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Abstract  

ERM has methodology for quantifying the risk to capital, but to determine optimal 
capital the impact of capital level on firm value is needed. This gets into the realm of valua-
tion. Also capital allocation provides risk quantification for business units, but comparing re-
turn among units is fundamentally a risk-pricing exercise. When considering risk pricing, op-
timal returns on allocated capital are not necessarily constant across business units. The cur-
rent ERM methodology, as well as actuarial literature on valuation and pricing, are reviewed, 
and possible directions for application of pricing and valuation methods to risk management 
problems are outlined. 
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1. Introduction 

Enterprise risk modeling has developed tools for risk quantification and attribution of risk to 

business sources. Quantifying the risk to capital, for instance being able to say that the probability of 

losing half of capital in a single year is less than 1 percent, does not determine how much capital to 

hold, however. Quantifying capital risk is useful for regulatory review of capital levels, but setting 

optimal capital includes other issues, like customer risk preferences, competition, etc. The insurance 

finance literature suggests that financially stronger insurance companies are more profitable (see, for 

example: Epermanis and Harrington (2006); Grace, Klein and Kleindorfer (2004); Phillips, Cummins 

and Allen (1998); and Sommer (1996)). Thus increasing capital strength can enhance insurer firm 

value to some degree. Franchise value, defined as firm value less capital, is a reasonable target to op-

timize. Models of firm value are discussed below. 

Attributing risk to business units is used to allocate capital or determine the capital costs of 

the business units. Units can be compared based on return to allocated capital or value added, i.e., 

profits less cost of capital. This is an attempt to determine which business units are earning more 

profit compared to the risks they entail. Fundamentally this is a risk-pricing exercise. However its 

typical application ignores much of the risk-pricing literature. The allocation of risk measures used to 

quantify capital risks does not necessarily capture the value of the risk for risk transfer purposes. For 

instance, capital is sometimes allocated based on tail risk only, but a company would want to charge 

for the risks it bears even when not in the tail. Capital allocation and capital cost quantification me-

thods are reviewed below in the context of their risk-pricing implications. 

Section 2 discusses criteria for risk quantification and attribution in the context of risk pric-

ing. Section 3 reviews related ERM methodology with those criteria. Section 4 addresses risk pricing 

in general and suggests possible refinements. Section 5 surveys directions for firm value modeling. 

Section 6 concludes. 
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2. Criteria for Risk Quantification and Attribution 

If risk attribution is used compare profits of insurer business units, the risk attributed to the 

business unit should in some way reflect the value of the risk the unit is taking. This is not a precise 

requirement, but will be used as a broad evaluation standard. Value here could mean market value in 

general or company-specific market value, such as the price the company has to charge to make the 

business add value. Some more precise criteria follow. 

• Risk grows more than linearly with loss potential. This is a fundamental risk attitude 

reflected in utility theory, for example. Simply put, a loss that is twice as big is more 

than twice as bad. 

• Risk-taking is not cost free. Any degree of risk-taking needs some charge, even if 

small. At least scenarios generating an economic loss should have a charge, and 

probably anything worse than plan should. 

• The charge for adding a new obligation should be commensurate with the increase it 

produces in the overall risk of the firm. This is a formulation of the principle of mar-

ginal pricing. 

Risk measures and attribution methodologies can be examined with reference to these crite-

ria. 
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3. Review of  ERM Risk Quantification and Attribution 

In this section, concepts and methods of risk measurement and risk attribution are reviewed 

and compared to the risk-pricing criteria. The notation is: Y is a random variable with cumulative 

distribution F(y) for a company, with Y = ΣXj, the sum of business units (which could even be indi-

vidual policies). ρ(Y) is a risk measure on Y (i.e., a functional mapping F to a real number) and r is 

the allocation, i.e., ρ(Y) = Σr(Xj). 

Marginal allocation: allocating in proportion to the impact of the business unit on the 

company risk measure. This can be: last-in marginal allocation where the impact of the business 

unit is measured by ρ(Y)-ρ(Y-Xj), the company risk measure with and without the unit; Aumann 

allocation, where the impact is averaged over every coalition of business units that unit can be in; or 

incremental marginal allocation where the impact is [ρ(Y)−ρ(Y−εXj)]/ε, the change in the com-

pany risk measure from ceding away a small proportional part of the unit, grossed up to the size of 

the whole unit. In the limit ε→0 this is the derivative of the company risk measure with respect to 

the volume of the business unit. 

Marginal allocation is required to meet the criteria of marginal pricing, but the allocations 

should add up to the entire risk of the company. This is possible with incremental marginal alloca-

tion. 

Marginal decomposition: when the incremental marginal impacts add up to the whole risk 

measure, the allocation is called a marginal decomposition of the company risk measure. By Euler’s 

Theorem, this happens when the risk measure is homogenous degree 1, i.e., for a positive constant 

k, ρ(kY) = kρ(Y). Marginal decomposition is also called Euler allocation. It was introduced to the 

actuarial literature in Patrik, Bernegger and Rüegg (1999). Several examples are derived in Venter, 

Major and Kreps (2006), who also tie down the application of Euler’s Theorem to random variables.  

As an example, the standard deviation has a marginal decomposition equal to the covariance 

of the unit with the company, divided by the standard deviation of the company. This can be seen 

by taking the derivative of the company standard deviation wrt the volume of the business unit, us-

ing l’Hôpital’s rule for the limit. More examples are below. Marginal decomposition would seem to 

be a fundamental requirement needed for capital allocation to meet the marginal pricing criterion.  
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Proportional allocation: allocating a risk measure by calculating the risk measure on the 

company and each business unit, and allocating by the ratio of the unit risk to the company risk: 

r(Xj) = ρ(Y)ρ(Xj)/Σρ(Xj). This will not usually provide a marginal decomposition, but will if the risk 

measure is the mean under a transformed probability distribution. Then the risk measure on each 

unit is the transformed mean for the unit, and these add up to the transformed mean for the firm.  

Suitable allocation: defined by Tasche (2000). Under a suitable allocation, if you allocate 

capital by the allocation of a risk measure, and compute the return on allocated capital, then propor-

tionally increasing the size of a business unit that has a higher-than-average return on capital will in-

crease the return on capital for the firm. Venter, Major and Kreps (2006) show that marginal de-

composition always produces a suitable allocation, and it appears that it is the only method that 

guarantees suitability. This seems to be a fundamental property that an allocation should provide, 

and adds further support to requiring that allocation be a marginal decomposition. 

To see what can happen otherwise, suppose that there is a marginal decomposition for a risk 

measure but for some reason a different allocation is selected. Thus some units will be allocated 

more capital and some less capital than under the marginal decomposition. Some units will have 

lower than average return on allocated capital and some higher than average under each allocation. It 

is thus quite possible that a unit that gets lower allocation under the selected method has a higher-

than-average return under that method and a lower-than-average return under marginal decomposi-

tion. Growing that unit proportionally, perhaps by buying less quota share reinsurance, and increas-

ing capital by the marginal impact on the overall company risk measure, will reduce the company 

return on capital due to the properties of marginal decomposition. Thus the selected method can 

result in wrong decision-making.  

Co-measure: defined if ρ(Y) can be expressed as: 

ρ(Y) = E{Σi[hi(Y)Li(Y)|ith condition on Y]}, 

where the hi’s are additive, i.e., h(V+W) = h(V)+h(W), and the only restriction on the Li’s is that the 

conditional expected value exists. Then the co-measure is defined by: 

r(Xj) = E{Σi[hi(Xj)Li(Y)|ith condition on Y]} 

By the additivity of the h’s, the co-measures add up over the business units to the whole risk 

measure. For instance if there is only one h and L, with the condition Y > F-1(0.99), and L(Z) = 1 
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and h is h(Z) = Z, then ρ(Y) = E[Y| Y > F-1(0.99)] is TVaR at 99% and r(Xj) = E[Xj | Y > F-

1(0.99)] is its co-TVaR, which is a marginal decomposition. The ability to take a sum of several func-

tions allows risk measures like the sum of TVaR at different probability levels to be used. This for-

mulation of co-measures is from Venter, Major and Kreps (2006). 

 A less trivial example is risk-adjusted TVaR, or RTVaR, first defined by Furman and Lands-

man (2006) (although they called it something else). This has two sets of h’s and L’s. The condition 

on Y is Y > F-1(α) for both sets of functions, with h1(Z) = h2(Z) = Z, L1(Y) = 1, and L2(Y) = c[Y– 

E(Y)] /Stdev(Y|F(Y)>α) for some constant c, which will usually be between zero and one. Then: 

 ρ(Y) = E[Y| Y > F-1(α)] + c Cov(Y,Y|F(Y)>α) /Stdev[Y|F(Y)>α] 

          = TVaRα + c Stdev[Y|F(Y) >α]. 

The co-measure, co-RTVaR, which is a marginal decomposition, is: 

  r(Xj) = co-TVaRα(Xj) + c Cov(Xj,Y|F(Y)>α) /Stdev[Y|F(Y)>α]. 

The function L(y) was used by Kreps (2005) to express the risk-adjusted value of a random 

variable Y as ρ(Y) = E[(Y-aEY)L(Y)]. Then the co-measure is E[(Xj-aEXj)L(Y)]. For instance if L(Y) 

is the indicator function for F(Y)>0.99, and a=0, this is TVaR at 99 percent. The special case a=0, 

which includes TVaR, was addressed in Mango and Ruhm (2003), so the effort to find an appropri-

ate riskiness leverage function for a company and use it to define a risk measure and co-measure is 

called the RMK algorithm. The Kreps and Mango-Ruhm papers were originally in the risk-pricing 

context. 

When a risk measure can be expressed in the form applicable for co-measures, there are 

many equivalent expressions, leading to different co-measures. At most one of these can be a mar-

ginal decomposition. As an example, taking h(X) = X and L(Y) = Stdev(Y)/E(Y) gives ρ(Y) = 

Stdev(Y) and r(Xi) = Stdev(Y)E(Xi)/E(Y). This is not a marginal decomposition. Taking h(X) = X – 

E(X) and L(Y) = [Y – E(Y)]/Stdev(Y) gives the marginal decomposition of standard deviation r(Xi) 

= Cov(Xi,Y)/Stdev(Y). A similar example with VaR is given below. 
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Showing this is the marginal decomposition involves taking the derivative of the risk meas-

ure of the firm wrt Xi , that is, 
ε

ερρ
ε

)()(
lim

0

iXYY −−
→

. Often the limit is most easily accomplished 

by l’Hôpital’s rule, which gives –ρ’(Y–εXj)|0 , where the prime denotes the derivative wrt ε. For 

standard deviation, the derivative of –Std(Y–εXi) = – [VarY–2εCov(Xi,Y)+ε2Var(Xi)]½ gives at ε = 0 

r(Xi) = Cov(Xi,Y)/ Std(Y). Venter, Major and Kreps (2006) add εXi to define the derivative, but that 

gives the problem of how to imagine a proportional increase in business volume. Using the deriva-

tive to the left takes a proportional decrease, which is easy to imagine as a small quota share ceded. 

The same approach works for Myers-Read, below. 

 

Even if a co-measure allocation is marginal, it might not meet the other pricing criteria of 

not ignoring risk and risk increasing more than linearly. For instance, tail risk measures like VaR and 

TVaR ignore some smaller losses. If the tail probability level is chosen low enough to include all ad-

verse scenarios, TVaR does not ignore the small risks. However TVaR is linear in losses above the 

threshold, violating the non-linearity property. Insurers have found as that allocating by TVaR over 

a low threshold attributes less risk than seems reasonable to units exposed to large losses. 

A reasonable alternative is to use RTVaR over a low threshold. RTVaR increases more than 

linearly, and the low threshold would include the smaller losses. This would also meet the more gen-

eral standard of being plausible as a risk-pricing metric, as standard-deviation loading is a traditional 

risk-pricing method.  

A similar effect can be produced by taking the risk measure to be a weighted sum of TVaRs 

at different probabilities, from quite low to quite high. For instance, 60 percent, 90 percent, 98 per-

cent and 99.6 percent could be used. This would include the impact of smaller losses, but emphasize 

the large losses. There is a good deal of flexibility here, which could be used to calibrate risk loads to 

market prices. 

Aumann-Shapley method: an accounting method of cost allocation for the cost of produc-

tion facilities that are used to produce a variety of products—see Billera, Heath and Verrecchia 

(1981). For risk measures or cost functions that are homogeneous of degree 1, this comes out the 

same as the Euler method, or marginal decomposition. For other functions it is a similar average, 

but over all production levels from zero to full capacity, which is not really relevant to insurance 
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lines of business. Thus basically this is useful only for homogeneous risk measures and is then the 

Euler method. 

Myers-Read allocation: an additive marginal allocation method that requires that the value 

of the default put option as a fraction of expected loss be the same for each business unit. The risk 

measure is required capital itself, and the incremental marginal change in required capital from a 

small proportional reduction to a business unit is the amount by which capital can be reduced and 

still keep the same company-wide ratio of default put value to expected losses. This incremental 

marginal change in capital is grossed up to the volume of the whole business unit to give the capital 

allocated to the unit. It turns out that these allocations add up to the overall capital. Thus the Myers-

Read method is a marginal decomposition. Calculating the default put value requires the whole 

probability distribution and it is more impacted by large losses, so the other criteria are met as well. 

Even with these properties, it does not appear that the Myers-Read allocation was ever in-

tended to be the denominator of return on capital. It was proposed for allocating the frictional costs 

of holding capital, such as taxation on investment income, but not as a measurement of the price for 

bearing risk. 

Allocation by layer: an allocation method introduced by Bodoff (2008). It is easiest to de-

scribe in the context of a simulation model. Let Xi,k be the loss to unit i in the kth simulation, which 

has total company losses Yk. The capital C is to be allocated to unit.  

Layers of losses up to C are needed for the allocation. To take a fairly extreme case, assume 

that layer z is the layer from z – 1 US¢ to z¢, and that all simulations have been rounded to whole 

cents. (Yen would be approximately the same.) Define nz as the number of simulations Yk that are z 

or greater. The allocation of layer z to unit i is ∑
≥zYwithk k

ki

z k
Y
X

n
,1 . The allocation of C to unit i is 

∑ ∑
= ≥

C

z zYwithk k

ki

z k
Y
X

n1

,1 . As a check, summing the allocation over the units (i’s) gives C
n
nC

z z

z =∑
=1

.  

Bodoff considers the case C = VaRα, but the method works more generally for any risk 

measure. For instance, if you want to allocate TVaR, just use the layers up to TVaR, and similarly for 

standard deviation, etc. The allocation has some good properties. All layers contribute to the alloca-

tion, so it does not ignore smaller but potentially painful losses. Also the larger simulations get into 

the allocation for all lower layers, so they get a greater weight overall. Thus the units that generate 
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large losses get a bigger allocation. As this is an allocation of a specific capital level, it is not mean-

ingful to say it is marginal or not. If you reduce business, C is still C, so the marginal impact is zero. 

However if C is set equal to a risk measure and allowed to change with the volume of the writings, 

the resulting allocation is not marginal in any known cases. 

Merton-Perold: a method of attribution of the cost of capital to business unit that does not 

require capital allocation, based on Merton and Perold (1993). The firm is viewed as providing each 

business unit with the option to use the firm capital if its losses exceed its premiums. The value of 

that option is the implicit capital cost to the firm of carrying that business. The value added of the 

unit is the excess of its profits over the capital cost. Merton and Perold assume a standard options-

pricing framework so they can use the Black-Scholes formula for the value of the option. The distri-

butions involved and the one-period time frame make such assumptions inappropriate for insurance 

risk, but the basic concept can be applied with more realistic distributional assumptions. 

A more fundamental criticism is that the profits are also an option, in this case the option 

the firm has to take all the profits of the business unit if there are any. However, the combination of 

the two options is not a contingent claim at all: the firm takes all the profits and pays all the losses. 

Thus the value added of the business unit would traditionally be calculated as the net present value 

of its cash flows under a risk-adjusted rate, having nothing to do with capital or options. Or other 

pricing concepts, like arbitrage theory or capital asset pricing model (CAPM), could be used to value 

the unit. Still, the division of the value into the cost and profit components may provide insights. 

This approach meets all the criteria in Section 2. 

Capital consumption: an application of Merton-Perold to insurance risk that uses distribu-

tions and risk pricing more realistic to the non-life insurance business, from Mango (2005).  

Coherent risk measure: Artzner et al. (1999) define the concept of a coherent risk measure, 

which is a risk measure meeting a few mathematical requirements, the most controversial and most 

often failing being subadditivity: the risk measure of a sum of independent random variables should 

not be greater than the sum of their risk measures. This is a useful criterion if the question being ad-

dressed is measuring the diversification benefit of combining business units, and the analyst wants to 

guarantee in advance that the answer will not be negative. Otherwise it is not really a necessary re-

quirement. Since marginal allocation does not look at the risk of individual units, but rather their 

contribution to the risk of the whole, subadditivity is not relevant in this context. 
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Distortion measure: from Wang (1996), defined by a distribution function G(x) on the unit 

interval (that is, G(0)=0, G(1) = 1 and G is non-decreasing) so that the risk measure ρ(Y) =  

∫0 

∞
G[S(y)]dy, where S(y) = 1 – F(y) is the survival function of Y. Actually G[S(y)] is itself a survival 

function. Thus the role of G is to transform the probabilities of Y, and since the mean of a distribu-

tion is the integral of its survival function, a distortion risk measure is a transformed mean. The 

marginal decomposition of a transformed mean is the transformed mean of the business unit, where 

the transform uses the transformed probabilities of the aggregate firm variable. Applying G directly 

to the survival functions of the business unit will not necessarily give a marginal decomposition. 

However if ρ(Y) is defined as Σr(Xi) this will work. 

Famous examples of such distortion measures are G(p) = pa (proportional hazards trans-

form) and the Wang transform G(p) = 1 – Ta[Φ –1(1–p) – b], where Ta is the t-distribution function 

with a degrees of freedom, and Φ is the standard normal distribution. However VaR0.99 and TVaR0.99 

are also distortion measures. They both have G(p) = 1 if p > 0.01. Note that G[S(y)] then is 1 when 

F(y) < 0.99, so the portion of the integral from 0 to F-1(0.99) is F-1(0.99). VaR has G(p) = 0 other-

wise, whereas TVaR has G(p) = p/0.01 otherwise. 

Distortion measures are in fact spectral measures. These are of the 

form ( )( )[ ]YFYEY ηρ ⋅=)(  for some nonnegative scalar functionη. A bit of calculus can show that 

taking η(p) = G’(1 – p) will put any distortion measure into the spectral form. 

Transformed means are arbitrage-free if the transformation is made on the probabilities of 

events. However this may not be the case if the transform is on the probabilities of outcomes of 

deals—see Venter (2004). Distortion measures can be applied either way, so may or may not be arbi-

trage-free. In a simulation model, the events represented are the simulated scenarios. Thus to apply a 

distortion measure in an arbitrage-free manner, the probabilities of the scenarios would be modified, 

and those probabilities would be applied to the results of every business unit in the scenario. This 

could end up with bumpy implied distributions for the business units themselves, but would give a 

marginal allocation of the firm transformed mean to the units.  

This would be fairly simple in practice. Say the Wang transform is selected. Wang’s (2004) 

results suggest that taking a around 5 or 6 is consistent with some market prices, so the main issue is 

the choice of b. The scenarios would be sorted by firm loss to get the observed survival function. 
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 Then the transformed mean can be calculated as a function of b, and the b that gives the tar-

get return for the firm can be found. This would then give the transformed probability for each sce-

nario, and these then give the transformed unit means. 

Distortion measures have marginal decompositions and since they are transformed means, 

they are plausible as pricing tools. However some distortion measures satisfy the criteria of using the 

entire distribution of losses and being non-linear in large losses, and some fail to. These criteria give 

rise to types of distortion measures, although these concepts can be applied to other measures too. 

Complete risk measure: as defined by Balbás, Garrido and Mayoral (2009), the risk meas-

ure uses the entire probability distribution of Y in a non-trivial way. This can be formally defined for 

distortion risk measures by requiring that G(p) is not constant on any interval, and so is an increas-

ing function on the unit interval. No tail measures satisfy this definition. The motivation is that if the 

risk measure is to be used to express preferences among random variables, this cannot be done us-

ing the tail alone. Complete distortion measures like the Wang transform meet all the pricing criteria. 

Adapted risk measure: one meeting two more requirements, also from Balbás, Garrido and 

Mayoral (2009). If a risk measure is going to be used in pricing, typically you would not want it to be 

less than the mean of Y. For a distortion measure this requires that G(p) ≥ p. However another 

practical requirement is that in the tail the relative risk load is unbounded. This would be needed to 

get behavior like a minimum rate on line, where the ratio of risk load to expected losses can be very 

large. For distortion measures this can be expressed as G’’ < 0 and G’ goes to infinity at p = 0. The 

Wang transform is an example. If the unlimited variance of Y is infinite, then the standard deviation 

loading of higher layers would also increase without bound, and so would meet this criterion. Usu-

ally minimum rates on line are used only with heavy-tailed distributions, so this is a realistic example. 

Transformed distributions: not every transformed distribution is a distortion measure. 

Consider, for instance, the Esscher transform f *(y) = f(y)ey/c/EeY/c. This does not exist for many 

heavy-tailed distributions, but in practice losses will be capped by policy limits which will make the 

transform finite. It has a free parameter c that determines the change in level. The change in prob-

ability depends on the value y of the loss. This does not happen with distortion measures since they 

are spectral measures, that is the transform is a function of the probability but not the value of the 

loss. The Esscher transform is thus not a spectral measure. 
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If Y is a compound frequency-severity process, a combined transform can be defined that 

simultaneously applies to the frequency and severity probabilities. A popular transform in the fi-

nance literature is the minimum entropy martingale measure, which is the martingale that minimizes 

a particular information distance measure from the original process. Møller (2004) shows how to 

apply this to an insurance profit process consisting of a fixed premium flow minus compound Pois-

son losses. If Y is the severity with density f, this transform uses a constant c which determines the 

profit load, with the frequency and (Esscher) severity transforms: 

λ* = λEeY/c , f *(y) = f(y)ey/c/EeY/c. 

Venter, Barnett and Owen (2004) find this provides a reasonable representation of catastro-

phe reinsurance prices, including high risk loads that resemble minimum rates on line for high layers. 

Note that the constant c does not have any specific meaning—it can be quite different for different 

distributions with the same profit loading, and is not likely to be the same across lines. A starting 

point for c might be somewhere around the 75th to 90th percentile of Y. If the policy limit is a sig-

nificant multiple of that, the upper layer probabilities can increase by a factor of 100 or more. 

This approach might work well if distributions used in pricing were transformed for each 

line to match the target profit loads, giving a c for each line, and all of these were used in the simula-

tion of aggregate results. This would be a different way to organize enterprise risk management, 

starting from line profit goals instead of providing them. Some method to compare the profit goals 

to see which lines were more aggressive might be needed. Perhaps comparing c to percentiles of 

each line’s severity might be helpful. 

An alternative would be to use the Esscher transform on the aggregate losses from simulated 

scenarios. This could be applied to simulations as described above for the distortion measures to get 

transformed probabilities by scenario, which would then be used for each line. 

Transformed distributions can be applied to other statistics than the mean. TVaR under 

transformed probabilities is called weighted TVaR, or WTVaR. This is no longer linear in large 

losses, so if it is used over a low probability threshold, it also meets the pricing criteria. 

Summary of ERM risk and attribution: either capital consumption or marginal decompo-

sition can meet the criteria set out in Section 2. Risk measures such as a weighted sum of TVaRs, 

RTVaR, WTVaR, or some of the probability transforms meet all the criteria set out as long as they 

are allocated by marginal decomposition. Myers-Read would be in this category as well. As far as 
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being plausible as a pricing method, the Wang transform and the minimum entropy martingale 

transform would be the most commensurate with pricing theory. However all of them would have a 

problem with pricing that considers the viewpoint of a diversified investor. Some other probability 

transforms would work in that context, however. This is part of the topic of the next section. 
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4. Whither Risk Pricing? 

ERM professionals in the insurance industry are looking to capital allocation to price risk be-

cause in many insurance companies virtually no one, including actuaries, accountants, risk managers, 

and senior management, accepts standard risk-pricing approaches such as CAPM and arbitrage pric-

ing theory. Some reasons for this reluctance are discussed below. This is in stark contrast to the aca-

demic finance profession, who routinely use these pricing methods, and some of whom have ex-

pressed skepticism about the role of capital allocation in pricing.  

For instance, Gründl and Schmeiser (2007) say “However, we could not find reasons for al-

locating equity capital back to lines of business for the purpose of pricing. This holds true for cases 

that do not integrate frictional costs and also when such costs are considered.” And later, “We ex-

plained the main difficulties an insurance firm runs into when using capital allocation models for 

capital budgeting decisions such as expanding or contracting certain business segments. (This) … 

typically leads to wrong decisions by an insurance company.” 

Sherris (2006) marginally allocates a risk measure—the default put option—to lines of busi-

ness in a pricing context, but does so in order to subtract it from the price otherwise developed. He 

discusses capital allocation, but finds that it does not affect prices. Both these papers assume that 

pricing is done with transformed expected values within the arbitrage pricing framework. Thus they 

are essentially finding that capital allocation is not necessary if there is an available pricing mecha-

nism. 

The non-life insurance industry has been reluctant to embrace financial risk pricing, such as 

CAPM and arbitrage theory. One problem with CAPM is that the distributional assumptions are in-

consistent with the heavy-tailed distributions in non-life insurance. Another may be that the betas 

are regarded to be similar across lines and so can be ignored. There is also a strong emphasis in prac-

tice on pricing specific risk with no reference to the market risk. However ERM is breaking down 

the resistance to pricing in a diversified context, at least within a single insurance enterprise. Thus it 

is not as much as a conceptual leap to pricing from the investor point of view as it once was. 

The distributional argument is perhaps the strongest conceptually. However this is not 

unique to the insurance industry. Rubinstein (1973) already pointed out that investor preferences 

related to higher moments should and do influence security prices. Kozik and Larson (2001) provide 

a more detailed history of the consideration of higher moments in asset pricing, and how this can be 
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applied in insurance pricing. Basically investors prefer negative odd moments and low even mo-

ments for portfolio returns.  

Fama and French (1992) report another problem with CAPM : other factors besides covari-

ance are priced. In particular they find a higher return for larger companies, and for companies with 

low market-to-book ratios. There are different ways to interpret their result. One strong contender is 

the efficient market view : portfolios of these securities get higher returns because they have higher 

risk, after controlling for covariance. Efficient market theory is perhaps a faith-based matter these 

days, but there is some support for it here, mainly because these effects persist even though they are 

well-known. If they were just due to pricing mistakes, the market would have corrected for them 

already. However the implication is that the Fama-French factors (FFF) are surrogates for risk 

measures. There has therefore been some attempt at replacing them with more direct risk quantifica-

tion.  

Hung (2007) shows that including the 3rd and 4th co-moments gives better fits than does 

CAPM plus FFF, even though those factors still improve the fit further. Chung, Johnson and Schill 

(2006) find that the FFF become insignificant if enough higher co-moments are included. However 

this might require as many as 10 higher moments, which seems complicated. That gives some impe-

tus to looking for other measures of risk besides moments. 

One such possibility was suggested by Wang (2002). He proposed a sort of co-moment gen-

erating function risk measure E[XeY/c]/EeY/c, which he calls the exponential tilting of X with respect 

to Y. If X and Y are bivariate normal and Y is the market portfolio, then c can be found that makes 

this risk measure the CAPM price—see Landsman and Sherris (2007). Thus exponential tilting can 

be regarded as an extension of CAPM to non-normal risks, including with a non-normal market, 

without explicit reference to moments. Empirical work is needed to see how well this works, how-

ever. 

Pricing by probability transforms has not fared much better than CAPM in insurance prac-

tice. Even though this appears to be risk-specific pricing, there are other areas of resistance. Often 

the comment is heard that arbitrage pricing, being additive, does not reflect the benefit of diversifi-

cation. Also there is not much secondary trading in the insurance market, so continuous hedging 

strategies are not available. However there is enough competition in the insurance business to force 

non-diversified companies to match the prices of their diversified competitors. Also the theory of 

pricing in incomplete markets requires pricing by transformed expected values even if hedging is not 
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possible. Thus the objections to using this approach are a bit weak.  

The interaction with CAPM is another issue. In a complete market the arbitrage price is 

unique and has an implied hedging scheme, so beta does not have to be addressed, e.g., as in the 

Black-Scholes formula. In an incomplete market, pricing with a transformed mean is not unique, 

there is no complete hedging, and just being arbitrage-free does not guarantee that risk is properly 

priced. Thus the relationship with market risk is an operative issue. This would appear to require 

recognition of dependency with the market in the transformed-mean pricing. 

One thing that helps in that context is that CAPM can be expressed as a transformed mean 

and so is a type of arbitrage-free price. To see this, let r be the risk-free rate, and suppose that Y has 

density f(y) with EY = (1+r)Y0 . The transformed distribution will be g(y) = f(y)h(y), and since this 

must integrate to unity, Eh(Y) = 1. Take h(y) = 1 + b(E[M|y] – EM), where M is the market portfo-

lio and b is a constant small enough that h is not negative. It is easy to see that Eh(Y) = 1. The 

transformed mean is E*(Y) = E[Yh(Y)] = EY + b{E[YE(M|Y)] – [EM][EY]} = EY + b{E[YM] – 

[EM][EY]} = EY + bCov[Y,M]. Let the returns for Y and M be R = Y/Y0–1 and RM = M/M0–1. 

Then E*(Y) = (1+r)Y0 + bCov[RY0 ,RMM0] = (1+r)Y0 + bY0M0Cov[R,RM] and so E*(R) = r + 

bM0Cov[R,RM]. To get CAPM, bM0 should be replaced by setting b = (RM – r)/(M0σM
2) to get the 

expected return under transformed pricing of E*(R) = r + Cov[R,RM](RM – r)/σM
2. Also E*(Y) = EY 

+ Cov[Y,M][M –(1+r)M0]/(M0σM)2. 

Comparable transforms can be made for higher co-moments as well. These are defined simi-

larly to other co-measures. The nth co-moment sn(Y, M) = E{[Y – EY][M – EM]n – 1}. Note that this 

is not commutative, that is it is not usually the same as sn(M, Y) for n ≠ 2. Higher co-moments can 

also be represented as probability transforms. For instance, expanding the co-3rd moment shows that 

it is E[YM2] – EM2EY – 2E[YM]EM + 2EY(EM)2. Then similar arguments as for covariance show 

that setting h(y) = 1 + b{E[M2|y] – EM2 + 2[EM]2 – 2E[M|y]EM} gives the loaded co-3rd moment 

as a transformed mean. Perhaps other transforms can retain the connection with the market risk as 

well as distort the probabilities in other ways. 

Thus no-arbitrage pricing has the potential to represent the risk needs of a diversified inves-

tor. However to do this requires certain types of probability transforms. Hopefully there is a way to 

do this without using 10 co-moments, perhaps with exponential tilting. Further research is needed to 

flesh out these ideas. 
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 Recognizing jump risk may also be necessary in order to get a suitable pricing formula for 

insurance risk. Arbitrage-free pricing formulas for processes including jumps are fairly widespread. 

See, for example, Kou and Wang (2004), Jang (2007) or Jang and Krvavych (2004). Ramezani and 

Zeng (2007) find that U.S. stock indices can be best modeled with about 10 jumps per year in addi-

tion to a diffusion process. Dunham and Friesen (2007) find about 50 jumps per year for equity fu-

tures, and that jumps make up a large part of their price risk. Also a market with jump risk makes 

perfect hedging impossible. For all these reasons, diversified shareholders probably care about jump 

risk, and pricing models should price for it. Perhaps an approach would be to use co-jumps, i.e., the 

jumps in a process when the market has a jump. This is another area for development of pricing 

tools.  

Defining co-jump risk is most readily done specific to a particular model of pricing move-

ments. One possibility would be a compound-Poisson model, or other such compound frequency-

severity model. The minimum-entropy martingale transform discussed above for a compound-

Poisson process applies to the jump risk component by simply increasing the expected number of 

jumps. Another possibility would be a Levy process. In general these processes allow infinitely many 

small jumps in a finite period, but only finitely many of these are greater than ε no matter how small 

ε is. Thus it should be reasonable to ignore the small jumps and consider a model that is a continu-

ous process plus a compound-Poisson process. The jumps would be at the Poisson events, and the 

co-jump risk could simply be a co-measure of the risk jumps with the market jumps. For something 

like earthquake insurance, the insurance losses could have a strong link with the market losses, so a 

reasonable first approximation to the co-jump would be the risk’s own jump. Thus just pricing jump 

risk as idiosyncratic risk may be reasonable as a starting point.  

There are only finitely many trades in a day, so observed prices are never continuous. But 

small jumps from trade to trade are consistent with an underlying continuous process. Adding a 

jump process is a way to reconcile many small price movements, which define a specific volatility, 

with some occasional larger movements, which have a different volatility. There might be an ambi-

guity between the two volatilities that could produce competing models. While traded prices are dis-

crete, bid and ask prices exist over continuous ranges. These can be thought of as a sort of cloud of 

probability around where the price is between trades. One potential model is a quantum-type ap-

proach, where the price process does not have actual values between trades—only the cloud of 

probability exists. This is perhaps easier to accept conceptually for security prices than it is for parti-
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cles. Whether or not such a model would have any practical implications is not clear. 

Many insurers feel that they do not need models for market prices. They know the market 

prices already. What they want to know is whether or not the market prices for the various business 

segments give them adequate returns for the risks they are taking. That is why they look towards 

capital allocation, etc., to evaluate returns. But so doing is just substituting a naïve, undeveloped and 

poorly understood pricing model for more well-researched though still incomplete pricing models. 

The standard pricing models, perhaps with some more development as outlined above, can be re-

garded in a comparative framework as giving the relative risk-price adequacy among business units, 

which is what the strategic planners are looking for. However since these models usually have a free 

parameter or two, it can be a problem to create a consistent comparison. This may be easier with 

spectral transforms like the Wang transform that transform probabilities only than with transforms 

like Esscher, which need the parameter to relate to the random variable being transformed. Perhaps 

making the Esscher parameter a fixed percentile of the distribution could provide a basis for com-

parisons.  
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5. Firm Value, Capital and Risk 

Modeling firm value involves capturing the impacts of both capital and risk. Broadly speak-

ing, more capital makes the firm more valuable, as does less risk. These effects are reflected very dif-

ferently in different models, however. Traditional actuarial analysis featured the probability of ruin, 

with more capital increasing the expected time to ruin. This was put into a firm-value context begin-

ning with de Finetti (1957), who expressed firm value as the expected present value of future divi-

dends to shareholders, which is very much in the tradition of analysis of life insurance policies. This 

firm value is not the same as market cap, as it is supposed to reflect a somewhat stable underlying 

value. Market cap is based on the price those interested in buying or selling shares immediately 

would pay or take for those shares, which are typically a small fraction of outstanding shares. When 

a company is bought as a whole it is usually at a significant multiple of market cap. 

In de Finetti’s approach, more capital increases the likelihood of the firm being around in 

the future to pay more dividends. However a dividend paid earlier has a higher present value than 

one paid later, which creates a tension between keeping capital and paying it out. This suggests that 

there is an optimal capital level. Taking more risk can reduce the probability of survival as well, but if 

it comes with the possibility of more return, it might increase firm value. In some cases, reducing 

risk, even by costly risk transfer, can increase firm value by increasing the likelihood of extended 

survival. 

De Finetti was assuming the company starts with a fixed capital and survives unless it is used 

up. In the model of Modigliani and Miller (1958), the company is assumed to be able to raise capital 

at any time at a fixed borrowing-lending rate. Risk and value are measured by CAPM. It is not too 

surprising that they find that costly risk transfer is never worthwhile. Thus in 1957–1958, the actuar-

ial and financial worlds were off on quite different paradigms. 

The direction of the actuarial approach is well illustrated by Gerber and Shiu (2006). They 

use a compound-Poisson process with a sum-of-exponentials severity distribution, which has been 

shown to be a good approximation to any severity if you take enough exponentials, and optimize 

firm value using the approach of Bellman (1954). They find that the optimal dividend strategy is a 

barrier strategy: keep all earnings until capital reaches its optimal level, and pay out anything beyond 

that in dividends. (They do not consider share repurchasing, but for these purposes, that can be 

viewed as equivalent to paying dividends.) Reinsurance is also considered in the actuarial approach. 
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Bather (1969) includes proportional reinsurance, and Asmussen, Højgaard and Taksar (2000) look at 

excess. The pricing assumed for excess makes a difference in these models, however. 

In the financial literature, Mayers and Smith (1982 and 1990) provide a list of reasons why 

Modigliani and Miller does not apply. Probably the most accepted single reason, advocated by Froot, 

Sharfstein and Stein (1993), is that raising new capital is more expensive than retaining earnings. This 

makes risk transfer, even if costly, value accretive, especially for firms with expanding capital needs, 

such as growing firms and capital-intensive firms, like those that profit from research. Also firms 

with potential exposure to capital losses, such as insurers, would be in this category. 

Insurance finance papers have explored these issues empirically. Staking and Babbel (1995) 

report an increase in market value from using risk management to avoid financial distress. Sommer 

(1996) finds that the profit load insureds are willing to pay decreases as the ratio of insurer capital to 

assets declines, and also decreases as the volatility of that ratio increases. Phillips, Cummins and Al-

len (1998) estimate the price discount that insureds demand for accepting a higher expected cost of 

insurer default. They find the discount is about 10 times the economic value of the default put value 

for long-tailed lines and 20 times for short-tailed lines. Grace, Klein and Kleindorfer (2004) find that 

insurer security issues impact insureds’ buying decisions for homeowners’ insurance. Epermanis and 

Harrington (2006), who look at financial strength as measured by rating agencies, find that growth 

rates are higher for higher rated insurers, and that the growth rate of a company moves up and down 

with rating changes. 

One conclusion from these studies is that the value of an insurer increases non-linearly with 

capital. For a weakly capitalized insurer, value can increase steeply as capital is added, while with a lot 

of capital, these effects are minimal but the frictional costs of holding capital makes the value in-

crease less than the capital increase. The opposite effects occur from losing capital: the drop in firm 

value can be much greater than the capital lost. There are many examples of this in the financial his-

tories of insurers. Froot (2003) uses the term “M-curve” to describe the response of market value to 

capital. He shows that besides addressing capital targets, the M-curve is a general tool for risk-

management. If losing $X reduces firm value by more than gaining $X increases it, then reducing 

risk by costly reinsurance can be valuable. On the other hand, increasing investment risk, even with 

higher expected returns, can sometimes reduce value. 

It is difficult to construct the M-curve directly from empirical studies. Major (2007) reports 

on efforts to combine the actuarial and finance approaches into a model, using the Bellman equa-
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tion, to find the capital and reinsurance options that optimize firm value while taking into account 

the possibility of refinancing, albeit expensively, and insurance buyer risk preferences. He uses the 

insurance finance literature results to model profitability as a function of capital. Besides the optimal 

capital  and reinsurance strategies, the M-curve is an output from which other risk management 

work can then be undertaken. Further understanding of the relationship between profitability and 

financial strength could improve this aspect of the model. Also the cost of distress financing has to 

be input. The insights of Myers and Majluf (1984) provide a starting point for that aspect. 
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6. Conclusions 

Capital allocation is an attempt to do risk pricing while avoiding the rigors of the pricing 

project. But to work well it has to face up to the problems of risk pricing and incorporate them. This 

can be done to some degree within the typical ERM setting if specific risk measures and risk attribu-

tion methods are employed. An alternative is direct risk pricing. However, risk pricing needs further 

development for this application, such as addressing higher moments and jump risk. Also its empha-

sis on market price for risk needs to be further tailored to get to the adequacy of market prices given 

a firm’s unique risk profile. The impact on firm value is the bottom line for strategic and pricing de-

cisions, and this is also the case for optimal capital. Better understanding of the relationship between 

financial strength and profitability is the key to advancing firm-value models. 
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