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Hedging Variable Annuities: 
How O�en Should the Hedging 
Portfolio be Rebalanced?
By Maciej Augustyniak and Mathieu Boudreault

In the last decade, many insurers have implemented dynamic hedging pro-
grams to defend against market risks embedded in their variable annuity (VA) 
blocks of business. At the core of these programs are the so-called Greeks 

which correspond to price sensitivities with respect to various market risks 
such as movements in equity indices, interest rates and volatility. These Greeks 
indicate to the insurer how much to invest in equities, bonds and financial 
derivatives to offset market exposures in its VA contracts. Due to changes in 
market factors, Greeks vary in time and the insurer is therefore required to 
rebalance its hedging portfolio (i.e., adjust its hedging positions) periodically to 
ensure that the hedging strategy is achieving its objective.

When managing a VA hedging program, the choice of the rebalancing frequency 
is an important practical issue because of the high monitoring and trading 
costs that ensue when hedging positions are revised. It is well-known that in a 
Black-Scholes world hedging more frequently reduces the hedging error. In fact, 
groundbreaking work in financial theory showed that this error can theoretically 
be eliminated in a Black-Scholes setting with a continuously rebalanced delta 
hedge. However, in the real world perfect hedging is generally not feasible due 
to sudden price jumps, to market frictions, to the impossibility of trading in con-
tinuous time and to the limited availability of traded assets. Therefore, hedging 
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in real market conditions entails a risk. It would be tempting 
to conclude based on Black-Scholes theory that this risk can 
be reduced with a more frequent rebalancing of the hedging 
portfolio. However, this is not necessarily the case because every 
hedging strategy carried out in the real world is exposed to 
model risk; that is, there is inevitably a discrepancy between the 
insurer’s hedging model used to compute Greeks and the true 
(unknown) financial model or data-generating process. Conse-
quently, adjusting hedging positions too often with the wrong 
model can lead to a larger accumulation of hedging errors than 
if less frequent revisions were made. This issue is especially 
important to investigate in the context of VAs because hedging 
is performed over long-term periods.

The objective of this article is to investigate how the choice of 
the rebalancing frequency in a VA hedging program impacts 
hedging effectiveness. More precisely, we examine the perfor-
mance of daily, weekly, monthly and move-based delta hedging 
strategies for managing the underlying equity risk of a simple 
guaranteed minimum accumulation benefit (GMAB) VA 
indexed to historical S&P 500 returns. This allows us to conduct 
a back-testing exercise and determine what choice of rebalancing 
strategy would have been preferable to use in the past. Overall, 
we find that a monthly rebalanced delta hedging strategy con-
sistently led to the smallest losses when dynamically hedging 
10-year GMAB contracts maturing in the period 1990–2017. 
It must be emphasized that this conclusion is valid with and 
without transaction costs. Therefore, recent empirical evidence 
strongly favors a less frequent rebalancing of the hedging port-
folio and we examine some explanations of this phenomenon.

GMAB CONTRACT AND ASSUMPTIONS
We assume that the insurer sells 10-year VA contracts with a 
GMAB rider. The value of the VA account in time is denoted 
by 
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groundbreaking work in financial theory showed that this error can theoretically be eliminated in a Black-
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GMAB contract and assumptions 
We assume that the insurer sells 10-year VA contracts with a GMAB rider. The value of the VA account in time 
is denoted by {𝐴𝐴௧: ݐ = 0,1, … ,ܶ}, where ݐ is measured in trading days from inception of the contract. Since 
there are approximately 252 trading days in each calendar year, the term-to-maturity of the contract is set to 
ܶ = 2520 days. The VA account is invested in an investment fund, denoted by {ܵ௧: ݐ = 0,1, … ,ܶ} (in our 
hedging experiment, this investment fund will mimic historical returns on the S&P 500 price index). We assume 
an initial investment of 𝐴𝐴଴ = ܵ଴ = 100$. The GMAB rider ensures that the policyholder will be able to recover 
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will be able to recover the greater of the account value  the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max (𝐺𝐺 െ 𝐴𝐴𝑇𝑇 , 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of ߙ = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴௧(252/ߙ) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund ܵ௧ and the VA account 𝐴𝐴௧ at time ݐ (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴௧ = ܵ௧(1 െ ߙ 252Τ )௧. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of ݎ = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by ܮ𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝑇𝑇ܮ = GMAB payoff െ accumulated fees 

= max(𝐺𝐺 െ 𝐴𝐴𝑇𝑇 , 0) െ෍𝐴𝐴௧(ߙ 252Τ )
𝑇𝑇ିଵ

௧ୀ଴
݁௥(𝑇𝑇ି௧) ଶହଶΤ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of ȟ௧ (the Greek 
delta) in the fund ܵ௧ at time ݐ (the computation of ȟ௧ is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in ȟ௧ shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by ܮܪ𝑇𝑇, corresponds to: 

𝑇𝑇ܮܪ =  unhedged loss െ cumulative mark-to-market gains on the hedge 
= 𝑇𝑇ܮ െ 𝑇𝑇ܪ . 

The mark-to-market gain at time ݐ + 1 associated with the delta hedge established at time ݐ is: 

ȟ௧(ܵ௧ାଵ െ ܵ௧݁௥/ଶହଶ). 
The cumulative mark-to-market gains on the hedge, denoted by ܪ𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝑇𝑇ܪ = ෍ȟ௧൫ ௧ܵାଵ െ ܵ௧݁௥ ଶହଶΤ ൯݁௥(𝑇𝑇ି௧ିଵ)/ଶହଶ
𝑇𝑇ିଵ

௧ୀ଴
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
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delta) in the fund ܵ௧ at time ݐ (the computation of ȟ௧ is detailed in the following section). This can be 
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a VA hedging program impacts 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
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the VA contract due to fluctuations in the underlying investment fund ܵ௧. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time ݐ (in the eyes of the insurer), denoted by ௧ܸ, corresponds to: 

௧ܸ = Black-Scholes put price െ expected PV of future fees െ past fees accumulated to time t. 
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equation are a function of Note that the first two terms on the right-hand side of this equation are a function of ܵ௧ (or 𝐴𝐴௧), whereas the 

last term is not. The position ȟ௧ is then defined as the first-order sensitivity of ௧ܸ with respect to a change in ܵ௧: 
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is the formula for the delta of a put option (a document detailing the derivation of ȟ௧ is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio ȟ௧ is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time ݐ, we simply set ȟ௧ = ȟ୲ିଵ. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by ܮܪ𝑇𝑇. The 
goal of our backtest is to compute the realized values of ܮܪ𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio ȟ௧ requires a volatility assumption ߪ௧. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that ߪ௧ is calibrated at time ݐ 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio ȟ௧ changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (ܮܪ𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever ܮܪ𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable ܮܪ𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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insurer. We have not incorporated transaction costs into the variable ܮܪ𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
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is the formula for the delta of a put option (a document detailing the derivation of ȟ௧ is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio ȟ௧ is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time ݐ, we simply set ȟ௧ = ȟ୲ିଵ. 

Data and volatility calibration 
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nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that ߪ௧ is calibrated at time ݐ 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio ȟ௧ changes 
by more than 0.05 in absolute value. 
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contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
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insurer. We have not incorporated transaction costs into the variable ܮܪ𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
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the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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is the formula for the delta of a put option (a document detailing the derivation of ȟ௧ is available on the 
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the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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different calibration methods. 

Results 
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days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio ȟ௧ changes 
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is the formula for the delta of a put option (a document detailing the derivation of ȟ௧ is available on the 
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the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio ȟ௧ requires a volatility assumption ߪ௧. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that ߪ௧ is calibrated at time ݐ 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio ȟ௧ changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (ܮܪ𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever ܮܪ𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable ܮܪ𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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is the formula for the delta of a put option (a document detailing the derivation of ȟ௧ is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
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goal of our backtest is to compute the realized values of ܮܪ𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
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the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
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allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio ȟ௧ requires a volatility assumption ߪ௧. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that ߪ௧ is calibrated at time ݐ 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio ȟ௧ changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (ܮܪ𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever ܮܪ𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable ܮܪ𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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shaded areas in the charts indicate maturities where the VA contract terminated in-the-money (i.e. 𝐴𝐴𝑇𝑇 < 𝐺𝐺). 

For contracts maturing in the period 1970-1990, the daily rebalanced delta hedge led to the smallest hedging 
losses among the strategies considered. However, for contracts maturing after 1990, the tide turned and the 
monthly rebalancing scheme generally resulted in the best performance. The outperformance of this strategy is 
particularly evident for contracts maturing in the last decade. The move-based strategy never surpassed all of 
its competitors and performed particularly poorly during 1990-2000. We experimented with alternative 
threshold levels, but the overall performance of these move-based strategies remained inferior.   

Explanation of results 
The fact that a monthly rebalanced delta hedge displays the best performance over an extended period may at 
first sight seem surprising. After all, in a Black-Scholes setting a more frequent rebalancing leads to a more 
effective hedge. However, this well-known result derived from financial theory assumes that the hedger uses 
the true data-generating model to construct his positions, that is, the hedging strategy is not exposed to model 
risk. 

In the past 50 years, the financial econometrics literature has vastly documented a set of statistical properties 
which are common to a large number of financial series: these are known as stylized facts. They include fat 
tails of the return’s distribution and volatility clustering, among others (see Cont, 2001), and strongly contradict 
the assumption underlying the Black-Scholes model that financial assets follow geometric Brownian motions 
(i.e. returns are independent and identically distributed according to a normal distribution). Therefore, a Black-
Scholes delta hedge in the real world is exposed to a large amount of model risk and there is no guarantee that 
conclusions derived in the idealized Black-Scholes setting will continue to hold in reality.  

Aggregational Gaussianity (see Cont, 2001) is a stylized fact of financial data that stipulates that as one 
increases the time scale over which returns are calculated, their distribution looks more and more like a normal 
distribution. In particular, monthly returns tend to conform better to the Gaussian hypothesis than daily 
returns. One way to illustrate this statistically is to compare the kurtosis of daily and monthly returns (see also 
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delta hedge in the real world is exposed to a large amount of 
model risk and there is no guarantee that conclusions derived 
in the idealized Black-Scholes setting will continue to hold in 
reality.

Aggregational Gaussianity (see Cont., 2001) is a stylized fact 
of financial data that stipulates that as one increases the time 
scale over which returns are calculated, their distribution looks 
more and more like a normal distribution. In particular, monthly 
returns tend to conform better to the Gaussian hypothesis than 
daily returns. One way to illustrate this statistically is to com-
pare the kurtosis of daily and monthly returns (see also Table 
1 of Boudreault, 2013). The kurtosis is a statistical measure of 
whether the data are heavy-tailed or light-tailed; data sets with 
high kurtosis tend to have heavy tails (data conforming to a 
Gaussian assumption have a kurtosis of three). Over the period 
1995–2005, the kurtosis of S&P 500 daily returns is 6.1 versus 
3.4 for monthly returns, whereas over the period 2007–2017, 
these numbers are 13.5 and 5.7, respectively. Consequently, a 
monthly Black-Scholes delta hedge is generally exposed to less 
model risk than a daily hedge.

A further reason that is perhaps more vital in explaining the 
better performance of the monthly hedge for contracts matur-
ing after 1990 relates to the fact that S&P 500 daily returns 
exhibited from that time downward trending negative autocor-
relations at short lags. For instance, during the 10-year period 
2007–2017, the autocorrelations of S&P 500 daily returns at 
lags 1 and 2 were -10 percent and -6 percent, respectively. Such 
negative autocorrelations, although small, contribute to reduc-
ing the noise and volatility of aggregated returns.

Figure 2 illustrates the annualized realized volatilities of daily, 
weekly and monthly returns computed over rolling periods of 
10 years (the horizontal axis indicates the date when the 10-year 
period ends). Note that daily volatilities are based on 2520 daily 
returns, whereas monthly volatilities are based on 120 returns 
constructed by aggregating daily returns over periods of 21 
trading days. A monthly return therefore does not necessarily 
refer to the return in a calendar month.

We observe that for 10-year periods ending after 1990, the 
annualized volatility of monthly returns is below that of daily 
and weekly returns. This is a direct consequence of negative 
autocorrelations observed in daily returns. In fact, it can be 
shown (see Campbell et al., 1997, chapter 2) that the ratio of the 
annualized variance of h-period aggregated returns to one-pe-
riod returns is theoretically equal to:

where
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On average, the turnover for the 
daily rebalancing strategy was 
four times greater than the one 
for the monthly strategy. ... 

strategy was exposed to returns exhibiting less noise and vola-
tility. Moreover, the distribution of these returns was closer to 
the normal due to aggregational Gaussianity which implies a 
smaller degree of model risk in the hedging strategy. This also 
explains the underperformance of move-based strategies as they 
require more frequent rebalancing in periods of higher volatil-
ity/kurtosis (i.e., when returns further deviate from normality).

IMPACT OF TRANSACTION COSTS
The accumulated value of transaction costs to maturity can be 
taken as approximately proportional to the total turnover in the 
hedging position defined as:

Impact of transaction costs 
The accumulated value of transaction costs to maturity can be taken as approximately proportional to the total 
turnover in the hedging position defined as: 

total turnover in the hedging position = ෍ܵ௧|ȟ௧ െ ȟ௧ିଵ|݁௥(𝑇𝑇ି௧)
𝑇𝑇ିଵ

௧ୀଵ
. 

On average, the turnover for the daily rebalancing strategy was four times greater than the one for the 
monthly strategy, which implies that transactions costs would be expected to be four times greater as well. 
Assuming that these costs are 0.25% times the turnover in the hedging position, the margin by which the daily 
strategy performed better than the monthly one for contracts maturing before 1990 is almost completely 
erased by trading frictions. Therefore, after accounting for transactions costs, there are essentially no 10-year 
periods in our hedging experiment where a daily rebalancing strategy performed significantly better than the 
others. 

Finally, we note that the ratio of the turnover between the move-based and monthly strategies fluctuated 
between 0.5 and 1.5, which entails that the move-based method sometimes required less frequent trading 
than the monthly rebalancing scheme. However, whenever it involved less transaction costs, its performance 
still remained inferior to the monthly strategy. 

Conclusion 
Based on S&P 500 return data over the period 1960-2017, we have provided empirical evidence suggesting that 
hedging effectiveness may be improved by rebalancing the hedging portfolio less frequently than on a daily 
time scale. This conclusion emerges from three observations: (1) returns on larger time scales such as monthly 
are closer to being normally distributed than daily returns; this stylized fact known as aggregational Gaussianity 
implies that a Black-Scholes hedging strategy is exposed to less model risk at larger time scales, (2) negative 
autocorrelations in daily returns at short lags were observed in our data set; they imply some level of short-
term mean reversion which contributes to reducing noise and volatility in aggregated returns, and (3) a more 
frequent rebalancing of the hedging portfolio entails larger transaction costs. 
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On average, the turnover for the daily rebalancing strategy was 
four times greater than the one for the monthly strategy, which 
implies that transactions costs would be expected to be four 
times greater as well. Assuming that these costs are 0.25 percent 
times the turnover in the hedging position, the margin by which 
the daily strategy performed better than the monthly one for 
contracts maturing before 1990 is almost completely erased by 
trading frictions. Therefore, after accounting for transactions 
costs, there are essentially no 10-year periods in our hedging 
experiment where a daily rebalancing strategy performed sig-
nificantly better than the others.

Finally, we note that the ratio of the turnover between the 
move-based and monthly strategies fluctuated between 0.5 
and 1.5, which entails that the move-based method sometimes 
required less frequent trading than the monthly rebalancing 
scheme. However, whenever it involved less transaction costs, 
its performance still remained inferior to the monthly strategy.

CONCLUSION
Based on S&P 500 return data over the period 1960–2017, 
we have provided empirical evidence suggesting that hedging 
effectiveness may be improved by rebalancing the hedging port-
folio less frequently than on a daily time scale. This conclusion 
emerges from three observations: (1) returns on larger time 
scales such as monthly are closer to being normally distributed 
than daily returns; this stylized fact known as aggregational 
Gaussianity implies that a Black-Scholes hedging strategy is 
exposed to less model risk at larger time scales, (2) negative 
autocorrelations in daily returns at short lags were observed in 
our data set; they imply some level of short-term mean reversion 
which contributes to reducing noise and volatility in aggregated 
returns, and (3) a more frequent rebalancing of the hedging 
portfolio entails larger transaction costs.  
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Chairperson’s Corner
By Kelly Featherstone

“When I grow up I want to be an actuary, an artist and a 
queen. …” I have a young daughter at home and I love the 
enthusiasm and the infinite possibilities that she sees in 

the world around her. Yet while I hear her dreaming about the 
future I can’t help but wonder if anyone can imagine what the 
world will be like when she grows up and what being an actuary 
will mean when she enters adulthood. The pace of technolog-
ical change is accelerating at a dramatic rate—machines are 
replacing many manual jobs and are even learning to do analy-
sis faster and better than humans can program them. However, 
periods of dramatic technological change have happened in 
the past and the types of human employment have changed 
rather than be eliminated altogether. In the face of Big Data, 
predictive analytics and machine learning, actuaries need 
to continually evolve and reaffirm our position as leaders in 
measuring and managing risk to improve financial outcomes. 
Thus, positioning ourselves as professionals who provide solu-
tions to complex problems.

I find the fields of predictive analytics and machine learning 
immensely fascinating, but also more than a little intimidating 
as someone who went through the educational process quite a 
few years ago. Several large asset management firms are begin-
ning to launch ETFs curated by computers, an incremental shift 
for those companies who already heavily utilize quantitative 
investment programs. But I am not afraid of being replaced by 
robots, at least not yet, because investing is every bit as much an 
art as it is a science and the world of investments continues to 
increase in complexity.

At the time of writing, we are in the second longest bull mar-
ket in history. However, many central banks are beginning to 
raise interest rates and central bank balance sheets are expected 
to gradually shrink. This bull market may age gracefully and 
extend to become the longest bull market on record, or perhaps 
the tides may turn soon. Amidst rapid technological change 
and across market environments, the Investment Section is 

responsible for providing relevant, timely investment content 
for the actuarial profession and we are excited about what we 
have planned in 2018 to help members navigate whatever mar-
kets have in store.

In 2016, you may have heard about the Section Council’s Dou-
ble for Five strategic initiative to double the value of section 
membership each year for a period of at least five years. Since 
then we have increased the number of webcasts that we have 
sponsored to six per year and brought in an exciting keynote 
speaker for our 2017 Investment Symposium. In 2018, we will 
continue to find ways to bring value to our Section members 
and the general actuarial profession to help actuaries remain 
relevant in an evolving investment environment. I can’t think of 
an actuarial job that doesn’t interact in some way with financial 
markets either directly or indirectly and the Investment Section 
is increasing our focus on providing professional development 
investment content to actuaries not practicing directly in the 
investment space.

As chair of the Investment Section, I encourage you to be a part 
of the conversation—volunteer, attend a webcast or perhaps 
attend the 2018 Investment Symposium being held March 8, 
2018, in New York City. We would love to hear from you, please 
contact myself or David Schraub (dschraub@soa.org) if you have 
any questions or comments.  

Kelly Featherstone, FSA, CFA, ACIA, is director, Client 
Relations for Alberta Investment Management 
Corporation and chair of the Investment 
Section Council. She can be contacted at kelly.
featherstone@aimco.alberta.ca.
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Can Large Pension 
Funds Use Derivatives to 
E¨ectively Manage Risk 
and Enhance Investment 
Performance—Case 
Study: Key Rate Duration 
Adjustment
By David Gibbs

This paper was originally presented in January 2017 
shortly after the U.S. General Elections. We decided to 
keep the data as-is from that time (vs. refreshing it) for a 

few reasons: (1) the lessons to be taken from that time are just as 
relevant today, (2) the rates market has not seen much material 
change since that time and (3) the examples can provide a better 
illustration, from that time period than later in the same year. 
The election results, especially for President, resulted in 
a short-term spike in volatility as well as a significant 
move higher in U.S. interest rates. The move in rates was 
great enough (approximately 50.0 bps in 10-year equiva-
lents) to get the attention of risk managers and risk traders. 

Since the initial move higher in rates (to roughly 2.63 per-
cent in UST 10-year in mid-December 2016) yields have 
traded lower reaching an intra year low of approximately 2.04 
percent in early September 2017. Currently, 10-year yields 
are around 2.40 percent close to the mid-range for the year. 

Additionally, from November 2016 to November 2017 the 
average duration and rough composition of the Citi World 
Government Bond Index (WGBI) is basically unchanged. 

Likewise, the CTD considerations, basis point values, and resulting hedge 
ratios of the CME Group U.S. Treasury futures contracts from Novem-
ber 2016 to present (adjusting for contract month) are very similar. 

Due to all these factors, the concepts and results pre-
sented in the paper are as valid today as when originally 
written. Given the magnitude of the initial reaction to the election, 

the trading activity during that time frame provided an excellent lab-
oratory to test the key rate duration adjustment with real market data. 

When traders and risk managers evaluate a security or portfo-
lio’s sensitivity to changes in interest rates, they usually refer to 
two measurements: 1) basis point value, sometimes expressed 
as BPV, VBP and DV01, which measures the financial change 
to a 0.01 percent change in yield; or 2) modified duration, 
sometimes referred to as duration, which expresses the financial 
change expressed in percentage change to a 1 percent change in 
yield. For example, a security could have a basis point value of 
$646 per million and a modified duration of 6.501 years. If the 
yield to maturity of this security rose from 2.36 percent to 2.37 
percent it is said to have gone up by 1 basis point (0.01 percent) 
and the financial change to the holder would be a loss of $646 
per million. If that same security’s yield rose to 3.36 percent, or 
1.00 percent (100 basis points) the security’s financial change 
would be a loss of approximately 6.501 percent in value.

Most portfolio managers (PM) tend to evaluate their exposure 
to interest rate risk using duration. Additionally, they are fre-
quently evaluated by how well or poorly their management 
of the fixed income portfolio performs versus a recognized 
benchmark or index. PMs routinely monitor and adjust their 
portfolio’s target duration either to maintain an alignment to a 
benchmark or for tactical trading reasons.

One consequence of the long bull market in interest rates is the 
steady extension of portfolio and benchmark bond index dura-
tion. Even if positions are left unchanged the gradual and steady 
rise in bond prices resulting from historically low global interest 
rates causes the duration of portfolios and benchmark indices to 
“creep” out to higher levels. (see Figure 1, page 10)
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Figure 1 shows the gradual decline in average yield and increas-
ing level of duration of the Barclays Aggregate Bond Index, one 
of the most referenced benchmarks for �xed income portfolio 
managers. Beginning in 2009 with interest rates moving sharply 
lower (blue line) notice the diverging increase in duration (red 
line). One consequence of higher duration portfolios in an his-
torically low interest rate environment is the “break-even” rate, 
or the interest rate at which the portfolio produces zero return, 
moves lower and closer to current interest rate levels. For 
example, one global bond benchmark is the Citi World Govern-
ment Bond Index (WGBI). According to the November 2016 
report Citi marks the North American (largely USD) average 
yield-to-maturity of the index at 1.79 percent and its duration 
at 6.10 years. The break-even rate (B/E) is de�ned as YTM (in 
basis points) divided by the duration (in years). In this example it 
would look like this: B/E = 179 / 6.10 = 29.3 bps.

In other words if interest rates were to rise by 29.3 bps over 
the next 12 months, the portfolio’s return for the year would be 
zero. Any interest rate move higher than 29.3 bps would result 
in a negative annual return on the portfolio.

PMs have many ways to modify their portfolios to adjust the tar-
get duration. They can buy and sell securities and move weight-
ings up or down the maturity curve. This takes time and can be 
expensive given transaction and market impact costs. An alterna-
tive is to use US Treasury futures and options traded and cleared 

at CME Group to effectively adjust key rate duration (KRD) 
targets across the entire portfolio.

CASE STUDY #1: KEY RATE DURATION 
ADJUSTMENT USING FUTURES
Assume you are a portfolio manager (PM) with $10 Billion ex-
posure to U.S. interest rates. The portfolio is diversi�ed across 
the yield curve according to the maturity allocations of the 
WGBI.

If provided with the current portfolio and the new benchmark 
weightings, can the PM use CME Group U.S. Treasury futures to 
adjust the portfolio closer to the benchmark, or some other tactical 
duration target?

Table 1 (page 11) shows the current portfolio. Table 2 (page 11)
shows the targeted duration of the benchmark and the change 
needed to the portfolio. 

In order to determine the proper hedge ratio per futures contract 
we need more information about the values attributed to CME 
Group’s U.S. Treasury futures. (see Table 3, page 11)

Now that we have more information about the futures 
contracts we can begin to calculate our key rate duration (KRD) 
adjustment bringing our current portfolio into closer alignment 
to the desired benchmark.

Figure 1
Barclays Aggregate: Yield and Duration
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Typically a futures hedge ratio (HR) is de�ned as the value at-
risk divided by the value of the futures contract. In this example 
the value at-risk is the individual tranche Aggregate DV01 (basis 
point value or dollar value of a 0.01 percent) shown in the last 
column of Table 1. The values for each futures contract are shown 
in the last column of Table 3. If we were constructing a simple HR 
with futures the equation might look like this:

HedgeRatio (HR) = BPVrisk ÷ BPVcontract.

But in this exercise, we take an additional step of adjusting the 
duration target for each tranche of the portfolio to bring it into 
alignment with the benchmark. This requires adding a duration 
adjustment factor to our simple hedge ratio equation. The dura-
tion adjustment factor can be expressed as:

Duration adjustment (DA) = (Dtarget – Dcurrent) ÷ Dcurrent.

We will include the DA factor in the adjusted hedge ratio calcu-
lation for each tranche. (see Table 4, page 12)

Table 1
Theoretical Portfolio

Table 2
Benchmark or Target Portfolio Durations

Table 3
Futures Contract BPVs Based on CTD Issue Analysis

Tranche Yield Modified Duration 
(years)

DV01 (per $1mm face 
value)

Position (in $1mm 
face value) Aggregate DV01

1-3 years 0.591% 2.16 $218.80 2,375 $519,650 

3-5 years 0.905% 4.51 $457.10 1,950 $891,345 

5-7 years 1.188% 6.37 $652.60 1,325 $864,695 

7-10 years 1.374% 8.45 $916.30 1,375 $1,259,912 

10+ years 2.042% 18.24 $2,222.00 2,975 $6,610,450 

8.82 $10 billion $10,146,052 

Tranche Benchmark Duration Duration Adjustment 

1-3 years 1.92 -0.111

3-5 years 3.85 -0.146

5-7 years 5.66 -0.111

7-10 years 7.91 -0.064

10+ years 16.24 -0.110

7.81
Source: Citigroup Index LLC.  Data as of 11/30/2016

Theoretical data

CME Group CTD Analysis

U.S. Treasury Contract CTD Issue (Dec-2016 contracts) Modified Duration (CTD) DV01 (per contract $100K)

2-Year 1-3/8% 9/30/2018 1.80 $39.15*

5-Year 1-1/8% 2/28/2021 4.11 $48.64 

10-Year 2-1/2% 8/15/2023 6.10 $76.75 

Ultra 10-Year 1-5/8% 5/15/2026 8.66 $116.18 

Long Bond 5% 5/15/2037 13.89 $209.89 

Ultra Bond 3-1/8% 2/15/2042 17.22 $277.38 
* adjusted for 2-Year Note $200,000 notional amount
Source Bloomberg, and CME Group
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Now, with all inputs available, we calculate our adjusted hedge 
ratio per tranche (see Table 5) as: 

HR = (BPVrisk ÷ BPVcontract) x DA 

Simply apply this calculation for each tranche and round to a 
whole number. Notice the results in the �fth column of Table 
5. Each result is a negative number. This shows us the duration 
is being adjusted lower from the current level to the new lower 
target level. In this case the negative number also denotes selling 
of futures contracts. For example, to adjust the one to three year 
tranche the PM would sell 1,473 U.S. Treasury Two-Year Note 
(ZTZ6) contracts. By placing all of these hedge positions versus 
the physical positions in the portfolio, the PM effectively reduces 
the portfolio’s duration to the benchmark or new target levels. 
Also, the same approach can be used to express tactical views on 
interest rates. In this example we reduced the portfolio’s duration 
by selling U.S. Treasury futures. We could just as easily added du-
ration by buying futures contracts if that �ts with a tactical trading 
decision.

Referring to Figure 2 (page 13) one can see a key bene�t of 
using CME Group U.S Treasury futures as a duration adjust-
ment tool is the deep pool of actionable liquidity available to 
traders, even during non-U.S. trading hours. The duration 
adjustment hedge ratios above are of a scale easily execut-
ed on CME Globex even during Asian and European trading 
hours. Additional bene�ts of this type of overlay strategy in-

clude ease of execution and lower transaction costs of futures 
over physical bonds.

CASE STUDY #1 (CONTINUED): MARKET SIMULATION
What happens to our model portfolio under a rising interest 
rate environment?

Tables 1 and 5 show the unhedged portfolio and suggested 
hedge ratios per tranche to adjust the duration lower, in line 
with targeted duration of the benchmark.

The price/yield movements from Oct. 14 to Nov. 23, 2016, 
provide a good laboratory to test our duration adjustment 
strategy. This time frame overlaps the U.S. general election 
held on Nov. 8, 2016. The U.S. election, especially for pres-
ident, was highly contested and the outcome was unclear up 
to election day despite most media prognosticators pointing 
decidedly in one direction. When it became clear the outcome 
was different than expected the markets reacted swiftly with 
big swings in prices and volatility. U.S. Treasury futures sold 
off as market expectations for higher yield drove Asian-trad-
ing zone (U.S. nighttime) volumes to new record highs. The 
selloff in Treasuries continued over the next couple of weeks.

Let’s consider the results. To measure the impact let’s use the on-the-
run (OTR) 2-, 5-, 7-, 10-, and 30-year U.S. Treasuries as surrogates 

Table 4
Portfolio Duration Adjustments by Tranche

Table 5
Futures Contract Hedge Ratios by Tranche

Tranche Dcurrent Dtarget Dadjustment Aggregate DV01

1-3 years 2.16 1.91 -0.111 $519,650 

3-5 years 4.51 3.85 -0.146 $891,345 

5-7 years 6.37 5.66 -0.111 $864,695 

7-10 years 8.45 7.91 -0.064 $1,259,912 

10+ years 18.24 16.24 -0.110 $6,610,450 

8.82 7.81 $10,146,052 

Tranche BPV risk BPV contract DA factor HR = (Risk ÷ contract) 
x DA

Contract (Globex 
code)

1-3 years $519,650 $39.15 -0.111 -1,473 ZT

3-5 years $891,345 $48.64 -0.146 -2,576 ZF

5-7 years $864,695 $76.75 -0.111 -1,251 ZN

7-10 years $1,259,912 $116.18 -0.064 -694 TN

10+ years $6,610,450 $277.38 -0.110 -2,621 ZB
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for our respective portfolio tranches. Then compare the results of 
our model portfolio with and without the futures key rate duration  
adjustment. (see Table 6)

If we look at just the 10-year OTR (seven to 10 years tranche) 
price/yield move we see yields rose from 1.799 percent to 2.369 
percent or a 57.0 bps rise over this short period. The portfo-
lio’s total loss is consistent with expectations given an average 

duration of 8.82 years and an average rate increase of roughly 
50.0 bps. What about the futures duration adjustment hedge? 
(see Table 7)

($443,527,344) + $61,050,343 = ($382,447,001) net loss. 

This is reasonable considering the $382.5 million dollar 
net loss represents roughly a 7.64 year duration (versus a 

Figure 2
Q416 Treasury Futures Hourly ADV

Table 6
Unhedged Portfolio Performance

Table 7
Futures Hedge Overlay Performance

Source: CME Group

Tranche OTR
Treasury 

14-Oct
Price/yield

23-Nov
Price / yield

Change
P&L

1-3  years 0.75% 9/30/18 99-26+ / 0.837% 99-11 / 1.108% -($11,503,906)

3-5 years 1.125% 9/30/21 99-07 / 1.287% 96-21 / 1.851% -($49,968,750)

5-7 years 1.375% 9/30/23 98-19 / 1.591% 95-01 / 2.158% -($47,203,125)

7-10 years 1.50% 8/15/26 97-10 / 1.799% 92-16 / 2.369% -($66,171,875)

10+ years 2.25% 8/15/46 93-19 / 2.559% 84-18 / 3.042% -($268,679,688)

Unadjusted portfolio Total = ($443,527,344)

Tranche Contract
(Globex code)

HR = (Risk ÷ 
contract) x DA

14-Oct
Price

23-Nov
Price

Change
P&L

1-3 years ZT -1,473 109-01 108-19+ $5,753,906 

3-5 years ZF -2,576 120-26+ 118-11 $6,399,750 

5-7 years ZN -1,251 129-27+ 125-11+ $5,629,500 

7-10 years TN -694 141-29+ 135-01+ $4,771,250 

10+ years ZB -2,621 176-19 161-29 $38,495,937 

Total = $61,050,343 
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target of 7.81 years) resulting from an approximately 50.0 
bps rise in rates. The futures hedge effectively reduced the 
portfolio’s duration by one year, reducing portfolio losses by 
$61 million.

How much capital was required to open and maintain the 
futures adjustment hedge? Exchange operators like CME 
Group require performance bond or “margins” to secure and 
maintain open futures positions. (see Table 8)

The total capital needed to open the  futures duration adjust-
ment hedge was a little more than $23 million. If rates fell 
and the hedge positions remained in place additional funds 
might be required to keep the futures positions in place. 
The additional funds are the result of variation margin, 
required as the market moves against the open positions. 

As demonstrated, U.S. Treasury futures can be used to 
effectively adjust a large bond portfolio’s duration to align with 
a benchmark or for tactical trading reasons. CME Group U.S. 
Treasury futures trade actively 23-hours per trading day giving 
risk managers access to liquidity even during non-U.S. trading 
hours. Because market-shaping events can occur at any time of 
the global 24-hour day, it is important to have access to liquidity 
around the clock.

Is this the only way to hedge or modify an existing position sub-
ject to interest rate risk? No. Let’s now consider options on U.S. 
Treasury futures and two simple strategies to help manage rising 
interest rate risk.

CASE STUDY #2: HEDGING INTEREST RATE 
RISK WITH OPTIONS, LONG SINGLE PUT
Let’s go back to the same market conditions in Case #1, but 
instead of utilizing only futures to adjust KRD for the portfo-
lio we will use some options on U.S. Treasury futures available 
through CME Group.

Options are attractive to both risk managers and traders because 
unlike futures which respond to changes in price in a linear fash-
ion, options exhibit an asymmetrical risk/reward profile. That is, 
if one is buying options one’s risk is limited to the premium paid 
but the potential rewards are theoretically endless. Due to the 
dynamic aspects of how long option positions respond to favor-
able price movements in the underlying, their value increases at 
an increasing rate much like convexity in bonds. Price volatility 
contributes to an option’s premium so when market volatility 
rises it has a favorable impact on a long options position.

For illustrative purposes we will take one tranche of our portfo-
lio and consider the effects of substituting an options position in 
place of futures. Looking at �ve to seven year tranche, we previ-
ously adjusted the target duration using 10-year futures (Globex 
symbol ZN). We calculated a hedge ratio of selling 1,251 con-
tracts to adjust the portfolio’s KRD lower to help manage the 
risk of rising interest rates. Now, assume the PM is interested 
in buying rising rate protection using out-the-money (O-T-M) 
puts on U.S. Treasury 10-year notes. Our PM targets a rate rise 
of 50.0 bps from current (Oct. 14) levels as a risk target.

The �rst step is to identify a futures price level that roughly 
corresponds with a 50.0 bps move in rates. Understanding how 

Table 8
Initial Futures Contract Margin Requirement

Options are attractive to both 
risk managers and traders 
because unlike futures which 
respond to changes in price in 
a linear fashion, options exhibit 
an asymmetrical risk/reward 
profile.

Contract (Globex code) HR = (Risk ÷ contract) x DA Initial margin Per contract* Initial capital requirement

ZT -1,473 $660 $972,180 

ZF -2,576 $935 $2,408,560 

ZN -1,251 $1,595 $1,995,345 

TN -694 $2,420 $1,679,480 

ZB -2,621 $6,160 $16,145,360 

Total = $23,200,925 
*Margins set by and subject to change without notice by CME Clearing.
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Table 9
Single Put Option Analysis

Table 10
Single Put Option Hedge Analysis

CME Group U.S. Treasury futures price is essential to this step. 
Normally we would consult a pricing model or spreadsheet and 
input the appropriate changes to solve for the revised price level. 
There are software and market data providers, like Bloomberg 
for example, that have analytical tools to provide this function. 
Using a CME Group model we calculate a December 10-year 
note futures price of 125-25. The nearest O-T-M strike, also for 
December expiry (on Nov. 25, 2016) is the 126-00 put.

Looking into the December 10-year note 126 put on Oct. 14, we 
�nd the information illustrated in Table 9.

Taking the DEC 126 put delta and our previously identi�ed 
hedge ratio of futures contracts we can calculate the number of 
puts to buy.

Put amount = HR-in futures contracts/delta = 1,251/0.05 = 
25,020 or buy 25,020 December 126 10-year note puts at .03, 
or 3-1/64ths.

Each 1/64th is equal to $15.625, therefore the total cost and 
capital outlay is 25,020 x 3 x 15.625 = $1,172,813. Buying, or 
going long, an option (put or call) requires full payment at time 
of execution. It also de�nes the total risk of the position. For a 
long option holder the risk is limited to the total premium paid.

CASE STUDY #2 (CONTINUED): MARKET SIMULATION
From Oct. 14 to Nov. 23, 2016, the price of the Decem-
ber 10-year note futures (Globex code ZNZ6) fell from 
129-27+ to 125-11+. How did the DEC 126 put per-
form? Table 10 illustrates the answer to that question. 

The price of the ZNZ6 futures fell far enough to place the DEC 
126 Puts from O-T-M to in-the-money (I-T-M) and as a re-
sult greatly increased their value. As you can see from the Table 

10, not only did the premium of the option increase, so did its 
delta, gamma, theta, and volatility. The only measurement that 
decreased was the vega. Without going deeply into options pric-
ing theory, what needs highlighting here is the fact that a long 
options position conveys convexity. In other words, because this 
was a long put option position and futures prices moved lower, 
the magnitude of change in the delta increased with each down-
tick in price, which contributed to the premium moving higher. 
Futures contracts exhibit a delta of 1.0, which means their prices 
change in a linear fashion. One of the bene�ts of a long option 
position is positive gamma, or convexity. The put position in-
creased in value more than the short futures position.

To determine the pro�t & loss (P&L) of the option overlay, 
take the amount (25,020) and multiply the value of each option 
($15.625) multiplied by the net change (41-1/64s)

P&L = 25,020 x 15.625 x 41 = $16,028,438

Let’s compare the single put overlay to the futures overlay. 

Table 11
Single Put Option Versus Futures

Single Put Futures

Result $16,028,438 $5,629,500 

Capital outlay $1,172,813 $1,995,345 

While the results heavily favor the single option strategy, it should 
be noted that had the price of ZNZ6 futures fallen to only 126-01, 
the put option would have been O-T-M and unless offset or rolled 
forward, could have expired worthless. Both futures and options on 
futures have pluses and minuses regarding their usefulness as hedg-
ing tools. Let’s consider another simple options strategy that could 
be used in this capacity.

Contract (Globex code) HR = (Risk ÷ contract) x DA Initial margin Per contract* Initial capital requirement

ZT -1,473 $660 $972,180 

ZF -2,576 $935 $2,408,560 

ZN -1,251 $1,595 $1,995,345 

TN -694 $2,420 $1,679,480 

ZB -2,621 $6,160 $16,145,360 

Total = $23,200,925 
*Margins set by and subject to change without notice by CME Clearing.

Option Price Delta Gamma Theta Vega Volatility

Z126 Put 3 -0.05 0.0420 -0.0023 0.0436 5.36%
Data:  Quikstrike and CME Group

Option/Date Price Delta Gamma Theta Vega Volatility

Z126P-10/14 3 -0.05 0.0420 -0.0023 0.0436 5.36%

Z126P-11/23 44 -0.85 0.3787 -0.0371 0.0208 6.75%

Change 41

Data:  Quikstrike and CME Group
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CASE STUDY #3: HEDGING INTEREST RATE 
RISK WITH OPTIONS, PUT SPREAD
Another strategy that may provide effective rising rate risk 
coverage is a long put spread. A spread is a simultaneous pur-
chase and sale of two options with different strikes, differ-
ent months or different types. The combination of possible 
spreads is almost endless. We will limit this example to a sim-
ple long put spread. Using the same risk target as the previous 
example (125-25), we want to “bracket” the target by buying 
a higher strike put and selling a lower strike put in equiva-
lent amounts. Since 125-25 is between 125-00 and 127-00, 
we will buy the DEC 127 puts and sell the DEC 125 puts. 
How do we determine how many to buy/sell? (see Table 12) 

Since this is a spread position we are concerned with net effects 
of our initial position. The spread is a net debit, which means we 
have to pay to buy it. It also means our losses are limited to our 

net premium paid. The delta is net negative which implies the 
spread should increase in value if the underlying futures price 
goes down. It has positive net gamma suggesting it exhibits con-
vexity and that the delta will increase as the underlying’s price 
moves lower. It has a small degree of time decay and a slight 
degree of positive sensitivity to higher volatility. How many 
spreads to buy? Same ratio calculation as the single option:

Put spread amount = hr-in futures contracts/net delta = 
1,251/0.06 = 20,850, therefore buy 20,850 DEC 127 puts and 
sell 20,850 DEC 125 puts. Using the same market dates and 
price data as before, how did the put spread perform? (see 
Table 13)

CASE STUDY #3 (CONTINUED): MARKET SIMULATION
As you can see from table 13, the nearer O-T-M 127 puts out 
performed the far O-T-M 125 puts. The futures price level of 
125-11+ on Nov. 23 was in between the two strikes creating 
good pro�t potential. Let’s review the numbers.

P&L = 20,850 x 15.625 x 99 = $32,252,344

Why did the put spread outperform the single put? The gamma 
on the 127 put was greater than the gamma of the 126 put. 
Additionally, the short 125 put position contributed by reducing 
the initial cost and also lowering the net delta. The fact that the 
price of the underlying futures contract ended above the 125 

Table 12
Put Option Spread Analysis

Table 13
Put Option Spread Hedge Analysis

Table 14
Options Versus Futures

A spread is a simultaneous 
purchase and sale of two 
options with di¨erent strikes, 
di¨erent months or di¨erent 
types. 

Option Price Delta Gamma Theta Vega Volatility

Z127P-10/14 6 -0.09 0.0752 -0.0043 0.0723 5.00%

Z125P-11/23 2 -0.03 0.0258 -0.0022 0.0301 6.03%

Net 4 -0.06 0.0494 -0.0021 0.0422

Option 14-Oct 23-Nov Change

Z127 Put 6 105 99

Z125 Put 2 6 4

Net 4 99

Put Spread Single Put Futures

Result $32,252,344 $16,028,438 $5,629,500 

Capital outlay* $1,303,125 $1,172,813 $1,995,345 
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strike reduced the drag of the short put side of the spread. (see 
Table 14)

SUMMARY
There are clear differences among these simple strategies 
and many more that could be considered. We have limited 
our review to these few to simply illustrate the effective-
ness of a KRD adjustment and compare the dynamic 
aspects of long options positions to an equivalent straight 
futures hedge. What is important to remember is there is 
no “silver bullet,” or single risk overlay strategy that works 
perfectly at all times. Futures and options on futures are 
very efficient risk management tools. Additionally, liquidity 
in CME Group U.S. Treasury futures and options is deep 
and bid/offer spreads very tight, even during non U.S. 
trading hours. In order to apply the best risk management 
or hedging strategy it is essential to understand and quan-
tify the underlying price risk. It is equally important to 

understand the pricing mechanism and trading behavior of 
the derivative products used to offset that risk. Global inter-
est rates are near record low levels, with correspondingly 
high levels of duration in institutional portfolios and bond 
index benchmarks, the break-even levels for fixed income 
risk managers is very close to current market rates. It will 
only take a small rise in rates to tip annualized investment 
returns negative. Transaction and capital charges favor the 
use of exchange traded derivatives (futures)  as a duration 
adjustment tool. Their effective use can help large institu-
tional asset managers manage risk and enhance returns.  

David Gibbs is director, Market Development for 
CME Group. He can be contacted at David.gibbs@
cmegroup.com.

Sta�  Corner by David Schraub
Volunteers are the true engine of the Society of Actuaries (SOA). In this new column, however, we will shed some light on SOA 
staff who work in the shadows to support the section; rest assured this is not comparable to the movie “Hidden Figures.”

Of French descent (and accent) with a German last name, I am a staff actuary at the SOA and guide the volunteers’ efforts in the 
investment space. I fi rst studied and worked as an actuary in France for a few years before moving to the U.S. where I worked 
both as a consultant and in-house on risk management in the life/annuity space. I was exposed to investment, as it is the largest 
risk for a life insurance company. I did some volunteer work for the SOA, which included a term on a section council, prior to 
working for the SOA fi ve years ago.

Supporting a section means a wide range of activities from peer reviewing newsletter articles, playing the devil’s advocate on 
research projects, suggesting speakers and providing feedback on draft presentations, or liaising with various internal SOA 
stakeholders and/or with our section’s friends to move a project forward. I am deeply involved in the Investment Symposium, 
our yearly fl agship event. Since I am also supporting other sections, I can leverage ideas seen elsewhere and suggest them to the 
Investment Section Council.

My view of the intersect between investments and actuarial function is multifaceted. Not all investment experts are actuaries. For 
this sub-group, the education and research performed by the SOA is complemented by education and research done by other 
organizations, either not-for-profi t associations’ or for-profi t organizations’ thought leadership departments. The SOA research 
and continuing education arms are working to ensure our offering is relevant, unique and of good quality for this target audience; 
the Investment Symposium is a clear example of this high-quality, relevant, continuing education product. Another role per-
formed by the section is to support the liability side in performing valuation, pricing and analysis work by providing continuing 
education content in both pension and insurance. A clear example of this is the series of sessions sponsored by the Investment 
Section for the SOA Annual Meeting and Exhibit.

But the section activities are not limited to work and we also have fun with a few games; including a crossword puzzle in each 
issue of this newsletter, the yearly asset allocation contest with a cash prize and invaluable bragging rights for the ones best at 
managing portfolios with cash fl ows in and out. There are also essay contests offered on a regular basis.

None of us is as smart as all of us, says the Japanese proverb. Please let me know if you have any suggestions that could help us, 
any idea you’d like to discuss or any interest in volunteering. I look forward to hearing from you.

David Schraub, FSA, CERA, AQ, MAAA, is a staff actuary for the SOA. He can be contacted at dschraub@soa.org.
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2017 Redington Prize 
Awarded at 2017 SOA 
Annual Meeting & Exhibit
By Jim Kosinski

Among the highlights of the Investment Section’s Break-
fast at the 2017 SOA Annual Meeting & Exhibit was the 
presentation of the 2017 Redington Prize, awarded by 

the Investment Section in honor of the best research paper 
published by an actuary on an investment-related topic in 
2015–2016. The Redington Prize carries a $10,000 award and 
is named after F. M. Redington, the British actuary who coined 
the term “immunization” in a 1952 paper.

The Redington Prize-winning paper is “Lapse-and-Reen-
try in Variable Annuities,” by Thorsten Moenig and Nan 
Zhu, FSA. Dr. Moenig is an Assistant Professor of Actuarial 
Science at Temple University and Dr. Zhu is an Assistant 
Professor of Risk Management at Penn State University. 
Their paper addresses the impacts of optimal policyholder 
lapse behavior on the pricing and design of variable annu-
ities. Using the example of a return-of-premium guaranteed 
minimum death benefit (GMDB), they quantify the costs—
first to insurance companies, but ultimately to policyholders 
through increased fees—of allowing “free” lapse behavior. 
The paper goes on to discuss and quantify a number of mit-
igating factors—from the traditional surrender charge, to 
roll-up and ratchet designs, additional earnings benefits, and 
a state-dependent guarantee fee—and discusses their impact 
on product pricing and ultimately policyholder utility. The 
paper concludes with a discussion of optimal behavior under 
taxes, and addresses the question of when the beneficial tax 

treatment of variable annuities justifies the additional fees 
they incur.

The Redington prize jury considered 16 nominees from pres-
tigious journals, including; Insurance: Mathematics & Economics, 
Journal of Risk and Insurance, Journal of Mathematical Economics, 
Journal of Portfolio Management, and Financial Analysts Journal. 
One of the benefits of SOA Investment Section membership 
is the ability to access these and many other journals through 
the section’s EBSCO subscription.  See the following link 
for more information: https://www.soa.org/sections/investment/
investment-ebsco/

As chair of the Redington Prize committee, I would like to 
thank the Redington jurors for their diligent work and the hours 
they spent this summer reading through the many distinguished 
papers and choosing a winner. I would also like to thank all the 
researchers for submitting their papers for consideration, and 
for their contributions to our knowledge of investments.  

Jim Kosinski, PhD, CFA, FSA, MAAA, is vice president 
in the Actuarial department at Guggenheim 
Insurance in Indianapolis. He can be contacted at 
Jim.Kosinski@guggenheiminsurance.com.

(From Le� ) Thorsten Moenig, Jim Kosinski, Nan Zhun
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 Taking Stock: Are Real 
Returns Truly Real?
By Nino Boezio

Like many practitioners, I have been grappling with the 
concept of real rates of return. With the current environ-
ment of low interest rates, many fixed income investments, 

after discounting for inflation, currently provide a negative 
or very low yield. Retail investors who do settle for that low 
yield, and hold bonds to maturity, will likely not achieve a rate 
a return even close to the rate of inflation.

Meanwhile, most other non-bond asset classes have provided 
attractive returns since the global financial crisis of 2008–2009. 
Of course, central bank policy (at least in part) can be blamed. 
The low interest rate “easy money” environment promoted 
by central banks, has produced “bond refugees” who have fled 
from short-term cash equivalents and fixed income and have 
gone elsewhere, hoping to achieve better performance. They 
seek higher returns in asset classes such as equities, real estate, 
infrastructure and private equity.

According to Investopedia1, the definition of real rate of return is 
“the annual percentage return realized on an investment, which 
is adjusted for changes in prices due to inflation or other exter-
nal effects. This method expresses the nominal rate of return in 
real terms, which keeps the purchasing power of a given level 
of capital constant over time. Adjusting the nominal return to 
compensate for factors such as inflation allows you to determine 
how much of your nominal return is actually real return.”

Applying this definition, we have had very good rates of real 
return for most asset classes over the past several years (in fact, 
in many cases, rather attractive returns every year since the 
global financial crisis). Interestingly, we have had good returns 
even with fixed income, partly arising from the unrealized gains 
in bond values generated by interest rates drifting lower.

In talking to investment managers, virtually all agree that 
most, if not all, asset classes are expensive today (some may 
even claim that certain asset classes appear to be in a bubble). 
But they may also like to claim that they will deliver returns 
better than their peers if asset classes do begin to deflate, 
because they have bought the most attractive securities, have 
the highest quality research, find the best deals and have the 
smartest people. They do not want to pare back their portfo-
lios in many cases, since their clients will not want to see that 
happen, and this behavior of “lightening up” on exposure also 
smacks of market timing. Also how can they justify charging 
a certain level of fees if they move to something safer than 
cash? Granted, I understand the dilemma. Many asset classes 

Source: GMO
*The chart represents local, real return forecasts for several asset classes and not for any GMO fund or strategy. These forecasts are forward-looking statements based upon the reasonable 
beliefs of GMO and are not a guarantee of future performance. Forward-looking statements speak only as of the date they are made, and GMO assumes no duty to and does not undertake to 
update forward-looking statements. Forward-looking statement are subject to numerous assumptions, risks, and uncertainties, which change over time. Actual results may differ materially 
from those anticipated in forward-looking statements. U.S. inflation is assumed to mean revert to long-term inflation of 2.2% over 15 years.
Proprietary information—not for distribution. Copyright © 2017 by GMO LLC. All rights reserved.



20 |  FEBRUARY 2018 RISKS & REWARDS 

Taking Stock: Are Real Returns Truly Real?

continue to appreciate despite high valuations, and market 
timing is very difficult. But one thing is for certain, real return 
expectations are not at levels we used to see.

In the preceding chart, graciously supplied by GMO LLC, we 
see a negative forecast for real rates of return for a range of U.S. 
and non-U.S. asset classes, much lower than what the firm views 
as the long-term historical U.S. equity real return.

The preceding chart is not atypical of what other investment 
managers may anticipate in terms of average future return over 
a similar period, even though some sort of decline may not be 
currently seen as imminent. Another author wrote2: “… our 
long-term valuation models estimate that equities will provide a 
return of less than 2 percent per annum over the next 10 years, 
which is less than the expected return of the safe-haven 10-year 
U.S. Treasury bond. In our view, the historic 4.5 percent risk 
premium between equities and U.S. Treasuries is now negative 
because of the $10.5 trillion of financial assets bought by the 
central banks over the past 8 years.”

The general mood in the investment industry, from what I 
can gauge, seems to be that we may still see additional gains 
within the next one to two years (despite asset classes being 
expensive) even though the mathematics suggest that we are 
already on borrowed time. Such a positive view is being sup-
ported by arguing that the fundamentals and the underlying 
healthy economic environment will preclude the possibility 
of any major market decline, and history backs up this claim. 
 
RISK PREMIUM
Considering the risk premium adds another twist. Going back to 
Investopedia3, “A risk premium is the return in excess of the risk-free 
rate of return an investment is expected to yield; an asset’s risk pre-
mium is a form of compensation for investors who tolerate the extra 
risk, compared to that of a risk-free asset, in a given investment.”

In looking at the following table provided in a Canadian Insti-
tute of Actuaries presentation in 20164, even the risk premium 
can be called into question.

We note from the chart below that the total fund return (keep in 
mind these are Canadian statistics), but asset classes aside from 
fixed income, have not truly delivered exceptional added value 
performance. The risk premium above fixed income is negli-
gible, and the fund performance is highly dependent upon the 
underlying fixed income performance.

Considering both the chart below and the preceding chart (that 
showed negative real rate of return expectations for the next 
seven years), we are now presented with a dilemma that suggests, 
that if these analyses are correct, we are getting no risk premium 
compensation for buying risky assets beyond fixed income. 

FORECASTS
When presented with negative real return analyses of real 
return expectations (or a nominal rate of return for that matter), 
an organization or pension plan sponsor may not be convinced 
(or worried) and seek to ignore them, and this may be for good 
reason. A forecast is just a snapshot, often based on a certain set 
of beliefs after all. These views can differ based on the varied 
beliefs among forecasters.  

But unfortunately there is also pressure to adopt certain beliefs, 
because of the investment return goals. A pension plan sponsor 
may opt for a certain discount rate since that is the rate required 
in order to meet funding needs. An organization may have 
disbursement requirements that require a certain level of invest-
ment return and income. They each need continued exposure 
to multiple asset classes that can potentially exceed the rate of 
inflation, even if it entails more risk.

Such goals and beliefs may require new investment ideas and 
strategies, and necessitate a refreshed view of the world, which 
may also push one to be more optimistic. All of this inadver-
tently may then rest on a real rate of return forecast, which is a 
lot less tangible than investors want to admit (it can land within 
a wide range where one choice is as good as another). And then 
unfortunately, the forecast becomes the “target” for investment 
performance impacting also the asset allocation strategy, and the 
level of risk exposure becomes secondary and treated as almost 
immaterial. This whole process can also work in somewhat of a 
backward fashion, where the target dictates the assumptions and 
the risk is not taken too seriously.

We like to try and forecast the future, as this can give us some 
perspective on what investment returns can look like. Forecasts 
are not factual, but unfortunately the acceptance of a particular 
forecast and the rejection of another can become a biased deci-
sion. Granted, a forecast may be shot down as just an opinion 
of the future, if it runs contrary to another more accepted and 
common point of view. Or an organization supporting a pen-
sion plan, may argue that the plan has a very long investment 
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horizon (so they are investing for the long-term) and thus can 
sustain a short-term shock. Such a long-term horizon argument 
may assume that if equities take a fall, they will eventually catch 
up and outpace bonds in the long-run anyway, and numerous 
studies can be cited to support this view. But I still cannot say 
with confidence that this would always be the case, and it is also 
going to be time or ending point dependent, but I can see how 
this argument can become put forward by a wide variety of users.

Even if forecasts are not factual, I would still emphasize that 
nominal returns or real returns are not either. In researching the 
matter of historical real return expectations and from looking at 
various studies, I have found quite a bit of dispersion as to where 
this real rate of return could be, such as for equities. It is also 
not as simple as subtracting the rate of inflation from a nominal 
rate (see Figures 1 and 25). We also cannot just take some sort 
of annual average. It can entail some subjectivity, and we do not 
necessarily have lots of history on rates of return (at least for 
my purposes, anyway) even for the longest running asset classes, 
that would make me feel comfortable. 

Fixed income can be considered to provide better informa-
tion, for at least we know what observed yields are. I have 
also found it strange how some forecasts may use a long-term 
real rate of return for fixed income which differs substan-
tially from the observed rate of return, for such a forecast 
is also assuming a mean reversion is taking place within the 
expectation. The best expected return for fixed income would 
arguably be to base it on the current observed yield (less some 
provision for default)—in fact, the realized returns for bonds 
will necessarily pull toward this level if held to maturity. 

THE INGREDIENTS OF THE REAL RETURN SOUP
When organizations require a prediction of what their invest-
ment portfolio will provide in terms of return (say, in the next 
three to five years), they may simply create an asset forecast 
using a reset each year of return expectations,  i.e., assume no 
mean reversion even when recent returns have been exception-
ally good or poor. Part of the justification may revolve around 
recent changes in fundamentals; the low level of interest rates; 

‘Source:  Statistics Canada CANSIM Series © Copyright 2017.  All Rights Reserved.
‘Source:  TSX © Copyright 2017. TSX Inc.  All Rights Reserved.
‘Source:  Standard & Poor’s, a division of The McGraw-Hill Companies, Inc. © Copyright 2017.  All Rights Reserved.

Figure 1
Canadian and U.S. Stocks

Canadian Stocks    U.S. Stocks
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political, taxation or economic changes (GDP); changes in 
national productivity; investor confidence, etc., so that the real 
or nominal rates are claimed to not be “lofty” expectations 
after all. Again, this can be hard to challenge given the wide 
dispersion of opinion regarding what the real return may be. 
But on the opposite end, we have negative demographics (which 
I consider to be a major detractor from the real returns we 
saw in the past), huge levels of sovereign debt (also a major 
detractor as it represses fiscal spending), excess capacity 
in certain industry sectors, increasing regulation (again in 
certain areas, which is deflationary and economically repres-
sive), rising interest rates, the gradual removal of liquidity, 
potential geopolitical risk, and so on. The long laundry list 
above just further emphasizes how forecasting real return is 
a difficult and complicated task, and history may not also be 
a useful guide, as the present day is different from the past.

REAL RETURN—MARGIN FOR SAFETY 
AND PORTFOLIO STRATEGY
Perhaps the best conclusion from the above is that we do need 
to consider a margin of safety and assess whether the portfolio 
strategy is truly sound. Given that rates of real return are very 

debateable, we do need to assess that if assets do not perform 
as expected, what will be the impact on our portfolio. This may 
require scenario testing using a range of assumptions, both opti-
mistic and pessimistic. How will an organization be impacted if 
returns are not as robust as currently assumed?  Should a margin 
of safety be incorporated either in the assumptions, or a toning 
down of the portfolio strategy be made, just in case?

Too many organizations today (just like on many occasions 
in the past) are thinking alike. They may feel that many 
asset classes are expensive, but want to ride things out for 
further gains, and then somehow expect to be the first to 
exit a market position before conditions become too “dan-
gerous.” The portfolio strategy needs to be continually 
assessed as to whether it is relying on realistic (not opti-
mistic) assumptions, is it riding on a mood of optimism, 
and are they getting the full story on the financial envi-
ronment. We have had good investment returns for far too 
long, and this has given investors too much “unfounded” 
confidence. With several central banks now on the road 
(with more to follow) of raising interest rates and removing 
liquidity, we may no longer have the tide to lift all boats.

Figure 2
Bonds, Mortgages and T-Bills

‘Source:  Statistics Canada CANSIM Series © Copyright 2017.  All Rights Reserved.

Canadian Long Bonds   Mortgages  91 Day T-Bills  Real Return Bonds Canadian Long Bonds   Mortgages  91 Day T-Bills  Real Return Bonds Canadian Long Bonds   Mortgages  91 Day T-Bills  Real Return Bonds Canadian Long Bonds   Mortgages  91 Day T-Bills  Real Return Bonds 
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CONCLUDING REMARKS
I believe the use of real return today is a real problem. I have 
seen it used too often as though it is academically supported to 
land within a certain (rather tight) range, it will play out over the 
longer-term to a certain level, and there is no mean reversion 
(i.e., we will never have to give back the better-than-expected 
returns of the past).

We need to reflect that there is great uncertainty in estimating 
what a real return would be under even the best of circum-
stances. Real return is not as real a measure as we may think it 
is, or in the way some are communicating it. This uncertainty, 
therefore, requires us to understand that there should be a mar-
gin of safety reflected in our portfolio positioning, or that at 
least, we need to be prepared for a scenario that is not what is 
expected but should not be a surprise either. 

This article is the sole opinion of the author and not of the Society of 
Actuaries or of the Financial Services Commission of Ontario.

Nino Boezio, FSA, FCIA, is currently with the 
Financial Services Commission of Ontario. He can 
be contacted at nino.boezio@fsco.gov.on.ca.

ENDNOTES

1  The definition of real rate of return is found at http://www.investopedia.com/
terms/r/realrateofreturn.asp.

2  Manley Jr., J. Lawrence. “The Financial Asset Bubble Is Ending; Time To 
Re-Examine Your Risk Allocation.” Oct 25, 2017 <https://seekingalpha.com/arti-
cle/4116560-financial-asset-bubble-ending-time-re-examine-risk-allocation?>

3  The definition of risk premium is found at: https://www.investopedia.com/
terms/r/riskpremium.asp The definition of real rate of return is found at http://
www.investopedia.com/terms/r/realrateofreturn.asp.

4  Hamilton, Malcolm, Doug Chandler and Faisal Siddiqi, “Low Interest Rates and 
Retirement Savings,” CIA webcast, September 2016, page 25.

5  Report on Canadian Economic Statistics 1924–2016, Canadian Institute of Actu-
aries, July 2017, Page 5, Figure 1B.
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Correspondents’ Report
_______________________________________________________________________________________________________

The 2017 SOA Annual Meeting & Exhibit was held at the Hynes Convention Center in Boston. There were more 
than 180 different sessions, numerous section breakfasts and lunches, boot camps, a mobile scavenger hunt, 

and plenty of opportunities to network. Every year Risks & Rewards seeks to provide our readers with a synopsis 
of some of the more investment focused sessions for those of you who might not have been able to attend. This 

year’s Correspondent’s Report summarizes five sessions.

 2017 Annual Meeting & 
Exhibit Opening General 
Session
By Kelly Featherstone

“I love data … No, I REALLY love data.” Kenneth Cuk-
ier, while not an actuary, might well be a kindred spirit 
to actuaries everywhere in his appreciation of data. The 

Opening General Session of the 2017 SOA Annual Meeting 
& Exhibit did not have an investment focus, but throughout 
the session my mind kept jumping to market and investment 
implications. In this correspondent’s report, I would like to 
focus on some of the themes of Cukier’s presentation and pos-
tulate as to possible investment implications.

“It is generally better to have more data than a better algorithm 
and it is also generally better to use statistic (or actuarial) meth-
ods to make decisions than human judgement.” The investment 
world tends to be polarized into camps—passive versus active 
management and, among active management, quantitative ver-
sus fundamental. Neither argument ever seems to win either 
debate, and the debates rage on. While I agree with Cukier on 
both his generalizations, I am still a firm believer that there is a 
place for active management and fundamental research in the 
investment world—particularly where data history and qual-
ity may be limited. But how will investment implementation 
styles change as data accessibility, quality and machine learning 

processes improve? (Note: If you are an avid believer in the 
efficient market hypothesis, please feel free to challenge myself 
or someone else to a battle of the essays in the Investment Sec-
tion’s 2018 Point-Counterpoint essay contest, “This Time It’s 
Different.”)

“In a world where data is becoming increasingly important, in 
ways and places we never thought possible, incumbent busi-
nesses have the data advantage.” This is true … to the extent 
incumbent businesses can leverage their data advantage and 
evolve to continue to meet future market needs. How can we 
as investors identify which companies are able to harness their 
incumbent advantage and differentiate them from companies 
who fail to embrace change and will be left behind?

“Sometimes causality is important but other times correlation 
is good enough.” The Investment world tends to rely heavily 
on correlations—the whole premise of mean variance portfolio 
optimization relies on the “magic” of diversification and stable 
correlations. This has quite often led to surprises and “black 
swan events.” Where do I/we over-rely on correlations? And 
when is looking at correlations good enough in the investment 
and ALM spaces?

Cukier’s presentation was engaging, thought provoking and a 
challenge to actuaries. While actuaries sometimes dismiss cor-
relation in favor of looking for causation, with Big Data—and its 
emphasis on using correlation—we need to get on board or get 
left behind. 

Kelly Featherstone, FSA, CFA, ACIA, is director, Client 
Relations for Alberta Investment Management 
Corporation and chair of the Investment 
Section Council. She can be contacted at kelly.
featherstone@aimco.alberta.ca.
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Annual Meeting Session 
25 Panel Discussion: 
Completing the Hedge
By Je   Passmore

This panel presentation discussed some of the practical 
issues associated with hedging pension liabilities. Jeff 
Passmore of Barrow Hanley moderated the panel and 

began by quantifying sources of pension liability volatility with 
particular focus on the importance of credit spread hedging 
compared to the relative unimportance of hedging key rate 
durations across the yield curve.

Colyar Pridgen of Standish Mellon discussed some of the sub-
tleties of pension duration and how oversimplifying this topic 
can undermine a pension hedging approach. He discussed dif-
ferences between duration measured using the spot vs. par curve 
and the differing viewpoints of a pension actuary and an invest-
ment manager. Colyar also discussed some of the practical issues 

around credit spread hedging: including the interrelationship 
between the frequency of rebalancing, the rebalancing target 
and how certain combinations of these tended to prove superior 
when spreads mean reverted versus when spreads trended wider.

David Gibbs of CME group discussed using U.S. Treasury 
Futures in pension hedging. He also discussed advantages of the 
U.S. Treasuries vis-a-vis the cash markets and other derivatives 
both for hedging purposes and for repositioning portfolios. 
These advantages included liquidity, near continuous availabil-
ity and minimal basis risk.

The panel concluded with a presentation by Kate Tan of 
PIMCO. Kate discussed using derivatives within both the hedg-
ing and return seeking portfolios. She described an approach 
where a plan sponsor who was not yet ready to fully derisk, 
could invest all plan assets in a hedging portfolio, but then use a 
portion of the hedging assets as collateral for a derivatives equity 
position. She illustrated how this derivative position could be 
reduced over time, effectively increasing the hedging relation-
ship of assets to liabilities.   

Je  ̈ Passmore, FSA, EA, is director, client portfolio 
manager and LDI strategist for Barrow, Hanley, 
Mewhinney & Strauss, LLC. He can be contacted at 
jpassmore@barrowhanley.com.

Edward Astrachan (center), winner of one of the asset allocation contests, is presented his prize by Jim Kolsinski (le� ) and Justin Owens.
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2017 SOA Annual 
Meeting—Session 58—
Validation of Asset Cash 
Flows
By Scott Houghton

Moderator:  Rebecca Margaret Emily Kovach, FSA
Presenters:  Daniel B. Finn, FCAS

Thomas V. Reedy, FSA, FIA, MAAA
Scott D. Houghton, FSA, MAAA

For applications such as PBR, cash flow testing, and economic 
capital, actuaries often validate and review models that contain 
projections of both the asset and liability sides of the balance 
sheet.  Actuaries have tried-and-true methods for validating 
liabilities, but techniques for assets are less developed. In this 
session, an insurance asset manager (Finn), a consultant (Hough-
ton) and a company investment actuary (Reedy) demonstrated 
effective and efficient asset model validation techniques.

Finn decomposed a corporate bond model into the components 
and assumptions needed to replicate cash flow and market 
value calculations, and provided techniques for duplication and 
validation of key calculations. He presented a key validation 
technique of selecting single bonds and projecting yields under 
a large number of stochastic scenarios. If a model is set up cor-
rectly, graphing the yield vs. a scenario-specific representative 

level of the stochastic interest rate for the term of a Treasury 
bond should produce a negatively sloped and nearly linear rela-
tionship. As the credit risk of a bond increases, the negatively 
sloped linear relationship decreases, and the plots on the graph 
move from linear to elliptical shaped.

Reedy covered application of common assumptions for different 
asset types, and common modeling issues and their prevention. 
One issue discussed was asset portfolios becoming unrepre-
sentative over time, due to initial scaling or a fixed purchase 
allocation of short- and long-term bonds. Reedy discussed how 
implementing a more sophisticated investment strategy like 
duration matching can correct this issue, and how more sophis-
ticated investment and disinvestment strategies can also prevent 
distortion of results related to borrowing and arbitrage.

Houghton discussed ways to ensure assets and liabilities inter-
act properly in a model, and expanded on issue prevention and 
validation techniques. As a complementary validation technique 
to Finn’s method of projecting yields of a single bond under a 
large number of scenarios, Houghton presented a case study 
and validation technique where an entire portfolio of bonds 
were projected under a single scenario. The ratings of the bonds 
in the portfolio are identified with different colors on a graph 
of yield vs. maturity date, which makes any assets with data or 
modeling issues easy to spot as outliers on the graph.  

Session slides are available at:
https://www.soa.org/pd/events/2017/annual-meeting/
pd-2017-10-annual-session-058.pdf  

Scott D. Houghton, FSA, MAAA, is a principal at the 
Actuarial Practice of Oliver Wyman in Hartford, 
Conn. He can be reached at Scott.Houghton@
oliverwyman.com.

Coming Soon! Asset Allocation Contest

More information will be posted on the Investment Section’s page at: www.soa.org/sections/investment/investment-landing/
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Session 100: Pension  
De-Risking Through 
Glide Paths
By Kathleen Brolly, Brett Dutton, James Gannon and Alex 
Pekker

Triggered by the Pension Protection Act (2006), the 
global financial crisis of 2008, and the maturing of the 
U.S. pension system, the adoption of de-risking glide 

paths has become commonplace among corporate pension 
sponsors. Unlike a standard static asset allocation, the glide 
path is a systematic way to adjust asset allocation by reducing 
funded status risk as funded status improves.

At low funded status, the glide path recognizes that the sponsor 
may desire to take on investment risk to close the funding gap. 

Conversely, when the plan is fully funded, the sponsor, realizing 
that there is little benefit to taking additional risk, would want 
to de-risk and invest primarily in a liability matching portfolio.

Table 1
Simple Illustrative Glide Path De-Risking Schedule

Funded Status 
Trigger

Return Seeking 
Allocation

Liability Matching 
Allocation

<80% 50% 50%

80% to 85% 45% 55%

85% to 90% 40% 60%

90% to 95% 35% 65%

95% to 100% 30% 70%

100% to 105% 25% 75%

>105% 20% 80%

After adopting a glide path, the plan sponsor then must decide 
on the details of implementation, including:

Governance structure—Whether to de-risk automatically at 
each trigger or to use the triggers as a chance for deliberation 
where the committee must approve each de-risking allocation 
change. 

Monitoring frequency—The choice of daily, weekly, monthly, 
or quarterly creates a trade-off between increased precision and 
increased costs. 

One way vs. two way—A decision whether to allow re-risking 
of the allocation when funded status declines. 

Trading policies—The establishment of tactical ranges, use of 
derivatives, and the consideration of transaction costs.

Changes within the growth and liability-hedging allo-
cations—For example, excluding illiquid growth assets and 
customizing the liability-matching portfolio as funded status 
increases.

Before adopting a glide path, the plan sponsor must consider 
many questions, including:

• Is it appropriate to take risk at all in their pension plan, 
especially uncompensated risks like interest rate risk?

• Is the time horizon of a glide path long enough for all asset 
classes to pay off? 

• Is it advantageous to wait to buy long bonds and face a 
crowded marketplace? 
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• Do shareholders benefit when the sponsor takes equity 
risk in the pension plan, especially at low funded sta-
tus and when the plan has high exposure to market 
downturns?

• Glide paths have become common with an increased regu-
latory environment, a focus of risk management and a 
maturing pension system. This can be seen in annual sur-
veys or in the financial statements of a plan sponsor. We do 
expect the use of glide paths to continue but believe that 
sponsors need to adopt and implement them in a thought-
ful way based on the specifics of their plan and their beliefs 
as an investor.  

Kathleen Brolly, FSA, is senior vice president with 
Bank of America Merrill Lynch in Boston. She can be 
contacted at kathleen.brolly@baml.com.

Brett B. Dutton, FSA, CFA, EA, is lead investment 
actuary at Vanguard Institutional Advisory Services. 
He can be reached at brett_dutton@vanguard.com.

James Gannon, FSA, CFA, EA, is a corporate 
pension plan consultant. He can be contacted at 
jimgannonjr@gmail.com.

Alexander Pekker, ASA, CFA, Ph.D., is a senior 
investment director and investment actuary at 
Cambridge Associates in San Francisco. He can be 
reached at apekker@cambridgeassociates.com.
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Annual Meeting Session 
154 Panel Discussion: 
The Coming Retirement 
Financial Crisis and How 
Actuaries Will be Part of 
the Solution
By Je   Passmore

This presentation was adapted from a presentation orig-
inally developed for the actuarial student club at the 
University of California—Santa Barbara. It was adapted 

to be appropriate to a professional audience of practicing 
actuaries.

The presentation illustrated the coming retirement financial 
security crisis in the U.S. and discussed several of the trends 
driving this crisis. The presentation expressed a positive 
viewpoint regarding the role that actuaries have played in 
establishing systems for supporting financial security in 

retirement and how that role will likely continue, albeit in 
some adapted way.

There were four primary areas covered:

• Ageing of the U.S. and global population.

• The current and projected funding levels of Social Security 
and Medicare benefits.

• The current and projected status of corporate pension 
plans and corporate sponsored retiree medical benefits and 
the trend towards defined contribution plans.

• The current funded status of public (state and municipal 
government) pension plans.

The presentations expressed the conviction that as actuaries, we 
have the skill set and public trust to address these and present 
solutions.

I wish to express my gratitude to Ali Zaker-Shahrak who agreed 
to participate in the panel presentation by sharing his insights 
from his experience working with public pensions and social 
insurance programs. On relatively short notice, Zaker-Shahrak 
replaced another presenter who was unable to participate due to 
a scheduling conflict.  

Je  ̈ Passmore, FSA, EA, is director, client portfolio 
manager and LDI strategist for Barrow, Hanley, 
Mewhinney & Strauss, LLC. He can be contacted at 
jpassmore@barrowhanley.com.
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Across 
1 Genuine
5 Not this
9 Scale member
12 Nest chorus
15 Top drawer
16  A credit component of FAS 157
17  Antibody responsible for 

allergic reactions
18  Favorite stock of life insurers
20 Not melodious
22 Talked bull?
23 Adjusted letter spacing
25 Flightless bird
26  Treat a patient with kidney 

failure
30 Kia model
32 Record keeper
33 Crucial trial
35 Wall St. operator
37  Favorite song of P&C insurers
42 Make out
43 Turns the hand
44 Jackson and Derek
47 Their, in Nice
49 Consumes
50 Rough waters
52 Erotica pioneer
54 Native of Attu
56 Like some hot wheels
61  Favorite band of variable 

annuity insurers
63 Argots
64 First follower
65 Ceramic piece
66 Ear of sweet corn
67 Classic Gibsons
68 Flew
69 Stable fare
 

Down 
1 Yellowish brown
2  YouTube co-founder Steve
3 Track event
4 Lizard
5 Never agent
6 Whoop
7 Akkadian god
8 Come down
9 Grouper group
10 City of northern Spain
11 Pekingese or Shih Tzu
13  Favorite appendages of title 

insurers
14  Tree native to Southern Africa
19 Oil source
21 Eat without restraint
24  The inspiration for Monty 

Python’s Mr. Creosote
26 86,400 seconds
27 Clinch
28 Be indisposed
29 Lipoproteins, for short
31  Favorite drink of health 

insurers
34 Male sheep
36 Bluff in Banff
38 Tobacco pipe
39 ____ Always Sunny in   
 Philadelphia
40 Snare
41 Part of RSVP
44 Victoria’s Secret purchase in  
 Pamplona
45 It’s well-positioned
46 Going rates
48 Barley or wheat grass
51 Bird of UCONN fame
53 Islamic honorific title (var.)
55 Blasting agents
57 Venetian farewell
58 Caffeine source
59 Express
60 Nintendo game consoles
62 Driving hazard

Investment Concepts 
Solution

Crossword Puzzle:
You Can Tell a Book by 
its Cover
By Warren Manners

The solution will be provided in the next issue of Risks & 
Rewards along with the names of those who were able to 
successfully complete it. Submissions should be made to 

enews@soa.org by May 31, 2018. 

Warren Manners, FSA, CFA, MAAA, is the controller 
at Swiss Re in Armonk, N.Y. He can be reached at 
warren_manners@swissre.com.
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