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Integrated Risk Measurement for Portfolio of Various
Assets at Continuous Time Horizons

Abstract

Different financial products usually have very different risk profiles. In the finan-
cial Industry, risk measures based on VaR for financial products are either dominant
market VaR or credit VaR or Add VaR, which is obtained by evaluating market
VaR and credit VaR separately and then add them together. The regulatory capi-
tal required by regulators is then computed according to the VaR, which will either
underestimate or overestimate the products risks.

In order to reasonably measure market risk and credit risk together, in this
study we present a new framework, with which we can measure integrated market
risk and credit risk for portfolios consisting of various assets through continuous
time horizons. Using Monte Carlo simulation, we employ this framework to port-
folios consisting of bonds, stocks and bonds plus stocks with normal distributed
asset return assumptions. We find that term structures of market VaR, credit VaR,
integrated VaR and Add VaR are different for bond portfolio, stock portfolio and
mixed portfolio, with the largest integrated VaR values for stock portfolio, the small-
est ones for bond portfolio and those for mixed portfolio between them. Besides the
type of assets, initial rating of the objective portfolio is also an important factor to
determine the integrated VaRs. In this study, we also compare the integrated VaRs
for portfolios with Student t and Skew t distributed asset returns to those with Nor-
mal distributed asset returns. We find that the integrated VaR magnitudes followed
the pattern with Skewt > Student > Normal for VaR at confidence level of 99%
and 99.9%, and a contrary pattern for VaR95. This is caused by the different shapes
of these distributions, among them Skew t distributions have the fattest left tails
while Normal distribution has thinnest left tail, and the tail attributes are inherited
by the portfolio value distribution.

This simulation study shows that asset type, initial rating, time horizon and asset
return distribution assumptions are all significant factors to influence the portfolio
value distributions and hence the integrated VaRs.

KEY WORDS:

Integrated risk, Continuous time horizon, Portfolio of various assets, Skew t distri-
bution, Term structure of Value-at-Risk
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1 Introduction

In the last three decades, studies on credit risk modeling have made great progress. At
first credit risk models mainly aimed to deal with individual defaults. There are two
classes of such models: structural models originated by Black and Scholes (1973) and
Merton (1974), and reduced form models (or intensity based models), which were orig-
inally developed by Jarrow and Turnbull (1995) and extended by Duffie and Singleton
(1999) among others.

In recent years, the finance industry has realized that large losses are often caused by
default contagion, so measuring portfolio of credit risks has become a popular research
topic, and the popularity has been boosted by the issue of new Basel II regulatory re-
quirements. Under Basel II , financial institutions are encouraged to build sound internal
rating based (IRB) models for measuring their market risk, credit risk and operational
risks, and then the regulatory capital can be calculated accordingly.

There are several industry sponsored Credit Value-at-risk models, two representatives
of them are CreditMetrics proposed by JP Morgan (1997) and CreditRisk+ initiated by
Credit Suisse Financial Products (CSFP)(1997). CreditMetrics which is based on the
structural model whereby the default correlations are captured through one factor Gaus-
sian copula. In contrast, CreditRisk+ is based on reduced form model and focused on
default only, in which the default intensity is assumed to follow an exogenous Poisson
process, and the default correlations are captured by the correlated Poisson diffusions.

These models are well constructed with clever insights about credit risks, and have
been adopted by many smaller institutions who cannot afford to establish their own mod-
els. Their prevalence definitely makes for the progress of further research and application
of more advanced credit risk models. However,these models share some common draw-
backs. For example, they assume deterministic risk free rate, credit spreads and risk
exposures. This assumption won’t damage too much for bonds and loans in a relative
stable market, but it is meaningless to swaps and other interest rate derivatives, because
with this assumption their values would always be zero. In addition, because these mod-
els only consider the risks due to credit events, they segmented the closely related credit
risk and market risk, and show incomplete risk profiles for the products. The correlation
between market risk and credit risk is often difficult to determine. In the industry, one
approach assumes perfect correlation, and adds the separately estimated market VaR and
credit VaR together, which will lead to a conservative estimate. Another approach focuses
on the product’s dominant risk only, for example, credit risk for bonds and market risk
for stocks. But for some products, such as Interest Rate Swap and Credit Default Swap,
their credit risk and market risk can affect to each other by trading with different credit
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quality counterparts, which will lead to economic capital arbitrage if only dominant risk
is considered. Hence, the segmentation of credit risk and market risk will lead to some
danger in accurate economic capital allocations.

In the last five years, many researchers have developed integrated risk models which
can evaluate closely related market risk and credit risk synthetically. Some researchers
tried to remedy the drawbacks for the above discussed models. Among them, Kiesel, Per-
raudin and Taylor(2003) introduced stochastic rating specific credit spreads into Credit-
Metrics framework while keeping risk-free rate deterministic. They found that the spread
fluctuations were the major contribution to the VaR values of high credit quality portfo-
lios. Extending their work, Grundke(2005) introduced both stochastic risk-free rate and
credit spreads into CreditMetrics . Based on the standardized asset return, the author
took the rating transition risk, credit spread risk, interest rate risk and recovery risk all
correlated, and then evaluated these risks synthetically for a large homogeneous bond
portfolio. He showed that if the stochastic nature of the risk factors are neglected ,un-
derestimation of risks happened, and it was particularly serious for high credit quality
portfolios with low asset return correlations.

Some other researchers proposed new integrated models. For example, Barnhill and
Maxwell (2002) developed a model which not only included stochastic interest rate and
credit spreads, but also simulated a set of 24 equity market indices representing various
economy sectors. With all these simulated factors constituting the future financial envi-
ronments, this model could produce reasonable transition probability matrix, and with
this newly generated transition probability matrix other than historical one, this model
could measure the portfolio VaR accurately. Based on intensity based model, Kijima and
Muromachi (2000)proposed a model which had correlated stochastic interest rate and
default intensity processes, which could not only produce no arbitrage bond prices but
capture the different term structures for default intensities over different credit ratings.
But it can not capture the rating migration information. Jobst and Zenios (2001) incor-
porated elements both from rating based models and from stochastic intensity models in
their framework, and then extended applications to portfolios consisting of interest rate
and credit risk sensitive products.

Most of these models mainly apply to fixed income portfolios except Medova and
Smith (2005) and Tanaka and Muromachi (2003). Medova and Smith (2005) measured
integrated risks for a foreign exchange forward contract at different time horizons. Al-
though the authors illustrated their model with a very simple example - an individual
foreign exchange contract, they did show us the meaning of measuring integrated risks
. Tanaka and Muromachi (2003) extended the model of Kijima and Muromachi (2000).
They not only included stochastic interest rate and default intensity processes, but also
introduced stochastic diffusions of stock prices and foreign exchange rates in it, but it also
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inherited the drawbacks of the original model which has been discussed before.

In general, all these integrated risk models are based either on structural models or
on intensity models. Compared with industry sponsored credit risk models, most of them
have taken the stochastic nature of interest rate and credit spreads into account. How-
ever, they have some insufficiencies to be a realistic integrated risk model. First, most
of them focused on integrated risk for fixed income portfolios, while few models studied
on portfolios consisting of various assets, such as bonds, loans, stocks, swaps and foreign
exchange products etc. This is due to the fact that different assets have totally different
risk profiles, and it is difficult to measure their correlations and their different kinds of
risks in a uniform framework. Second, these models only investigated the integrated risks
at time horizon of 1 year, and no other time horizons are considered. This is unreasonable
since integrated models usually measure the portfolios’ market risk and credit risk simul-
taneously, but the time horizon for market risk (usually 1 day or 10 working days) and
for credit risk (usually 1 year) are very different. So realistic integrated models should
consider the effects of different time horizons on portfolio VaRs. Third, for structural
based models, they assumed that the asset returns are normally distributed, except that
Grundke (2005) also investigated the portfolio risks with Student t distributed asset re-
turns. Indeed, normal distribution has some good properties such as having analytical
solutions, but asset return has been verified to be non-normal based on research in the
past three decades. This assumption will affect the accuracy of portfolio risk evaluation.
Fourth, as discussed above, approach one (measuring market risk and credit risk separately
and then add them together) overestimates portfolio risk and approach two (dominant
risk only) underestimates portfolio risk, but the underestimation and overestimation are
not totally investigated, especially how the underestimation and overestimation change
with the increase of time horizon.

So the main aim of this study is to develop a new framework which could fulfill the
following functions. First, it could measure the market risk and credit risk for portfolios
consisting of various assets synthetically, and could take their default correlations into
consideration adequately. Second, it could measure integrated risks for portfolios at any
time horizon, and could check the changes of underestimation or overestimation with re-
spect to different time horizons. Third, it should agree with the fact that asset returns
are non-normal distributed.

Up to now, it is the most complete framework for integrated risk measurement. It
can measure integrated risks for portfolios consisting of various assets, and this capability
should be important to banks, insurers and pension funds since their investments are of-
ten diversified with various kinds of financial products. In addition, it takes into account
the non-normal attribute of asset returns and the effects of different time horizons, which
should generate more reasonable risk values and show clearer risk profiles, and will lead
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to a better economic capital allocation strategy.

This paper is organized as follows. Section 2 discusses the methodology in which the
new framework will be introduced in detail. Section 3 gives the numerical results and
corresponding discussions . Section 4 provides the conclusion.

2 Methodology

In this section, the model proposed by Grundke(2005)was set as a benchmark since it has
some good attributes. For example, it has considered the stochastic nature of interest
rate, credit spreads and recovery rate, and it also included the rating migration informa-
tion. However, it considers only the integrated risks for a large homogeneous portfolio
consisting of only zero coupon bonds at time time horizon of 1 year. In this study, we
make three extensions from this benchmark model to establish a new framework. The
first extension is to consider the model for continuous time horizons. The second exten-
sion is to evaluate integrated risks for portfolios consisting of various assets. The last
extension is to introduce the asymmetric and fat-tailed asset return distributions into the
new framework. The benchmark model and its three extensions are described below.

2.1 Review of benchmark model

In the benchmark model, with the standardized asset return as the base, the credit risks
( including downgrade risk, default risk and recovery risk) and market risk (including
interest rate risk and credit spread risk) for a large homogenous portfolio are syntheti-
cally evaluated. This portfolio consists of N exchangeable zero coupon bonds issued by N
different companies with identical initial ratings. The bonds’ face value(F), maturity (T)
and the pairwise correlation (ρv) among the firms asset returns are all identical.

2.1.1 Modeling downgrade risk and default risk

The downgrade risk and default risk come from the uncertainty that at which rating bond
n will stay at the future time horizon H. In this benchmark model, the bond n’s future
rating can be determined by the firm’s standardized asset return Xn.

Xn =
√

ρv − ρ2
rv Z + ρrv Xr +

√
1 − ρv εn (ρ2

rv ≤ ρv, n ∈ {1, ..., N}) (1)

Where common factor Z, interest rate factor Xr , firm specific factors ε1, ...εN are inde-
pendent N(0,1) distributed random variables. ρrv is the identical correlation between all

5



asset returns and interest rate. Hence, all the N firms asset returns X follow multivariate
normal distribution (or Gaussian distribution), to distinguish it from other asset return
distributions which will be referred later , hereafter it is denoted as XG. Then

{
E(XG) = 0
COV (XG) =

∑ (2)

where

∑
=




1 ρv ... ρv

ρv 1 ... ρv

... ... ... ...
ρv ρv ... 1




With the normal distributed asset returns assumption, future rating for bond n can be

Figure 1: Asset return Distribution and rating thresholds, adapted from CreditMetrics-

Technical Document

determined according to the methodology of CreditMetrics. Now consider a bond with
initial rating BB, at the end of one year, its rating can stay in any of the k states (k ∈
{1, ..., 8}) with 1 representing the best rating AAA and 8 representing the worst rating. As
illustrated in Figure 1, to determine the future rating of bond n, we need to compare the
N(0, 1) distributed random variable XG

n and the rating thresholds (ZDef , ZCCC , ..., ZAA)
to see which interval the XG

n falls into. The thresholds Z(1×7) is derived from a one-year
transition matrix Q = (qik)8×8 which is published by rating agencies, such as Moody’s or
Standard and Poor’s. Since the initial rating of this bond is BB, which corresponds to
i = 5, only the fifth row of Q = (qik)8×8 is used in this example. The detailed derivation
procedure is illustrated in Table 1. The thresholds for other ratings can be determined in
a similar way. With the threshold matrix (Z)7×7 and the simulated asset returns XG

n , the
future ratings and then the downgrade risk and default risk for bonds can be determined.
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Table 1: Determining the rating thresholds

Xn Future rating Prob. q5k threshold Z5k

Xn ≤ ZDef default Φ(ZDef) ZDef = Φ−1(q5Def)
ZDef ≤ Xn ≤ ZCCC CCC Φ(ZCCC) − Φ(ZDef) ZCCC = Φ−1(q5CCC + q5Def )
ZCCC ≤ Xn ≤ ZB B Φ(ZB) − Φ(ZCCC) ZB = Φ−1(q5B + q5CCC + q5Def)

ZB ≤ Xn ≤ ZBB BB Φ(ZBB) − Φ(ZB) ZBB = Φ−1(
∑k=Def

k=BB q5k)

ZBB ≤ Xn ≤ ZBBB BBB Φ(ZBBB) − Φ(ZBB) ZBBB = Φ−1(
∑k=Def

k=BBB q5k)

ZBBB ≤ Xn ≤ ZA A Φ(ZA) − Φ(ZBBB) ZA = Φ−1(
∑k=Def

k=A q5k)

ZA ≤ Xn ≤ ZAA AA Φ(ZAA) − Φ(ZA) ZAA = Φ−1(
∑k=Def

k=AA q5k)
Xn ≥ ZAA AAA 1 − Φ(ZAA) - - -

2.1.2 Modeling interest rate risk

In the benchmark model, the stochastic risk-free rate evolves as an Ornstein-Uhlenbeck
process with constant coefficients as proposed by Vasicek (1977).

dr(t) = k[θ − r(t)]dt + σdW (t), r(0) = r0 (3)

where r0, k, θ and σ are positive constants. r(t) is normally distributed with mean

θ + (r(0) − θ)e−kt and volatility
√

σ2
r

2k
(1 − e−2kt), and the closed form solution for this

stochastic differential equation is

r(t) = θ + (r(0) − θ)e−kt +

√
σ2

r

2k
(1 − e−2kt) Xr (4)

where Xr is the same notation as in Equation (1). The forward rate FR(Xr, H, T ) is
needed when calculating the bond value at time horizon H. It can be derived by

FR(Xr, H, T ) = − 1

T − H

(
(
1

k
(1 − e−k(T−H))

(
R(∞) − (θ + (r(0) − θ)e−kH+

√
σ2

r

2k
(1 − e−2kH)Xr) ) − (T − H)R(∞) − σ2

r

4k3
(1 − e−k(T−H))2

)
(5)

where R(∞) = θ + λσr

k
− σ2

r

2k2 denotes the return of default-free zero coupon bonds with
infinite maturity, and λ is the market price of interest rate risk.
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2.1.3 Modeling credit spread risk

The rating specific credit spreads Sk(H, T ) (k ∈ {1, ..., 7}) are assumed to follow multi-
variate N(µk, σ

2
k, R) distribution, where µk and σk are the means and volatilities of the

annual credit spread rates, and the correlation matrix among credit spreads is R. In the
benchmark model, the credit spreads are assumed to be determined jointly by common
factor Z, interest rate factor Xr and the specific credit rating factor ηk, and the time
horizon H is fixed as 1 year.

Sk(H, T ) = µk + σk( ρrsXr + ρzsZ +
√

1 − ρ2
rs − ρ2

zs ηk ) (k ∈ 1, ...7) (6)

where ηks are correlated standard normally distributed random variables with correlation
matrix R̃, which will be needed to simulate Sk(H, T ). The correlated η can be generated

by Cholesky decomposition of chol(R̃) × ξ where ξ are i.i.d N(0,1) distributed random
variables.

COV (
Si − µi

σi

,
Sj − µj

σj

) = Rij = ρ2
sz + ρ2

sr + (1 − ρ2
sz − ρ2

sr)COV (ηi, ηj) ⇒

COV (ηi, ηj) =
Rij − (ρ2

sz + ρ2
sr)

1 − ρ2
sz − ρ2

sr

⇒

R̃ij =
Rij − (ρ2

sz + ρ2
sr)

1 − ρ2
sz − ρ2

sr

(7)

In fact, from Kiesel, Perraudin and Taylor (2003) we can see that the mean, volatilities,
and correlations of Sk(H, T ) also changed with different H and T-H, but the effects of
T-H are small enough to be ignored compared with other risk sources.

2.1.4 Modeling recovery risk

In the benchmark model, in the case bond n defaults at time horizon H, its recovery rate
δn is assumed to be a beta-distributed random number, which will be drawn individually
to ensure the independence across different exposures. The first two moments of recovery
rates are set to match the historical statistical data. This is also the practical model that
is used in the industry. An alternative method referred to in Grundke (2005) is to model
the recovery rate as a log-normally distributed random number

δn = eµn+σnRn (8)

with
Rn = αnZ + βnXr + γnXn +

√
1 − α2

n − β2
n − γ2

n ηn
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where αn, γn and σn ∈ R+, µn and βn ∈ R and α2
n + β2

n + γ2
n ≤ 1.

With all the risk factors properly modeled, then the bond value at time horizon H can
be calculated

{
vk(H, T ) = Fe−(FR(Xr ,H,T )+Sk(H,T ))(T−H) bond survives
v8(H, T ) = δnp(H, T ) bond defaults

The portfolio value at time horizon H is the sum of N bond values.

Π = Σn=N
n=1 vk

n(H, T ) (k ∈ {1, ..., 8}) (9)

From the above statements, we can see that in the benchmark model, all the down-
grade risk, default risk, credit spread risk and recovery risk are all affected by common
factor Z and interest rate factor Xr, which implies that these risks are correlated. Thus
in this way, the market risk and credit risk for the bond portfolio can be integrated.

2.2 Extension to continuous time horizon (H)

In the benchmark model, the time horizon H is fixed as 1 year. However a continuous-time
modeling framework is very useful because it can evaluate the integrated risks at arbitrary
points in time. We follow the continuous-time Markov Chain model in Schönbucher(2003)
to extend the benchmark model into a new continuous time horizon framework.

As commonly used in reduced form models, the hazard rate is modeled as a Poisson
process. Similarly the rating transition intensities can also be modeled in this way . The
transiting probability from rating k to rating l in a small time interval ∆t is assumed to
be proportional to ∆t:

P [R(t + ∆t) = l|R(t) = k] = λkl∆t for k 6= l

The probability of staying in rating k is:

P [R(t + ∆t) = k|R(t) = k] = I −
∑

l 6=k

λkl∆t = I + λkk∆t

where λkk = −
∑

l 6=k λkl .

For small time intervals, the transition probability matrix Q(t, t + ∆t) can be approx-
imated by a Taylor series:

Q(t + ∆t) = I + ∆tΛ(t) + terms of order (∆t)2 (10)
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where I is identity matrix and Λ = (λkl) with (k, l) ∈ {1, ..., 8} is the matrix of transition
intensities, or also known as the generator matrix.

For a large time interval [t,s], it is subdivided into i subintervals of length ∆t. Since
the rating transition processes are assumed to have attributes of Markov property and
time homogeneity, the transition probability Matrix for large time interval [t,s] can be
calculated as

Q(t, s) = Q(t, t + i∆t) = (I + ∆tΛ)i = (I +
s − t

i
)i

In the limiting case, it becomes:

Q(t, s) = e{(s−t)Λ} (11)

The exponential algorithm for matrix can be fulfilled by

ex = I + x +
x2

2!
+

x3

3!
+ ... +

xn

n!
+ ... (12)

From equation (11) we can see that if the generator matrix Λ is known, the transition
matrix Qt, s can be derived by replacing x with (s − t)Λ in Equation (12).
Schönbucher(2003) also reviewed several approaches to derive generator matrix Λ. In this
study, we directly take advantage of the generator matrix Λ published by Standard and
Poor’s directly.

Table 2: Approximate generator matrix published by S&P, adapted from
Schönbucher(2003)

AAA AA A BBB BB B CCC D
AAA -11.59 10.75 0.42 0.13 0.29 0.00 0.00 0.00
AA 0.95 -10.61 8.32 0.81 0.26 0.27 0.00 0.00
A 0.08 3.24 -12.14 7.46 0.90 0.40 0.00 0.06
BBB 0.06 0.36 7.56 -17.75 7.91 1.40 0.13 0.33
BB 0.04 0.22 0.58 8.85 -26.12 12.95 1.36 2.08
B 0.00 0.21 0.27 0.47 6.40 -19.98 5.90 6.73
CCC 0.00 0.04 1.44 1.36 2.46 10.13 -43.53 28.10
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

With this generator matrix Λ, the calculated one year transition probabilities agree
with the historical average one-year rating transition frequencies published by S&P , which
is shown in Table 3.
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Table 3: Historical average one-year rating transition probabilities (1981-1991)

AAA AA A BBB BB B CCC D
AAA 89.10 9.63 0.78 0.19 0.30 0.00 0.00 0.00
AA 0.86 90.10 7.47 0.99 0.29 0.29 0.00 0.00
A 0.09 2.91 88.94 6.49 1.01 0.45 0.00 0.09
BBB 0.06 0.43 6.56 84.27 6.44 1.60 0.18 0.45
BB 0.04 0.22 0.79 7.19 77.64 10.43 1.27 2.41
B 0.00 0.19 0.31 0.66 5.17 82.46 4.35 6.85
CCC 0.00 0.00 1.16 1.16 2.03 7.54 64.93 23.19
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

With this S&P published generator matrix, we can get the transition probability ma-
trix Q(t, s) at any time point t, and then the rating transition thresholds. Hence the credit
risks of the bond portfolio can be determined at continuous time horizons. The market
risk evaluations for this bond portfolio also can be extended to continuous time horizons.
The forward interest rates from time horizon H to maturity T can be obtained by equa-
tion (5), and the credit spreads are assumed normally distributed with their volatilities
proportional to the square root of H.

2.3 Extension to portfolio consisting of various assets

The integrated risks for portfolios consisting of various assets are not easy to be evaluated,
because different assets usually have very different risk profiles and pricing formulas, and
the correlations among various assets are difficult to capture. To tackle these problems,
we take the standardized asset returns as a base. This is because most of the assets
suffer market risk and credit risk simultaneously, usually the credit risks are determined
by counterpart’s asset return when based on structural models , and the market risks for
some kinds of assets are also affected by their firms’ asset returns. In the following parts,
we try to introduce various assets into the portfolio one by one.

2.3.1 Stocks

Traditionally, the stock price follows a geometric Brownian motion (GBM), and the dy-
namics of the stock price process S is

dS = µsSdt + σsSdWt
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Then the stock price has closed form solution

St = S0e
(µs− 1

2
σ2

s)t+σsǫ
√

t (13)

where µs and σs are the expected return and volatility for stock price respectively.

Because stocks are actively traded products, usually only the dominant risk - market
risk is considered through time horizon of one day or ten working days. When a firm
defaults, its stock price will jump to near zero, so stocks also suffer credit risk. However,
the default risks for stocks are often ignored in the industry, which will lead to underes-
timation of stock risks, especially for long term investments.

Now we consider a portfolio consisting of N assets coming from N different companies,
the assets are either exchangeable bonds or exchangeable stocks. The pairwise correlations
among different asset returns ρv are also assumed to be identical. In this portfolio, the
bond prices can be determined following the method discussed above, and the stock prices
can be determined by

St =

{
S0e

(µs− 1
2
σ2

s)t+σsXG
n

√
t no default

0 default
(14)

Where XG
n is the same as that in Equation(1).

Comparing Equation (13) and Equation (14), we found that the default risks for stocks
are introduced, and the more important point is that the N(0,1) distributed random vari-
able ǫ in Equation (13) is replaced by standardized normally distributed asset return
XG

n . This replacement is very important, because through which the default correlations
and correlations of price movements between any two assets (two bonds, a bond and a
stock, and two stocks) are captured adequately. This replacement also guarantees that
the stock return dynamics always keep in the same direction with asset return dynamics,
which agree with the industry practice that the unobserved asset returns are usually ap-
proximately by observed equity returns.

2.3.2 Swaps

For some products, such as bonds and loans, only one counterparty suffers potential de-
fault risk. But for some other products, such as interest rate swaps(IRS), forward rate
agreements(FRA), credit default swaps(CDS) etc., both of the two counterparties suffer
from potential default losses. We show how to include these assets into the portfolio
illustrated with an interest rate swap.
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An interest rate swap is worth zero when it is initiated between two counterparties A
and B. Subsequently its value may become positive or negative. Counterparty A suffers
from default loss only when the interest rate swap has positive value to it. If the swap
has negative value , then counterparty B has potential loss caused by defaults of A.

We follow Bomfim (2002) to price interest rate swaps. The value of its fixed leg is

Vfix(t) =
∑

SδiP (t, Ti)

and the value of its floating leg

Vfl(t) = 1 − P (t, T )

then the swap value at time t

Vswap(t) = Vfix(t) − Vfl(t) =
∑

SδiP (t, Ti) − 1 + P (t, T ) (15)

where S is the swap rate, which is determined at initial time to make the swap value
zero. Assuming counterparty A receives fixed rate and pays floating LIBOR rate, the
swap value at time t to counterparty A is

Vswap(t)





= 0 if Vswap(t) > 0 and B defaults
= Vfix(t) − Vfl(t) if Vswap(t) > 0 and B survives
= Vfix(t) − Vfl(t) if Vswap(t) < 0

(16)

When the swap value is positive to counterparty A, it suffers potential loss of this positive
value caused by default of counterparty B, while if the swap value is negative to A, then
B suffers the potential loss caused by default of A. The contract value of swap will jump
to zero if either counterparty defaults, the default probabilities can be derived from the
counterparties’ asset returns based on structure models. The market risks of swaps are
derived from volatilities of LIBOR rates.

2.3.3 Foreign exchange products

If financial institutions invest both in domestic market and international market, the risks
of exchange rate should be considered. We define the spot exchange rate Fx as a geometric
Brownian motion process, in a risk neutral world the process is

dFx = (r − rf)Fxdt + σxFxdWt (17)
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where r is the domestic risk-free rate , rf is the foreign risk-free rate, and σx is the
exchange rate’s volatility. The log-normally distributed spot exchange rate Fx(t) has
closed form solution. With determined exchange rate Fx , at any time t, we can get any
foreign exchange product’s value based on domestic currency, for example, value of foreign
exchange forward, currency swap and stocks bought in international markets.

2.4 Extension to non-normal distributed asset returns

In the benchmark model, asset returns are modeled as multivariate normal distributed
random variables, but asset return distribution has been verified to be non-normal based
on the research in past three decades. In the new framework, we try to capture the asym-
metry and fat-tail attributes of asset return distribution. We simulate Student t and skew
t distributed asset returns and then compare them with normal distributed asset returns.

2.4.1 Student t distributed asset returns

Student t distribution has fatter tails than normal distribution. The multivariate Student
t distributed random numbers can be generated by:

XT = µ +
√

WAZ (18)

where
(1)Z ∼ Nk(0, Ik)
(2) W is a positive r.v. with inverse gamma distribution, ie, W ∼ Ig(v

2
, v

2
), or equiva-

lently, v/W ∼ χ2
v

(3) A ∈ Rd×k and µ ∈ R
d are constant matrix and vector, and AA′ =

∑

The joint density function of multivariate XT is given by:

f(xT) =
Γ(v+d

2
)

Γ(v
2
)(πv)

d

2

∣∣∣
∑∣∣∣

1
2

(
1 +

(xT − µ)
′∑−1 (xT − µ)

v

)−(v+d)
2

(19)

The mean vector and covariance matrix XT are:
{

E(XT) = µ
COV (XT) = v

v−2

∑
existed for v > 2

(20)

Recall that the multi-normal asset returns XG have mean 0 and covariance matrix∑
. To be comparable, we need to match the first two moments of the asset return
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Figure 2: Comparison with Normal and Student t distributions

distributions. This can be guaranteed by

XT

n
=

√
v − 2

v

√
WXG

n

=

√
v − 2

v

√
W (
√

ρv − ρ2
rvZ + ρrvXr +

√
1 − ρvεn) (21)

We can verify that E(XT) = 0 and COV (XT) =
∑

.

In this study we take the degrees of freedom v of Student t distribution as 6, 10, 15,
20, 50 and 100, and then compare their distribution shapes, and especially the tails. From
Figure 2 we can see that Student t distributions are symmetric and would converge to a
standard normal distribution with big degrees of freedom v. In addition, all the student
t distributions have larger kurtosis and fatter tails than those of normal distribution.

We focus on the enlarged left tails of these distributions and shown in Figure 3. Among
the seven distributions, the Student t distribution with v = 6 has the fattest left tail and
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Figure 3: Left tails of Normal and Student t distributions

normal distribution has the thinnest tail. For the rest of the distributions, the left tails
become fatter with the increase of v, so that when v goes to infinity, Student t distribution
will be the same as normal distribution.

2.4.2 Skew t distributed asset returns

Although Student t distributions can capture the fat tails of asset returns, they are sym-
metric and cannot reflect the skewness of asset returns, so we turn to skew t distribution.
Skew t distribution has been studied and utilized in finance by some researchers recently,
such as McNeil, Frey and Embrechts (2005) and Hu (2005). The skew t distributed asset
returns can be generated by

Xst = µ + Wγ +
√

WAZ (22)

where µ and γ are parameter vectors in Rd. µ, W, A and Z are identical to those in the
definition of Student t distribution in Equation (18), but the new parameter vector γ is
introduced to reflect the skewness, and if γ = 0, the skew t distribution coincides with
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Student t distribution.

The joint density function of multivariate Skew t distribution is given by

f(xst) = c
K v+d

2

√
(v + Qx)(γ

∑−1 γ) e(xst−µ)′
P

−1 γ

(√
(v + Qx)(γ

∑−1 γ)

)−(v+d)
2

(1 + Qx

v
)

v+d

2

(23)

where Qx = (xst − µ)′
∑−1(xst − µ) and c = 21− v+d

2

Γ( v

2
)(πv)

d
2 |

P

|
1
2

The mean and covariance of Skew t distributed random vector Xst are:
{

E(Xst) = µ + γ v
v−2

COV (Xst) = v
v−2

∑
+γγ′ 2v2

(v−2)2(v−4)
, exists when v > 4

(24)

The first two moments are also matched with those of Student t and normal distribu-
tion , that is, E(Xst) = 0 and COV (Xst) =

∑
. Equation (24) shows that COV (Xst) >∑

, we need to transform Xst to:

Xst =
√

α(µ + Wγ +
√

WÃZ)

=
√

α
(
µ + Wγ +

√
W (
√

ρ̃v − ρ2
rv Z + ρrv Xr +

√
1 − ρ̃vεn)

) (25)

where ÃÃ′ =
∑̃

,
∑̃

is a N-by-N matrix with 1 as diagonal elements and ρ̃v as off-diagonal
elements. The unknown parameters α, µ and ρ̃v can be determined when parameters v,
γ and

∑
are given.





E(Xst) = 0 ⇒ µ + γ v
v−2

= 0

COV (Xst) = α( v
v−2

∑̃
+ γγ′ 2v2

(v−2)2(v−4)
) =

∑
⇒{

1 = α( v
v−2

+ γγ′ 2v2

(v−2)2(v−4)
)

ρv = α( v
v−2

˜rhov + γγ′ 2v2

(v−2)2(v−4)
)

(26)

then 



µ = −γ v
v−2

α = 1
v

v−2
+γγ′ 2v2

(v−2)2(v−4)

ρ̃v = ρv − (1 − ρv)γγ′ 2v
(v−2)(v−4)

(27)

With determined parameters µ, α, and ρ̃v, the skew t distributed asset returns Xst

can be simulated. As the portfolio is a large homogenous one, all the parameters for
the N different assets are identical. To illustrate how the skewness parameters γ affect
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the asset return distributions, we fixed v as 6 and varied γ from 0.1 to -0.3 step by -0.1
because Hu (2005) found that parameters γ for asset returns are usually negative near -0.2.
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Figure 4: Normal, Student t and Skew t distributions

In Figure 4, Normal distribution, Student t distribution with v=6, and skew t dis-
tributions with v=6 and γ = 0.1,−0.1,−0.2,−0.3 respectively) are shown. All these
distributions have identical first two moments-zeros and

∑
respectively. In this figure

we can see that all the Student t and skew t distributions have larger kurtosis and fatter
tails than normal distribution. For left-skewed skew t distribution, which corresponds to
negative γ, when γ changes from -0.1 to -0.3 step by -0.1, the distribution becomes more
left-skewed and its left tail becomes fatter. In contrast to negative γ, the positive γ led
to a right-skewed distribution with its right tail fatter than left tail.

Figure 5 shows the enlarged tails. We can see that for both sides the tails of Stu-
dent t and skew t distributions are fatter than normal distribution. The left-skewed
skew t distribution with γ = −0.3 has the fattest left tail and thinnest right tail except
for those of normal distribution, and vice versa for right-skewed distribution with γ = 0.1.
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Figure 5: Tails of Normal, Student t and Skew t distributions

Under the non-normal asset return assumptions, the credit risk and market risk will
be determined in a similar way as with the normal asset return assumptions.

3 Results and Discussions

Following the Methodology introduced in section 2, in this section a Monte Carlo simu-
lation study is implemented with the path number M=500000. The first four moments
and VaR values at confidence levels (denoted as CL hereafter)95%, 99% and 99.9% for
portfolio value distributions with different conditions and assumptions are calculated and
then compared.
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3.1 Benchmark case

The benchmark case is that the investor has 200 million USD and will invest all his money
in a large homogeneous portfolio consisting of exchangeable zero coupon bonds issued by
200 different companies, and the time horizon is fixed as 1 year.

To be comparable, most of the parameters are consistent with those in Grundke(2005).
All the parameters used in simulation are listed in Table 4.

Table 4: Specification of Parameters

Portfolio parameters
Number of bonds(N) N=200 FaceValue(F) F=1
Maturity(T) T=3 time Horizon(H) H=1
asset correlation ρv = 0.2 corr(asset, interest rate) ρrv = −0.05
Risk free rate parameters
k=0.4 θ=0.06 r0=0.06 σr=0.01
market price of risk λ=0.5
Credit spread parameters
correlation(Xr, S) ρXr ,S = −0.1 correlation(Z,S) ρZ,S = −0.1
Mean of Sk(bp) µk=[35.6 41.0 58.2 86.0 189.6 331.2 1320]
Volatility of Sk(bp) σk=[14.3 14.8 21.5 30.6 74.0 117 480]
correlation Matrix R(will be shown separately)
Beta distributed recovery rate parameters
Mean µδ = 0.538 Volatility σδ = 0.2686

R =




AAA AA A BBB BB B CCC
AAA 1 0.92 0.84 0.72 0.70 0.64 0.64
AA 0.92 1 0.86 0.70 0.75 0.61 0.64
A 0.84 0.86 1 0.89 0.81 0.67 0.61
BBB 0.72 0.70 0.89 1 0.77 0.69 0.67
BB 0.70 0.75 0.81 0.77 1 0.65 0.69
B 0.64 0.61 0.67 0.69 0.65 1 0.65
CCC 0.64 0.64 0.61 0.67 0.69 0.65 1




With these parameters, the main statistical characteristics of portfolio value distribu-
tions are calculated and compared under three different situations. The first situation is
that the portfolio suffers market risk only, which means the risks are from interest rate and
credit spread changes, no rating transition happens during the year. The second situation
is that the portfolio suffers credit risk only, which means the risks are from downgrade,
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default and uncertainty of recovery rate, and with deterministic interest rate and credit
spreads, i.e., σr = 0 and σk = [0 0 0 0 0 0 0]. The last situation is that the portfolio suffers
credit risk and market risk simultaneously, under which the integrated risks are measured.

Table 5: Portfolio VaRs for Market, Credit and Integrated risks

Mean STD Skewness kurtosis VaR 95 VaR 99 VaR 99.9
Market risk only
AA 214.91 2.4175 0.0279 2.9962 3.9557 5.5727 7.3758
BBB 215.8743 2.4737 0.0344 3.0026 4.0463 5.6881 7.5679
B 221.2628 4.1619 0.0519 3.0107 6.7821 9.524 12.5431
Credit risk only
AA 213.0966 0.2443 -5.9063 65.7936 0.3730 1.0575 2.4174
BBB 213.3264 1.4350 -3.4802 23.8670 2.6839 5.8229 11.4097
B 211.821 7.7859 -1.6639 7.0531 15.4592 27.0715 42.9390
Integrated risk
AA 214.762 2.4496 0.0179 3.026 4.0129 5.6288 7.5975
BBB 214.9797 3.0383 -0.5713 4.9404 5.0904 8.3287 14.3131
B 213.5481 9.1821 -1.1355 5.2807 17.3235 29.1833 44.7079

Table 5 reports the first four moments and VaR values at CL 95%,99% and 99.9%
of portfolio value distributions. The results in the first three-row block are about the
market risks for portfolios with initial rating AA, BBB and B respectively, the skewness
are near zero and kurtosis are near three, which indicate that the portfolio value is almost
normally distributed when only market risks are considered. In contrast, when only credit
risks are considered with those results shown in second block, the skewness for AA, BBB
and B rated portfolios are -5.9063, -3.4802 and -1.6639, which are all negative and signifi-
cantly different from zero, and the corresponding kurtosis are 65.7936, 23.867 and 7.0531
respectively, which are significantly different from three. This implies that the portfolio
value distributions are left-skewed and highly-peaked, especially for portfolio with initial
rating AA. In the last block, the integrated risks are reported. Compared with market
VaRs and credit VaRs, at all three confidence levels, the integrated VaRs are larger than
either of them and smaller than the sum of them. However, for different initial rating
portfolios, their integrated VaRs follow different patterns. For example, the integrated
VaR at 99% confidence level(CL) for initially AA rated portfolio is 5.6288 , which is very
close to its corresponding market VaR 5.5727 , while for initially B rated portfolio, the
99% CL integrated VaR is 29.1833, which is near to its credit VaR 27.0715. These trends
are expected, since for high credit quality portfolio the market risk is dominant while
for low credit quality portfolio the credit risk becomes important. And these findings
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also agree with those in previous works done by Kiesel, Perraudin and Taylor(2003) and
Grundke(2005).

As discuss in the Introduction section, there are two approaches to evaluate risks for
various financial products in the industry. Approach A is to take dominant risk, and
Approach B is to evaluate market VaR and credit VaR separately and then add them to-
gether . Approach A is said to underestimate risks and Approach B is said to overestimate
risks. In this study, both the underestimation and overestimation effects are analyzed.

Table 6: Underestimation and Overestimation

Market VaR VS Integrated VaR Credit VaR VS Integrated VaR
VaR 95 VaR 99 VaR 99.9 VaR 95 VaR 99 VaR 99.9

AA 98.57% 99.00% 97.08% 9.29% 18.79% 31.82%
BBB 79.49% 68.30% 52.87% 52.72% 69.91% 79.72%
B 39.15% 32.64% 28.06% 89.24% 92.76% 96.04%

Add VaR VS Integrated VaR
VaR 95 VaR 99 VaR 99.9

AA 107.87% 117.79% 128.90%
BBB 132.21% 138.21% 132.59%
B 128.39% 125.40% 124.10%

The results of underestimation are shown in the upper two blocks of Table 6. We can
see that all the ratios are smaller than 1 although in different extents, which means for
market risk and credit risk, whichever is taken as dominant risk and considered only, it
does lead to underestimation of risks. This underestimation is especially serious for high
credit quality portfolio if only credit risk is included, which can be verified by the ratios
- credit VaR to integrated VaR, they are only 9.29%, 18.79% and 31.82% at CL 95, 99
and 99.9 respectively. If market risk is taken as dominant risk, then the most serious
underestimation happens to low credit portfolios. In the third block of Table 6, the over-
estimation effects are listed. All figures are larger than 1 and the largest ratio occurs for
the BBB rated portfolio, which means the Add-VaRs do overestimate portfolio risks, and
the overestimation is most serious for middle rated bonds. One of the interpretations is
that all integrated VaRs are larger than dominant VaRs and smaller than Add VaRs, for
high credit quality portfolio, its credit VaR can be ignored when compared with its market
VaR, so the ratio between Add VaR and integrated VaR cannot be too large. Similar con-
clusion can be derived for low credit quality portfolios due to their credit risk dominating
their market risk. In contrast, for the middle rated portfolio at time horizon of 1 year,
both its market risk and credit risk are large enough and neither can be ignored, its ratio
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of Add VaR to integrated VaR might be larger than those with high or low credit qualities.

3.2 Time Horizon H

The benchmark case consists of portfolio VaRs at fixed time horizon of 1 year, while there
are no reasons to fix H at 1 year for integrating market risk and credit risk because their
time horizons are totally different. In this section, we consider continuous time horizon H
and investigates how the portfolio VaRs changed with the increase of H, and whether the
VaR term structures follows different patterns for portfolios with different initial ratings.

Ten time points are selected to approximate the continuous time horizon H, i.e., 1
day, 14 days, 1 month, 3 month, 6 month, 1 year, 1.5 year, 2 year, 2.5 year, and 3 days
before 3 year - the maturity . All time points are expressed in days under the assumption
that there are 360 days in a year and 30 days in every month. All market VaRs, credit
VaRs, integrated VaRs and add VaRs are calculated at the ten time points, then the term
structure of VaR values and VaR ratios at CL 99% are compared and analyzed.

Figure 6 shows the term structure of market VaRs, credit VaRs, integrated VaRs and
Add VaRs for portfolios with initial rating AA, BBB and B in panel (a), (b) and (c)
respectively. In general, the term structures of market VaRs with different initial ratings
are similar, the VaR values increase first and then decrease with the largest VaRs at time
horizon of 360 days. The largest market VaRs for different initial ratings do not increase
too much when the initial credit quality worsens from rating AA to rating B. One possible
interpretation is that the bond value formula is vk(H, T ) = Fe−(FR(Xr ,H,T )+Sk(H,T ))(T−H),
the market VaRs are determined by the volatility of FR(Xr, H, T ) + Sk(H, T ) and T-H,
as we have verified that the volatilities of FR(Xr, H, T ) and Sk(H, T ) are both increasing
function of H, but T-H is decreasing function of H, so the whole market VaR term struc-
tures hump in middle and decrease to near zero when H approaches to T. The market
VaRs change a little for different rating portfolio, that is because they are influenced by
identical FR(Xr, H, T ) and slightly different Sk(H, T ).

In contrast, the term structures of credit VaRs followed different patterns. They are
all increasing functions of time horizon H, but the increasing speeds are remarkably dis-
tinguishable for different credit quality portfolios. For AA, BBB and B rated portfolios,
the largest credit VaRs were 2.4387 , 14.1185 and 59.0256 respectively at time horizon of
1077 days. This agrees with the common knowledge that cumulative credit risks are al-
ways increase with time, and more defaults are expected to happen for poor credit quality
portfolio than for good credit quality ones.

The term structures of integrated VaR and Add VaR are also shown in Figure 6, but
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(a) VaRs for portfolio with initial rating AA

(b)  VaRs for portfolio with initial rating BBB

 (c) VaRs for portfolio with initial rating B
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Figure 6: VaR Values for Portfolio with initial rating AA, BBB, and B
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(a) VaRs ratios for portfolio with initial rating AA

(b) VaRs ratios for portfolio with initial rating BBB

(c) VaRs ratios for portfolio with initial rating B
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Figure 7: VaR ratios for Portfolio with initial rating AA, BBB and B
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they become clearer when combined with Figure 7. Figure 7 shows the term structures
of percentages for market VaR VS add VaR, credit VaR VS add VaR, integrated VaR VS
add VaR and add VaR VS add VaR for portfolios with different initial ratings. In panel
(a), from H=1 days to 720 days, the term structure of integrated VaR follows that of
market VaR closely, at H=900 days, the market VaR and credit VaR become half-half of
the add VaR, after that the term structure of integrated VaR follows that of credit VaR.
That is expected because for high credit quality portfolio, its market risk is dominant
but with the increase of time, its credit risk becomes significant. Things are some what
different to middle and low credit quality portfolios, in panel (b) the integrated VaR is
jointly determined by market VaR and credit VaR, while in panel (c) the integrated VaR
is determined mainly by credit VaR during the whole period. This is because for middle
rated portfolio, its market risk and credit risk are both large enough and neither can be
ignored, but for low credit quality portfolio, its credit risk is dominant especially when
the time horizon becomes larger.

The overestimation of Add VaRs can be seen from the distance between term struc-
tures of integrated VaR and add VaR, the most serious overestimation for initial AA,
BBB and B rated portfolios are at H=900, H=360 and H=1 day respectively. At those
time points the market VaR and credit VaR are equally important, which implies that the
perfect correlation assumption leads to most conservative estimates when the two kinds
of risks are comparative.

3.3 Portfolio consisting of various assets

As discussed in the Methodology section, the new framework can deal with portfolios
consisting of various assets. To maintain the computational tractability, without loss of
generality, we focus on portfolios consisting of stocks and bonds only.

3.3.1 Portfolio of stocks only

Before studying a mixed portfolio, we investigat the risk properties of stock portfolio
first, especially its term structures of market VaR, integrated VaR and the underestima-
tion when only the market risk is considered.

The stock portfolio consistes of 200 exchangeable stocks issued by 200 different com-
panies with equal weights. All the stocks have identical expected returns, volatilities, and
their issue firms have identical initial rating. The expected return is fixed as µs = 0.1, in
fact we verified that the portfolio’s market VaRs and integrated VaRs are all increasing
function of µs. Stock return volatility σs is varied from 0.1 to 0.5 stepped by 0.1, other
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parameters are the same as described in section 3.1.

Traditionally, only market risks are considered for stocks. But actually they also suffer
from credit risk, i.e., when the issuing firm defaults, the stock price will jump to zero.
The integrated risk evaluation for stocks will consider the market risk and the default
events simultaneously. Now we fix H=1 year and examine how stock return volatility and
default events influence the portfolio VaRs.

Table 7: Market and Integrated VaRs for stock portfolios with µs = 0.1 and H=1

Market mean std skew kurtosis VaR 95 VaR 99 VaR 99.9
0.1 221.05 10.00 0.134 3.012 16.085 22.238 28.777
0.2 221.05 20.03 0.271 3.121 31.346 42.641 54.402
0.3 221.04 30.10 0.416 3.303 45.816 61.132 76.757
0.4 221.03 40.25 0.547 3.540 59.532 78.218 96.479
0.5 221.07 50.65 0.696 3.860 72.495 93.630 113.970

Integrated AA
0.1 221.03 10.03 0.111 3.067 16.112 22.593 30.179
0.2 221.01 20.03 0.264 3.122 31.280 42.821 55.167
0.3 221.05 30.13 0.411 3.298 45.794 61.270 77.593
0.4 221.06 40.31 0.556 3.561 59.440 78.227 96.800
0.5 221.07 50.72 0.704 3.912 72.500 93.971 114.140

Integrated BBB
0.1 220.29 11.00 -0.234 3.661 18.331 28.222 42.876
0.2 220.49 20.73 0.144 3.232 32.943 47.061 64.228
0.3 220.61 30.58 0.346 3.311 46.913 64.543 84.201
0.4 220.86 40.63 0.523 3.550 60.368 80.397 102.080
0.5 220.88 50.77 0.685 3.890 73.032 95.254 117.000

Integrated B
0.1 208.61 21.44 -1.025 4.707 40.377 66.193 99.145
0.2 210.96 28.85 -0.425 3.502 50.805 77.517 109.700
0.3 212.86 36.95 -0.033 3.215 61.316 88.809 119.990
0.4 214.50 45.58 0.254 3.310 71.815 100.340 130.420
0.5 215.79 54.61 0.497 3.626 82.209 110.760 139.560

Table 7 shows the market risks and integrated risks for stock portfolio with initial
rating AA, BBB and B in four blocks. We can see that the results in the second and third
blocks are very close to those in the first block, that means for high credit quality stock
portfolios, market risk is definitely dominant, and default events rarely happen in one
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year period. In the third column of the upper three blocks are the standard deviations
(denoted as std hereafter), they are proportional to the stock return volatilities. How-
ever, things are some what different for stock portfolio with initial rating B, its std are
not proportional to σs any more. When considering integrated risks for this B initially
rated portfolio, its std are 21.44, 28.85, 36.95, 45.58, and 54.61 respectively, which cor-
responds to σs = 0.1, 0.2, 0.3, 0.4 and 0.5. They are significantly larger than 10.00 20.03,
30.10, 40.25 and 50.65, which correspond to the std when considering market risk only.
The largest increase of std is 11.41 with σs = 0.1 and the least increase of std is 3.89
with σs = 0.5. All the integrated VaRs are significantly larger than market VaRs, and
their differences shrank with the increase of σs. That is because for stock portfolio with
high initial credit qualities, the dominant market risks are determined by stock return
volatilities. But for low credit quality stock portfolio, its default risk becomes relatively
important compared with market risk, especially when the market risks become smaller
due to the decrease of stock return volatilities.

Now we fixed the stock return volatility σs at 0.3 and investigate what the term struc-
tures look like for market VaR and integrated VaRs with initial rating AA, BBB and B.
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Figure 8: Stock market VaR and integrated VaR with initial rating AA, BBB and B
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Figure 8 shows the term structures of market VaR, integrated VaRs with initial rating
AA, BBB and B at CL 99%. We can see that with the increase of time horizon H, all
the VaRs increase. Among them, the term structures of integrated VaRs for initially AA
and BBB rated portfolio follow the term structure of market VaR closely, this is because
during the whole period till maturity, credit events rarely happen to high credit quality
stock portfolios. In contrast, default events become more likely for low credit quality ones,
that can be verified since the integrated VaR for B initially rated portfolio is obviously
larger than its market VaR during the holding period.

We have discussed that market VaR would underestimate the risks of the stock port-
folios. In Figure 9, the underestimation effects are shown for stock portfolios with initial
rating BBB and B. The underestimation for portfolio with initial rating AA is ignored
since all ratios of market VaRs VS integrated VaRs are very close to 1 at all time horizons.

In panel (a) of Figure 9, the underestimation for initially BBB rated stock portfolio is
shown. With the increase of H, all the underestimation effects became more significant,
especially for lower stock return volatilities. In panel (b), although serious underestima-
tion also happened to low σs, the whole term structures of underestimation for all σs

become relatively flat concave curves. The reason for lower σs corresponding to more
serious underestimation is that market VaRs are totally proportional to σs, and small
σs will lead to less dominant market risk compared with credit risk. The shape of the
underestimation term structures are actually determined by the relative increase speeds
of market risk and credit risk, if market risk increases faster than credit risk, the term
structures slope down just like those showed in panel (a), and if market risks increase
faster first and then slower than the increase of credit risk, the underestimation term
structure would be some concave curve like those in panel (b).

3.3.2 Portfolio of stocks and bonds

In this section the portfolio consists of 100 exchangeable bonds and 100 exchangeable
stocks, which are issued by 200 different companies with equal initial rating and weights.
The standardized asset returns for those 200 different companies follow multivariate nor-
mal distribution with identical pairwise asset return correlation.

Now we fixed the σs at 0.3 and compare the integrated VaRs for portfolios of bonds,
portfolio of stocks and portfolio of bonds plus stocks.

Table 8 shows the statistical characteristics for portfolio value distributions of stock
portfolio, bond portfolio and portfolio consisting of bonds and stocks, with fixed σs = 0.3
and H=360 days. As expected, the stds and VaRs for bond portfolios are the smallest,
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Figure 9: Market VaR VS integrated VaRs for stock portfolio with initial rating BBB and B
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Table 8: Comparison of integrated VaRs for different portfolios

AA mean std skew kurtosis VaR 95 VaR 99 VaR 99.9
bonds only 214.76 2.450 0.018 3.026 4.0129 5.629 7.598
stocks only 221.05 30.132 0.411 3.298 45.794 61.27 77.593
bonds+stocks 217.86 15.556 0.382 3.265 23.835 31.799 40.332
BBB
bonds only 214.98 3.038 -0.571 4.940 5.090 8.329 14.313
stocks only 220.61 30.575 0.346 3.311 46.913 64.543 84.201
bonds+stocks 217.8 16.167 0.249 3.317 25.251 35.685 48.451
B
bonds only 213.548 9.182 -1.136 5.281 17.324 29.183 44.708
stocks only 212.86 36.95 -0.033 3.2152 61.316 88.809 119.99
bonds+stocks 213.18 22.55 -0.290 3.390 38.961 58.579 81.403

while those statistics for stock portfolio are the largest and those for portfolio of stocks
plus bonds are in the middle.

Figure 10 shows the integrated VaR term structures for bond portfolio, stock portfolio
and portfolio of bonds plus stocks with fixed σs = 0.3 and CL 99%. The integrated VaRs
for portfolio of bonds plus stocks are larger than those of bond portfolio and smaller than
those of stock portfolio with all of the three initial ratings - AA, BBB and B. But if the
type of assets in the portfolio are determined, the B rated portfolio has the largest VaRs
compared with those of AA and BBB rated portfolios. This implies that the type of assets
is the most important factor to determine the integrated VaRs, and then the firms’ initial
credit qualities.

3.4 Integrated risk with Non-normal asset return assumptions

In the above calculations and simulations, the asset returns are assumed to follow multi-
variate normal distribution with mean zero vector and covariance matrix

∑
. But in fact

asset return distributions are asymmetric and fat-tailed, so in this section, we simulate
and calculate the results under assumptions that asset returns follow the fat-tailed multi
Student t distribution and asymmetric skew t distribution.

The portfolio consists of 100 exchangeable stocks and 100 exchangeable bonds. To
emphasize the effects of different asset return assumptions, H is fixed as one year and the
other parameters are kept unchanged.
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Figure 10: Integrated VaRs for portfolios of bonds, stocks and bonds+stocks with initial rating

AA, BBB and B

3.4.1 Student t distributed asset returns

As shown in Equation (21) in the Methodology section, the multivariate Student t dis-
tributed asset returns can be simulated by

XT

n
=

√
v − 2

v

√
W (
√

ρv − ρ2
rvZ + ρrvXr +

√
1 − ρvεn)

Which can guarantee that the 200 different firms’ asset returns have mean vector zero
and covariance matrix

∑
. For the bonds, the future ratings at H=1 year are determined

by the Student t distributed random variable XT
n and the seven thresholds derived from

Student t inverse t−1. In the same way, whether the stocks default or not depends on
which one is bigger, the random variable XT

n or the threshold of default? If no default

happens, the stock prices become St = S0e
(µs− 1

2
σ2

s)t+σsXT
n

√
t, note that the XG

n in Equation
(14) has been changed to XT

n .

Now if the degrees of freedom v is given as 6, then what would the portfolio value
distribution looks like under the assumption that the firms asset returns are Student t
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distributed?

Table 9: Student t distributed asset returns -Integrated risk

AA mean std skew kurtosis VaR 95 VaR 99 VaR 99.9
0.1 217.88 5.4945 0.28595 7.1006 8.3556 13.071 22.139
0.2 217.93 11.056 2.8112 124.53 15.541 23.272 35.36
0.3 218.07 20.159 54.852 13809 22.509 32.334 46.208
0.4 218.39 38.659 159.3 55706 29.228 40.618 55.186
0.5 224.25 3765.7 706.88 5.00E+05 41.352 53.398 68.535

BBB
0.1 217.66 6.9236 -1.4951 23.002 10.063 22.645 50.742
0.2 217.8 11.93 3.3655 261.5 16.839 29.961 57.392
0.3 218.27 168.03 652.19 4.43E+05 23.785 37.261 62.608
0.4 218.84 283.02 682.79 4.77E+05 30.617 44.652 69.83
0.5 219.58 194.89 450.77 2.53E+05 37.501 51.769 75.532
B
0.1 211.15 16.904 -1.7438 7.5761 34.187 60.92 91.761
0.2 212.3 19.755 -0.6213 16.737 37.311 63.898 93.983
0.3 213.39 24.593 7.384 919.33 40.587 66.96 95.837
0.4 214.57 43.954 134.91 40192 44.735 70.368 99.833
0.5 228.89 8885.1 706.6 5.00E+05 62.529 87.817 115.79

Table 9 shows the statistical characteristics for portfolio value distribution with Stu-
dent t distributed firm asset returns. The third, fourth and fifth columns are std, skewness
and kurtosis . They are remarkably larger compared to those of normal distributed asset
returns, especially the skewness and kurtosis with high σs. What’s more, they are not
very stable for high σs and lower credit quality portfolios. One interpretation is that
Student t distribution has fatter tails than normal distribution, the effects of extreme
events are enlarged dramatically since the std, skewness and kurtosis are in the order
of (pv − E(pv))2, (pv − E(pv))3 and (pv − E(pv))4 respectively (pv is the abbreviation
of ’portfolio Value’). They are not very stable with 500000 simulation paths, but the
mean and VaRs at different CLs are relatively stable. The VaRs follow the same trend as
that with normal asset return assumption, i.e., they become larger when the initial credit
quality of the portfolio worsens and the σs becomes higher.

Now the σs is fixed at 0.3, the integrated VaRs for this portfolio with different initial
ratings and asset return distribution assumptions are calculated and compared. The asset
return distributions are Normal, Student t with V=6, 10, 15, 20 and 100 respectively. Ta-
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ble 10 summaries the integrated VaRs, we can see that for all VaRs at CL 99% and 99.9%,
the results for portfolio with Student t distributed asset returns are larger than those for
portfolio with Normal distributed asset returns, and the difference becomes smaller with
the increase of v. In contrast, VaR95 followed different patterns, except for portfolio with
initial rating B, the other VaR95 values for portfolios with Student t distributed asset
returns are all smaller than those with normal distributed asset returns, and the difference
between them decreas with the increase of v. These findings are consistent with those of
Grundke (2005) among others, and verifies again that Student t distributed asset returns
can lead to fatter tails to objective portfolio value distributions, and the distribution will
converge to those with normal distributed asset returns if v goes to infinity.

Table 10: Comparison portfolio VaRs with Normal and Student t distributed asset returns

σs = 0.3 VaR 95 VaR 99 VaR 99.9 VaR 95 VaR 99 VaR 99.9
Normal v=6

AA 23.835 31.799 40.332 22.509 32.275 46.208
BBB 25.251 35.685 48.451 23.785 37.261 62.608
B 38.961 58.579 81.403 40.587 66.96 95.837

v=10 v=15
AA 22.97 32.25 43.87 23.207 31.969 42.706
BBB 24.219 36.82 57.414 24.521 36.23 53.915
B 40.023 64.39 93.532 40.078 62.546 89.786

v=20 v=100
AA 23.256 31.657 41.947 23.509 31.775 41.443
BBB 25.035 36.77 53.274 25.331 36.226 49.655
B 39.571 61.036 87.841 39.196 59.776 83.86

3.4.2 Skew t distributed asset returns

To capture the asymmetric property of asset returns, in this section we model the firm
asset returns as multivariate skew t distribution. They can be simulated by following
Equation (25)

Xst
n =

√
α
(
µ + Wγ +

√
W (
√

ρ̃v − ρ2
rv Z + ρrv Xr +

√
1 − ρ̃vεn)

)

The future ratings of bonds, the default events and market price changes of stocks are
all determined by these skew t distributed asset returns, in the same way described above
with normal distributed asset returns.
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For skew t distributed asset returns, the skewness parameters γ are usually negative,
which has been verified in Hu(2005). Negative γ means left skewed asset return distri-
butions and γ = 0 corresponds to Student t distributed asset returns. If the parameters
v,ρv and γ are given, the parameters α, µ and ρ̃v can be determined from Equation (27).

Table 11 shows the parameters for v=6, 15 and 100. These parameters guarantee that
all the nine asset return distributions have the same mean vector zero and covariance
matrix

∑
. For fixed v, we can see that when the absolute value of negative γ becomes

larger, the actual asset return correlation ρ̃v and α becomes smaller. For fixed γ, the ρ̃v

and α are increase functions of v.

Table 11: Parameters for skew t distributed asset returns

γ α µ ρ̃v α µ ρ̃v α µ ρ̃v

v=6 v=15 v=100
-0.1 0.6568 0.15 0.188 0.8469 0.1154 0.1983 0.9798 0.102 0.1998
-0.2 0.6289 0.3 0.152 0.8595 0.2308 0.1933 0.9792 0.2041 0.1993
-0.3 0.5874 0.45 0.092 0.8506 0.3462 0.1849 0.9781 0.3061 0.1985

With these parameters, the integrated VaRs are calculated and compared for portfolio
with skew t distributed asset returns with fixed v=6 and varied γ = −0.1, −0.2, −0.3.
Table 12 shows these integrated VaR99 values. The columns 2-4 are the VaR 99 data
for portfolio with skew t distributed asset return, column 5 and column 6 are those
for portfolio with Student t and normal distributed asset returns respectively, which
are denoted as StVaR, TVaR and NVaR. We can see that most of the VaRs satisfy
StV aR > TV aR > NV aR, and the StVaRs increase with the increase of |γ|. This is
caused by the different asset return distribution assumptions, among them, Skew t dis-
tributions with larger |γ| have fatter left tails than those with smaller |γ|, T and Normal
distributions. The fatter tails then are inherited by the portfolio value distributions.

We also examine the patterns followed by VaR95 and VaR99.9 although the data are
not listed here. All the VaR 99.9 satisfy StV aR > TV aR > NV aR, and StVaRs are
increasing function of |γ|. For the VaR 95, things are totally different. For initial AA and
BBB rated portfolios, VaR95 follow the pattern StV aR < TV aR < NV aR and StVaRs
are decreasing function of |γ|, while for B rated portfolio, the VaR95 follow identical
pattern as those with AA and B rated portfolios. One interpretation is that the B rated
portfolio value distribution is more left-skewed than others, which is caused by more likely
happened default events.

35



Table 12: Comparison of portfolio VaR99 with Normal , Student t and skew t distributed
asset returns

V=6 VAR 99
AA γ = −0.1 γ = −0.2 γ = −0.3 T Normal
0.1 14.312 15.099 15.776 13.022 12.493
0.2 24.636 25.828 26.779 23.17 22.402
0.3 33.508 34.186 34.588 32.363 31.799
0.4 41.219 41.492 40.891 40.461 40.44
0.5 47.951 47.311 45.266 48.412 48.21
BBB
0.1 25.225 27.971 29.123 22.967 17.894
0.2 32.521 34.9 37.033 29.713 26.976
0.3 39.615 41.324 42.86 37.25 35.685
0.4 45.822 46.903 47.898 43.975 43.931
0.5 51.717 51.991 50.802 56.309 51.588
B
0.1 66.535 70.767 73.986 61.372 47.413
0.2 68.736 72.58 75.299 64.064 53.397
0.3 71.051 74.054 76.263 67.172 58.579
0.4 73.755 75.896 76.515 70.329 64.629
0.5 76.726 76.991 76.659 75.589 69.428

Now the σs is fixed at 0.3, the v is taken as 6, 15 and 100, then we compare the
integrated VaRs for portfolios with different initial ratings and different asset returns
distribution assumptions. The results are shown in Table 13, the Student t and skew
t distributions with v=100 are closer to Normal distribution than those with v=15 and
v=6, and the VaR patterns for v=15 and v=100 are almost the same as for those with
v=6, which has already been analyzed above.
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Table 13: Comparison of VaRs for Normal ,Student t and Skew t distributed asset returns

σs = 0.3 VaR95 VaR99 VaR99.9 VaR95 VaR99 VaR99.9 VaR95 VaR99 VaR99.9
Normal

AA 23.835 31.799 40.332
BBB 25.251 35.685 48.451

B 38.961 58.579 81.403
T v=6 v=15 v=100

AA 22.444 32.363 46.49 23.207 31.969 42.706 23.509 31.775 41.443
BBB 23.686 37.25 60.984 24.521 36.23 53.915 25.331 36.226 49.655

B 40.34 67.172 96.164 40.078 62.546 89.786 39.196 59.776 83.86
Skew T v=6 γ = −0.1 v=15 γ = −0.1 v=100 γ = −0.1

AA 22.254 33.508 52.188 23.09 32.535 44.291 23.641 32.031 41.378
BBB 23.4 39.615 72.657 24.702 37.116 57.249 25.314 36.449 49.95

B 41.897 71.051 102.78 40.027 63.578 92.528 39.308 59.614 83.921
v=6 γ = −0.2 v=15 γ = −0.2 v=100 γ = −0.2

AA 21.194 34.186 57.731 23.334 33.619 47.138 23.714 32.281 41.255
BBB 22.384 41.324 83.551 24.989 38.213 59.854 25.352 36.036 49.759

B 42.366 74.054 110.69 41.243 65.92 94.398 39.262 59.702 83.412
v=6 γ = −0.3 v=15 γ = −0.3 v=100 γ = −0.3

AA 19.453 34.588 65.72 23.631 33.833 48.729 23.687 32.353 42.29
BBB 20.682 42.86 95.162 25.057 39.947 64.005 25.359 36.39 51.391

B 41.424 76.263 116.68 41.936 67.895 97.305 39.446 60.137 83.664

4 Conclusions

In this study, based on the model in Grundke (2005), we make three extensions and es-
tablish a new framework, with which both market risk and credit risk can be measured
simultaneously.

Within this new framework, the portfolio could consist of various kinds of assets other
than only bonds. Although different assets usually have very different risk properties,
which lead to the difficulty of integrating their risks synthetically, we have shown that
based on the standardized firms’ asset return, the integrated VaRs for portfolio of bonds
plus stocks could be measured reasonably in a uniform way.

In the industry, the time horizon for market risk is usually 1 day or 10 days while time
horizon for credit risk is often chosen to be 1 year. The incompatibility between time hori-
zons for different risks has become one of the barriers to measure the risks simultaneously.
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This new framework is extended to be able to deal with continuous time horizons, which
means that integrated risks can be measured at any arbitrary time points. In this study,
we examine how the different H affect the risks. We find that with the increase of H, the
term structure of market VaRs for bond portfolio humped in middle, with the maximum
market VaRs at about one year while the credit VaRs always increase till maturity. These
occur at all confidence levels and all portfolios with different initial credit qualities. In
contrast, all the term structures of market VaRs and integrated VaRs are increased for
stock portfolios with different initial rating and stock return volatility assumptions. When
bonds and stocks are mixed to form a new portflio, the term structures of integrated VaRs
for this portfolio lies between those for bond portfolios and those for stock portfolios. If
the type of asset in one portfolio is determined, the initial credit quality plays an impor-
tant role to integrated VaRs.

In this study, we also examine the overestimation (for add VaR) and underestima-
tion (for dominant VaR) for evaluating the risks of portfolios, and their term structures
considering continuous H. We show that for bond portfolio, the credit VaRs significantly
underestimates its risks, especially for portfolio with high initial ratings. The most serious
overestimation occurs for portfolios with initial rating AA, BBB and B were at H=900
days, 360 days and 14 days, because at those time points the credit VaR and market VaR
are half-half of the add VaR and neither can be ignored. While for stock portfolio, the
market VaRs underestimated its risks since market VaRs never include default events,
if it happens the stock price would jump to zero. The most significant underestimation
occurs to portfolio with lowest σs and worst initial credit rating.

Since asset return is the key factor to unify the different assets into one framework, we
compare the integrated VaRs for portfolios under different asset return distribution as-
sumptions, which are respectively skew t, student t and Normal distribution and denoted
as StVaR, TVaR and NVaR. We show that with all the distributions sharing common
mean vector and covariance matrix, for VaR99 and VaR99.9, the integrated VaRs follow
the pattern StV aR > TV aR > NV aR, and StVaRs increase with the increase of |γ|, and
VaR95 for B initially rated portfolio also followed this pattern. But VaR95 for portfolios
with initial rating AA and BBB follow different patterns, i.e.,StV aR < TV aR < NV aR
and VaR95 decrease with the increase of |γ|. This is caused by the fact that among the
three distributions, the left skewed skew t distribution has the fattest left tail, which im-
plies that joint defaults are more likely to happen for portfolios under such asset return
assumptions than those with the other two assumptions.

With this new framework, we have made three main contributions. First, we can
obtain integrated VaRs for objective portfolio at arbitrary time horizons. We can also
obtain the VaR term structures and term structures for underestimation and overestima-
tion, which are not possible with previous frameworks. Second, we use the asymmetric
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non-normal skew t distribution first to model asset return. As shown in results, the skew
t distribution provide more flexible and reliable asset return values, and then more rea-
sonable risk measurements. The third contribution is that, although we illustrate the
simulation and calculation procedure with portfolio only consisting of bonds and stocks,
this framework also can be easily used to any portfolio consisting of interest rate instru-
ments, credit risk sensitive instruments, equities and foreign exchange products. This is
very meaningful to insurers, pension funds and some other financial institutions, since
they need to diversify their investments into various kinds of assets.

In this study, we only focus on large homogenous portfolio, and the risk profiles for
heterogenous portfolio haven’t been explored. Although our portfolio include bonds and
stocks, they are exchangeable bonds and exchangeable stocks, with the firms sharing
common initial rating and pairwise asset return correlations. It is clear that the heteroge-
neous idiosyncrasies, such as correlation parameters, bond parameters, stock return and
volatilities, and parameters for asset return distributions, if they are not identical, that
could cause significant changes to portfolio value distributions and consequently to the
integrated VaRs. We can say that with a portfolio consisting of less assets, an extension of
the new framework to a heterogeneous portfolio is possible. With this controllable number
of assets, we can check specific information and calibrate parameters for these assets one
by one, but the computational efforts will still be very intensive. The efforts might be
justified if one wants to know how well the large homogenous approximation theory works.
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