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Abstract 
 
Recent years have seen more and more the importance of the management of credit 

risk for investors, especially institutional investors with large portfolios of corporate bonds, 
loans or other credit products. Questions such as how to evaluate the credit value-at-risk 
given large amounts of information (like different ratings and multiple credit metrics issued 
by different rating companies) and how to build an efficient credit portfolio (having the 
highest expected return under a certain level of credit risk) have become increasingly difficult 
to solve using traditional methods and models. Especially for the second question, the rising 
dimension of the portfolio under limited computational speed calls for leveraging some more 
robust algorithms for the large portfolio optimization.  
 

In this paper, we choose JP Morgan’s CreditMetrics model to evaluate the portfolio’s 
credit value-at-risk for the elaboration of our thesis and try to solve the problem of how to 
leverage multiple credit metrics (as a major input for the model) issued by different rating 
firms to largely reduce the negative impact of variation of different sources, for the slightest 
difference among the metrics might result in a huge deviation in the evaluation of the credit 
risk. Last we will introduce and exploit an increasingly popular and robust algorithm in 
today’s Large Scale Linear Planning Problem-Simulated Annealing to optimize our credit 
portfolio.  
 

Generally, the paper can be viewed as applying existing models with some improving 
methods to better solve today’s problem. 
 
Key Words: 
 

C-VaR; Credit transition metrics; credit portfolio optimization; Monte Carlo 
Simulation; Efficient frontier; Simulated Annealing Algorithm  
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1. Introduction 
 
In recent years, much attention has been put on credit risk analysis and control, not 

only in academics but also in industry. What is credit risk? Credit risk is the risk of losses that 
a creditor may have when the obligator cannot pay back all or part of the debt. This kind of 
risk could exist in bonds, loans or account receivables. Nowadays, credit risk evaluation 
models mainly fall into two groups: single factor models like the KMV model based on 
option theory, JPMorgan’s Credit Metrics, CFSP’s CreditRisk+ and CreditPortfolioView by 
McKinsey as well as multiple factor models like Altman’s Z-score, Zeta model, etc.  
 

Multiple factor models are based on financial statements and give rates in a statistical 
way, while single factor models are based on Brown and Poisson processes and describe 
credit risk by simulating the Markov process. Both ways of rating risk have their strengths 
and weaknesses. Financial data is a reflection of the past performance but is not a good 
indication for the future. The single factor model can predict the future well, but too many 
rely on the credit information provided by rating agencies and pay little attention to the 
market movement as a whole.  
 

In order to alleviate the negative impact on portfolio decisions brought by multiple 
rating metrics from different sources, we propose a method that borrows the idea of 
pessimistic decision to largely reduce the uncertainty. By optimizing the portfolio under this 
method, that is, choose the lowest rating (worst case) as it is and optimize the portfolio given 
that rating, we can at least secure our position and this can set us free from worrying about 
which source of rating is more creditable.  
 

The following paper will cover the general introduction of a few popular credit risk 
evaluation models and a step-by-step demonstration of JP Morgan’s CreditMetrics, our 
method of dealing with multiple Credit Transition Metrics, general introduction of Simulated 
Annealing (SA) Algorithm and a step-by-step demonstration of our portfolio’s optimization 
process with SA. Last we will discuss the problems what could affect the effectiveness of this 
method.  
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2. Popular Credit Risk Evaluation Models  
 
2.1 Evolution of the Models  

 
Since the 1930s, the development of credit risk evaluation models has gone through 

comparable analysis, statistical analysis and artificial intelligence. In this section we give a 
brief introduction of the key assumptions and values of various credit risk evaluation models.  
 
2.1.1 Comparable Analysis in Credit Risk Management  

 
The traditional credit risk evaluation criteria link credit risk with the default event. 

The key point is data mining the characteristics of both default and non-default companies to 
establish the identification equations and categorize the samples. The representative model of 
this stage is 5C analysis—character, capacity, capital, collateral and condition. People try to 
make a full qualitative analysis about the obligator’s willingness and capability of payback 
from five aspects. Early models usually suffer from the subjective, empiricism and lack of 
objective assessments.  
 
2.1.2 Statistical Analysis in Credit Risk Management  

 
After Fisher’s research on heuristics, there developed quickly and enormously credit 

risk evaluation models based on statistics, of which most represented is Edward·Ahman’s 
Z-score. Edward·Ahman observed manufacturing companies near or far from bankruptcy in 
1968 and took 22 financial ratios to establish the most famous five variable Z-score based on 
the mathematical statistical screening. These statistic models’ identification functions and the 
premises of the sample distribution can interpret the data as well as the coefficients of the 
model. Yet the weakness lies in the rigidity of the premise such as data should be normally 
distributed with known variance, which is not easy to find in reality.  
 
2.1.3 Artificial Intelligence in Credit Risk Management  

 
With the fast development of information technology, recent years have seen large 

artificial intelligence models that have been incorporated in the credit risk analysis. For 
instance, neural networks as a self-organizing, self-adapting and self-learning non-parameter 
method are very robust and accurate in predicting especially when the distribution does not 
rigidly follow normal.  
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2.2 CreditMetrics and Other Single Factor Models  
 
In this section we will briefly introduce some single factor models which are based on 

monitoring the changing process of credit from good to bad and building models on credit 
rating data. The following are the most famous four models developed in the past two 
decades.  
 
2.2.1 KMV 

 
The KMV model calculates the Expected Default Frequency (EDF) based on the firm 

capital structure, the volatility of the assets returns and the current asset value. This model 
best applies to publicly traded companies for which the value of equity is market determined. 
The translation of the public information into probabilities of default proceeds in three stages:  
 

• First Stage: Estimation of the asset value and the volatility of asset return  
• Second Stage: Calculation of the distance-to-default  
• Third Stage: Derivation of the probabilities of default.  

 
2.2.2 CreditRisk+ 

 
Unlike the Merton-based approach and CreditMetrics, CFSP’s CreditRisk+ 

methodology is based on mathematical models used in the insurance industry. Instead of 
absolute levels of default risk—such as 0.25 percent for a triple B rated issuer—CreditRisk+ 
models default rates as continuous random variables. Observed default rates for credit ratings 
vary over time, and the uncertainty in these rates is captured by the default rate volatility 
estimates (standard deviations). Default correlation is generally caused by external factors 
such as regional economic strength or industry weakness. CFSP argues that default 
correlations are difficult to observe and are unstable over time. Instead of trying to model 
these correlations directly, CreditRisk+ uses the default rate volatilities to capture the effect 
of default correlations and to produce a long tail in the portfolio loss distribution. The 
minimal data requirements make the model easy to implement, and the analytical calculation 
of the portfolio loss distribution is very fast.  
 
2.2.3 CreditPortfolioView 

 
Tom Wilson, formerly of McKinsey, developed a credit portfolio model that takes 

into account the current macroeconomic environment. Rather than using historical default 
rate averages calculated from decades of data, CreditPortfolioView uses default probabilities 
conditional on the current state of the economy. Therefore an obligor rated triple B would 
have a higher default probability in a recession than in an economic boom. The tabulated 
portfolio loss distribution is conditioned by the current state of the economy for each country 
and industry segment.  
 

Here is a table that clearly compares the differences among these popular models. We 
will introduce JP Morgan’s CreditMetrics in detail in the following part by a step-by-step 
demonstration of its calculation, which our later work largely depends on.  
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TABLE 2-1 
 

Popular Models of Credit Risk Analysis 
 

 
CreditMetrics 
(JP Morgan) KMV 

CreditRisk+ 
(CFSP) 

CreditPortfolioView 
(McKinsey) 

MTM (mark to 
market) or DM 
(default 
method)  

MTM  MTM or DM DM  MTM or DM  

Source of the 
Risk  

Normal 
distributed 

returns  

Normal 
distributed 

returns  

Poisson 
distributed 
default rate  

Macro economic 
variables  

Correlation  Share price and 
transition 

probability  

Volatility of 
option and 
share price 

Average 
default rate 
correlation  

Correlations among 
various macro 

economic variables  

Solution  Algebra or 
Monte Carlo  

Algebra  Algebra  Monte Carlo  

 
2.2.4 CreditMetrics 

 
Since our work is largely based on this model and the theories proposed by JP 

Morgan in 1997, here we give a step by step instruction of how to calculate credit value at 
risk. We cover the following topics in this instruction part. 

 
Calculation of the transition probability of different credit ratings and the bond’s 

value at each possible scenario.  
 

• Use of standard deviation as the measurement of credit value at risk of single 
bond as well as small portfolio.  

• Use of Monte Carlo simulation to deal with large portfolio. 
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CreditMetrics is the product for quantifying credit risk developed by JP Morgan in 
1997. Its idea is like Riskmetrics for quantifying market risk published in 1994 in that both 
are measuring risk by calculating the VaR (value at risk). Here is the logic and framework of 
the CreditMetrics model:  
 

GRAPH 2-1 
 

CreditMetrics Framework (Source: Moody’s Carty & Lieberman [96a] and Standard & 
Poor’s Creditweek [15-Apr-96]) 

 
 
2.3 Calculation of C-VaR of a Two-Bond Portfolio  
 

In this section we will elaborate on how to calculate the credit value at risk of a 
two-bond portfolio whose composition is like the following:   

 
• Senior Unsecured Bond with initial rating of A, 6 percent coupon and duration 

of seven years.  
• Senior Unsecured Bond with initial rating of B, 5 percent coupon and duration 

of six years.  
 
We assume that at the end of year 1 there are only three scenarios: rating will change 

to A, B and D (default). We can get the value of each bond at a specific scenario using the 
forward interest rate. Detailed calculation and results can be found in the following tables:   
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TABLE 2-2 
 

Possible Values and Probabilities at End of Year for Bond of  
Initial Rating A and B 

 
Probability and Value of the Bond 

(Bond of Initial Rating A) 
Probability and Value of the Bond 

(Bond of Initial Rating A) 

Rating at the 
End of Year Probability Value 

Rating at the 
End of Year Probability Value 

A 0.92 109 A 0.03 108 
B 0.7 107 B 0.9 98 
D 0.1 51 D 0.07 51 

 
Note: for the bond of initial rating A, the mean and standard deviation are 108.28 and 

5.78 respectively; and for the bond of initial rating A, the mean and standard deviation are 95 
and 12.19 respectively. 

 
At the end of the year, this portfolio can have nine different values for nine different 

scenarios. For instance, if both bonds remain at their initial rating of A and B, the value of the 
portfolio is 207（=109+98）. 
 

TABLE 2-3 
 

Possible Values of the Portfolio at End of the Year 
 
Obligator 2 (Initial Rating B) Obligator 1 

(Initial Rating A) A B D 
  108 98 51 

A 109 217 207 160 
B 107 215 205 158 
D 51 159 149 102 

 
Note: the entry of the ith row and the jth column in the middle 3*3 matrix is just the 

sum of corresponding value at the top row and the left column (for instance, 102=51+51). 
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2.3.1 Joint Probability  
 

We have already have the independent probability of switching from rating 1 (the 
beginning of the year) to rating 2 (the end of the year) of both bonds; now our problem is to 
calculate the joint probability of the co-moving of both bonds. Still we simplify it as if the 
move is independent, thus the joint probability is just the product of the independent 
probability.  

 
We can derive the joint probability distribution table from Table 2-4.  
 

TABLE 2-4 
 

Joint Probability Distribution 
 

Obligator 2 (Initial Rating B) Obligator 1 
(Initial Rating A) A B D 

  3pp AB,21 ==  90pp BB,22 ==  7pp DB,23 ==  

A 92pp AA,11 ==  2.76 82.8 6.44 
B 7pp BA,12 ==  0.21 6.3 0.49 
D 1pp DA,13 ==  0.03 0.9 0.07 

 
2.3.2 Standard Deviation  
 

Now we demonstrate how to measure C-VaR of portfolio using standard deviation.  

∑
=

==
3

1j,i
j,iijpm, $29US.203VV π  

$US49.13)V(
3

1j,i

2
,

2
ji,ij, =−= ∑

=
pmpv Vπσ  

 
If the distribution is normal, we can just use its standard deviation to describe 

22.2649.13*65.165.1VaRC ===− σ   US$ (at 5% significance level). 
 
In sum the C-VaR of corporate bonds depends on the following factors:  
 
 1. Joint probability of transition between each risk scenario. 
 2. The portfolio value at each this scenario. 
 

Generally speaking, because of the diversification effect on risk, the portfolio C-VaR 
is smaller than the sum of individual bonds.  
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2.3.3 Threshold  
 
We can use p,vσ  to roughly describe the portfolio’s C-VaR if the distribution is 

normal. If not, it would be better to use a preset threshold, say 1 percent of the total value 
distribution. We must first sort the whole possible values and sum the probability of them 
from the smallest one until we get 1 percent accumulating probability. For example:  

 
BAV + ＝｛102 US $, 149 US $, 158 US $, 159 US $, …, 217 US $,｝ 

ijπ ＝｛0.07, 0.9, 0.49, 0.03, …, 2.76｝ 
 

Hence, the nearest value when accumulating probability is 1 percent is 149 US $， 
and the C-VaR is therefore 54.29 US $，（＝ $149US$29US.203$US914V pm, −=−  ）. 

 
In the following graph, we summarize some key points of when to calculate C-VaR.  
 

GRAPH 2-2 
 

Key Steps in Calculating the C-VaR 
 

 
 
2.3.4 Calculation of C-VaR of a Two-Bond Portfolio 
 

In reality, it is more common to deal with large portfolios with N assets. 
Unfortunately, we can’t get the joint transition probability matrix easily, not to mention the 
following standard deviation calculation. Think of a bank with 30 debt portfolios and with 
joint transition probabilities. In order to better describe the situation and solve the problem of 
lack of historical data, CreditMetrics tends to use Monte Carlo simulation to get the joint 
transition probability distribution, and what we need is simply the return distribution on the 
stork market. Steps in this process include: 
 

1. Get asset return threshold Z matrix for each obligator. 
2. Automatically generate a series of asset returns following multiple normal 

distribution. 
3. Get the credit transition information for each asset return by looking for the 

asset return threshold Z matrix (for instance, company 1 switch from BBB to 
CCC) and re-calculate the portfolio value at each new rating to get )1(

PV . 
4. Repeat step 3, for all the simulated return portfolios. We can get a series of 
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)1(
PV . We sort them in ascending order and establish a 1 percent threshold to 

get the C-VaR.  
 

In the following of optimizing portfolio with multiple assets, we will use this way of 
calculating C-VaR and demonstrate it in detail.  

 
3. Our Data Selection and Processing  

 
In this section we first interpret the data we use and then we will do some basic 

processing of the data for the later work. Considering the constraint of our resources and 
capability, we only establish a visual portfolio with six bonds. The source of all the 
information is from Yahoo Finance on March 21, 2007. 

 
3.1 Basic Information of the Portfolio  

 
In our portfolio, the initial investment is 10,000 US $ allocating on six senior secured 

bonds, which are all due to March 2011 and have principal value of 100 US $. Ratings and 
coupon information are as follows: 
 

TABLE 3-1 
Rating and Coupon 

 
 Coupon S&P Moody Fitch 

MERRILL LYNCH 7.00% AA AA  AA  
WALMART  3.38% AA AA  AA  

BOEING  5.80% A  A  A  
COLA  5.75% A  A  A  

3M  4.20% BBB BBB BBB  
TIME WARNER  7.48% BBB BBB BBB  

Source：http://finance.yahoo.com/bonds 
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3.2 Rate of Return in Stock Market  
 
Meanwhile, in order to link to the joint transition probability distribution, we need the 

rate of return of the stock market for these bonds’ issuing companies. Hence we collect the 
annual return of the stock listed on NYSE from June 14, 1996 to June 14, 2006.  

TABLE 3-2 
Annual Return of the Stock s of the Bond Issuing Companies 

 
MERRILL 

LYNCH WALMART BOEING COLA 3M 
TIME 

WARNER 
2006 16.90%  -4.05% 26.48% -16.20% 4.14% 1.07% 
2005 -0.95%  -12.65% 25.37% -23.60% -10.50% -2.99% 
2004 16.88%  4.17% 32.33% 34.99% -40.61% 10.66% 
2003 18.89%  -5.17% -18.52% -14.71% 1.38% -5.32% 
2002 -44.55%  14.02% -40.18% 33.66% 4.29% -112.29% 
2001 -62.55%  -10.77% 49.33% -6.21% 36.07% -3.95% 
2000 54.70%  24.55% -7.45% -70.37% -5.84% -54.57% 
1999 -22.76%  -27.11% -3.96% -11.71% 9.70% 6.13% 
1998 34.37%  56.96% -27.69% 52.81% -19.81% 37.50% 
1997 -1.96%  20.30% -37.36% -40.05% 36.77% 26.24% 
 
3.3 Yield Curve  

 
In order to get the portfolio value at the end of the year, we need to first calculate the 

individual bond value by means of discounting all the remaining coupons and possible value 
at expiration using the forward rate given specific possible rating. For an AAA rating bond, 
there are a couple of forward rates (we can get them from calculation of its spot rate). These 
forward rates can be viewed as the best prediction of the future spot rate by the market.  

 
TABLE 3-3 

Average Forward Rate of Various Rating Bonds Expiration at March 2011 
 Forward Interest Rate (%) 
 F12 F13 F14 F15 

AAA 4.1500 4.2340 4.2060 4.1960 
AA 5.6740 6.2080 6.2250 6.2440 
A 6.2480 6.8990 7.4630 7.0260 

BBB 6.5220 7.1890 7.2400 7.7780 
BB 7.2910 7.5550 7.6890 8.8940 
B 8.7260 8.7360 9.7590 10.2200 

CCC 9.7360 10.4570 11.1950 12.2810 
F12 means the interest rate from the end of year 1 to the end of year 2. 
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4. Optimization of Credit Portfolio with Multiple Assets  
 
 As for large portfolios, it is not easy to calculate the joint transition probability matrix. 
Think about N obligators with eight possible rating scenarios. There would be N8  
possibilities! Hence, we use Monte Carlo simulation to roughly generate the value 
distribution of the portfolio instead of calculating every entry of the matrix. All we need for 
data input is just the return of the stock. In this section, we will make a step-by-step 
demonstration of the whole process. In the optimization, we introduce our proposed 
pessimistic decision method to deal with the multiple transition matrixes as the data input to 
reduce the negative effect of the uncertainties. Later, we will also leverage a very efficient 
and powerful algorithm, Simulated Annealing, to get the most optimized weight N8  of the 
individual assets in the portfolio.  
 
4.1 Calculation of Credit Value at Risk  
 
4.1.1 Possible Values of the Individual Bond at the End of the Year  

 
Here, we calculate the value of each bond at the end of the year using the famous 

bond pricing formula which we mentioned in the previous section: 
 

n
)5,1(A

X
n

1n
1-n

)n,1(A

X
A,X )F1(

100C
)F1(

C
V

+
+

+
+

= ∑
=

 

 
A,XV   is the market value of bond X at rating A by the end of the year. 

 
XC   is the coupon of the bond. 

 
)n,1(AF   is the forward rate of average A -rating bond from the end of year 1 to the 

end of year n. 
 

Given the yield curve we use in Table 3-3, the value of the bond issued by Merrill 
Lynch at the end of the year when its rating switches to A-rating would be: 
 

9095.106
)0.070261(

1007
)0.074631(

7
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7
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With the same way, we can get Merrill Lynch and other five bonds’ market values 

when their rating switches to other possible ratings. Of course, even at default event, 
investors still can get part of the investment. This is determined by the seniority of the bond. 
Here we have six senior unsecured bonds; hence the average recover rate is 51 percent, which 
means we can get 51 percent of the principal when it defaults.  
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The following table is the market value of individual bonds given ratings:  
 

TABLE 4-1 
 

Market Value of Individual Bonds at Given Ratings 
 

 
MERRILL 

LYNCH WALMART BOEING COLA 3M 
TIME 

WARNER 
AAA 117.13 100.41 111.59 111.36 111.59 119.34 
AA 109.65 93.51 104.31 104.08 104.31 111.78 
A 106.91 91.01 101.64 101.42 101.64 109.01 

BBB 104.64 88.83 99.40 99.19 99.40 106.73 
BB 101.28 85.66 96.11 95.89 96.11 103.35 
B 97.15 81.93 92.11 91.90 92.11 99.17 

CCC 91.53 76.71 86.63 86.42 86.63 93.49 
D 51.00 51.00 51.00 51.00 51.00 51.00 
 

GRAPH 4-1 
 

Market Value Distribution of Individual Bonds at Given Ratings 
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Until now we only get the individual value, and the portfolio value is determined by:  
 

1. The weight of the individual assets in the portfolio. 
2. Joint credit rating transitions of the portfolio assets.  

 
We will cover that in the following part.  

 
4.1.2 Asset Return Threshold Z Matrix  

 
We assume here that the movement in the stock market reflects the change in credit 

ratings to some extent; hence it can be used as a signal of the credit rating change.  
 

First, we need the annual transition metrics for corporate bonds issued by S&P, 
Moody and Fitch. The following table is annual corporate credit transition metrics issued by 
S&P.  

 
TABLE 4-2 

 
S&P One-Year Corporate Bond Credit Transition Metrics 

 

Average 
Annual 

AAA 
Global 

AA 
Corporate 

A 
Transition 

BBB 
Matrix 

BB 1983 B 
2002 
CCC D 

AAA 96.54 3.31 0.14 0.01 0.00 0.00 0.00 0.00 
AA 0.09 90.99 8.47 0.40 0.03 0.02 0.00 0.00 
A 0.03 2.50 91.78 5.28 0.24 0.02 0.10 0.05 

BBB 0.00 0.25 4.85 89.26 3.97 0.87 0.40 0.40 
BB 0.07 0.13 0.20 7.33 79.39 8.06 2.71 2.11 
B 0.00 0.00 0.00 0.51 8.08 83.83 5.01 2.57 

CCC 0.00 0.00 0.00 0.44 0.00 10.62 58.85 30.09 
Source:  Roberto Violi；Credit Ratings Transition in Structured Finance (+); CGFS Working Group on Ratings 
in Structured Finance. 

 
From the above table, we can tell that a BBB rating bond has 0.40 percent chance of 

default at the end of the year. Then, if we assume the rate of return on the stock market is 
normally distributed, we can establish a one-to-one relationship linking the stock return with 
the company’s credit rating as follows:  
 

( ) { } ( ) %40.0/ZZRPrdefaultPr DefDef =Φ== σp  
 

Pr   is the probability of a specific change in credit rating; R is the annual rate of 
return on the stock (in order to simplifies our calculation, we standardized the return to make 
sure it has zero expected return); ( )Φ   is a standard normal cumulative distribution 
function; σ  is the volatility of the share price of a company with initial rating of BBB. We 
can use this equation to get DefZ , σσ 9677.2%)40.0(Z 1

Def −=Φ= − . 
 

To make this reverse process, we use MATLAB and get the result immediately: 
σ9677.2ZDef −= . Hence, in other words, if we find the rate of return of stock issued by the 

same company which issued an initial BBB corporate bond decreased by larger 
than σ9677.2− , this bond may downgrade to default. We can keep calculating other 
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threshold rate of return Z at which the bond credit rating may change. For instance, we 
observed that this BBB bond has 0.40 percent chance to become a CCC bond after one year, 
then:  

 
( ) { } ( ) ( )
( ) ( )

( ) σσ

σσ
σσ

8338.20.008Z

008.0/Z004.0/Z
%40.0/Z/ZZRZPrCCCPr

1
CCC

DefCCC

DefCCCCCCDef

−=Φ=∴

=Φ+=Φ∴
=Φ−Φ==

−

pp

 

 
Further, we can consider eliminating this σ（asset return’s volatility），because the joint 

credit transition probability isn’t determined by thisσ . Think about two obligators with the 
same credit ratings yet having different variance of the asset return. Assume they are 
following this equation. This means the volatility of one of the obligator is twice that of the 
other. This also means the asset return threshold Z will be twice that of the other. Hence, the 
probability of transition between different ratings will never change with different σσ 2* =  . 
Now, we can use the standardized normal distribution of rate of return which follows N (0, 
1).  
 

Hence,  ( ) 8338.28338.20.008Z 1
CCC −=−=Φ= − σσ  

 
Similarly, we can get all the threshold asset return Z which triggers rating to switch to 

other grades as follows:  
 

GRAPH 4-2 
 

Asset Return Threshold Z and the Credit Transition Probability of the 
Initial BBB Bond 
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Repeat the above steps, for all bonds with different initial ratings like A, AA, 
A……CCC, we can get an asset return threshold Z matrix for the credit transition probability 
metrics issued by S&P as follows:  

 
TABLE 4-3 

 
S&P Asset Return Threshold Z Matrix 

 
 AAA AA A BBB BB B CCC 

AAA — — — — — — — 
AA -1.506 2.142 3.195 3.291 3.540 8.210 — 
A -2.478 -1.416 1.986 2.737 3.195 3.353 — 

BBB -3.540 -2.669 -1.625 1.570 2.583 2.929 — 
BB -3.540 -3.090 -2.524 -1.581 1.585 2.452 2.495 
B — -3.719 -3.012 -2.350 -1.444 1.471 1.930 

CCC — — -3.719 -2.834 -2.162 -1.358 1.495 
D — — — -2.968 -2.229 -1.490 -0.704 

 
By this same way we can also get this matrix based on the credit transition probability 

metrics issued by Moody and Fitch.  
 
4.1.3 Simulate Rate of Asset Return by Monte Carlo  

 
In this section we use Monte Carlo simulation to approximately get the credit 

portfolio value distribution using the historical data from the stock market and the linkage 
between stock market and credit rating transition. In this way, we no longer suffer from the 
dimension problem mentioned previously (think about that!). Besides, we only have 10 years 
of observations and lack the extreme scenario. Monte Carlo simulation perfectly saves us a 
lot of time for calculation as well as providing enough data entries. 26214486 = . 
 
Key Steps of Monte Carlo Simulation  
 
1. Construct and describe the distribution: 
 

We assume the stock return is normally distributed. Hence, in our Monte Carlo 
simulation, we use the mean vector as well as covariance of the historical data of those six 
companies we pick as the input variables.  
 
2. Generate a sample from the establishing distribution:  
 

After we construct our distribution, the key of the Monte Carlo simulation is to 
generate random variables as our sample from that distribution. We use the random generator 
in MATLAB to generate 1,000 vectors which follow the distribution we previously set. Each 
vector consists of six possible asset returns.  
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GRAPH 4-3 
 

Multiple Normal Distribution of Stock Returns by Monte Carlo Simulation 

 
 

Again, in order to simplify our later work, we standardized our return by equation and 

get the standardized normal distribution of return:  σμ /)X(X −=  
 

GRAPH 4-4 
 

Standardized Normal Distribution of Return 
 

 
 

 
 
 
 
 
 
 
 
 
 
4.1.4 Determine a Possible Credit Transition 

 
In the last section, we generated 1,000 simulated return vectors and (1.4741, 2.7361, 

-2.5047, 1.0696, -0.82376, 0.63461) is one of them. We will calculate its credit transition 
status after one year. These six data points are the stock returns of those six companies 
issuing the bonds. For instance, 4741.1R ML =  is the possible return (standardized) of 
Merrill Lynch. Moreover, the initial credit ratings of these six bonds are (AA, AA, A, A, 
BBB, BBB). 
 



19 

From the Asset Return Threshold Z Matrix that we get from the previous section, we 
can find the triggering point Z that causes the initial AA bond’s credit rating to switch to 
other grades. Because of this, we are confident that the Merrill Lynch bond will remain the 
same rating at the end of the year.  

 
AAMLA Z4741.1RZ pp = . 

 
In the same way, we can get the possible credit ratings for the other five bonds after 

one year. Then we get a credit transition vector after one year such as AA, AAA, BBB, A, 
BBB, BBB. Comparing with the initial one (AA, AA, A, A, BBB, BBB), we find that 
Wal-Mart’s bond upgraded by one unit and Boeing’s downgraded by one unit with all the 
others remaining the same. That is because the change in the stock returns of Wal-Mart and 
Boeing exceeded the triggering point we get from asset return threshold Z matrix. Now, we 
have established a one-to-one relation between stock return volatility and credit rating 
transition.  
 
4.1.5 Revaluate the Portfolio under New Credit Rating  

 
According to the individual bond value under different credit rating transitions from 

the initial one, which we calculated in the very beginning of this part, we can immediately get 
the value of Merrill Lynch’s bond with AA rating, which is 109.65V AAML, = . In the same way, 
we can get the market value of the other five bonds after the credit transition. The new credit 
rating is AA, AAA, BBB, A, BBB, BBB; therefore the new market value vector is (109.65, 
100.41, 99.40, 101.42, 99.40, 106.73).  
 

For the portfolio, its total value depends not only on the individual values of the 
bonds but also their weights. Different weights of combination will affect the overall 
expected return for the portfolio as well as the credit risk. Therefore, we put lots of effort on 
how to efficiently and effectively optimize the portfolio given the specific risk preference. 
Since we will talk about this later, here, for demonstration convenience, we only assume the 
weights of all six bonds in the portfolio are the same. Thus, the portfolio value is: 

 
617.01106.73 99.40101.42 99.40100.41109.65VP =+++++= . 
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4.1.6 Portfolio Value Distribution and C-VaR at 5 Percent Significance Level  
 

We have 1,000 possible return combinations and by repeating the revaluating process 
as in the previous section we can get a distribution of the portfolio value at the end of the 
year as follows:  

 
GRAPH 4-5 

Credit Portfolio Value Distribution at the End of Year  
(by Monte Carlo Simulation) 

 
 

We sort the above 1,000 values in an ascending order. At the top 5 percent, we have 
our threshold value of 599.43 US $, which is the market value of the 50th data (5%*1000=50). 
Hence, the portfolio credit value at risk is simply that value at the top 5 percent minus the 
sample mean: 4.6805- 604.11414336.599VVVaR-C PP,5% =−=−= . It tells us that, after 
one year, there is 5 percent chance that the loss of this portfolio because of the credit 
transition will exceed 4.6805 US $.  
 

We have finished the portfolio credit value at risk calculation part, which covers the 
following key steps: 
 

1. Look at individual obligator’s stock and credit ratings transition; get the asset 
return threshold Z matrix.  

2. Generate a series of return vectors by Monte Carlo simulation.  
3. Determine a new credit rating for each return vector and revaluate the 

portfolio value )1(
PV . 

4. Repeat step 3，for all the simulated return combinations. We get a series 
of )i(

PV . Sort them in an ascending order. Calculate the credit value at risk at a 
specific significance level, say 5 percent. 

 
In the following part, we will mainly focus on how to optimize the portfolio. 

Minimizing the credit value at risk for a given return, as one of the optimization objectives, 
depends on the calculation of C-VaR, which is basically based on our former work.  
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4.2 Credit Portfolio Optimization: Our Method and Techniques  
 
 Our objective is to find an optimal weight of the individual assets that maximizes the 
portfolio expected return and meanwhile minimizes its credit risk. This is the principle of the 
following work, and our job is to try to find an easy and efficient way to solve the following 
two big problems.  
 

1. How to value the goodness of multiple credit rating information from different 
rating companies.  

 
There are only three independent rating firms: S&P，Moody and Fitch. These 
organizations are independent from each other, issuing ratings for companies 
and industries based on their own source of information and credit risk models. 
Even though the results seem not far different from each other, there is still 
variation, and sometimes this small difference will bring huge negative effects 
for investment decisions. For example, in our experiments, we find out that 
compared with S&P and Moody，Fitch seems more “strict,” for the issued data 
are most conservative. This may result from its source of information 
observed or simply because of its stricter models. Whatever the cause, we try 
to alleviate this negative effect because of the different ratings for the same 
company.  

 
2. It is always subject to the time and space constraint to find out the optimal 

portfolio.  
 

In our portfolio, the initial investment is 10,000 US $ allocating among six 
bonds (in the real world, the size of the portfolio may be much larger). The 
principal of bond is 100 US $, therefore the problem is simply finding the 
optimal weights and have these weights sum up to 100（10000/100）. Actually, 
it is much more complex than it looks. If we don’t apply any algorithm, just let 
the computer try every possible combination, the efficiency is, where, 

))n*u(OO(mt : 
 

m is the sum of all weights   
t is the number of assets  

)n*u(O is the time need to calculate the C-VaR for one specific 
combination, where,  
u is the independent rating firms   
n is the random sample generated by Monte Carlo simulation  

 
Take our experiment as an example, assume the processing power of our computer is 1 M 

flops, therefore the time needed is days 6.173s10 *1.515/10*100t 766 ≈==  (from where we 
already know the time for calculating the C-VaR for one specific combination is )1000*3(O , 
approximately 15 seconds). 
 

Hence, the goodness of the algorithm significantly affects the processing power of the 
optimization problem in portfolio investment and restrains the size of the portfolio. Therefore, 
we use the following method to solve the above two problems.  

1. We propose a method that borrows the idea from pessimistic decision to 
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largely reduce the negative effect by uncertainty of the credibility on multiple 
rating information.  

 
2. We incorporate a very robust algorithm, Simulated Annealing, to optimize the 

portfolio.  
 
4.2.1 Pessimistic Decision  

 
When there are more than two scenarios and the probability of them can’t be 

confirmed, we can call this decision problem uncertainty decision. This decision problem has 
complex constraints and large sets of variables, most of which can’t be quantified; hence it’s 
not an easy job to establish the mathematical models. What’s more, the variables and 
correlations among them are uncertain, therefore making it impossible to build the objective 
function to get the optimal solution.  
 

Popular methods for uncertainty decision problem solving are as follows: 
 
• Maximize the minimum return  
• Minimize the maximum regret  
• Maximize the maximum return  
• Optimistic coefficient.  
 
In our work, we develop the maximizing the minimum return’s method and get our 

pessimistic decision method. What follows is the comparison of the two methods.  
 

• Maximize the minimum return. 
 

This method needs to first calculate all possible returns under each option and 
find the option with the maximum return as the optimal solution. This is a 
more conservative way of decision making, from the perspective of the worst 
cases.  

 
• Our pessimistic decision (minimize the maximum loss). 

 
We first find the largest credit value at risk under all credit rating firms’ 
transition metrics. Next, we try to find the optimal weight that minimizes this 
maximum C-VaR. We stand on the point of the worst case and take this as our 
optimization objective. In this way, investors can avoid the negative effect by 
incautiously choosing one rating firm or simply making a weighted average of 
all the sources.  

 
4.2.2 Simulated Annealing  

 
As its name implies, Simulated Annealing (SA) exploits an analogy between the way 

in which a metal cools and freezes into a minimum energy crystalline structure (the annealing 
process) and the search for a minimum in a more general system.  

 
The algorithm is based upon that of Metropolis, which was originally proposed as a 

means of finding the equilibrium configuration of a collection of atoms at a given 
temperature. The connection between this algorithm and mathematical minimization was first 
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noted by Pincus, but it was Kirkpatrick who proposed that it form the basis of an optimization 
technique for combinatorial (and other) problems.  

 
SA's major advantage over other methods is an ability to avoid becoming trapped at 

local minima. The algorithm employs a random search which not only accepts changes that 
decrease objective function, but also some changes that increase it. The latter are accepted 
with a probability.  

 
SA—The Model 
 

SA consists of three parts: solution space, objective function and initial solution.  
 

1. Solution Space: 
 

It is the group of all possible solutions and it restricts the scope of our 
choosing the initial solution and the new solution. In many optimization 
problems, besides objective functions, we also have a set of constraints. Hence, 
there might be some infeasible solution in the solution space. You can define 
the solution space exclusive of infeasible solutions or you can allow them by 
incorporating a penalty function to penalize the occurrence of the infeasible 
solution.  

 
2. Objective Function: 
 

It is the mathematical description of the optimization problem. Usually it is 
constructed as the sum of several optimization targets. The choice of objective 
function should well reflect the optimization requirement and, as mentioned 
above, when infeasible solutions are allowed, objective function needs to 
incorporate a penalty function.  

 
3. Initial Solution: 

 
It is the starting point of the algorithm. It has been proven that the SA 
algorithm is robust, and the final solution is independent of the choice of the 
initial solution.  
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SA—The Idea 
  

i. Initialize：making initial temperature large enough, setting initial solution S(the 
starting point of the itinerary of the algorithm)， L（Markov chain length）for the 
times of itinerary for each temperature value T.  

ii. For k=1，……，L do step 3 to step 6. 
iii. Generate new solution S′. 
iv. Calculate the incremental Δt′=C(S′)-C(S)，where C(S) is the comment function. 
v. Find the transition probability of solution according to Metropolis principle. 

Decide whether to accept the new solution or not. tP . 

 
⎩
⎨
⎧

=⇒ ≤
−

f(i)f(j)                                 1,

),
t

)j(f)i(f(expt )ji(P 当  

vi. If the stop condition has been satisfied, we replace the current solution as the 
optimal one and cease the program.  

vii. T declines gradually and T>0，return to step 2. 
 
SA—The Pseudocode  
 
procedure SIMULATED-ANNEALING;  
begin  
INITIALIZE ( 0i , 0t , 0L ); 
k:=0;  
i:=; 0i  
repeat  
 for  l: =1 to  do kL  
     begin  
     GENERATE ( j from ); iS  
     if f(j) >= f(i) then i:=j  
     else  

         if exp(
kt
f(j))-(f(i)  ) > random[0,1) then i:=j  

         end  
     end  
     k:=k+1;  
     CALCULATE-LENGTH ( kL ); 
     CALCULATE-CONTROL ( kt )  
 until stopcriterion  

  end;  
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4.2.3 Our Optimization Target and Constraints  
 
Our objective is to find an optimal weight of the individual assets that maximizes the 

portfolio expected return while minimizing its credit risk. As mentioned above, we first find 
the largest C-VaR, then find the optimal weights to minimize this maximum C-VaR. Since 
for a given risk preference there will be a corresponding optimal weight to minimize the 
credit risk as well as maximize the expected value of the portfolio, our output will be a series 
of points consisting of an effective frontier line. Our objective function and constraints are as 
follows:  
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Where, 

 
iV   is the market value of the ith bond in the portfolio. It is a random variable.  

 
PV   is the market value of the portfolio with a specific set of weights.  

 
mCV   is the credit value at risk based on the transition metrics issued by the mth 

independent rating firm (we choose 5 percent as our significance level. The range of 
m is 1=S&P，2=Moody，3=Fitch). 

 
τ is our defined parameter for describing the risk preference of different investors. In 
order to simulate the effective frontier, we use a function to repeatedly calculate 
different optimal portfolios at different levels of risk preference  2

i i*002.0=τ  
 

μ   is the mean   
 

iX   is the weight of the ith asset in the portfolio and.(Our initial investment is 

10,000 USD) 100X
6

1i
i =∑

=
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4.2.4 The Application of Simulated Annealing in Our Work  
 
1. Solution Space: 
 

It is the group of all possible solutions, and it restricts the scope of choosing the initial 
solution and the new solution. Our constraint condition restricts the scope of solution. 
The solutions must be within the range of 1 to 95 and should be integers with a sum 
of 100.  

 
S=｛(  6 5 4 3 21  X, X, X, X, X, X ) | 100 X X X X X X  6 5 4 3 21 =+++++ , N X  i∈ ｝ 

 
2. Objective Function: 
 

It is the mathematical description of the optimization problem. Usually it is 
constructed as the sum of several optimization targets.  

 
{ } 3,2,1m       ))(V*)(V(CVMinMax PmPmmX =+ μτ  

 
We will find a set of  i X  in solution space S to minimize the maximum C-VaR of 
the portfolio with these weights. 

 
3. Initial Solution: 

 
It is the starting point of the algorithm. Since the SA algorithm is robust, i.e., the final 
solution is independent of the choice of the initial solution, we generate six random 
integers by MATLAB，and use the following rules to standardize them to make sure 
their sum is 100.  
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     for 51 X~X  

 
Here, our initial solution is（8，8，3，24，45，12）  

 
4. New solution’s generation and acceptance  
 

Step 1, usually for the sake of convenience and time of calculation, new solution 
generation ways will make small and simple modifications of the existing solution 
like swap and so on. We choose the mechanism as follows:   
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Every time the new solution is generated, we keep the first element of the solution 
and randomly generate the rest and randomly sort them together. The detailed 
algorithm is as follows:  

Temp_x(1,1)=X(1,1);  
i=2;  
sum= Temp_x (1,1);  
while(i<6)  
    Temp_x (1,i)=randint(1,1,[1,94-sum+i]);  
    sum = sum + Temp_x (1,i);   
    i=i+1;  
end  
Temp_x (1,6)=100-sum;  
  
j=randperm(6);  
m=1;  
while(m<7)  
    X(1,m)= Temp_x (1,j(1,m));  
    m=m+1;  
end   

 
Step 2, recalculate the corresponding objective function value at the new solution: 

{ }  ))(V*)(V(CVMinMax)P(f '' PmPmmX
' μτ+=  

 
Step 3, determine whether or not to accept the new solution by an acceptance principle.  

 
Here we use the most popular Metropolis principle: If f(P))P(f ' f then accept 'P  as 
 
the new solution，otherwise accept it when )1,0[randomexp t

f(P))P(f '

p
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

 . Detailed 
Algorithm is as follows:  

if(adapt_everbest<adapt_cur)  
    adapt_everbest=adapt_cur  
    solution_everbest=X  
    CVaR_everbest=CVaR_cur  
    mu_everbest=mu_cur  
end  
if(adapt_cur>=adapt_last)  
    solution=X;  
else  
    if(rand>exp(adapt_last-adapt_cur)/T_cur)  
        solution = X;  
    end  
end  

 
Step 4, when new solution has been accepted, it should replace the current solution and 
modify the objective function value at the same time. Thus, we have made an itinerary 
process and do another round of experiments based on this. When the new solution is 
rejected by the acceptance principle, we continue the next round of experiments based 
on the old value until the end of the annealing when the temperature is declined to zero.  
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4.2.5 Output of the Program  

 
We only consider 50 different risk preferences because of the limit of the processing 

power. We show these optimal portfolios in the plane of two dimensions of expected value 
and C-VaR with red dots.  

 
Environment of the Processing: 
 
Hardware: 
IBM Corporation Intel (R) , Pentium (R), Processor 1500MHz, 1.50GHz, Memory 760MB 
 
Software: 
Microsoft Windows XP Home Edition 2002 edition，Service Pack 2  
MATLAB Version 7.0.1.24704 (R14) Service Pack 1 September 13, 2004  
 
Processing Time: 
 
5 hours, 12 minutes 33 seconds  
 
Main Program: 

 
t=0.002;  
point=1;  
while(point<51)  
    adapt_everbest=-inf;  
    adapt_last=-inf;  
    adapt_cur=-inf;  
    T_ini=50;  
    T_end=1;  
    T_cur=T_ini;  
    Markov_len=10;  
    while(T_cur>T_end)  
        n=1;  
        while (n<Markov_len+1)  
            create;  
            adapting;  
            keepbest;  
            accept;  
            n=n+1;  
            fprintf('n= %f\n',n);  
        end  
        annealing;  
    end  
    CVaR(point,1)=CVaR_everbest;  
    Mu(point,1)=mu_everbest;  
    point=point+1  
    t=0.002*point*point;  
end  
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Output of the Program: 
GRAPH 4-6 

 
Optimal Credit Portfolios by Different Risk Preferences Under Pessimistic Decision  

 
5. Summary and Further Discussion  

In this paper, we chose JP Morgan’s CreditMetrics model to evaluate the portfolio’s 
credit value-at-risk for the elaboration of our thesis and tried to solve the problem of the 
negative impact on portfolio decisions brought by multiple rating metrics from different 
sources. We proposed a method that borrows the idea of pessimistic decision to largely 
reduce the uncertainty by minimizing the maximum C-VaR using powerful algorithm 
Simulated Annealing for the optimization of credit portfolio. Under this method, we can at 
least secure our position and set us free from worrying about which source of rating is more 
creditable.  

 
Key steps of the optimization process are as follows: 
 
1. Calculate the C-VaR for a portfolio with specific set of weights under the 

credit transition metrics issued by all independent rating firms.  
2. Find the maximum C-VaR as the input for optimization process, using 

Simulated Annealing to minimize this C-VaR, getting the optimal portfolio.  
3. For different risk preferences, we modify parameterτ  and get a series of 

optimal portfolio allocation points consisting of the effective frontier like 
Graph 4-6.  

 
Of course, we still have several issues that we haven’t touched in our work and new 

problems generated in our method. For instance, the period of measuring credit risk is one 
year (because we use annual asset return). However, in reality, some credit instruments have 
much shorter periods. Also, we haven’t talked much about the marginal risk, which is of 
more concern for the portfolio manager. While we leverage the powerful Simulated 
Annealing algorithm, we are subjected to the limited new solution generation mechanism 
instead of trying more options. The length of Markov chains is set at the experience level, all 
of which might have some negative impacts on our output.  
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