
Parallel Cloud Computing:
Making Massive Actuarial
Risk Analysis Possible
By Joe Long and Dan McCurley

Page 6

Predictive
Analytics
and Futurism

ISSUE 17 • APRIL 2018

15 Hierarchical Clustering:
A Recommendation From a
Nonhierarchical Manager
By Dave Snell

22 Feature Importance in
Supervised Training
By Je� Heaton

25 Shiny: Another Step Forward
in Data Democratization
By Eileen S. Burns

 3 Better Tools—Less Dukkha
By Dave Snell

 5 Chairperson’s Corner
By Anders Larson

 6 Parallel Cloud Computing:
Making Massive Actuarial
Risk Analysis Possible
By Joe Long and Dan McCurley

10 The Forgery Game:
Generative Adversarial
Networks
By Michael Niemerg

14 Why Consider a Delphi Study?
By Ben Wolzenski

2 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Predictive
Analytics

and Futurism

2018
SECTION
LEADERSHIP

Officers
Anders Larson, FSA, MAAA, Chairperson
Eileen Burns, FSA, MAAA, Vice Chairperson
Cassie He, FSA, MAAA, Secretary/Treasurer

Council Members
Dorothy Andrews, ASA, MAAA
Joy Chen, ASA, CERA
Vincent Granieri, FSA, MAAA
Nathan Pohle, FSA, CERA, MAAA
Dave Snell, ASA, MAAA
Ricky Trachtman, FSA, MAAA

Newsletter Editor
Dave Snell, ASA, MAAA
dsnell@ActuariesAndTechnology.com

Program Committee Coordinators
Dorothy Andrews, ASA, MAAA
2018 Valuation Actuary Symposium Coordinator

Ricky Trachtman, FSA, MAAA
2018 Life & Annuity Symposium Coordinator

Anders Larson, FSA, MAAA
2018 Health Spring Meeting Coordinator

Eileen Burns, FSA, MAAA
2018 SOA Annual Meeting & Exhibit Coordinator

SOA Staff
Beth Bernardi, Staff Partner
bbernardi@soa.org

Jessica Boyke, Section Specialist
jboyke@soa.org

Julia Anderson Bauer, Publications Manager
jandersonbauer@soa.org

Sam Phillips, Staff Editor
sphillips@soa.org

Erin Pierce, Senior Graphic Designer
epierce@soa.org

Published three times a year by the
Predictive Analytics and Futurism

Section of the Society of Actuaries.

475 N. Martingale Road, Suite 600
Schaumburg, Ill 60173- 2226

Phone: 847.706.3500 Fax: 847.706.3599
www.soa.org

This newsletter is free to section mem-
bers. Current issues are available

on the SOA website (www.soa.org).

To join the section, SOA members and
non- members can locate a member-
ship form on the Predictive Analytics

and Futurism Section webpage at
http://www.soa.org/predictive

-analytics- and-futurism/.

This publication is provided for informa-
tional and educational purposes only.

Neither the Society of Actuaries nor the
respective authors’ employers make any

endorsement, representation or guar-
antee with regard to any content, and

disclaim any liability in connection with
the use or misuse of any information

provided herein. This publication should
not be construed as professional or

financial advice. Statements of fact and
opinions expressed herein are those of

the individual authors and are not neces-
sarily those of the Society of Actuaries or

the respective authors’ employers.

Copyright © 2018 Society of Actuaries.
All rights reserved.

Publication Schedule
Publication Month: August, 2018

Articles Due: May 30, 2018

Issue Number 17 • April 2018

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 3

Better Tools—
Less Dukkha
By Dave Snell

Many of us from the Western world are not familiar with
the word “dukkha.” Like many words of foreign ori-
gin, it does not have a one- word English translation.

According to Wikipedia, it is the first of the Four Noble Truths
of Buddhism. It is also found in scriptures of Hinduism, and it
refers to “the fundamental unsatisfactoriness and painfulness of
mundane life.”1

What does this have to do with predictive analytics and futur-
ism, and the associated techniques we embrace in this section?
Perhaps this new era of artificial intelligence (AI) and machine
learning will help liberate many of us from the dukkha of our
current routines. Many of us spend boring hours commuting
to and from work—sometimes in a paradoxical situation where
as drivers we must patiently wait in long lines of traffic, yet we
must be constantly vigilant to avoid accidents—often induced
by the boredom of the waits. Autonomous cars may not only
increase our safety, but also permit us to luxuriate in creative
thought, having delegated the tedium of traffic mindfulness to
our vehicles. We spend far too much time at work (and at home)
on repetitive tasks that become mind- numbing rather than
mind- expanding.

Some might argue that autonomous AI should never be trusted
for life- critical decisions. I, for one, am ready and willing to del-
egate many of the processes and decisions of the day to AI, just
as I delegate the life- critical tasks of breathing and digestion to
my autonomous nervous system. In fact, I cannot imagine how
tedious and stressful it would be to have to remember to breathe

in and breathe out thousands of times per day; or to consciously
have to tell my heart when to contract the left ventricle and send
essential oxygenated blood to each of my cells.

Throughout human history, we have developed tools to do the
“heavy lifting” for us: from shovels through backhoes. On the
data assimilation, number- crunching and presentation side, we
also are improving our tools, and this issue has several articles
about new tools and techniques that can help you reduce your
dukkha:

• Starting with Anders Larson in his “Chairperson’s Corner,”
we are reminded of the importance of upgrading your tool
set. Sure, there are sometimes temptations to treat every
problem as a nail for your new hammer; but as Anders says,
“just because everything isn’t a nail, that doesn’t mean there
aren’t nails out there that you’ve been hitting with a spoon.”
He talks about tools such as random forests that improved
his analysis of the impact of multidimensional factors on
health costs; and he even describes an upgrade to some of his
Excel workbooks by using a function that computes vector
products on a conditional basis.

• Next, “Parallel Cloud Computing: Making Massive Actuar-
ial Risk Analysis Possible,” by Joe Long and Dan McCurley,
walks us through a cloud use case where they were able to
cut a three- month machine learning exploration project
down to just under four days using a mixture of open source
tools and a cloud environment. That freed up a lot of time
for them to digest the results, and run variations that would
not have been feasible with a single processor approach to
the project. Yes, they had to spend some time on the learn-
ing curve for parallelization; but it resulted in much faster
throughput. Supposedly, Abraham Lincoln said, “Give me
six hours to chop down a tree and I will spend the first four
sharpening the axe.” Lincoln would surely have viewed a 25-
fold efficiency return as a wise investment.

• Moving on in our description of new tools, Michael Niemerg
tells us about a novel technique. “The Forgery Game:

4 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Better Tools—Less Dukkha

Generative Adversarial Networks” describes a generative
adversarial network, or GAN. This is a very recent technique
in artificial intelligence algorithms—introduced in 2014. A
GAN is an unsupervised machine learning technique and can
accomplish some interesting, and perhaps disturbing, out-
puts. Basically, models compete with each other and generate
synthetic data. In one type of application, the result can be
indistinguishable from a real photographic image (thus, the
forgery game). This is leading- edge stuff; and as I am writing
this issue introduction (Chinese New Year—), I see
an article about GANs in use to analyze molecular genetic
mechanisms to create new synthetic drugs.2

• Not every tool has to be new, of course. Some are older ones
that just have been underutilized. Ben Wolzenski led our
“Blue Ocean” Delphi study back in 2009; and it predicted
some nearly heretical ideas back then, such as pet insurance
and custom- designed coverage developed online. Now, they
have become important products with rapid growth. In
“Why Consider a Delphi Study?” Ben describes advantages
of this largely qualitative rather than quantitative approach
to forecasting. It can provide value when other methods
cannot, and can also serve as a second opinion for the other
methods. He also details how our section has provided lead-
ership in this technique in previous studies, and mentions
another SOA Delphi study being launched now.

• I wrote the article “Hierarchical Clustering—A Recommen-
dation From a Nonhierarchical Manager,” where I describe a
bottom- up, or agglomerative, technique that is more visually
appealing to nonmathematicians than the more common
k- means approach to clustering. Sometimes we overlook
the fact that most senior managers are not actuaries or data
scientists; and a tree- like visual that shows both the natural
groupings you have discerned and the relative dissimilarity
among the various groups, for even a multidimensional set
of groupings, might be easier to understand, and thus more
likely to be accepted.

• As the amount and types of data continue to increase, the
complexity of models can be a limiting factor in their utility.
Jeff Heaton, in his article, “Feature Importance in Super-
vised Training,” addresses the issue of choosing which factors
are the more important ones. Jeff takes us through model-
specific feature ranking, model- agnostic feature ranking, and
multivariate feature ranking. Removing unimportant features
can increase both the speed and the accuracy of your models.
This is especially important when you are employing feature
engineering, which can benefit from feature importance
evaluation to reduce the number of combinations involved
in pair- wise multivariate considerations.

• It is nice that we have these new modeling tools available
to us; but how do we share them with the folks who do not
have, or even want to have, RStudio or a predictive analytics
toolbox on their PCs? What if they want to get insights from
your modeling efforts; but they do not wish to have to write
R code to do that? In “Shiny: Another Step Forward in Data
Democratization,” Eileen Burns introduces us to a tool that
addresses that concern. It’s called Shiny, and the name is apt
because it allows you to create an attractive and intuitive
web application where non- programmers can try out your
model and be creative and productive with it. Shiny can help
you share your R apps with a larger base. The example she
describes for us is a project where she put a web front end on
the new PAF Newsletter Catalogue.

Eileen’s article is also my segue to a new feature you should all be
enjoying now—the newsletter index of all 195 articles from our
section newsletters. These go back to September 2009, when the
old Futurism Section became the Forecasting & Futurism Section
(later Predictive Analytics and Futurism . . . as a result of a Delphi
study). We know that most actuaries love Excel, and especially
like to filter and sort and do lots of other data manipulations with
it. On the newsletter webpage, you can now download your own
copy of an Excel workbook with several columns for each article.
If you want an actuarial perspective on agent- based modeling,
neuroevolution of augmenting topologies (NEAT), hidden Mar-
kov models, genetic algorithms, or dozens of other topics, you can
search, sort and filter it as much as you wish. Best of all, when you
find the article you want to see, you can click on the hyperlink
and go right to that issue! Thanks to Nick Hanewinckel, the PAF
Section Council, section specialist Jessica Boyke and staff partner
Beth Bernardi, we all have a handy new research tool.

Perhaps we can’t completely escape dukkha; but the tools and
techniques described in this issue ought to make it less mundane
and less painful for you.

Enjoy! ■

Dave Snell, ASA, ACS, ARA, ChFC, CLU, FALU,
FLMI, MAAA, MCP, teaches AI Machine Learning
at Maryville University in St. Louis. He can be
reached at dave@ActuariesAndTechnology.com.

ENDNOTES

1 Quoted from https://en.wikipedia.org/wiki/Dukkha (accessed Feb. 16, 2018).

2 http://www.mauldineconomics.com/tech/tech-digest/right-to-try-our-best-shot-at
-saving-healthcare

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 5

Chairperson’s Corner
By Anders Larson

I know that some of my fellow council members (and at least
one former council member) will cringe when they see that I’m
leading off the Chairperson’s Corner with an anecdote about

Microsoft Excel. But stick with me here. About five or six years
ago, I realized that there was a formula that allowed you to do
a conditional sum- product of two vectors. I was aware of the
=sumproduct and =sumifs, but until then, I was unaware that the
=sumproduct could be modified to add conditions. Mind = blown.

So what happened after that? I started noticing instances left and
right where old workbooks could be improved with this “new”
formula. A few years before that, I had a similar experience upon
realizing the superiority of index- match functions to vlookups.
I started cleaning up existing workbooks, but more importantly,
I started thinking differently about setting up new workbooks.
Of course, I didn’t invent the conditional sum- product or the
index- match. I just finally realized they existed, and all of a sud-
den I became a little bit better at my job.

I believe that actuaries can look at predictive analytics in much
the same way. There are algorithms and techniques out there
just waiting to be implemented into your existing work. Now,
I realize that it’s significantly more difficult to get comfortable
with a support vector machine than a simple Excel formula,
but the concept is the same. Once you start to see how a new
approach can fit into one problem, it becomes that much easier
to see how it can fit into countless others.

The obvious danger is that it is easy to start seeing everything
as a nail once you have a cool new hammer to play with. In gen-
eral, if a simpler model is just as effective as a more advanced
approach, it’s best to stick with the simpler approach. One of the
key drawbacks I find with many machine learning algorithms is
a lack of interpretability, particularly for those who don’t work
with them on a regular basis. In some cases, that’s fine—I don’t
really care how my Amazon Alexa is able to understand speech,
but a regulator may not be as willing to accept your estimates if
they seem like they came from a black box.

But just because everything isn’t a nail, that doesn’t mean there
aren’t nails out there that you’ve been hitting with a spoon. Sure,
the spoon will eventually drive the nail in there, but there’s a bet-
ter tool out there. In our July 2017 newsletter,1 I wrote about a
situation where we used a gradient boosting machine to predict

primary care office visit utilization for individual patients. In the
past, we might have attempted to predict primary care office
visits using an existing risk score algorithm meant to predict
health care costs. And while the existing risk score algorithm
may have been useful, it was not really the best tool for this job.
For instance, the sickest patients in a commercial population
can have risk scores that are more than 100 times the population
average, but very few patients will have even 10 times as many
primary care visits as the population average.

Instead of thinking of each new algorithm as an all- purpose
hammer, think of them as new tools to be added to your existing
toolbox. Actuaries already have a wide array of traditional tools
at their disposal, and those will continue to play an integral role
in the future of actuarial science. But we can also improve our
profession by incorporating new approaches into our work.

Here’s another example from my own experience. I recently co-
authored a paper2 in which we identified the key drivers of gross
savings for accountable care organizations (ACOs) participating
in the Medicare Shared Savings Program (MSSP). We had more
than 180 features about each ACO, many of which were highly
correlated with each other. A few years ago, I likely would have
approached this problem by limiting the data to a handful of
reasonably independent features that I expected would be key
drivers, and then running a simple linear regression. This would
have still made for an interesting paper, but it likely would have
been loaded with caveats that would have softened our conclu-
sions. Instead, we used a random forest to estimate the relative
importance of all 180+ features in predicting gross savings. This
method allowed us to evaluate all the features together and let
the machine identify which were most predictive. There were
still caveats, of course—there is no silver bullet for a complex
problem like this—but we felt the more rigorous statistical
approach added credibility to our findings.

These predictive analytics tools are already out there. They’ve
already been designed, built and tested for us. As actuaries, we
just have to pay the small price of learning how to use them (and
maybe some Amazon Web Services fees), and we can have them
in our own toolbox. ■

Anders Larson, FSA, MAAA, is an actuary at
Milliman in Indianapolis. He can be reached at
anders.larson@milliman.com.

ENDNOTES

1 https://www.soa.org/Library/Newsletters/Predictive-Analytics-and-Futurism/2017
/june/2017-predictive-analytics-newsletter-issue-15.pdf

2 http://www.milliman.com/insight/2017/What-predictive-analytics-can-tell-us
-about-key-drivers-of-MSSP-results/

6 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Parallel Cloud
Computing: Making
Massive Actuarial Risk
Analysis Possible
By Joe Long and Dan McCurley

This article will walk through a cloud use case where we were
able to cut a three- month machine learning exploration
project1 down to just under four days using a mixture of

open source tools and the Microsoft Azure cloud. This translates
to an approximate 25- fold reduction in serial compute time for
such a task. We will give a short introduction to the cloud while
sharing our experience of managing the pool of data- crunching
machines that ran our analysis. In closing, we will discuss lessons
learned and ways to improve the plan of attack, as well as touch
on the importance of state management to aid in efficiency and
the reproducibility of results when using the cloud.

SETTING THE STAGE FOR THE CLOUD
Machine learning is spreading quickly across many industries
and is showing promising results for making better predictions
and automating manual tasks. However, with increases in data
size and the greater power of more complex algorithms, the
computing resources it takes to crunch the numbers increase as
well. Nowadays, it may take days or months to conduct an anal-
ysis on a single machine. There is a solution, though: Thanks
to advances in cloud computing, the phrase “the sky’s the limit”
has a whole new meaning as we now have the ability to speed up
time if the reward outweighs the cost of doing so.

In order to utilize the time- saving efficiencies of the cloud, a
large computational process must be able to be broken down
into independent tasks that can be run in parallel. Not every
process fits this mold. Some processes rely on a series of sequen-
tial calculations, where each calculation is dependent on the
ones that precede it. An example of such a process would be
calculating a single sequence of time- dependent events, which
would not be a good use case for the parallel compute capabili-
ties of the cloud.

Machine learning, however, is full of many processes that can
be broken down into independent tasks calculated in parallel,

which can then be merged together after all independent cal-
culations have been completed. A good example of this would
be an ensemble method such as the random forest algorithm,
which is used to develop a predictive model comprised of
hundreds to thousands of independent decision trees that are
averaged together to produce a single prediction. Another
easily parallelizable example is the Monte Carlo simulation.
These algorithms are prime candidates for the massive parallel
computing abilities of the cloud. Almost all supervised learn-
ing algorithms use some kind of resampling technique (e.g.,
bootstrapping, cross- validation) to optimize the bias- variance
trade- off for generalization. Most resampling techniques are
embarrassingly parallel and can benefit greatly from cloud
computing.

In our case, we used the cloud to help with a large machine
learning exploration project, which was comprised of many cal-
culations done in open source R. Our initial exploration started
with a single heavy- duty, bare- metal machine that could handle
traditional memory and compute intensive tasks. We quickly
discovered that in order to run the full exploration analysis we
mapped out, we would miss our deadline. Our initial estimate
was that the full analysis—when run sequentially on our in-
house machine—was expected to take 90 days of continuous
computer run time. However, with some manual effort to break
the analysis into semi- equal chunks, we estimated we could run
it in Microsoft’s Azure cloud and complete all of our calculations
in less than a week. This approximately 25- fold reduction in
serial compute time to run our analysis gave us more time to
digest the results, giving us the ability to run further variants of
our initial exploration plan. More variants can equal better value
to the client.

THE MAGIC BEHIND THE CLOUD
“There is no cloud—it’s just someone else’s computer” is a
common meme used to explain cloud services. While this phrase
helps one understand the basic idea of the cloud, it does not
fully recognize the great capabilities and flexibilities of the
modern cloud infrastructure. The concept of the cloud dates
back to the 1960s and is commonly attributed to J.C.R. Lick-
lider and John McCarthy.2 Joseph Licklider is credited for his
core concept of a Galactic Network or “Network of Networks”
and John McCarthy for theorizing utility computing. These
ideas reached commercial viability in 2002 when Amazon Web
Services (AWS) started providing web- based, pay- as- you- go
services to companies to store data and run applications. Cur-
rent major competitors to AWS include Microsoft Azure and
Google Cloud.

All of these providers offer similar ways to access their resources.
It is helpful to think of these resources in three main categories:

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 7

1. Infrastructure as a service (IaaS) creates a virtual data center
in the cloud similar to what your company would have in
an information technology (IT) climate- controlled room. It’s
easy to adopt but expensive to run.

2. The second way to access cloud resources is through platform
as a service (PaaS). In this method, the cloud provider takes
care of storage and computation and provides a platform
to do a focused type of work. If you want a database that
is always available, but don’t want to deal with any mainte-
nance or tuning, this is an excellent solution.

3. Thirdly, software as a service (SaaS) allows a company to build
a custom solution that can only exist in a cloud environment.
Salesforce, Office 365 and G Suite are examples of SaaS.

Viewed in this context, our computing project was an example
of an IaaS. But by the end of our exploration we had migrated
much closer to a PaaS solution. The actual difference can get
quite fuzzy.

THE LEARNING CURVE
Once we realized on- premise calculations would take too long, we
turned to the task of determining how many (and what capacity)
computers would be needed for a cloud solution. After a period
of research on best approaches for parallelizing our process in the
cloud, we estimated that 63 virtual machines (VMs) should be
able to handle the work in a reasonable time frame. Each machine
had eight cores and 56 gigabytes of RAM, giving us a total of over
500 cores and 3,500 gigabytes of RAM at our disposal. For this
project, we chose to provision the machines with Windows as the
operating system due to familiarity, but we note this costs about
50 percent more in license fees than an equivalent Linux VM. We
wrote PowerShell scripts to automate cloning and administration
of the machines. Later in this article we will describe a new tool
that makes things much easier (and transitions this solution from
pure IaaS to something closer to PaaS). At the time of our proj-
ect, this setup had a sticker price of less than $2 per hour to run
each virtual machine of this size in Azure.

Our first step was creating the initial VM and then installing R
and all the R packages we would need to run our analysis. Once
we had our initial VM configured, we created 62 clones of it
using the Invoke- Parallel PowerShell script Warren Frame dis-
cussed in his “Invoke PowerShell on Azure VMs” article,3 which
had some other helpful pointers we used along the way.

Now we had 63 VMs available to process data but hit a roadblock.
How do we launch our R scripts on the VMs in a coordinated
way? For this, we ended up using another script by Warren
(Invoke- AzureRmVmScript) to invoke commands remotely on
the VMs. We wrapped these commands in the Invoke- Parallel

script to kick off the R scripts simultaneously across the VMs.
An additional script served the purpose of deallocating VMs
after the R scripts finished running to measure progress and
limit costs. Allocated VMs charge per minute and deallocated
VMs carry no compute charges.

Once all the VMs completed their tasks we collected our data
and analyzed our results. In the end we ran a total of 90 days’
worth of parallel compute time across the VMs, with the longest
VM running for a total of three-and-a-half days at a total cost
of around $3,000. The equivalent cost of buying and setting
up similar machines would have required weeks of setup and
tens of thousands of dollars of hardware purchase for the same
result. Of course, the cloud approach also required a fair amount
of time spent crafting and debugging the PowerShell scripts,
which adds significant soft costs in addition to the hard costs.
Additionally, when using an IaaS solution over time there would
also be the ongoing costs associated with keeping the VM image
up- to- date with the latest security updates.

THINGS KEEP ON EVOLVING
After completing our first large run in the cloud, we found that
Microsoft was working on an R package simultaneously that
automated many of the tasks we had done in PowerShell. This
R package is called doAzureParallel, leveraging an Azure service
called Batch. The package allows a user to create a pool of VMs
in the Azure Batch service with a few lines of R code and then
register it as the parallel back end for the R foreach package. If
you are already familiar with the R foreach package then mak-
ing the transition to using doAzureParallel is done simply by
running some code that creates the pool in Azure Batch. Any
existing foreach code using the %dopar% function can then be
used as is.

Azure Batch allows you to easily launch a pool of Linux VMs,
which as we mentioned earlier is much more cost- effective than
using a pool of Windows- based VMs. The auto scaling features
of Azure Batch allow dynamically scaling up or down the num-
ber of VMs in a pool based on the demand of the tasks you are
running. Another option is to use a mix of dedicated or low-
priority VMs in a pool. Cloud providers make excess compute
capacity available at steeply discounted rates with the caveat that
these machines can be interrupted by those willing to pay at the
higher rate. If this happens, the current task you are running
gets canceled and reassigned on another low- priority machine.
Therefore, it is recommended to only use the low- priority
machines if you have short- running tasks or your calculation
can progress despite multiple restart attempts.

One recently added feature of doAzureParallel worth noting
is its ability to seamlessly run R inside a Docker container on
the VMs within your pool. This is similar to how we cloned a

8 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Parallel Cloud Computing: Making Massive Actuarial Risk Analysis Possible

custom VM image in our initial IaaS approach. It allows use of
a prespecified environment that keeps R versions and packages
in sync, which ensures reproducibility of results. The added
benefit with the doAzureParallel Docker container approach is
that now you can rely on Azure Batch to create up- to- date VMs
each time you run an analysis, ensuring that you have the latest
security updates. By default, doAzureParallel uses the “rocker/
tidyverse:latest” image that is developed and maintained as part
of the rocker project.4 However, you can also specify a custom
Docker image, which allows you to lock in a version of R if you
are concerned about duplicating results long term.

In our case, doAzureParallel has helped us move our initial
IaaS approach to more of a PaaS approach. Now we can rely
on doAzureParallel to maintain the administration work of cre-
ating pools of VMs with up- to- date security updates, which are
running our prespecified environments. Using such solutions
allows users to focus more on the analysis they are trying to con-
duct rather than spending the time managing the infrastructure
it runs on.

LESSONS LEARNED AND RECOMMENDATIONS
Taking a look back at our journey in the cloud, we have some
final recommendations for those looking to get the most out of
these exciting new tools.

• If you plan on using the cloud for an analysis in R, check
out the well- documented doAzureParallel package. Even if
you don’t plan on using R for analysis you might find some
workflows that help with other languages as well.

• The tools cloud providers have are constantly evolving and
iterating, and it is essential to be aware of what new tools are
made available. For example, moving from the highly manual
cloning of machines to Azure Batch for automated compute
pool creation was revolutionary and much easier to use.

• We highly recommend the use of Docker containers or some
other state management when conducting work in R or any
other language if you need repeatable results over a long
span of time.

• Finally, we recommend using Linux- based VMs over Win-
dows if your task allows you to, as it can provide a welcome
cost savings. Also investigate the use of low- priority VMs (or
spot pricing in the AWS world) if your workflow supports
short- running tasks.

Table 1 gives an estimate of potential cost reductions we could
have achieved if we were to rerun our analysis applying these
recommendations using the doAzureParallel package. For

comparison, we have also estimated the cost of using AWS as
the cloud provider. Note that these are estimated costs as of Jan.
23, 2018; pricing may vary in your region or the contract you
have in place with Microsoft Azure or AWS.

As you can see, the cloud is more than just someone else’s com-
puter. It’s an ecosystem of resources that can be leveraged to
explore ideas and complete tasks that were once unfeasible to
achieve with the local computing resources of the past. ■

Joe Long is an assistant actuary and data
scientist at Milliman. He can be reached at
joe.long@milliman.com.

Dan McCurley is the Cloud Solutions Architect at
Milliman. He can be reached at dan.mccurley@
milliman.com.

ENDNOTES

1 A research and development project conducted by the Milliman Advanced Risk
Adjusters™ (MARA™) product group. See http://www.millimanriskadjustment.com
for more information about MARA.

2 Mohamed, Arif. A History of Cloud Computing. Computer Weekly.com, March 2009,
http://www.computerweekly.com/feature/A-history-of-cloud-computing (accessed
Feb. 1, 2018).

3 F., Warren. Invoke PowerShell on Azure VMs. Rambling Cookie Monster, http://
ramblingcookiemonster.github.io/Invoke-AzureRmVmScript/ (accessed Feb. 1, 2018).

4 Tan, J.S. Scale Up Your Parallel R Workloads with Containers and doAzurePa-
rallel. Revolutions, Nov. 21, 2017, http://blog.revolutionanalytics.com/2017/11
/doazureparallel-containers.html (accessed Feb. 1, 2018).

Table 1
Potential Cost Reductions

VM Option

Total
Compute

Hours

Price Per Hour1 Total Cost

Azure2 AWS3 Azure AWS
Windows OS 2,151 $1.17 $1.05 $2,516.67 $2,258.55

Linux OS 2,151 $0.78 $0.67 $1,677.78 $1,441.17

Linux OS with
low priority4

2,151 $0.14 $0.07 $301.14 $150.57

1. Estimated prices from Microsoft Azure and AWS online pricing for VM compute charges
only. Does not Include storage or data transfer prices, which can become meaningful if
not managed efficiently.

2. Azure A10 VM with eight cores and 56 gigabytes of RAM in the North Central U.S. region.
3. AWS r.3.2xlarge VM with eight cores and 61 gigabytes of RAM in the U.S. East (Ohio)

region.
4. Assumes tasks were run without the VMs being preempted.

2018 Predictive Analytics Symposium
September 20–21
Minneapolis, MN

Explore the world of big data and how
it impacts the actuarial profession.

Register at Soa.org/PASymposium

10 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

The Forgery Game:
Generative Adversarial
Networks
By Michael Niemerg

Imagine a not- too- distant future. You open your mailbox
to find a pretty ordinary- seeming catalog. You start to flip
through it. Inside, you find pictures of beautiful, smiling peo-

ple. You see perfectly manicured lawns and perfect bedrooms.
The catch: None of this is real. These images weren’t even cre-
ated using computer graphics. All these images were created by
a model—by a generative adversarial network (GAN).1,2 Don’t
believe this is possible? There are already images of fake people
that look eerily realistic3 and ways to manipulate an image to
turn that smile into a frown.4

What is a generative adversarial network? How does it create
synthetic images of people and things that are nearly indistin-
guishable from real photos? The first thing we need to do is
parse the moniker itself. The “generative” part of generative
adversarial networks refers to what the model is doing: gen-
erating synthetic data. The “adversarial” refers to how it is
trained—in an adversarial fashion between two competing
models. The “networks” refer to the model form, which are
neural networks (while there is no requirement that generative
adversarial models must be neural networks, this is the primary
focus of active research in the area).

TRAINING GANS
Let’s dive a little more into how these models are trained. GANs
are created via two competing networks: a generator that creates
synthetic data and a discriminator whose job it is to distinguish
the real data from the synthetic data. This adversarial connec-
tion is the whole key to the process. By putting the models in
competition, the generator is forced to successively get better
at creating data that looks real while the discriminator gets
increasingly more adept at separating real data from synthetic
data. A common analogy used to describe GANs is to think
of the generator model as an artwork forger, trying to pass off
forgeries as the real thing, while the discriminator plays the role
of the curator trying to identify the real art and reject the forg-
eries. The forger gets continually better at generating the fake

artwork but the curator also improves at spotting the real art
apart from the forgeries.

GAN models are neural networks. While the relationship
between the generator and the discriminator is unique, all the
typical rules and structure of training neural networks apply to
both. If the jargon of neural networks is foreign to you, simply
remember that a neural network is a predictive model. It will
take in some data, have parameters that will be fit by optimizing
an objective, and ultimately produce output (the synthetic data
for the generator, and the probability of data being real or syn-
thetic for the discriminator).

Now let’s get a little more precise on the algorithm for GANs.

GAN ALGORITHM
For each round of training:

• Generate random points from latent space (a good choice
would be random numbers from a normal distribution) and
create the synthetic data by feeding the random points into
the generator.

• Combine this synthetic data with the real data.

• Train the discriminator to distinguish between these real and
synthetic values.

• Update the generator to fool the discriminator:

 - Freeze the discriminator so that its weights do not change.

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 11

 - Feed the generator random points from latent space
as input.

 - The generator will convert these random points to syn-
thetic data.

 - The frozen discriminator will then classify this synthetic
data as “real” or “synthetic.”

 - Update the weights in the generator to alter how it cre-
ates its synthetic data so that it can more easily fool the
discriminator.

Figure 1
A Representation of the GAN Model- Building Process

Real Data Discriminator Real or
Synthetic?

Latent
Space Generator Synthetic

Data

The last step above can seem a bit curious so let’s look more
closely at what is happening. In more precise terms, this step
in the process is trying to minimize the difference between two
vectors of numbers (with each entry in the vectors correspond-
ing to an observation). Keeping in mind that the discriminator is
being fed a series of synthetic observations, the first vector is the
discriminator’s prediction of whether each of these observations
is real or synthetic. The second is simply a vector of targets that
say that each observation is real. Because the generator is trying
to fool the discriminator, it wants to get them as close as possi-
ble. However, while training with this objective, the generator
is unable to manipulate the discriminator directly (in fact, being
frozen, the discriminator doesn’t change at all in this last step)
but the generator is still able to indirectly alter the first vector
(the discriminator’s predictions) by altering its own weights so
that its generated output becomes harder for the discriminator
to distinguish from the actual data.

Ultimately, the generator is doing a good job when the discrim-
inator can’t tell the difference between synthetic data and real
data (e.g., the predicted probability of either is 50 percent). The
coolest part? Throughout this whole training process, the gen-
erator has no access to the real images! It learns to create them
without ever having direct access to them.

Another way to think about what the model is doing is to think
about our real sample data as coming from a high- dimensional,
data- generating distribution. When training a GAN, our train-
ing set is really a sample of data points from this data- generating
distribution. The GAN model uses this sample data to learn
about the structure of the entire data- generating distribution so
that it can learn how to approximate new samples from it.

For an illustrative example, see Figure 2. Our data set to build
our GAN is a sample of points (black boxes) from the data-
generating distribution (gray distribution). Our model learns an
(imperfect) representation of that distribution (white distribu-
tion) from which we can draw samples (white triangles).

Figure 2
Data- Generating Distribution and GAN Approximation

CHALLENGES WITH TRAINING GANS
Currently, generative adversarial modeling is still an active area
of research. There are several ways in which GANs can fail or in
which training them can produce fickle results.

The most common is simply instability in training. For instance,
training the model with the same parameters might work well
in one training run only to produce poor results in another run
without any changes to the model parameters other than differ-
ent random number initializations.

Another problem with GANs is that measuring the quality of
the synthetic data can be difficult. While both the generator and
the discriminator have a loss function, these loss functions are
really only optimizing the competition against its adversary. In
a regression problem, we know that higher R- squared is better

12 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

The Forgery Game: Generative Adversarial Networks

and, in a classification problem, that higher accuracy is better
(ceteris paribus). If our task is generating realistic synthetic images,
however, our real objective is independent of the nominal value
of the loss function but is instead tied to how convincing the
image is to a human. Because it is hard to come up with a good
loss function for how different the synthetic picture of a bed-
room is from a real bedroom, it can be hard to tell exactly when
one GAN model performs better by simply checking metrics.
We need to actually examine our sample output.

Another difficulty with training GANs is that they have a ten-
dency to collapse into similar output for different input from the
latent space. Part of the reason for this is that the GAN model
can only look at each instance in isolation when determining
whether a data point is real or synthetic. Why is this problem-
atic? Well, imagine, for instance, that you wanted some synthetic
data representing the rolls of a six- sided die. If I presented you
with a 0 or a 7 you would easily recognize those data points
as unrealistic. However, what if I presented you with a 4? That
seems to be a very plausible die roll. What if I then generated
for you a never- ending series of 4s as synthetic data? If you are
constrained to only being able to look at one data point at a time
to judge whether an instance looks real (i.e., we are memoryless
like a GAN), you can’t discriminate these obviously synthetic
data points from real points. This is problematic. We need some
way of relating observations to each other to tell the difference.

In Figure 3, we can see an example of a degenerative GAN.
The GAN fails to learn a good representation of the true data-
generating distribution, instead only learning to reproduce
frequent values that lie near the mean of the data- generating
distribution.

Figure 3
Data- Generating Distribution and GAN Approximation:
Degenerative Example

Another challenge with GANs is one that faces all predictive
models: They inherit the biases of the data used to train them.
Say, for instance, we are training a model to generate images of
bedrooms. Let’s also suppose only a small percentage of bed-
rooms contain yellow bedsheets and that none of these bedrooms
make it into our training set for the GAN model. What could
likely happen is that our model will not learn to associate yellow
bedsheets with bedrooms and our synthetic images will contain
no yellow bedsheets even though they exist in the real world.
Our model can only reconstruct the data- generating distribution
to the extent that it is faithfully represented in our training data.

PRACTICAL TIPS AND ADVANCED ARCHITECTURES
Multiple techniques exist for aiding the training of GANs. Some
techniques include: modifications to the loss function used in
training, incorporating common neural network regulariza-
tion techniques into the training phase, and adding some extra
challenge to the discriminator by introducing noise to its input.
Many of these techniques are incorporated into advancements
to the original GAN algorithm.

A few of the advanced GAN algorithms are particularly notewor-
thy. Deep convolutional GANs (DCGANs)4 improve upon GANs
by offering refinements to the architecture of the neural networks
used to train them. Wasserstein GANs5 add several wrinkles to
GANs, including using a loss function whose numerical value
corresponds more closely with the true quality of the synthetic
data. Furthermore, the idea of mini- batch discrimination6 was
created to counter the tendency of models to collapse to a narrow
output range by adding distance information about other exam-
ples from within each training mini- batch to the discriminator.

Generally, research on GANs is proceeding at a rapid clip. In all
likelihood, significant improvements have been made to GANs
between when I wrote this article and the time it went to print.

DOES IT MATTER TO ACTUARIES?
Much of the work with GANs to date has been on synthetic
image and audio generation but that is quickly changing. Will
GANs ever make their way to the insurance or health care sec-
tors? The future is still to be seen, but the potential is there as
the quality of the algorithms mature and the use cases become
more apparent.

One possible use for GANs could be to generate data syntheti-
cally to feed into other predictive models when training data is
scarce. Various types of data set augmentation are already com-
mon practice when creating neural networks for image analysis.
GANs could simply become another extension of this practice.

Another more creative use for GANs could be in the realm of
data- sharing. Imagine being able to share the data needed to

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 13

build predictive models without sharing the data itself. Instead of
training the predictive model with real data, one party could train
a GAN on its data to “encrypt” it. The other party could then
generate synthetic data from the GAN and use that synthetic
data to actually train the ultimate predictive model. The only
thing that needs to be shared is the neural network itself. In this
way, data insight could be shared without actually sharing data.

These use cases are speculative at the moment but not unrealis-
tic. It’s still too early to tell whether GANs rise to prominence
as another commonplace method in the modeler’s toolbox or
whether they remain a curiosity. ■

Michael Niemerg, FSA, MAAA, is an actuary
at Milliman in Chicago. He can be reached at
michael.niemerg@milliman.com.

ENDNOTES

1 Goodfellow, Ian J., et al. 2014. Generative Adversarial Nets. Advances in Neural
Information Processing Systems, https://papers.nips.cc/paper/5423-generative
-adversarial-nets.pdf (accessed Feb. 9, 2018).

2 Creswell, Antonia, et al. Generative Adversarial Networks: An Overview. Cornell
University Library, Oct. 19, 2017, https://arxiv.org/abs/1710.07035 (accessed Feb.
9, 2018).

3 Vincent, James. All of These Faces Are Fake Celebrities Spawned by AI. The Verge,
Oct. 30, 2017, https://www.theverge.com/2017/10/30/16569402/ai-generate-fake
-faces-celebs-nvidia-gan (accessed Feb. 9, 2018).

4 Radford, Alec., Luke Metz, and Soumith Chintala. Unsupervised Representation
Learning With Deep Convolutional Generative Adversarial Networks. Cornell Uni-
versity Library, Nov. 19, 2015, https://arxiv.org/abs/1511.06434v2 (accessed Feb.
9, 2018).

5 Arjovsky, Martin, Soumith Chintala, and Léon Bottou. Wasserstein GAN. Cornell
University Library, Jan. 26, 2017, https://arxiv.org/abs/1701.07875 (accessed Feb.
9, 2018).

6 Salimans, Tim, et al. Improved Techniques for Training GANs. Cornell University
Library, June 10, 2016, https://arxiv.org/abs/1606.03498 (accessed Feb. 9, 2018).

Listen at Your
Own Risk
The SOA’s new podcast series explores thought-provoking,

forward-thinking topics across the spectrum of risk and

actuarial practice. Listen as host Andy Ferris, FSA, FCA,

MAAA, leads his guests through lively discussions on the

latest actuarial trends and challenges.

Visit SOA.org/Listen to
start listening.

20170202_soa_podcast_ad.indd 1 2/2/18 11:12 AM

14 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Why Consider a
Delphi Study?
By Ben Wolzenski

In the December 2017 Predictive Analytics and Futurism News-
letter, author and recent Predictive Analytics and Futurism
(PAF) Section Council member Bryon Robidoux wrote about

the TED talk, “The Human Insights Missing from Big Data,”
by Tricia Wang. I highly recommend that article, which also
contains a link to access the TED talk. It provides a perfect pref-
ace to this article about an old futurism tool in the new world
of predictive analytics: the Delphi study. Both articles support
the idea of supplementing the results of a model with data from
alternative sources to help validate the model. A more scientific
way than relying on yourself or a co- worker for insight is to use
a Delphi study.

Like predictive analytics, the Delphi method is used for fore-
casting. But there they diverge; instead of tools and data, the
Delphi employs a panel of experts (“panelists”) to address
specific questions or issues. But unlike a roundtable discussion
or a mere survey, the Delphi technique gathers responses from
panelists anonymously, and sends all those separate responses
(again, anonymously) to each panelist. The panelists are asked
to reconsider and possibly refine their responses based on
the information gleaned from the responses of all the others.
These “rounds” of questions and answers are repeated until the
respondents stop making material changes to their answers. The
result may be a consensus, or convergence around two or more
points of view.

The Delphi method is most useful when other forecasting techniques,
especially those that use past data to estimate future outcomes, appear
to have limited value. Or when the forecaster simply feels the
need for a second opinion, derived by other means. The Del-
phi method has been around since the 1950s, but was almost
unused by the actuarial profession until 2005, when the Society
of Actuaries (SOA) published “A Study of the Use of the Del-
phi Method, A Futures Research Technique For Forecasting
Selected U.S. Economic Variables and Determining Rationales
for Judgments.” That landmark study was as much (or more)
about how to perform a Delphi study as it was about predict-
ing economic variables in 2024 (and the rationales for those
predictions).

Then, in 2009, the SOA published “Blue Ocean Strategies in
Technology for Business Acquisition by the Life Insurance
Industry.” In three rounds of narrative questions and panelists’
responses, a series of strategies were identified and refined. Here
are two examples:

• Strategy #5: Your Way Insurance Company—“Prospects
custom- design coverage online”

• Strategy #8: Holistic Insurance Company—“Risk ‘agents’
help mitigate all risks”

The next major Delphi study by the SOA was spearheaded by
the Long Term Care Think Tank and published in 2014: “Land
This Plane,” with the goal of arriving at a consensus on solutions
to the nation’s long- term care financing challenges. There were
widely different views about the roles of government and the
insurance industry among the long- term care experts recruited
to be panelists. Despite these differences, the final report iden-
tified a series of principles upon which there was general (albeit
not unanimous) agreement.

And even as this article was written, the SOA has launched a sec-
ond Delphi study regarding economic variables, with a focus on
methods and assumptions for financial projection models. With
an ever- greater world of data at our disposal, the comprehensive
training of actuaries gives us an advantage in applying human
insight—and the Delphi method can provide a means to derive
value from that insight.

Ben Wolzenski, FSA, MAAA, is managing member
at Actuarial Innovations, LLC in St. Louis. He can
be reached at bwolzenski@gmail.com.

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 15

Hierarchical Clustering:
A Recommendation
From a Nonhierarchical
Manager
By Dave Snell

Most of the people who know me well are aware that I’m
not a big fan of hierarchical management. Back when I
was VP over a fairly large area I used to value highly the

direct reports who felt comfortable challenging my ideas; and
the collaborative outcomes from our discussions were often far
better than my original thoughts.

So, it might seem strange that my first choice on an article to
describe clustering is about the benefits of hierarchical clustering
as opposed to the more commonly used nonhierarchical tech-
niques such as k- means clustering. Both categories are usually
unsupervised machine learning techniques (techniques where
you do not know the outcomes or labels ahead of time); but k-
means clustering intuitively appeals to mathematicians because it
is easy to conceptualize (but not visualize) in several dimensions.

In k- means clustering, you just pick a k (the desired number of
clusters), assume k random points in your data as the initial cen-
ters of the clusters, assign each data point to one of the clusters
based on their distances from those k centers, and then compute
new centers for each cluster based on the distance metrics. Since
the initial choices were random, it is likely they were wrong. At
the next round of point assignments, some points are reassigned
to another cluster based on closeness to the new centers you
calculated. Again, the cluster centers are recalculated and the
process continues until points stop changing from one cluster to
another. This method is computationally efficient, easily accom-
modates several dimensions of factors, and, again, it appeals to
mathematicians.

Unfortunately, it is not always the most appropriate clustering
technique. As you can see in Figure 1, k- means can do a good job
if the underlying data clusters are distinct (not overlapping), and
the underlying clusters are somewhat spherical in nature and of
similar density. If the data is donut- shaped, or follows a specific

curve, or is radial in nature, as in Figures 2 and 3 (pg. 16), it does
not give a good result.

Beyond this, k- means clustering requires you to choose the num-
ber of clusters (k) ahead of time. If you are doing an exploratory
analysis of a large set of data, you may not know the appropriate
k ahead of time. Granted, you can try several different values of
k and see where the sweet spots seem to be on an elbow curve;
you can do a silhouette analysis; and you can measure the purity
of each cluster; but these tests can introduce complexity rather
than clarity.

Figure 1
Example Where k- Means (Where k=4) Works Well1

Figure 2
Example Data Where k- Means Does Not Work Well
(consider an affinity method instead)

16 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Hierarchical Clustering: A Recommendation From a Nonhierarchical Manager

Most of all, though, the k- means approach is not as easy to
explain to nonmathematicians, and once you get to higher
dimensions, where scatter plots may not be appropriate, it lacks
a visually intuitive presentation mechanism.

In cases of higher dimensionality,2 such as four or more, you
may wish to consider a hierarchical clustering approach. Even
three- dimensional clusters can be very misleading when shown
in two dimensions. A famous anamorphic creation by the artist
Michael Murphy titled “Perceptual Shift” shows this vividly.

Looking at it from the front, it appears to be a human eye; but
from the side it is a cone of seemingly scattered balls.3 The most
recognizable pattern of stars in the northern hemisphere, the
Big Dipper (actually part of the constellation Ursa Major) looks
like a flattened ladle from Earth; but Mirza, the closest star
of the seven, is 78 light years away from us while Dubhe, the
farthest, is 123 light years away! Seen from another galaxy, this
group of stars looks nothing like a dipper.

A hierarchical clustering approach starts with the assumption
that every data point is its own cluster. Then, it computes the
distance between each pair of clusters and starts grouping them
accordingly.

In order for the algorithms to work, there are four distance rules
we have to specify:

1. Distance cannot be negative: di j > 0 when j ≠ i (i.e., the dis-
tance from cluster i to a different cluster j is positive).

2. Distance from any cluster to itself is zero: di i = 0.

3. Distance is symmetric: di j = dj i (i.e., the distance from clus-
ter i to cluster j is the same as the distance from cluster j to
cluster i).

4. A triangular inequality holds: di j + dj k >= di k.

Given these rules, we can choose any of a number of different
metrics for “distance.” Some common choices are shown in
Figure 4.

Figure 3
Example Data Where k- Means Does Not Work Well
(consider a Gaussian mixture model instead)

Figure 4
Commonly Used Distance Metrics for Hierarchical Clustering4

Names Formula

Euclidean distance

Squared Euclidean distance

Manhattan distance

Maximum distance

Mahalanobis distance where S is the Convariance matrix

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 17

Figures 5 and 6 give an idea of what this process looks like
visually. Initially, let’s assume that we had only six data points.
We start out assuming each is its own cluster. Alternatively, if
you feel this is too trivial an example, we might wish to say that
Figure 5 is the result of previous clustering of a large number of
points already; and we are now down to six clusters.

We see in Figure 5 that clusters b and c are very close to each
other, as are clusters d and e. This is reflected in Figure 6, as the
number of clusters is reduced in Round 1 to four: clusters a, bc,
de and f.

In the next round we note that cluster de is closer to cluster
f than to any other cluster so they are combined into cluster
def. Next, def is combined with cluster bc to obtain cluster bcdef.
Finally, cluster a is combined with bcdef to form the single cluster
abcdef. Usually, hierarchical clustering methods are also called

agglomerative methods,5 and you can see why here. Eventually,
you end up with just one cluster.

At this point, you might be wondering where I am going with
this discussion. Why is the lumping together of all the data into
just one cluster of any use to us?

The usage comes into play via a special sort of tree diagram,
called a dendrogram. A dendrogram of the clustering process
we did for our example is shown in Figure 7. Note that this is
a visual way of showing how the clusters are combined and also
the relative dissimilarity between the clusters. The taller the
height before two clusters are combined, the more dissimilar
they are. We see that cluster a was most different from all of the
other clusters, while d and e were relatively close.

Let’s consider a more practical example of how hierarchical
clustering can be useful.

Assume your daughter (or son or niece or nephew or friend) is
a junior or senior in high school and wants to apply to a univer-
sity with the intent of a double major—in actuarial science and
data science. You want to help in this project, so you compile a
list of 40 or so universities that offer both of these majors. The
parameters for selection may include items such as student pop-
ulation, ratio of students to faculty, percentage of scholarships
available, distance from home (far enough away for autonomy

Figure 7
Dendrogram of Six Clusters6

Figure 5
Six Clusters Prior to Hierarchical Clustering

Figure 6
Traditional Representation of Hierarchical Clustering

Another benefit of hierarchical clustering is repeatability.

Unlike k- means clustering, which can result in different answers based
on different starting values for the randomly chosen first set of center
points, hierarchical clustering is repeatable. As long as your data has not
changed, and you use the same distance metric, you will always get the
same result.

18 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Hierarchical Clustering: A Recommendation From a Nonhierarchical Manager

and close enough to bring laundry home), housing costs and tui-
tion, number of Nobel Laureates teaching classes, median SAT
and ACT scores of incoming students, median compensation of
graduates after five years, athletic team performances, cultural
opportunities, male- female student ratio, international student
ratio, cafeteria selections, average temperature range, proximity
to the ocean or the mountains, population of nearby city, Cen-
ters of Actuarial Excellence (CAE) status, data science rating
and perhaps several other criteria.

You don’t want to risk applying to only one university, since
you can’t predict how selective they may be. Perhaps the
admissions officer at the interview will be impressed by her
initiative and creativity to make an interview video while
juggling on a skateboard to show multitasking ability. But
what if the interviewer considers this an indicator of a frivo-
lous nature? On the other hand, each application is expensive
both in dollars and in the time spent visiting the campus and
researching the overall school environment. It would be nice
to be able to say with some confidence that a specific subset,
or group within these 40 schools, is most similar to this stu-
dent’s interests and abilities. This can be an ideal problem for
a hierarchical clustering solution. You have many dimensions
and it is not obvious how to group the schools into logical
clusters.

It will be necessary to convert the categorical factors, such as
CAE status and cultural opportunities to numeric values—often
via dummy variables. Then there is the issue that some of these
numeric parameters have wide ranges relative to others. For
example, the number of students might be just a few hundred,
or many thousands. Expenses and distance from home may
also have wide ranges. Compare those to the number of Nobel
Laureates, where 0 to 5 might cover every one of the schools.

In order to avoid having the wide- range items completely over-
shadow the importance of short- range ones, we would employ
statistical techniques to standardize and normalize our values.
One such technique might be to substitute each value xi with
(xi – xmean)/xstandard deviation , which would work fine for a mix of all
numeric parameters, but still tends to have higher weight than
the categorical surrogates that range from 0 to 1. In a mixed
parameter environment, it might be better to map xi to (xi –
xminimum)/(xmaximum – xminimum), thus ensuring all the items have the
range 0 to 1.

Once you have your values normalized, both Python and R have
packages that can do all the heavy- lifting work of creating the
dendrogram for you. R, in particular, has a package dendroextras
that allows you to label and color your clusters:

if (!is.element(‘dendroextras’,
 installed.packages()[,1]))
 install.packages(“dendroextras”,
 repos=’http://cran.us .r-project.org’)

I don’t have all those parameters available for my hypothetical
problem, but I did find a ranking of world university rankings
on Kaggle at https://www.kaggle.com/mylesoneill/world-university
-rankings that I will use for a very quick demonstration of how
to generate a dendrogram of the universities. In this demon-
stration, I’ll keep it simple and use the built- in hierarchical
clustering in R:

file from Kaggle site in text
input <- read.csv(‘cwurData.csv’)
tail(input)

that produces Figure 8.

Figure 8
Sample of Kaggle University Rankings (Kaggle dataset has 1,000 universities in this dataset)

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 19

Now, we generate the dendrogram:

just take the top 40 for this example
uniRatings <- input[1:40,c(2,1,4:10)]
exclude university name and normalize
normalizedRatings <- scale(uniRatings[,2:9])
distance <- dist(normalizedRatings,
 method=’euclidean’)
clus <- hclust(distance, method=’complete’)
plot(clus,hang=- 1) # display the dendogram
cut the dendogram into 5 clusters
groups <- cutree(clus, k=5)
rect.hclust(clus, k=5, border=’red’)
output is Figure 9

I then add a new column that denotes group number to the
data frame:

uniRatings$group <- groups
uniRatings[1:8]
Output is Figure 10

Figure 10
Section of Group 1 of the Top Universities

Figure 9
Top 40 World Universities in Five Clusters

20 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Hierarchical Clustering: A Recommendation From a Nonhierarchical Manager

Our top group is probably no big surprise. The highest- rated
universities are in the same group.

But later, we find some surprises, as the 10 universities shown in
Figure 11 are all ranked very similarly (31 through 40), but they
are not that much alike when you consider all of the param-
eters. In fact, University College London is more like Osaka
University or University of Toronto than it is like Northwestern
or Washington University in St. Louis. Of course, different
criteria, such as my hypothetical ones, would group all these
universities differently, but that is part of the beauty of hierar-
chical clustering: You get to decide what features are important,
and the similarity grouping is based only upon them.

uniRatings[31:40,]
output is Figure 11

In this article, I expressed my opinion that hierarchical cluster-
ing can provide advantages over k- means clustering when the
number of dimensions, n, is too high for a scatter plot.7 The
dendrogram is a convenient way to show both the clusters and
the relative dissimilarity between them. It also lets you choose a
cut point (number of clusters) after construction of the dendro-
gram so you can see logical groupings by extent of dissimilarity
before you do more calculations. I hope you find the examples
using R useful. Python has very similar capabilities. Whichever
programming language you prefer, I think it is worth investigat-
ing this underutilized technique for clustering. ■

Figure 11
Another Section of the Top University Rankings, Showing Varying Groupings

Dave Snell, ASA, ACS, ARA, ChFC, CLU, FALU,
FLMI, MAAA, MCP, teaches AI Machine Learning
at Maryville University in St. Louis. He can be
reached at dave@ActuariesAndTechnology.com.

ENDNOTES

1 Just because a scatter plot looks good in two dimensions does not mean it
actually represents the data arrangement. See a detailed description of the ana-
morphic creation by Michael Murphy, “Perceptual Shi± ,” at https://mymodernmet
.com/michael-murphy-perceptual-shi� /.

2 Although hierarchical clustering is good for n dimensions, where n is o± en > 3 and
beyond those we can readily graph, it involves the computation and storage of an
n by n matrix, which can be a strain on computing and storage resources.

3 Supra, note 1.

4 Figures 4, 5, and 6 are derived from Wikipedia. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.2 or any later version published by the Free So± ware
Foundation; with no Invariant Sections, no Front- Cover Texts, and no Back- Cover
Texts. A copy of the license is included in the section entitled GNU Free Documen-
tation License.

5 Actually, hierarchical clustering can be agglomerative (the usual case) where you
start with n points and keep combining them until you have only one cluster; or
they can be divisive, where you start with one cluster, then keep subdividing it.

6 Figure 7 was generated by the author using the R package dendroextras.

7 Supra, note 2.

22 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Feature Importance in
Supervised Training
By Je� Heaton

Supervised learning is the class of machine learning where
a model is trained to produce a specific result for a given
input. These inputs and expected outputs form the train-

ing data for a model. Because the expected outputs are known,
this type of training is referred to as supervised learning. If there
are no expected outcomes, then the technique is referred to as
unsupervised learning. The process of using these data is called
training or fitting. Whether to use supervised or unsupervised
learning depends upon the project goal. If the desire is to create
a model that can be trained to produce some sort of output from
input data, then you are using supervised training. The focus of
this article is determining the importance of columns of your
input data for supervised training.

In the domain of supervised learning, predictive models accept
a feature vector and return a prediction. For example, a model
might be asked to accept inputs that specify the face amount,
annual premium, term, age of applicant, and other values to
predict the likelihood of the policy being lapsed. These inputs
are typically referred to as the feature vector or the x- values.
The output from the model is typically referred to as the score,
prediction or y- hat value. Some of the input features are more
important to making an accurate prediction than others. For
example, term length might be more important to predicting
lapse than the face amount. There are a wide variety of tech-
niques that can be used to measure the importance of the input
features.

MODEL-SPECIFIC FEATURE RANKING
Depending on the type of model to be evaluated, there are a
number of different ways to evaluate feature importance.
These model- specific, feature- ranking techniques will change
depending on what model you are using. For example, if you are
dealing with a generalized linear model (GLM), the coefficients
can provide an importance measure. Similarly, neural network
feature importance can be gauged by examining the outbound
weights from each of the input neurons.1 Additionally, the
importance of features in tree- based models, such as gradient
boosting machines (GBMs), random forests, and classification
and regression trees (CARTs) can be determined by evaluating

the number and weighting of splits that the given feature was
involved in.

Of course, these techniques are only valid for GLMs, neural
networks and tree- based models. If you are making use of other
model types, such as support vector machines (SVMs), k- nearest
neighbors or any other, you will need to use a technique that
is specifically designed for that model type. Furthermore, your
importance will remain the same over time.

The importance of the model features is generated from the
model parameters that were defined when the model was fit.
It is not possible to see how important these features are with
newer data sets that your model might need to score. Fitting a
model and deploying it to production are only the first battles
that a data scientist must face. It is important to ensure that your
model remains relevant with new data sets and external condi-
tions that might affect the validity of your model. Evaluating the
importance of features for your trained model on new data sets
can be an important piece of information in ensuring the con-
tinued robustness of your deployed model. Most model- specific,
feature- ranking algorithms only analyze the model, and not the
importance of features in entirely new data sets.

MODEL-AGNOSTIC FEATURE RANKING
Model- agnostic, feature- ranking algorithms consider the intrin-
sic characteristics of the data in evaluating the fitness of the
feature subset. Model- agnostic, feature- ranking techniques do
not require a learning algorithm and require fewer computing

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 23

resources. Rather, the model- agnostic algorithm makes use of
an already trained model and a data set.

Correlation- coefficient feature importance is a very simple
model- agnostic, univariate algorithm that calculates the abso-
lute value of the correlation coefficient between each of a
model’s expected outputs. This value can be used to estimate the
importance of each input feature to the model. The higher the
correlation coefficient between an input (x) and the target (y),
the greater a feature’s importance. To calculate this coefficient,
the first step is to calculate the covariance (Cij) between the
two features i and j. Usually, feature i will be the input feature
currently being evaluated and j will be the target value. This is
performed by the following equation:

MODEL‐AGNOSTIC FEATURE RANKING
Model‐agnostic, feature‐ranking algorithms consider the intrinsic characteristics of the data in
evaluating the fitness of the feature subset. Model‐agnostic, feature‐ranking techniques do not require
a learning algorithm and require fewer computing resources. Rather, the model‐agnostic algorithm
makes use of an already trained model and a data set.

Correlation‐coefficient feature importance is a very simple model‐agnostic, univariate algorithm that
calculates the absolute value of the correlation coefficient between each of a model’s expected outputs.
This value can be used to estimate the importance of each input feature to the model. The higher the
correlation coefficient between an input (x) and the target (y), the greater a feature’s importance. To
calculate this coefficient, the first step is to calculate the covariance (Cij) between the two features i and
j. Usually, feature i will be the input feature currently being evaluated and j will be the target value. This
is performed by the following equation:

��� ����� � ������ � ���
� � �

�

���

The value n represents the number of rows in the training data. The value x represents each vector of
predictors and y represents the expected value. The Pearson product‐moment correlation coefficient is
given by the following equation (which makes use of the previous equation):

��� � ���
���� � ���

The resulting value (R) gives the correlation between any of the inputs (i) and the target (j). The absolute
value of R indicates how strongly correlated the input is to the target. Higher values are more strongly
correlated. We provide a Python implementation of the correlation‐coefficient, feature‐importance‐
ranking algorithm that can be used with any Scikit‐Learn model.2

The input perturbation algorithm3 is a more complex agnostic, feature‐importance algorithm that
calculates the loss of a model when each of the input features to the neural network is perturbed by the
algorithm. The idea is that when an important input is perturbed the neural network should have a
considerable increase in error, that corresponds to the importance of that input. Because the inputs are
being perturbed, rather than removed entirely, it is not necessary to train a new neural network for
each evaluated feature. Rather, the feature is perturbed in the provided data set. The feature is
perturbed in such a way that it provides little or no value to the neural network, yet the neural network
retains an input neuron for that feature. No change is made to the neural network as each input is
evaluated.

To effectively use feature‐perturbation ranking it is necessary to evaluate the loss (E) of a model. If the
model is regression, the following equation evaluates the loss between the expected output (y) and the
expected output (ŷ) over n data items:

� � ∑ ���� � ��������
�

The value n represents the number of rows in the training data.
The value x represents each vector of predictors and y represents
the expected value. The Pearson product- moment correlation
coefficient is given by the following equation (which makes use
of the previous equation):

MODEL‐AGNOSTIC FEATURE RANKING
Model‐agnostic, feature‐ranking algorithms consider the intrinsic characteristics of the data in
evaluating the fitness of the feature subset. Model‐agnostic, feature‐ranking techniques do not require
a learning algorithm and require fewer computing resources. Rather, the model‐agnostic algorithm
makes use of an already trained model and a data set.

Correlation‐coefficient feature importance is a very simple model‐agnostic, univariate algorithm that
calculates the absolute value of the correlation coefficient between each of a model’s expected outputs.
This value can be used to estimate the importance of each input feature to the model. The higher the
correlation coefficient between an input (x) and the target (y), the greater a feature’s importance. To
calculate this coefficient, the first step is to calculate the covariance (Cij) between the two features i and
j. Usually, feature i will be the input feature currently being evaluated and j will be the target value. This
is performed by the following equation:

��� ����� � ������ � ���
� � �

�

���

The value n represents the number of rows in the training data. The value x represents each vector of
predictors and y represents the expected value. The Pearson product‐moment correlation coefficient is
given by the following equation (which makes use of the previous equation):

��� � ���
���� � ���

The resulting value (R) gives the correlation between any of the inputs (i) and the target (j). The absolute
value of R indicates how strongly correlated the input is to the target. Higher values are more strongly
correlated. We provide a Python implementation of the correlation‐coefficient, feature‐importance‐
ranking algorithm that can be used with any Scikit‐Learn model.2

The input perturbation algorithm3 is a more complex agnostic, feature‐importance algorithm that
calculates the loss of a model when each of the input features to the neural network is perturbed by the
algorithm. The idea is that when an important input is perturbed the neural network should have a
considerable increase in error, that corresponds to the importance of that input. Because the inputs are
being perturbed, rather than removed entirely, it is not necessary to train a new neural network for
each evaluated feature. Rather, the feature is perturbed in the provided data set. The feature is
perturbed in such a way that it provides little or no value to the neural network, yet the neural network
retains an input neuron for that feature. No change is made to the neural network as each input is
evaluated.

To effectively use feature‐perturbation ranking it is necessary to evaluate the loss (E) of a model. If the
model is regression, the following equation evaluates the loss between the expected output (y) and the
expected output (ŷ) over n data items:

� � ∑ ���� � ��������
�

The resulting value (R) gives the correlation between any of the
inputs (i) and the target (j). The absolute value of R indicates
how strongly correlated the input is to the target. Higher values
are more strongly correlated. We provide a Python implementa-
tion of the correlation- coefficient, feature- importance- ranking
algorithm that can be used with any Scikit- Learn model.2

The input perturbation algorithm3 is a more complex agnostic,
feature- importance algorithm that calculates the loss of a model
when each of the input features to the neural network is per-
turbed by the algorithm. The idea is that when an important
input is perturbed the neural network should have a consid-
erable increase in error, that corresponds to the importance
of that input. Because the inputs are being perturbed, rather
than removed entirely, it is not necessary to train a new neu-
ral network for each evaluated feature. Rather, the feature is
perturbed in the provided data set. The feature is perturbed
in such a way that it provides little or no value to the neural
network, yet the neural network retains an input neuron for that
feature. No change is made to the neural network as each input
is evaluated.

To effectively use feature- perturbation ranking it is necessary
to evaluate the loss (E) of a model. If the model is regression,

the following equation evaluates the loss between the expected
output (y) and the model output (ŷ) over n data items:

MODEL‐AGNOSTIC FEATURE RANKING
Model‐agnostic, feature‐ranking algorithms consider the intrinsic characteristics of the data in
evaluating the fitness of the feature subset. Model‐agnostic, feature‐ranking techniques do not require
a learning algorithm and require fewer computing resources. Rather, the model‐agnostic algorithm
makes use of an already trained model and a data set.

Correlation‐coefficient feature importance is a very simple model‐agnostic, univariate algorithm that
calculates the absolute value of the correlation coefficient between each of a model’s expected outputs.
This value can be used to estimate the importance of each input feature to the model. The higher the
correlation coefficient between an input (x) and the target (y), the greater a feature’s importance. To
calculate this coefficient, the first step is to calculate the covariance (Cij) between the two features i and
j. Usually, feature i will be the input feature currently being evaluated and j will be the target value. This
is performed by the following equation:

��� ����� � ������ � ���
� � �

�

���

The value n represents the number of rows in the training data. The value x represents each vector of
predictors and y represents the expected value. The Pearson product‐moment correlation coefficient is
given by the following equation (which makes use of the previous equation):

��� � ���
���� � ���

The resulting value (R) gives the correlation between any of the inputs (i) and the target (j). The absolute
value of R indicates how strongly correlated the input is to the target. Higher values are more strongly
correlated. We provide a Python implementation of the correlation‐coefficient, feature‐importance‐
ranking algorithm that can be used with any Scikit‐Learn model.2

The input perturbation algorithm3 is a more complex agnostic, feature‐importance algorithm that
calculates the loss of a model when each of the input features to the neural network is perturbed by the
algorithm. The idea is that when an important input is perturbed the neural network should have a
considerable increase in error, that corresponds to the importance of that input. Because the inputs are
being perturbed, rather than removed entirely, it is not necessary to train a new neural network for
each evaluated feature. Rather, the feature is perturbed in the provided data set. The feature is
perturbed in such a way that it provides little or no value to the neural network, yet the neural network
retains an input neuron for that feature. No change is made to the neural network as each input is
evaluated.

To effectively use feature‐perturbation ranking it is necessary to evaluate the loss (E) of a model. If the
model is regression, the following equation evaluates the loss between the expected output (y) and the
expected output (ŷ) over n data items:

� � ∑ ���� � ��������
�

If there are multiple outputs, they are simply considered as addi-
tional y and ŷ values. If the neural network is classification, then
a multi- logloss evaluate is performed:

If there are multiple outputs, they are simply considered as additional y and ŷ values. If the neural
network is classification, then a multi‐logloss evaluate is performed:

� � �1
�� ��� log����� � �1 � ��� log�1 � �����

�

���

To successfully perturb a feature for the input‐perturbation, feature‐importance algorithm two
objectives must be met. First, the input feature must be perturbed to the point that it now provides
little or no predictive power to the neural network. Secondly, the input feature must be perturbed in
such a way that it does not have adverse effects on the neural network beyond the feature being
perturbed. Both objectives are accomplished by shuffling, or perturbing, the column that is to be
evaluated. By shuffling the column, the wrong input values will be presented for each of the expected
targets. Secondly, the shuffle ensures that most statistical measures of the column remain the same, as
the column will maintain the same distribution.

Feature importance is usually reported as a table that shows the name of each feature, its relative
importance, and the error that the model reported when that feature was perturbed. For example,
Table 1 might represent the importance of four features:

Table 1

Sample Feature Importance Ranking

Feature Name Importance Loss
D 1 5
B 0.6 3
A 0.4 2
C 0.1 0.5

The higher the loss, the more important a feature is. The perturbation effectively removes the feature
from the prediction. Removing an important feature will result in a higher loss than removing a less
important feature. Each feature has an importance that is reported as the value of that feature’s loss
divided by the highest loss. Because of this, the most important feature will always have an importance
of 1. The importance values will not sum to 1.0. Rather, the importance values show the relative
importance of each feature to the most important feature. We provide a Python implementation of the
perturbation‐ranking algorithm that can be used with any Scikit‐Learn model.4

MULTIVARIATE FEATURE RANKING
It is also possible to use the perturbation feature‐ranking algorithm to evaluate multivariate features. It
is possible that two features are more important together than they are separately. To evaluate this, a
pair‐wise feature importance could be generated for each of the possible pairs of features, similar to
how a covariance matrix is often calculated to determine which feature pairs are strongly correlated to
each other.

The generation of a pair‐wise multivariate feature importance report is produced similarly to the
univariate‐perturbation, feature‐ranking algorithm presented in the previous section. The primary

To successfully perturb a feature for the input- perturbation,
feature- importance algorithm two objectives must be met. First,
the input feature must be perturbed to the point that it now
provides little or no predictive power to the neural network.
Secondly, the input feature must be perturbed in such a way that
it does not have adverse effects on the neural network beyond
the feature being perturbed. Both objectives are accomplished
by shuffling, or perturbing, the column that is to be evaluated.
By shuffling the column, the wrong input values will be pre-
sented for each of the expected targets. Secondly, the shuffle
ensures that most statistical measures of the column remain the
same, as the column will maintain the same distribution.

To eµectively use feature-
perturbation ranking it is
necessary to evaluate the
loss (E) of a model.

Feature importance is usually reported as a table that shows the
name of each feature, its relative importance, and the error that
the model reported when that feature was perturbed. For exam-
ple, Table 1 might represent the importance of four features:

Table 1
Sample Feature Importance Ranking

Feature Name Importance Loss
D 1 5

B 0.6 3

A 0.4 2

C 0.1 0.5

The higher the loss, the more important a feature is. The per-
turbation effectively removes the feature from the prediction.
Removing an important feature will result in a higher loss than

24 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Feature Importance in Supervised Training

removing a less important feature. Each feature has an impor-
tance that is reported as the value of that feature’s loss divided
by the highest loss. Because of this, the most important feature
will always have an importance of 1. The importance values will
not sum to 1.0. Rather, the importance values show the relative
importance of each feature to the most important feature. We
provide a Python implementation of the perturbation- ranking
algorithm that can be used with any Scikit- Learn model.4

MULTIVARIATE FEATURE RANKING
It is also possible to use the perturbation feature- ranking algo-
rithm to evaluate multivariate features. It is possible that two
features are more important together than they are separately.
To evaluate this, a pair- wise feature importance could be gener-
ated for each of the possible pairs of features, similar to how a
covariance matrix is often calculated to determine which feature
pairs are strongly correlated to each other.

The generation of a pair- wise multivariate feature importance
report is produced similarly to the univariate- perturbation,
feature- ranking algorithm presented in the previous section.
The primary difference is that two columns will be perturbed
at a time, rather than a single column. To perform this, it will be
necessary to loop over every combination of features taken two
at a time. For example, 10 features result in 45 evaluations. This
is because 10 items, taken two at a time, yield 45 combinations.

Visually, this can be thought of as a pair- wise matrix. The diag-
onal is discarded, because that would consider each feature with
itself. Likewise, the upper or lower triangle of the matrix can
be discarded because the pair- wise importance of feature- 1 and
feature- 2 is the same as the pair- wise importance of feature- 2
and feature- 1. Considering triplets, quadruplets and higher
multiples would considerably increase the amount of processing
that would be necessary.

SUMMARY
Feature- importance ranking is a very important consideration
for data science. It can be used to optimize your data set and
remove unimportant features to improve the performance of
your model. This decreases the computation time needed for
your model and often increases the accuracy. Feature engineer-
ing also benefits greatly from feature importance evaluation.
As additional features are engineered, they can be evaluated
to see their relative importance to the model. When using
feature importance in conjunction with feature engineering, it
is important to remember that the perturbation- ranking algo-
rithm will typically share the importance between two closely
correlated features. Because engineered features are mathemati-
cal combinations and transformations of the original feature set,
the engineered features are usually strongly correlated to the
original feature set. Therefore, it is important to keep in mind
that the engineered features are usually sharing importance with
the original features from which they were constructed. ■

Jeµ Heaton, Ph.D., is lead data scientist,
Reinsurance Group of America, in Chesterfield,
Mo. He can be reached at JHeaton@rgare.com.

ENDNOTES

1 Goh, Anthony T. C. 1995. Back- Propagation Neural Networks for Modeling Com-
plex Systems. Artificial Intelligence in Engineering 9, no. 3:143–151.

2 Heaton, Jeµ , Steven McElwee, and James Cannady. Early Stabilizing Feature
Importance for TensorFlow Deep Neural Networks. May 2017. In International Joint
Conference on Neural Networks (IJCNN 2017). IEEE.

3 Olden, Julian D., Michael K. Joy, and Russell G. Death. 2004. An Accurate Compar-
ison of Methods for Quantifying Variable Importance in Artificial Neural Networks
Using Simulated Data. Ecological Modelling 178, no. 3- 4:389–397.

4 Supra, note 2.

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 25

Shiny: Another Step
Forward in Data
Democratization
By Eileen S. Burns

RSTUDIO AND SHINY
Years ago, RStudio gave the R user community a better way
to interact with R than the R graphical user interface (GUI).
There were and are other GUIs available, but RStudio com-
bines so many features that it’s been a no- brainer for our team
and countless others: project files, visual folder structures,
seamless connection to CRAN repositories, easy update of R
and package versions, integration with Markdown and Sweave, a
customizable interface including plot and help features, history
and environment maps, and seamless integration with Git and
GitHub.

Through that easy- to- use interface, with a little writing of code,
RStudio let us connect with our data in a transparent way—pull
it in, analyze it, visualize it, fit models to it, make predictions,
validate our models, save our scripts, and easily document which
scripts were important, what they did, and what the results were.

In a nutshell, it let us be real data scientists, with an emphasis on
enabling that gold standard: reproducible research.

With all that RStudio has let us streamline, it still requires that
users know how to code in order to learn from data.

In comes Shiny, the next step in democratization of data science
from the makers of RStudio.

What is Shiny? It is an R package described as “a web appli-
cation framework for R.” In short, Shiny lets those of us who
know how to code create user- friendly interfaces to share with
our friends who would rather not. It comes with some samples
to get you started, and as you would expect for an R package,
and anything from RStudio, it has a great user community for
support and ideas.

OUR FIRST PAF SECTION WEB APPLICATION
Rather than simply tell you how great Shiny is (I promise I’m
not being paid by RStudio for this), I wanted to show you. I’m

using as a guinea pig the newly minted Predictive Analytics and
Futurism (PAF) Newsletter Catalogue. The catalogue is here
https://www.soa.org/sections/pred-analytics-futurism/index-of-paf
-articles.xlsx. I confess I did some non- reproducible editing of
the list in order to make it more fun to play with, so this will
not update seamlessly as new articles are added to the index.
I’ll save that for a future iteration. I have also supplemented the
catalogue with some metadata pulled for more recent articles by
the Society of Actuaries (SOA) staff.

I created a Shiny app to visualize what our section members
have been writing about for the past nine years. I built in three
features—a histogram to display frequencies by author, news-
letter edition, topic, etc.; a word cloud to visualize the relative
frequency of various keywords; and a table to allow sorting,
filtering to a single author or edition, and searching by text
string.

Then, to give my application its first important use, I used the
features to make sure I wasn’t writing a repeat of a prior PAF
Newsletter article.

Using the word cloud (Figure 1), I got a handle on what the
biggest topics have been. Visualization tools certainly haven’t
made a huge splash to date.

Using the search function on the data table (Figures 2 and 3), I
can see there have been no mentions of Shiny or Git (with this
meaning anyway). There are only four mentions of “visual” and
eight of “language.” I’ve put it on my to- do list to go back to
those four articles that mention visuals!

Figure 1
Word Cloud of PAF Article Keywords

26 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Shiny: Another Step Forward in Data Democratization

The bar plot (Figure 4, pg. 27) confirmed that Dave Snell is by
far our most prolific author; the table can help me discover if he
has a particular focus outside of his contributions as our editor.

Could I have found all of these answers in Excel? Absolutely.
Ultimately, that’s where the information came from. I love Excel,

but going forward, I won’t be using it to get those answers. With
this app I’ll be able to more quickly visualize what’s been written
about, when, by whom, and what’s ready for some more attention.
I can share the app with my team so they can brainstorm what
they’d like to add into the PAF dialogue. If I publish the app to
an internal server, I can share it with more senior folks who don’t

Figure 2
Table of PAF Articles

Figure 3
Table of PAF Articles Filtered to Show One Article with “Shiny” Mentioned in Comments

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 27

know the first thing about R, and they can use it to make sugges-
tions. All of us can use it to identify past articles on topics relevant
to our jobs. We’ve democratized the data on the PAF Newsletter.

HOW TO USE THIS APP AT HOME
With just a few steps you can be up and running in Shiny:

1. Install RStudio if you haven’t already.

2. Install the Shiny package in RStudio.

3. Create a new project under File - > new Project, and select
Shiny Web Application.

a. You may or may not choose to create a Git repository.

4. Click Run App.

What you’ll see is a simple interactive application based on Old
Faithful geyser data.

If you want to go a few steps further and run this Shiny app, you
can find it on Milliman’s public GitHub account here: https://
github.com/milliman/SOA_PAF_Section_Newsletter_Catalogue.
The repository contains six key files (plus the standard
README.md, LICENSE.txt, and .gitignore):

1. Keywords.csv. A list of the keywords referenced in the
metadata for the more recent articles

2. PAFCatalogueComplete.csv. An augmented table based
on the PAF catalogue referenced above

3. loaddata.R. An R script that loads the keywords and the
article catalogue

4. server.R. Code for doing analysis and returning a figure
or table

5. ui.R. Code for structuring the user interface

6. SOA_PAF_Section_Newsletter_Catalogue.Rproj. The R
project file that holds it all together

You’ll notice this app contains the same Old Faithful geyser
feature as the default Shiny app. I kept it in the app to show how
easily you can switch to a layout that has a navigation bar to flip
between multiple features.

NEXT STEPS
While newsletter data makes for a useful jumping- off point,
there are clearly more compelling applications for actuaries with
access to large data sets and related business questions. It helps
to start with a question and an idea for what data visualizations
will help you answer it, but you don’t have to come up with all
of the ideas yourself.

Shiny.rstudio.com/gallery is a good place to go to see what other
users are doing with Shiny. It pointed me to the word cloud
as a good option for immediately seeing frequently addressed
topics. It can give you some great ideas for graphs, maps, tables,
dynamic input options and layouts.

If you get really into it and want to share your work, Shinyapps.io
is there for you. For a richer experience, I recommend engaging
with the broader R user community. I recently attended an R
user group meeting in Seattle dedicated solely to sharing web
applications built with Shiny. My team has been building Shiny
apps for years, and I still came away with new ideas.

There is nearly no end to how sophisticated you can go, or how
many data- based insights you can offer those using your appli-
cations. ■

Eileen Burns, FSA, MAAA, is a consulting
actuary with Milliman. She can be contacted at
eileen.burns@milliman.com.

Figure 4
Bar Plot Displaying Distribution of Authorship

475 N. Martingale Road, Suite 600
Schaumburg, Illinois 60173
p: 847.706.3500 f: 847.706.3599
w: www.soa.org

NONPROFIT
ORGANIZATION

U.S. POSTAGE
PAID

SAINT JOSEPH, MI
PERMIT NO. 263

