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Abstract  
 

Contemporary enterprise risk management (ERM) has moved from an event-based 

view of risk to a hierarchical, systems-based approach. Risk systems that involve human 

interaction are classified and behave as complex adaptive systems. One of the key signatures 

of complex adaptive systems is that they evolve, and therefore a detailed understanding of the 

evolution of an enterprise‘s risk system should reveal the nature, future likely emergence and 

adaptation of risks in that enterprise. In order to operationalize such an approach, a 

methodology is proposed in this paper that draws on phylogenetic approaches that have been 

successfully developed for biological evolution. The technique and process provide an insight 

into the lineage, pace and impact of external conditions on the evolution of risks. They also 

provide a unique and rational classification of risk in an enterprise that can be used to 

optimize risk management resources. An example of a fictitious insurance company is used to 

illustrate the approach.  
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1. Introduction 

 

The authors introduce a novel approach to risk analysis and management that is 

grounded on three interconnected principles: 

 

1. Risks behave as complex adaptive systems, not as an aggregation of events 

(Allan and Davis, 2006). This concept extends beyond the principle ―the 

whole is greater than the sum of the parts‖ to include Angyal‘s modification 

that ―aggregation and whole formation are processes of an entirely different 

order‖ (Angyal, 1941).  

 

2. Evolution is a signature of complex adaptive systems (Mitleton-Kelly, 2003; 

Morel and Ramanujam, 1999); and hence risks should, by definition, evolve 

and follow evolutionary principles.  

 

3. Connectivity is a fundamental property of any system (Mason, 2005; 

Checkland and Scholes, 1990). 

 

There is a trend that, in modern society and its organizations, risks have become more 

complex and interdependent (Beck, 1992, 2004). This has been borne out by the recent 

systemic crisis in the financial sector, where all the banks were lending and trading with each 

other, and the impact of their losses was felt throughout economies and society. Indeed, it is 

suggested that connectivity is the third dimension of risk (Allan, et al., 2008) to be added to 

the two-factor risk paradigm of probability and impact. Moreover, Mitleton-Kelly (2003) 

argues that the interconnected nature of the elements in a system enables both the system and 

its parts to evolve.  

 

Using evolutionary theory and specifically phylogenetic techniques, developed to 

study the evolution of biological systems, it will be demonstrated, using a case study, that:  

 

1. Risks can be understood to have a unique characteristic sequence, very much 

like DNA to a biological entity. 

 

2. Collective risk systems can and do evolve and co-evolve. 

 

 

3. The history of the evolutionary path (path-dependency) is an important aspect 

of a risk; this is of course already well-known to financial and insurance 

professionals. The point here is to understand what the parent risk is and when 

a risk characteristic combines or separates to form a new lineage. 

 

4. A risk‘s evolutionary progression or steps can be analyzed and predictions 

made about how they may most likely develop. 

 

5. Taking into account the unique evolutionary history of an organization‘s risk 

system, it is possible to determine the likely future trajectories or emergence 

of new or evolved risks.  

 

6. Lastly, and maybe most importantly, the paper demonstrates that the 

evolutionary analysis provides a unique and powerful way of classifying risks 
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that is independent of traditional organizational boundaries and structures. 

This can aid effectiveness and efficiencies in managing risks and allocating 

risk-related resources or capital.  

 

Before embarking on the case study, it is necessary to first explain the background to 

phylogenetics and its principles so as to appreciate how the approach has been adapted to 

analyzing risks.  
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2. History and Description of Phylogenetic Analysis 
 

In the 18th century, Linnaeus pioneered the classification practice by grouping 

organisms in accordance to their similarities and differences (Wheeler, 2005). Linnaeus‘ 

work, much like traditional risk management, can be described as systematic, instead of 

evolutionary, as the objective was to place all known organisms into a hierarchical structure. 

Phylogeny, on the other hand, being inspired by Darwin‘s evolutionary approach (Brown, 

2007), not only indicates the similarities and differences between species, but also illustrates 

their evolutionary relationships (Pagel, 1999).  

 

With the advances in computational capabilities and molecular knowledge, the study 

of classification and evolution has entered a new era. Phylogenetic analysis
1

 utilizes 

molecular information, i.e., DNA, to meet the data requirement and assigns equal weights to 

characters (Mishler, 2005). By doing so, the approach is less subjective—‖rather than making 

assumptions about which characters are important, phylogenetic analysis demands that the 

evolutionary relevance of individual characters be defined‖ (Brown, 2007).  

 

The outputs from phylogenetic analysis are tree-like shapes, often called ―evolution 

trees,‖ ―phylogenetic trees‖ or ―cladograms.‖ As illustrated in Figure 1, a phylogenetic tree is 

essentially a connected graph that is composed of nodes and branches and does not contain 

any closed structures. The nodes symbolize the organisms under investigation, whereas the 

branches that connect all the nodes represent the relationships among different organisms, in 

terms of their ancestry and descent relationships. Epistemologically, a node is an entity that is 

homogeneous and comparable to other entities being studied and its informative character 

states are always subject to change as knowledge of characters progresses (Albert, 2005). 

Therefore, the application of the phylogenetic trees, which are composed of nodes and 

branches that link nodes, is not restricted to organisms. Indeed all individual entities with 

taxonomic characters, such as species, populations, individuals, genes or even organizations 

(McCarthy et al., 2000), can be analyzed with this method.  

 

Figure 1 

Example of Cladograms 

 
 

 

                                                 
1
The terminology ―phylogenetic analysis‖ and ―cladistic analysis‖ is often interchangeable in contemporary 

usages and this paper does not discriminate between the two. 
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All phylogenetic trees can provide the same basic information, including a historical 

pattern of ancestry, divergence and descent, all of which can be interpreted from their 

structure (Lecointre and Le Guyader, 2007). Basically, the nodes of a tree can be categorized 

as external or internal, according to their relevant positions. That is, nodes at the terminal tips 

of a tree are called the external nodes (Mishler, 2005), whilst the rest are termed the internal 

nodes and these are the ancestors of the former. In other words, external nodes are 

descendants of connected internal nodes. The links between the nodes are called the branches 

and the lengths of these are proportional either to the evolutionary time or the number of 

mutations occurring along that branch (Li et al., 2000). Evolution occurs independently along 

the branches emanating from each internal node, and the overall structure of nodes and 

branches represents a given entity set‘s degree of diversity.  

 

Furthermore, as can be seen in Figure 1, there are two main types of trees. The one on 

the left-hand side is referred to as a rooted tree, because of the existence of a root, at node 6, 

and such a tree structure determines that there is only one path from the root to each of the 

other nodes. In a rooted tree the directions of the branches correspond to the evolutionary 

times, and the root is the common ancestor of all the organisms in the tree. On the right-hand 

side is an un-rooted tree, where a common root cannot be identified. In an un-rooted tree, 

only the relationships among different organisms are specified, and very limited information 

regarding the historical evolution process can be inferred without acquiring extra knowledge. 

In many circumstances, un-rooted trees occur because the characteristics or taxa of an 

organism diverge from the outset and thus it is not possible to determine the common 

ancestor, at least without additional information.  

 

2.1 Different Phylogenetic Algorithms 

 

Li et al. conducted a survey of how scientists construct phylogenetic trees and 

concluded that there are three major methods and algorithms employed (Li et al., 2000): 

 

 Distance matrix; 

 

 Maximum likelihood;  

 

 Parsimony. 

 

In practice, these different tree-constructing algorithms need to be applied with care, 

particularly in the context of risk analysis. For example, the distance matrix algorithm, 

though computational efficient, can produce inaccurate inferences under certain conditions 

(Pagel, 1999). The maximum likelihood method and other Bayesian methods rely more on 

statistical models to describe the mutation process at a molecular level (Kishino et al., 1990). 

This sort of model is not easy to obtain for risk analysis, and the results can be difficult to 

interpret.  

 

Methods based on the principle of maximum parsimony have been by far the most 

widely used, because they are probably the most logical and intuitive to apply. The principle 

behind the parsimony approach is that ―a tree is more preferable if it involves fewer 

evolutionary changes‖ (Lin et al., 2007). In other words, the one with the fewest evolution 

changes is termed a parsimonious tree, as the term ―parsimony‖ implies as few changes as 

possible (Sneath and Sokal, 1973). However, Sober notes that the parsimony algorithm does 

make assumptions about evolution but that those assumptions are modest and unproblematic 
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and that the most-parsimonious tree is better supported than the others (Sober, 2005). After 

considering the advantages and drawbacks of each algorithm and their experience of applying 

and interpreting the resulting trees in a risk context, the authors conclude that the parsimony 

method is the most suitable for risk analysis.  

 

2.2 An Illustrative Example of Parsimony Algorithm 

 

The process of phylogenetic analysis in biology is inherently composed of two phases: 

assembling a data matrix containing relevant information; and inferring phylogenetic tree(s) 

from that matrix (Mishler, 2005). There are two further prerequisites for conducting 

phylogenetic analysis using the parsimony method: 

 

1. One should ensure that the entities to be examined are comparable and the 

relationships between different characteristics are meaningful (Swofford and 

Olsen, 1990).  

 

2. It is possible to describe the characteristics using a Boolean style measurement 

(1 or 0).  

 

The phylogeny problem can then be described in a matrix such that each element (i,j), 

in such a matrix, corresponds to the state of character j within entity i. Figure 2 below 

illustrates the simple biological example, provided by Kitching et al. (1998).  

 

Figure 2 

An Application Example of Parsimony Algorithm (After Kitching, 1998) 

 

 
 

First, a set of six characters is described: (a) paired fins; (b) jaws; (c) large dermal 

bones; (d) fin rays; (e) lungs; and (f) rasping tongue. For each of the species, its characters 

are measured against these six characters with 1 denoting their existence and 0 their absence. 

Once all species and characters are elicited in matrix, a cladogram can be obtained to 

represent the evolutionary relationship between the different species. Then, a V-shaped tree 

structure is established for placing species relative to each other. It is assumed that the 

characters of species evolve from none to existence and therefore one of the two branches 

shall be occupied by the species with the least characters, i.e., the lamprey.  

 

The next step is to repeat the selection method to find the organism that owns the least 

changes to the lamprey. By calculating the least difference between each species, it turns out 

that the shark has the least score as shark has three changes to lamprey while the other 

candidates have four, respectively. Thus, the other branch of the tree is devoted to the shark. 

Following this logic, a new tree structure can be established using the shark and salmon, and 
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finally the lizard can be added next to salmon, as the lizard evolves through the longest 

evolution path.  

 

The example given above only demonstrates the logic behind the parsimony 

algorithm. In reality, of course, there are far more than four species with six characters to 

analyze. Furthermore, the previous example does not guarantee to generate a tree that is 

optimal (Pagel, 1999). Computer-aided programs are needed for the analysis; whilst it is not 

within the scope of this paper to recommend software, we can say that there are packages 

suitable for our risk analysis approach.  
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3. Applying Phylogenetic Analysis Risks 
 

Scientists from biology and other fields have proposed many phylogeny tree building 

methodologies, such as Coombs et al. (1981), Minelli (1994), Tsinopoulos and McCarthy 

(2000) and Fernandez et al. (2001), all of which in effect follow the two-phase general 

process described above and share similar core steps. Taking these different phylogenetic tree 

building methodologies into account, the authors propose a seven-step process for risk 

analysis applications, illustrated in Figure 3.  

 

Figure 3 

A Flowchart of Building Risk Cladograms 

 

 

Elicit risk taxa

Determine risk 

characters
Code risk 

characters Setup 

character 

polarity

Hypothesise 

risk trees

Validate and 

verify trees
Interpret the 

tree

 
 

3.1 The Seven-Step Process 

 

3.1.1 Eliciting Risk Entities 

 

Risks as entities bear considerable similarities to organisms: they exist in a particular 

environment; change over time; and have uncertain outcomes. The evolution of risk is partly 

determined by the uncertain nature of risks and partly by the environment and human 

intervention. In this sense, determining the boundary of risks under investigation is similar to 

that in biology. In theory, one can choose any homogeneous and comparable entities to study. 

However, it is more meaningful to select risks that are of interest to conduct the phylogenetic 

analysis; usually in an organizational context this means the whole organization or 

subdivisions. It could be regional by geography or by organizational structure, and in practice 

the choice is usually determined by the data availability and structure. 

 

3.1.2 Determine Risk Characteristics 

 

The goal of this phase is to find as many potential characters as possible that can serve 

as the evidence for the existence of lineages and can expand the depth of the tree. In respect 

of risks, it is crucial to elicit the characters that can represent risks in a comprehensive and 
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concise way.
2
 In practice, few organizations collect sufficiently rich or holistic data on risks 

or losses, though this does not mean that it is not achievable. Using an industry set of 

benchmarked risks may help broaden the risk entities‘ representation yet remain relevant. 

Care is required to avoid a biased elicitation process resulting in either a single character 

being overly repetitive, or the inclusion of redundant characters. Both of these practices can 

reduce the reliability of the subsequent analysis. In biology, of course, with a rigor of the 

DNA identification process, this is not an issue. In this regard, we have adapted a set of 

criteria from Sneath and Sokal to be adopted in order to exclude any ―inadmissible risk 

characters,‖ shown in Table 1 (Sneath and Sokal, 1973).  

 

TABLE 1 

 

Criteria for Inadmissible Risk Characters 

(Adapted from Sneath and Sokal, 1973) 

 

Criteria Description 

Meaningless Characters A character must reflect at least one 

property of a risk. 

Logically Correlated Characters If characters are in a logical sequence 

and one can lead to the other, they 

should be excluded. 

Partial Logically Correlated Characters If characters are partially dependent, 

they should be adjusted so that the 

dependency in the characters is 

removed.  

Invariant Characters A character that can be found in all 

risks makes no difference to the 

phylogenetic analysis. But when 

considering the computation efficiency 

issue they should probably be removed.  

 

 

3.1.3 Code Characters 

 

If the risk entities and characters have been elicited at an acceptable level of detail, 

they can be coded numerically into matrix form, the column of which records the risk 

characters and the row the risk entities. If the risk has a particular character, the 

corresponding cell in the matrix is assigned a 1; otherwise it is 0. After assigning values to all 

characters of all risks, the data matrix is assembled.  

 

                                                 
2
 Sometimes organizations record and categorize both losses and risk in some detail, usually for audit 

purposes—health and safety risks for example. Risk registers provide the basic information, but a coherent 

classification of the entries according to clear characteristics is needed to make the phylogenetic approach 

workable.  

 



10 

 

3.1.4 Setup Polarity 

 

As pointed out by Watrous and Wheeler (1981), setting up polarity for character 

evolution can reduce the possibility of experiencing a complex tree-building process. The 

polarity process essentially determines the direction of evolution for the entities; either they 

are gaining or losing characters as the norm. This can be problematic, as not all risk 

characters can be labeled directionally. However, if there is doubt then both versions can be 

reviewed and it becomes clear which version makes more evolutionary sense. Typically, 

however, risks, like hedgerows, become more diverse in their characteristics as they age.  

 

3.1.5 Applying the Parsimony Algorithm 

 

Software toolkits use two principal approaches to build the phylogenetic trees: 

 

 Constructing the best fit phylogenetic trees using a specific algorithm; 

 

 Testing different phylogenetic trees with a specific algorithm to find the one 

with the best fit. 

 

The first approach is more efficient, but does not present all possible suboptimal 

cladograms. The second can provide a more holistic view, but the computational difficulties 

limit its application.  

 

3.1.6. Validate and Verify  

 

The tree output from Step 3.1.5 is only a hypothesized cladogram, and validation 

testing is still required. Firstly, is it logical and does it have historical coherence? Can it be 

used effectively to explain real-world scenarios and hence lead to a greater understanding of 

them? The caveat being, of course, that the tree result can be counterintuitive, and this may 

be one of the greatest strengths of this approach (Lapointe et al., 1994). Collective assessment 

of a hypothesized cladogram by multiple users can avoid individual bias, but may not help 

with paradigm shifting.  

 

Secondly, adding or removing an entity is a good test of the tree stability. If a tree 

structure remains broadly stable when the inputs are varied slightly, the proposed structure 

has more robustness. Also, positioning a risk in the cladogram and linking it to its 

neighboring risks can again reveal an underlying instability.  

 

Thirdly, real-world data, especially longitudinal data over time, can be utilized to test 

different tree structures to see whether they are phylogenetically similar.  

 

3.1.7 Interpretation 

 

A phylogenetic tree can reflect the evolutionary relationship between risks; why they 

are similar or not; and how these risks might adapt, mutate and evolve in the future. It also 

provides a powerful classification system of the risks and the connection between the risks.  

 

A case study will now be used to illustrate the full process and interpretation.  



11 

 

4. Case Study 
 

4.1 Background Information for the Case Study  

 

In risk management practice, many firms and organizations adopt risk registers to 

record and monitor their risks, and such tools indeed allow for relatively easy application of 

the phylogenetic analysis. A risk register typically contains descriptive information of a risk 

and its quantitative measurements, management strategy, ownership, time span, etc., which 

can be directly used or converted to provide the information needed in the risk phylogenetic 

analysis. The authors have used modified data from a number of real-world registers in this 

example, to create a realistic synthetic risk register. Any similarity between this register and 

that of any particular real organization is entirely coincidental and unintended.  

 

The risk register information has been coded into the data matrix shown in Figure 4. 

The value of 1 indicates the existence of the character in the risk whilst 0 represents the 

absence of the particular character.  

 

Figure 4 

Character Coding 
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A computer-assisted analysis using the parsimony algorithm was then applied to 

construct the optimal phylogenetic tree, show here in Figure 5.  

 

Figure 5 

Result of the Risk Phylogenetic Analysis 

 

 
 

4.2 Implications from the Case Study 

 

4.2.1 Classifying Risks 

 

The result illustrated in Figure 5 exhibits a new classification for the risks in the study. 

For example, risks 2, 7, 8, 9, 12, 19 and 21 are likely to be in a category that is dominated by 

the theme of ―change or variance,‖ whereas risks 1, 10, 11, 15 and 17 are related to the 

products or models of the company.  

 

4.2.2 Understanding the Risk Evolution Process  

 

A risk cladogram presents the evolutionary relationships between risks and illustrates 

where there is common ancestry. For example, risks 6 and 16 share a common ancestor and 

have ―internal control” as a family characteristic.  
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4.2.3 Predicting Emergent Risks 

 

The cladogram demonstrates also how new risks can emerge. Risk 11 ―model 

complexity‖ and 17 ―long-term planning‖ are close together and share some common 

characteristics. Due to their location, we know they have evolved relatively recently. It is 

easier for these two risks to co-evolve and mutate, or even produce a new risk, than, say, risk 

11 and risk 6. Also, we have insights into what might emerge next. For instance, 11 and 17 

can easily mutate by sharing a character that only one of them currently possesses, for 

example, the character ―systemic reporting errors‖ in risk 11. It is quite plausible that a new 

risk could emerge that is about long-term planning, overly complex models and now also has 

an additional feature which is related to deep seated reporting errors.  

 

4.2.4 Understanding Risk Connectivity 

 

The tree gives a sense of the pace of change of risks and more importantly a means 

for measuring how connected the risks are in an evolutionary sense. This is achieved by 

measuring the leg distance between different risks.  

 

It is not the intention here to describe all the findings from the case study but to 

illuminate how the information might be used and interpreted. The risk cladogram allows for 

the visualization of the current risk system. In nature, people cannot reverse the past, but can 

influence, if not manipulate, the current evolution process. It is proposed that this is true for 

risks as well. For instance, structuring a business to limit the ability of certain risk 

characteristics to propagate may successfully interfere in the evolutionary process and reduce 

the complexity of their management in the future, or it may unleash new challenges. 

 



14 

 

5. Discussions 
 

Whilst risk is considered by many to be just a social construct, it can be argued that, 

like money, risk is treated as though it exists, grows, interacts and has value. Risk is 

essentially real and alive; people act and make decisions on it, and it evolves.  

 

One claimed merit of a phylogenetic analysis is that it provides a unique, 

unambiguous and objective classification solution (McCarthy et al., 2000). Ridley (1993) 

argued: ―Cladism is theoretically the best justified system of classification … and has a deep 

philosophic justification….‖  

 

Our phylogenetic approach to risk analysis described here satisfies the objectivity 

criteria in social research, which requires that different rational people would obtain the same 

result under independent investigations (Bryman, 2008). There is a possibility of people 

obtaining diverging results if they cannot agree on the characters of risks in their original 

inputs for the analysis. Secondly, applying inappropriate algorithms and not testing the 

model‘s robustness can lead to the dissimilarities between entities being identified within a 

cladistic classification. However, we believe the approach can effectively present data in an 

unbiased way that is accessible to a wider range of potential users, thereby bringing greater 

transparency to decision-making processes (McCarthy et al., 2000).  

 

The structure of cladograms and the associated sub-trees have significant implications 

for both scientific and practical risk management. Once risks are positioned in a cladogram, 

the comparisons of their characters are established so that people can identify the common 

properties and distinguish individual attributes, thereby allowing for reasonable hypotheses to 

be made (Andreatta and Ribeiro, 2002). Phylogenetic analysis reveals reliable evolutionary 

information. Without this form of analysis, evolution studies are more or less based on pure 

predictions (Gould, 1999). With phylogenetic risk knowledge, people can understand the 

order, rate, direction and diversity of risk evolution and hence obtain greater insight into their 

risk system. Additionally, this type of analysis can articulate a robust road map of evolution. 

As pointed out by Mitleton-Kelly, the evolution behaviors of a complex adaptive system 

make the system path and history dependent (Mitleton-Kelly, 2003). In other words, 

phylogenetic analysis demonstrates how individual risks have reached their current state and 

indicates potential ways in which risks and the risk system will evolve.  

 

Risk management often encounters a new risk with very limited information. In this 

case, people are likely to use heuristic knowledge to make estimations, leading to possible 

biased judgments (Goodwin, 2004). With the help of phylogenetic analysis, such a problem 

can be relieved, to some extent, because cladograms are based on a binary description of an 

organism‘s characters and such characters can be utilized to gain a comprehension of the new 

risk. As a consequence, a new risk cladogram can be constructed which contains this risk. 

The properties of the new entry are supposed to be similar, although not necessarily identical, 

to its neighbors and hence this will allow for more rational predictions of how this risk 

behaves.  
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6. Conclusion 
 

In the ever-increasing complexity and interrelatedness of the business environment, it 

is unhelpful, and even misleading, to manage risks as a collection of isolated events. The 

interconnected nature of risks should be addressed holistically in risk management analysis, 

particularly in enterprise risk management (ERM). Management approaches should actively 

try to understand the whole system of risks, not the aggregated sum of the risks. The authors 

of this paper endeavored to solve this problem by looking at evolutionary analysis methods 

from biology. 

 

Traditional risk methods invariably require the classification of risks according to a 

single dominant characteristic. This immediate loss of information makes the subsequent 

analysis of risk behavior problematic, and potentially worthless. By retaining the richness of 

multi-characteristic classification, the authors have shown that phylogenetic analysis provides 

a more appropriate scientific basis for understanding risk development, consistent with the 

view of risk as the emergent property of a complex adaptive system. 

 

Risks, like organisms, can be classified in accordance with their evolutionary 

relationships to obtain insight and knowledge regarding the patterns that emerge through 

phylogenetic analysis. A risk DNA can be achieved, and as in biology it could start to unlock 

some of the deep interconnected secrets of complex risk behavior, even our perceptions. The 

authors have reviewed relevant bioinformatics literature and recommended the parsimony 

algorithm. Furthermore, the authors have proposed a seven-step procedure to facilitate 

phylogenetic analysis. A real-world case study has been carried out with the aim of 

explaining the process and inviting discussions. The case study demonstrates the process or 

classification and how emerging risks may evolve and adapt. There are issues with data 

quality in the risk arena and computational efficiency of large risk matrixes, validation and 

interpretation of complex trees. Further research is needed in these areas and close attention 

to developments from biological sciences may provide some partial solutions to these 

concerns. 
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