDWIDTH GB/S* ON-CHIP/OFF-CHIP

Register On-Chip No Read/write One Thread                     10,847 45

Local On-Chip Yes Read/write One Thread                       2,169 9

Shared On-Chip N/A Read/write All threads in the block                       2,169 9

Global Off-Chip (unless cached) Yes Read/write All threads + host                           240 1

Constant Off-Chip (unless cached) Yes Read All threads + host                           240 1

* This table is from 1. It only provides the information for the Fermi C2050 on page 101. The values for shared, local and register are derived by multiplying the ratio of the memory 
bandwidth between the K80 and Fermi C2050 which is 240/177 to keep the relative speeds the same between the GPU models.

It is obvious that a major 
factor of making the device 
run faster is developing a 
good strategy for moving 
data from the global memory 
to the register memory.
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variable annuity guarantee model to see where potential calcula-
tion bottlenecks and problems can occur.

From an actuarial perspective, the most intuitive way to model 
a GMWBL rider would be to put each withdrawal cohort of a 
policy on its own thread and to sort the policy file by rider plan 
and policy number. (Modeling at any lower level doesn’t make 
sense because by definition they are serially dependent.) A few 
simple examples will show that this will easily lead to a mas-
sive register spillover and warp divergence if done haphazard-
ly. Currently, I am working on a GMWBL model that requires 
423 bytes of inputs to model a single withdrawal cohort of a 
policy. The inputs are a mixture of Booleans, single precision 
floating-point numbers, and integers. If each withdrawal cohort 
of a policy is allocated to a thread this implies 2048 threads *423 
bytes = 866KB of register memory is needed to calculate the 
block. There is only 128KB of registers available for the block 
so the capacity of the registers has been exceeded by 6X. Even 
with the ability to spill over into the L1-cache, the L1-cache is 
112KB so this is still insufficient to handle all the data. If I were 
to port my current model to a GPU, as is, there is little I could 
do to avoid register spillover and not have huge speed reduction. 
The purposed strategy will also lead to warp divergence because 
the consequences and rewards to the policyholder depend on 
the timing of withdrawal. The consequences and rewards cause 
each withdrawal cohort to have a different behavior, which leads 
each withdrawal cohort down a different logical path.  

In order to address the issues above, the minimum requirement 
is to perform some preprocessing. In order to get the data size 
requirement down, there needs to be a strategy for data reuse. 
Some of this can be accomplished by strategically sorting the 
policy file and creating a sort key by rider plan, then by issue 
age, then by assumed withdrawal time, then by qualified sta-
tus, and then by any other fields that cause material changes 
to calculation behavior. This forces the policies with the most 
homogenous information and behavior together. Within the 
code, I would force all blocks to be homogenous by requiring 
only policies with the same sort key to be in a block. Enforcing 
homogeneity through the sort order and code should help to 
reduce thread divergence. It should also reduce register spillover 
and promote data reuse because roughly a quarter to a half of 
the 423 bytes of the data for the GMWBL policy are to describe 
variations within the rider features which are not policy specific. 
The common rider features can be migrated to shared memory 
and shared among threads. The shared memory has the speed as 
L1-cache, which is much better than global memory. The idea of 
grouping homogenous policies together to speed up calculations 
should not be unfamiliar to modeling and valuation actuaries 
because this is very similar exercise to get good cell compression 
on policy files.

One last topic that should be mentioned is the creation of the 
market dynamics from the economic scenario generator (ESG). 
The gold standard of random number generators (RNG) for use 
in ESG is the Mersenne Twister, because of its enormous period-
icity. The Mersenne Twister is a serial generator because, after the 
seed is applied, each number generated depends on the previous 
number generated. It may be tempting to think that each thread 
should receive its own seed, but this would likely not preserve 
the statistical properties of the random number generator such 
as mean and standard deviation. In order to work properly, it is 
highly recommended that cuRand® be used to generate random 
numbers. The RNGs have been specifically designed, such as the 
MTGP Mersenne Twister, so that each thread can generate its 
own set of random numbers and still preserve the proper statis-
tical properties. At this point, the only issue is with testing. It is 
very likely that individual policies would be checked with Excel 
which implies the testing will use the original Mersenne Twister. 
The original Mersenne Twister and the MTGP Mersenne Twist-
er will not produce the same set of random numbers. They are 
only guaranteed to have the same statistical properties. As a part 
of testing, it will be required to isolate the random numbers from 
the device so calculations will match.

In conclusion, modeling variable annuities on GPUs can be a 
fun and challenging problem. It is not a simple migration to re-
work a model built for a compute grid to work on a GPU. This 
article by no means addresses all the issues of modeling VA rid-
ers with a GPU, but it should give you a good flavor of the types 
of issues that can occur. Even though building a variable annuity 
model on a GPU is much different than building a predictive 
model with a library such as Theano or Thrust, it should give 
you a good appreciation for some of the challenges of creating 
those libraries, demonstrate some underlying reasons on why 
the model may be calculating slower than expected, and possible 
ideas on how to speed the model up.  n

Bryon Robidoux, FSA, is director and actuary, 
at AIG in Chesterfield, Mo. He can be reached at 
Bryon.Robidoux@aig.com

ENDNOTES

1 Rob Farber, CUDA Application Design and Development, Morgan Kauff man 2011

2 https://www.techopedia.com/definition/8048/level-1-cache-l1-cache

3 Mary Hardy, Investment Guarantees: Modeling and Risk Management for Equi-
ty-Linked Life Insurance.

4 https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvid-
ia-tesla-kepler-gpu-accelerators/

     DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM  |  51



475 N. Martingale Road, Suite 600
Schaumburg, Illinois 60173
p: 847.706.3500 f: 847.706.3599 
w: www.soa.org

NONPROFIT 
ORGANIZATION

U.S. POSTAGE 
PAID

SAINT JOSEPH, MI
PERMIT NO. 263


	PredictiveAnalyticsand FuturismISSUE 14 • DECEMBER 2016
	From the Editor: Insightsfrom a Dead Salmon!By Dave Snell and Kevin Jones
	Chairperson’s Corner:On Volunteering,Learning, and a Sense ofCommunityBy Ricky Trachtman
	Looking Back and AheadBy Brian Holland
	Making PredictiveAnalytics Our OwnBy Joan C. Barrett
	Deciding What toResearch: How to Spotand Avoid BiasBy Kurt Wrobel
	Five Myths andFacts about ArtificialIntelligenceBy Dr. Anand S. Rao
	Abstractions & WorkingEffectively AlongsideArtificial IntellectsBy Dodzi Attimu and Bryon Robidoux
	Machine Learning: AnAnalytical Invitation toActuariesBy Syed Danish Ali
	Use Tree-basedAlgorithm for PredictiveModeling in InsuranceBy Dihui Lai, Bingfeng Lu
	Creating a Useful TrainingData Set for PredictiveModelingBy Anders Larson
	The Random GLMAlgorithm: A BetterEnsemble?By Michael Niemerg
	Collaborative Filtering forMedical ConditionsBy Shea Parkes and Ben Copeland
	Getting Started withDeep Learning andTensorFlowBy Jeff Heaton
	Guide to Deep LearningBy Syed Danish Ali
	Introduction to UsingGraphical ProcessingUnits for Variable AnnuityGuarantee ModelingBy Bryon Robidoux

