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Abstract 
 

Regularization, by means of trading restrictions, is an effective way to obtain sparse 
replicating portfolios. By including only the most relevant replicating instruments, the resulting 
portfolio is more efficient computationally, easier to interpret, and better able to approximate the 
liability on an out-of-sample basis. The instruments selected depend largely on their respective 
trading costs. This paper evaluates a number of alternative methods for specifying trading costs. 
We find that trading costs based on simple statistics of the instrument and liability cash flows are 
an effective choice in practice. 

 
Keywords:  Replicating Portfolio; Regularization; Trading Restriction; Trading Cost. 
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I. Introduction 
 
Calculating economic capital is a task that lies at the core of enterprise risk management (ERM). Using 

ERM to improve operational results is premised on: (a) the accurate quantification of the risks faced by an 
organization; and (b) the ability of risk to be quantified in a timely manner, thereby enabling risk-informed decision-
making. For insurers, the growing trend toward market-consistent valuation as the basis for computing economic 
capital presents unique computational challenges. In particular, the reliance on Monte Carlo methods for both 
liability pricing and obtaining an empirical loss distribution for risk assessment (Solvency II, for example, requires 
insurers to hold an amount of capital sufficient to withstand 99.5 percent of the possible losses over a one-year 
horizon) leads to nested stochastic simulations that are extremely time-consuming. A replicating portfolio lessens 
this computational burden by acting as a proxy for the liability during risk calculations; effectively, the liability is 
replaced by a set of standard financial assets/instruments that can be priced quickly using analytical methods. 
Replicating portfolios are constructed by using optimization to find the asset positions that best match certain 
characteristics of the liability. In doing so, however, the resulting portfolios often contain an excessive number of 
assets, which degrades computational performance, obscures economic interpretation, and reduces the effectiveness 
of the replicating portfolio out-of-sample. Regularization is a technique that mitigates these problems by 
encouraging the selection of only the most important replicating assets during optimization. This paper investigates 
the effectiveness of various forms of trading costs for regularization purposes when constructing replicating 
portfolios with linear and quadratic optimization algorithms. 
 

Consider computing economic capital for a portfolio of liabilities at some time horizon  (e.g.,  = 1 year 
for Solvency II). Using Monte Carlo simulation, this calculation might proceed as follows: 
 

1. Generate a set of Srw real-world scenarios representative of future economic conditions. 
2. Compute 

sv , the fair market value of the portfolio of liabilities at time  in scenario s = 1, 2, …, 

Srw. 
3. Compute 

sr
 , the fair market value of the assets at time  in scenario s = 1, 2, …, Srw. 

4. From the Srw sampled losses (
s sv r  ), construct an empirical loss distribution and estimate the 

economic capital as a given quantile of this distribution. 
 

The assets contained in a typical insurance company’s investment portfolio can be priced efficiently in Step 
3 using analytical models. However, obtaining each 

sv  in Step 2 requires further stochastic simulation, over a set of 

Spr scenarios, to accurately capture policyholder behavior, management decisions, embedded options and guarantees, 
and any other such scenario-dependent cash flows. Thus, generating the liability cash flows used for economic 
capital calculation is expensive, as it requires running complex actuarial models across a total of Srw  Spr scenarios.  
 

Because Srw needs to be large in order to estimate the economic capital,1 the resulting computational cost of 
Step 2 may be prohibitive. In practice one is faced with the prospect of either using fewer real-world scenarios, 
which increases the quantile estimation error, or reducing the time spent computing 

sv , which may introduce pricing 

errors. Replicating portfolios are representative of the second approach, in that they replace the liability with a proxy 
portfolio of financial assets that can be priced quickly using analytical models. In other words, instead of the liability 
value 

sv , we use the value of the replicating portfolio ˆsv , where the latter greatly reduces the time spent in Step 2. If 

ˆsv  suitably approximates 
sv , it is possible to choose Srw large in order to improve the accuracy of the quantile 

estimate.  
 

 
1 In practice, Srw is typically 50,000 to 500,000 scenarios. 
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The question then becomes how to find a replicating portfolio that satisfies ˆs sv v   for all s. The approach 

usually adopted in practice is motivated by the no-arbitrage principle, which states that two assets that pay identical 
cash flows in all states of the world must have the same price. This suggests that an acceptable replicating portfolio 
may be found by matching the liability cash flows over some relatively small set of S replicating scenarios.  
 

An effective replicating portfolio should exhibit certain characteristics. First, in order to be a valid 
substitute for the liability, the replicating portfolio’s value must closely match that of the liability over a wide range 
of market conditions. Second, the practical computation of economic capital dictates that the time needed to price 
the replicating portfolio be extremely short. Finally, from an ERM perspective, the replicating portfolio should 
illuminate the nature of the risk inherent in the liability. Clearly, small size is advantageous in meeting the second 
and third objectives: the simpler the replicating portfolio, the more quickly it can be priced and the more readily it 
can be interpreted economically. Moreover, to a certain degree, smaller replicating portfolios also provide a better fit 
to the liability in unanticipated market conditions (i.e., out-of-sample.) 
  

Construction of a replicating portfolio begins with the selection of financial assets that are good candidates 
to mimic the liability. Optimization is then used to find the collective asset positions that best match the liability 
cash flows over the set of replicating scenarios. Intuitively, replicating portfolios rely on the fact that complex 
liability cash flows can be decomposed into simpler cash flows that correspond to vanilla instruments. For example, 
fixed cash flows can be represented as zero coupon bonds, minimum guarantees for variable annuities as puts on 
market indices, and fixed annuity options as swaptions with physical settlement. 
 

In simple terms, constructing a replicating portfolio can be viewed as a regression problem; the liability and 
asset cash flows represent dependent and independent variables respectively, while the position sizes correspond to 
the regression coefficients. However, while conceptually straightforward, in practice finding an effective replicating 
portfolio poses a number of challenges. Identifying a suitable set of candidate assets is often difficult due to the 
number and diversity of cash flows that may be generated by a liability during its lifetime. For example, a 50-year 
liability portfolio with quarterly cash flows yields 200 possible maturity dates for replicating instruments. The assets 
necessary to cover these cash flow dates, and with sufficient variation in type, strike and underlying terms to span 
the liability’s response to alternative economic scenarios, can easily number in the thousands. Given the long time 
horizons of many liability products and the ensuing need to extrapolate the behavior of economic factors such as 
interest rates, replicating instruments are often of a “theoretical” nature; their strikes and/or maturities may not 
correspond to instruments actually traded in the market (e.g., a 50-year zero coupon bond).  
 

While having a large number of potential replicating instruments increases the likelihood of obtaining a 
good match to the liability cash flows in the replicating scenarios (i.e., in-sample), this typically comes at the 
expense of overall performance. Specifically, without some form of intervention, optimization methods will tend to 
take positions in an excessive number of assets, thereby producing a large, complex replicating portfolio that 
overfits the liability in-sample. Moreover, such portfolios often contain offsetting long and short positions in similar 
assets, making it hard to interpret the results. 
 

One way to address this problem is through the careful preselection of a small set of replicating 
instruments. This typically involves an in-depth analysis of the liability to identify one or more candidate sets of 
assets, followed by experimentation to determine the best of these alternatives (e.g., Daul and Gutiérrez Vidal 
(2009)). Bucketing may also be used to reduce the required number of candidate assets, in this case by aggregating 
all cash flows within a specified time interval so as to decrease the effective number of cash flow dates. 
 

An alternative approach retains the large set of candidate assets, but modifies the optimization process so 
that only the most important ones are included in the replicating portfolio. The simplest technique, consistent with 
all-subsets regression, merely places an upper limit on the number of instruments that can be selected. For example, 
one might specify that the replicating portfolio contain no more than 100 out of 1,000 candidate assets. However, 
this type of restriction, known as a cardinality constraint, transforms what might otherwise be a convex optimization 
problem (i.e., a linear or quadratic program) into a mixed integer program that is much harder to solve. In fact, 
cardinality-constrained replicating portfolio problems of practical size typically preclude the possibility of finding an 
optimal solution with integer programming algorithms. In light of this, such problems are sometimes solved 
approximately by specialized heuristic methods, such as the genetic algorithm proposed by Ogrodzki (2007). 
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Recently, Burmeister and Mausser (2009) showed that adding trading restrictions, in the form of linear 
constraints or penalties, to a problem is an effective way to obtain small replicating portfolios. Rather than placing 
an explicit limit on the number of instruments in the replicating portfolio, this approach imposes trading costs that 
are proportional to the size of the asset positions, thereby preventing the replicating portfolio from becoming too 
large. Since the resulting problem remains convex, it can be solved efficiently using standard linear or quadratic 
optimization algorithms that are widely available. This approach is an example of regularization, a well-known 
variable selection technique often used in regression analysis to obtain sparse statistical models (see Hesterberg et al. 
(2008) for an overview). In this case, the usual objective of minimizing the regression residuals is augmented with a 
constraint or a penalty term that discourages the inclusion of unnecessary predictors. Regularization has also been 
used to obtain sparse portfolios in the context of financial optimization, e.g., Brodie et al. (2008), DeMiguel et al. 
(2008) and Gotoh and Takeda (2009).  
 

Burmeister and Mausser (2009) considered only a simple form of regularization that puts an upper limit on 
the total size of positions in the replicating portfolio. This type of constraint effectively imposes a trading budget for 
constructing a replicating portfolio when all candidate assets have an identical trading cost of one dollar per unit. In 
this sense, it is similar to the Least Absolute Shrinkage and Selection Operator (LASSO) technique originally 
proposed by Tibshirani (1996) for ordinary least squares regression, which penalizes all predictors equally. As 
discussed in Hesterberg et al. (2008), enhanced versions of the lasso allow the penalty to vary by predictor and/or by 
iteration. This suggests that a more general form of regularization, using instrument-dependent trading costs, may be 
more effective when constructing replicating portfolios. 
 

This paper evaluates, on the basis of out-of-sample performance, a number of methods for determining 
instrument-dependent trading costs. Section 2 formulates optimization problems that can be used to construct 
replicating portfolios, and various forms of trading costs are derived in Section 3. Section 4 contains computational 
experiments that use the trading costs to obtain replicating portfolios for a liability portfolio of variable annuities. 
Concluding remarks appear in Section 5. 
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2. Constructing Replicating Portfolios 
 
Consider the problem of replicating the cash flows of a liability with a set of N candidate replicating 

instruments. Since cash flows can occur at any time, for practical purposes we partition the time horizon into a set of 
T time buckets (intervals) and consolidate all cash flows paid by an instrument within a bucket into a single cash 
flow (cash flows may optionally be adjusted by discount factors to reflect their actual time of occurrence). 
Specifically, we let t

ijc  denote the consolidated cash flow per unit of instrument j, where j = 0 is the liability and j =1, 

2, ..., N are replicating assets, that occurs in bucket t in scenario i.2 Depending on its associated terms and 
conditions, instrument j generates a cash flow in some subset Qj of the T buckets, i.e., Qj = {t | instrument j generates 
a cash flow in bucket t}. The liability is assumed to generate cash flows in all buckets, i.e., Q0 = {1, 2, …, T}.  
 

For j = 1, 2, …, N, let xj denote the position size (i.e., the number of units) of instrument j in the replicating 
portfolio. Our goal is to find positions x such that the replicating portfolio matches, as closely as possible, the 
liability cash flows. Note that the larger the value of T, the more emphasis is placed on matching the timing of the 
liability cash flows; if the goal is simply to replicate the aggregate present or terminal values of the liability cash 
flows, then it is sufficient to set T = 1.  
 

A replicating portfolio is obtained by minimizing some measure, denoted f(x), of the discrepancy between 
the liability cash flows and those of the replicating portfolio. One common measure of the replication error, 
motivated by least squares regression, is the weighted sum of the squared differences:  
 

 
2

0
1 1 1

T S N
t t t
i ij j i

t i j

f w c x c
  

 
  

 
 x  (2.1) 

 
Where t

iw is a priority weight that indicates the relative importance of matching 
0

t
ic .  

 
Another measure, consistent with least absolute deviation regression, is the weighted sum of the absolute 

differences: 
 

  0
1 1 1

T S N
t t t
i ij j i

t i j

f w c x c
  

  x
.

 (2.2) 

 
Note that if t

iw  equals the probability of scenario i, then Equations (2.1) and (2.2) minimize the expected 

squared deviation and the expected absolute deviation, respectively, of the cash flows. For ease of reference, 
hereafter we will refer to Equations (2.1) and (2.2) as quadratic mismatch (QM) and linear mismatch (LM), 
respectively. 
 

The replicating portfolio is given by the set of positions x that minimizes the replication error. Solving the 
unconstrained problem: 
 

 min f x  (2.3) 

 
often produces a replicating portfolio with non-zero xj for most j, effectively overfitting the liability cash flows in 
the set of S scenarios. However, it is possible to modify Problem (2.3) in a way that reduces the number of non-zero 
xj and that improves out-of-sample performance. 
 

 
2 The amount constituted by a “unit” of an instrument is somewhat arbitrary. In the case of a stock, for example, a unit typically refers to a single 

share but, more generally, it could be defined to equal any number of shares. The liability, which is not tradable, is most readily viewed as 
comprising a single unit. 
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First, define the “cost” of obtaining the positions x to be: 
 

 
1

N

j j
j

g a x


a, x  (2.4) 

 
where aj  > 0 for all j. Note that g(a, x) increases as the positions in the replicating portfolio become larger, 
regardless of whether they are long (xj > 0) or short (xj < 0). For example, if a = 1 then g(a, x) is the total size of all 
positions in the replicating portfolio. More generally, aj can represent a trading cost specific to instrument j. 
 

To put Equation (2.4) in a form readily handled by optimization solvers, we make the substitution 

jj jx x x  where 
jx  and 

jx are non-negative variables that denote purchases and sales, respectively, of instrument 

j. The cost then becomes: 
 

   
1

N

jj j
j

g a x x


 a, x
.

 (2.5) 

 
Consider the two problems 

 

 

 
. .

min f

s t

g b

x

a, x

 (2.6) 

 
and 
 

   min f g x a, x  (2.7) 

 
where  > 0. The regularized problems (2.6) and (2.7) include a trading budget and a trading penalty, respectively. 
Problems (2.6) and (2.7) are effectively equivalent in the sense that b and  both parameterize the same set of 
“efficient” replicating portfolios, i.e., those that provide the lowest replication error for a given cost. Decreasing b in 
Problem (2.6) or, equivalently, increasing  in Problem (2.7), gives smaller replicating portfolios. Since standard 
optimization algorithms can easily solve the regularized problems (for linear or quadratic measures such as 
Equations (2.2) and (2.1), respectively), in practice it is possible to generate a large number of efficient replicating 
portfolios. Typically, an examination of the efficient set will identify a better replicating portfolio than the one found 
by solving Problem (2.3). 
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3. Alternative Trading Costs 
 

The problem of choosing a small number of replicating assets is identical to the variable selection problem 
in linear regression, i.e., how to select an appropriate set of predictor variables from a large number of candidates. 
Like replicating portfolios, statistical models benefit from sparsity; when a model includes only the most important 
predictors, interpretation is easier and overfitting is less likely to occur, producing a more stable model with 
improved out-of-sample prediction accuracy. Variable selection is particularly relevant for so-called “high-
dimensional” problems where the number of predictors (independent variables) exceeds the number of observations. 
In this case, which occurs frequently in signal processing and genomics applications, there are infinitely many 
models that yield zero error since the system is underdetermined. The development of regularization methods for 
regression has, therefore, been the subject of considerable research by statisticians, and such results have potential 
applications to replicating portfolios as well.  
  

In regression analysis, a regularization method ideally eliminates those independent variables that are 
unnecessary (by setting their coefficients, or betas, to zero) without unduly reducing the coefficients of the selected 
variables (see, for example, Johnstone and Titterington (2009)).3 Clearly, similar behavior is desirable when 
constructing replicating portfolios; the portfolio should contain relatively few assets but their position sizes should 
not be excessively small as a result of their trading costs.  
 

The LASSO (Tibshirani 1996) has proved to be an effective technique for regularizing least squares 
regression. Given standardized variables having mean zero and variance one, the LASSO places an upper limit on 
the sum of the absolute regression coefficients, which corresponds to setting a = 1 in Equation (2.4). Burmeister and 
Mausser (2009) used a similar approach to construct replicating portfolios that matched a liability’s aggregate 
present-valued cash flows (T = 1). They were able to improve the out-of-sample performance by approximately 55% 
when minimizing absolute differences (Equation (2.2)) and by 90% when minimizing squared differences (Equation 
(2.1)), even when the cash flows were not standardized.  
 

Fan and Li (2001) argued that the form of the penalty cost used by the LASSO is not appropriate; while it is 
able to identify the correct variables in the model, the coefficients of the selected variables tend to be too small (i.e., 
the LASSO imparts a negative bias on the estimated coefficients). They showed that this deficiency could be 
overcome by using a nonlinear cost function, but this makes the resulting optimization problems difficult to solve in 
practice. 
 

Zou (2006) proposed an alternative approach, called the Adaptive LASSO, that preserves the linear cost 
structure but varies the size of the penalty assigned to each variable (which corresponds to making the trading costs, 
aj, in Equation (2.4) instrument-dependent). Ideally, larger costs should be assigned to those variables that are not 
selected and lower costs to those that appear in the model. To determine the penalties, Zou (2006) suggested solving 
an initial unpenalized ordinary least squares (OLS) regression to obtain coefficients OLS  and then setting  

 
1

j
OLS
j

a 


 
(3.1) 

 
for some  > 0. A related version of the Adaptive LASSO, proposed by Wang et al. (2007) for least absolute 
deviation (LAD) regression, uses the unpenalized LAD coefficients LAD  in Equation (3.1). 

 
This way of obtaining penalty costs is ineffective for high-dimensional problems since the unpenalized 

coefficient estimates are not consistent. Thus, Zou (2006) proposed using an initial regularized regression in this 
case. As a simpler alternative, Huang et al. (2008) suggested basing the costs on the marginal regression 
coefficients.4 

 
3 A method that is both able to select the correct variables and estimate their regression coefficients precisely (i.e., as well as if the correct model 

was known in advance) is said to possess the “oracle property.” 
4 Huang et al. (2008) showed that the resulting Adaptive LASSO estimator possesses the oracle property if a “partial orthogonality” condition is 

satisfied. In their computational results, satisfactory performance was obtained even when this condition was violated. 
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Before applying these regularization methods to the construction of replicating portfolios, it is worthwhile 
to briefly discuss the concept of standardization in this context. Standardization is often used in regression analysis 
to express variables in common units, namely standard deviations, with the intent of having the sizes of regression 
coefficients better reflect the relative importance of the variables.5 Standardization also confers a degree of 
“fairness” when all variables are assigned the same penalty cost during regularization, as is the case for the LASSO 
(if variables are not standardized then those whose units of measurement result in smaller regression coefficients 
receive a favorable bias). As is readily shown, however, the same effect can be achieved by simply re-scaling the 
penalty costs themselves.  
 

Consider, for example, the following regularized problem with unstandardized cash flows that constructs a 
replicating portfolio by minimizing the linear mismatch: 
 

0
1 1 1

1

. .

T S N
t t t
i ij j i

t i j

N

j j
j

min w c x c

s t

a x b

  







 

 .

 (3.2) 

 
Suppose that j > 0 is a constant scaling factor for instrument j. The resulting problem with standardized 

cash flows is:  
 

0

1 1 1 0

1

. .

t tT S N
ijt i

i j
t i j j

N

j j
j

c c
min w x

s t

a x b

  




 



 

 .

 (3.3) 

 

Upon substituting 0ˆ j j
j

x x





 in Problem (3.3), one obtains 

0
1 1 10

1 0

1
ˆ

. .

ˆ

T S N
t t t
i ij j i

t i j

N
j

j j
j

min w c x c

s t

a x b

  











 

 .

 (3.4) 

 
Observe that Problem (3.2) will yield the same optimal solution as the standardized Problem (3.4) if the 

trading cost aj is replaced with 
0

j
ja



  (the constant factor 1

0
  in the objective function of Problem (3.4) has no 

effect on the solution). A similar argument applies when minimizing the quadratic mismatch except that the 
objective function is scaled by 2

0
 in this case. 

 
Thus, we see that the effect of standardizing cash flows (in the usual regression sense) can be achieved by 

making an instrument’s trading cost proportional to the standard deviation of its cash flows. Since the scaling factor 
j is completely arbitrary, one might also consider alternatives to the standard deviation. 
 

 
5 The merits of standardization are subject to some debate. See, for example, Greenland et al. (1991). 
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In light of the preceding discussion, we now specify several forms of trading costs that will be used in 
Equation (2.4) during our computational experiments.  

 
3.1 Unconstrained 
 

Following Zou (2006) and Wang et al. (2007), when the number of cash flows to be matched exceeds the 
number of replicating instruments (i.e., N < ST), instrument-dependent trading costs can be derived from the optimal 
position sizes in the unconstrained problem (2.3). Using the quadratic mismatch yields the following trading cost for 
instrument j: 

1QM
j QM

j

a
x




 (3.5) 

 
where QM

jx  is the optimal position size of asset j as obtained by minimizing Equation (2.1), while the linear 

mismatch yields: 
1LM

j LM
j

a
x




 (3.6) 

 
where LM

jx  is the optimal position size of asset j as obtained by minimizing Equation (2.2). If the denominator is 

zero for some instrument j, then we simply fix the decision variable xj equal to zero in the regularized problem 
(consistent with the trading cost being infinite). 
 
3.2 Smallest Perfect Match 
 

If the number of replicating instruments exceeds the number of cash flows to be matched (i.e., N > ST), 
then problem (2.3) has an infinite number of solutions with optimal value zero. In this case, we propose to derive the 
trading costs from the smallest replicating portfolio, in terms of the total size of positions, which perfectly matches 
the liability cash flows. Thus, we find  SPMx  that solves: 
 

 

 
. .

0

min g

s t

f 

1, x

x

 (3.7) 

 
and set the trading cost for instrument j equal to: 
 

1SPM
j SPM

j

a
x


 .

 
(3.8) 

 
Note that the solution of Problem (3.7) is the same regardless of whether Equation (2.1) or Equation (2.2) 

appears in the constraint.  
 

3.3 Marginal Unconstrained 
 
Following Huang et al. (2008), the trading cost based on the marginal optimal position size is: 

 
1MQM

j MQM
j

a
x




 (3.9) 

 
where MQM

jx  is the optimal position size of asset j as obtained by minimizing Equation (2.1) when the positions of 

all instruments other than j are fixed to zero, i.e., the replicating portfolio contains only instrument j.  



 

10 

Similarly, using linear mismatch yields the trading cost:  
 

1MLM
j MLM

j

a
x




 (3.10) 

 
where MLM

jx  is the optimal position size of asset j as obtained by minimizing Equation (2.2) when the positions of all 

instruments other than j are fixed to zero. 
 
3.4 Standard Deviation Scaling 
 

Consistent with the usual way of standardizing variables in regression, we use a trading cost based on the 
ratio of the standard deviations of the instrument and the liability cash flows. Since instrument j only contributes 
cash flows in certain time buckets, namely those in the set Qj, the standard deviations are computed accordingly. 
 

Specifically, let #(Qj) represent the cardinality of the set Qj. The mean cash flow of instrument j in those 
buckets in which instrument k generates a cash flow is:  
 

 

  1

1

#
k

S
k t
j ij

t Q ik

c
Q S  

 
 

.

 (3.11) 

 
Similarly, the standard deviation of the cash flows of instrument j in those buckets in which instrument k 

generates a cash flow is: 
 

   2( ) ( )

1

1

#
k

S
k t k
j ij j

t Q ik

c
Q S  

  
 

.

 (3.12) 

 
The resulting trading cost for instrument j is  

 
 

 
0

j
j

j j
a 


 .

 (3.13) 

 
3.5 Mean Scaling 

 
If all instruments are assigned equal trading costs, then a favorable bias exists for instruments having large 

per-unit cash flows (the size of the position required to produce a cash flow of given size tends to be smaller in this 
case and so a smaller total cost is incurred). To counteract this bias, it is reasonable to assign larger trading costs to 
instruments that have larger cash flows. Making the trading cost proportional to the standard deviation of cash flows 
is consistent with this view provided that the standard deviation increases with the size of the cash flows themselves 
(this is a reasonable assumption in practice; a counterexample would be an instrument that pays a large, constant 
cash flow in all scenarios, such as a zero coupon bond). As an alternative to the standard deviation, we also consider 
a trading cost based on the relative magnitudes of the mean instrument and liability cash flows: 
 

 

 
0

j
j

j j
a



 .

 (3.14) 
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3.6 Correlation Scaling 
 

Intuitively, one might expect an instrument whose cash flows are highly correlated with those of the 
liability to be more important for replication purposes. Thus, it is reasonable to consider a trading cost that is 
inversely proportional to the magnitude of this correlation, namely: 
 

 
0

1
j j

j

a 


 
(3.15) 

 
where, in general,   
 

 

 
  ( ) ( )

( ) ( )
1

1

#
k

t k t kS
ij j il lk

jl k k
t Q ik j l

c c

Q S  

 
 

    (3.16) 

 
is the correlation between the cash flows of instrument j and l in those time buckets in which instrument k generates 
a cash flow. 
 
3.7 Beta Scaling 
 

To account for the effects of both correlation and standard deviation, we also consider a trading cost given 
by the product 

j ja a  , namely: 

 
 

   
0 0

j
j

j j j
j

a 

  .

 (3.17) 

 
Upon inspection, it is apparent that 

ja equals the inverse of the regression coefficient, j, obtained by 

regressing (in a least squares sense) cash flows of the liability on instrument j in Qj, i.e., 
 

0jY X    (3.18) 

 
where Y and X denote the liability and instrument j cash flows. 
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4. Case Study 
 

To assess the performance of the trading costs described in the previous section, we now use them to 
construct replicating portfolios for a liability portfolio comprising a block of variable annuities. Replicating 
portfolios are obtained by solving Problem (2.6) with both quadratic (Equation (2.1)) and linear (Equation (2.2)) 
mismatches. In each case, the trading budget is varied to produce a set of efficient replicating portfolios, and their 
replication errors are evaluated on an out-of-sample basis. 
 

As a benchmark, we also consider a constant trading cost, aEQ
 = 1, and to facilitate comparisons, we 

normalize the trading costs so that the total per-unit costs are the same in each case. Specifically, given a set of 
trading costs a, we enforce the budget constraint: 

1

ˆ
N

j j
j

a x b


  (4.1) 

where  

1

ˆ j
j N

j
j

Ka
a

a





 

(4.2) 

 
for some constant K (in our experiments, we use K = 1000).  
 

In the following, we refer to:  
 

1

ˆ
N

j j
j

a x

  (4.3) 

 
as the total cost of the portfolio x. For convenience, hereafter we let x[f, Y, b] denote the optimal replicating 
portfolio obtained using measure f,  trading costs aY and budget b, e.g., minimizing the quadratic mismatch with 
equal trading costs and budget 50 yields the portfolio x[QM, EQ, 50]. 
 
4.1 Problem Description 

 
Consider a block of 15,000 variable annuity policies, all of which are in the accumulation phase, with a 

mixture of minimum guaranteed death benefits (ROPs, roll-ups and ratchets) sold over 10-year period. The total 
annual cash flows comprising of both benefits paid and fees collected are projected over a 20-year time horizon. The 
economic scenario set used for the projection consists of 500 stochastic scenarios, which are a mixture of risk-
neutral and real-world scenarios on the eight market indices listed in TABLE 1 plus the USD interest rate curve.6 
 

TABLE 1 
Market Indices and Liability Cash Flows 

 
Market Indices Liability Cash Flows 

S&P 400 Midcap (MID) guaranteed minimum death benefit  
Russell 1000 (RUX) commissions expenses 
S&P 500 (SPX) mortality/expense charge 
Nasdaq 100 (NDX) revenue sharing 
MSCI EAFE (MSDUEAFE) surrender charges 
MSCI EM (MSEUEGF) per policy fees 
MSCI US REIT (RMS)  
Lehman US Aggregate (USAGG)  

 

 
6 We include real-world scenarios that are representative of “stressed” economic conditions in this illustrative example. The methodology 

described in the paper, however, is applicable regardless of the particular scenarios used for replication. 
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Based on the characteristics of the liability, a set of 883 replicating instruments is identified consisting of 
zero coupon bonds, index forwards and European index options on the indices in TABLE 1, and physical-settlement 
swaptions. All instruments pay a single cash flow upon maturity except for the swaptions, which may trigger a 
stream of cash flows spanning several years. Intuitively, the European index options will match any minimum 
guaranteed death benefit payments, the index forwards will pick up the fees collected, and the swaptions will reflect 
any annuity options. The maturities of the instruments are distributed evenly throughout the entire 20-year time 
period. Instruments with optionality are selected to emphasize at-the-money (ATM) strikes (i.e., there are more 
instruments that have strikes set close to ATM than strikes set far out-of-the-money). Annual settlement cash flows 
for the replicating instruments are projected over a 20-year time horizon for each of the 500 economic scenarios 
used in the liability cash flow projection. For replication purposes, all cash flows are present-valued (PV) using 
scenario-dependent discount factors, i.e., cash flows are expressed in current dollars. 
 

The scenarios are split into two sets of 250 scenarios denoted A and B, such that both sets have equal 
numbers of risk-neutral and real-world scenarios. A is used for finding the optimal replicating portfolio while B is 
reserved for out-of-sample evaluation. Figure 1 shows the range, mean and the 10th and 90th percentiles of the 
discounted liability cash flow profiles for the in- and out-of-sample scenarios. The results indicate that the out-of-
sample scenarios include a small number of extreme cash flows that are absent in-sample.  
 

Figure 1 
In-Sample (Left) and Out-of-Sample (Right) Discounted Liability Cash Flows 

 
 
 
4.2 Single Time Bucket 

 
We first consider a single time bucket spanning the entire 20-year horizon, so that the replicating portfolio 

is constructed to match the sum of the discounted liability cash flows in each scenario. Since the number of 
replicating instruments (883) exceeds the number of cash flows to be matched (250), the problem is 
underdetermined, and multiple portfolios can perfectly replicate the liability in this case.  
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For each of the relevant trading cost schemes, TABLE 2 shows the replicating portfolio that perfectly 
matches the liability at minimal cost. All portfolios contain 250 instruments and yield zero replication error in-
sample, but aside from those in the first two columns, the composition of the portfolios is different.7 
 

TABLE 2 
Single Time Bucket, Minimum Cost Perfect Replicating Portfolios 

 
 Trading Cost 

 EQ SPM MLM MQM     

Total Cost 7,913 19 1,227 638 3,599 4,269 1,760 1,122

Cardinality 250 250 250 250 250 250 250 250
Total Position Size (Units) 6,987 6,987 13,693 13,097 438,514 22,860 16,360 22,147

LM (Out-of-Sample) 166,262 166,262 159,058 151,564 146,062 128,120 133,360 157,958

QM (Out-of-Sample) 4.1E+11 4.1E+11 3.9E+11 2.8E+11 2.9E+11 1.1E+11 2.5E+11 3.9E+11

 
 

Let us examine the smallest of the replicating portfolios in TABLE 2, x[-, EQ, 7913], which contains total 
positions of 6,987 units. Figure 2 plots the cash flows of x[-, EQ, 7913] against those of the liability. While R2 = 
1.00 in-sample, the out-of-sample fit is extremely poor for some scenarios, resulting in a much lower R2 = 0.57. 
Thus, there is evidence that the replicating portfolio overfits the liability in this case, raising serious questions about 
its suitability as a proxy for the liability in economic capital calculations. 

 
Figure 2 

In-Sample (Left) and Out-of-Sample (Right) Cash Flows for x[-, EQ, 7913] 
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7 x[-, EQ, 7913] and x[-, SPM, 19] are the same in this case because aSPM is computed as one divided by the position sizes in x[-, EQ, 7913]. If an 

instrument does not appear in x[-, EQ, 7913], its SPM cost becomes infinite and so its position size will be fixed to zero. Thus, the same 250 
instruments appear in both solutions. 
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Figure 3 
Composition of x[-, EQ, 7913] 
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To investigate further, we examine the composition of the replicating portfolio to see if it fits the liability at 
an intuitive level. Figure 3 plots the dollar values of the constituent positions, distinguishing between those that are 
long or short. In this case, an abundance of offsetting positions in similar instruments largely “cancels out,” and 
makes it difficult to discern any dominant structure. Thus, it is impossible to reconcile the replicating portfolio and 
the liability from this perspective. 
 

The preceding analysis suggests that x[-, EQ, 7913] will perform poorly as a replicating portfolio. In an 
effort to find a better candidate, we minimize the linear mismatch while gradually reducing the trading budget. As a 
result, each of the trading cost schemes produces an efficient set of progressively smaller replicating portfolios. 
Figure 4 plots the out-of-sample replication error against the cardinality of the resulting portfolios (the portfolios 
that obtain the lowest out-of-sample error for each cost scheme, identified by solid white circles, are summarized in 
TABLE 3). 
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Figure 4  
Efficient Portfolios Obtained by Minimizing Linear Mismatch, Single Bucket 
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TABLE 3 
Best Out-of-Sample Replicating Portfolios (Single Time Bucket, Minimize LM) 

 
 Trading Cost 

 EQ SPM MLM MQM     

Total Cost 1,772 2 203 127 953 1,598 249 156

Cardinality 74 43 69 90 74 114 47 55

Total Position Size (Units) 1,565 2,306 2,769 3,221 10,863 7,937 5,749 4,483

LM  (In-Sample) 53,168 50,896 35,556 31,571 31,219 25,169 56,829 42,787

LM  (Out-of-Sample) 120,924 96,440 105,382 104,844 86,642 117,651 104,523 90,147

Improvement (Out-of-Sample) 27.27% 42.00% 33.75% 30.83% 40.68% 8.17% 21.62% 42.93%

 
 

The results demonstrate that regularization is able to reduce the size of the replicating portfolio while also 
improving out-of-sample performance, regardless of the cost scheme used. Standard deviation scaling yields the 
lowest out-of-sample replication error in this case, followed closely by beta scaling and SPM, while equal costs and 
mean scaled costs are considerably less effective. 
 

We now repeat the previous analysis with one of the more promising replicating portfolios, x[LM, , 156]. 
While its out-of-sample error is slightly higher than that of x[LM, , 953], its smaller size (55 positions) is an 
attractive feature. 
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As shown in Figure 5, x[LM, , 156] maintains a high-quality fit (R2 = 0.98) in-sample and achieves a 
much better out-of-sample fit (R2 = 0.89) than x[-, EQ, 7913]. In particular, it eliminates the extreme mismatches 
observed previously.  
 

Figure 5 
In-Sample (Left) and Out-of-Sample (Right) Cash Flows for x[LM, , 156] 
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Figure 6 

Composition of x[LM, , 156] 
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Furthermore, the composition of x[LM, , 156] (Figure 6) is much more readily interpreted than that of x[-, 
EQ, 7913] (Figure 3). In this case, the portfolio has four dominant positions: 
 

 Long positions in equity forwards are consistent with performance-based fee income.  
 A short bond position reflects lump sum payments. 
 Short equity puts correspond to guaranteed death benefits (which, in effect, are put options on 

equity performance held by policyholders). 
 A small long call option position is consistent with surrender charges (policyholders are more 

likely to opt out when equity markets perform well, making the guarantees less valuable). 
 

Note that there are no large swaption positions in the replicating portfolio. Given that policies are in the 
accumulation phase, this may be due to limited annuitization occurring during the 20-year horizon. 
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Figure 7 plots the efficient replicating portfolios produced when the process is repeated with quadratic 
matching. In this case, trading costs based on mean scaling are unable to improve out-of-sample performance, while 
the improvements obtained by the other cost schemes are even more significant than in the linear matching case 
(TABLE 4). Once again, trading costs derived by SPM, beta scaling and standard deviation scaling produce the best 
results. 
 

Figure 7 
Efficient Portfolios Obtained by Minimizing Quadratic Mismatch, Single Bucket 
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In general, the best-performing replicating portfolios contain fewer instruments than those obtained by 
linear matching. For example, x[QM, , 109] has only 20 positions while x[LM, , 156] has 55, although the fit of 
x[QM, , 109] is of only slightly lower quality (in-sample R2 = 0.96, out-of-sample R2 = 0.88). As shown in Figure 
8, x[QM, , 109] contains long equity forwards, a short bond and short puts, but it lacks a position in long calls. 
 

TABLE 4 
Best Out-of-Sample Replicating Portfolios (Single Time Bucket, Minimize QM) 

 
 Trading Cost 

 EQ SPM MLM MQM     

Total Cost 1,507 1 61 34 593 4,269 54 109

Cardinality 62 20 9 9 22 250 11 20

Total Position Size (Units) 1,331 1,723 1,419 1,521 3,142 22,860 3,822 3,359

QM Error (In-Sample) 9.4E+09 1.7E+10 6.9E+10 7.1E+10 2.8E+10 0 8.9E+10 1.8E+10

QM Error (Out-of-Sample) 5.8E+10 2.8E+10 1.1E+11 1.1E+11 4.6E+10 1.1E+11 1.2E+11 4.2E+10

Improvement (Out-of-Sample) 85.96% 93.14% 72.66% 61.61% 84.11% 0.00% 54.06% 89.06%
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Figure 8 
Composition of x[QM, , 109] 
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4.3 Annual Time Buckets 

We now partition the time horizon into 20 annual buckets, so that the replicating portfolio is constructed to 
match the discounted liability cash flow in every bucket of each scenario. Thus, there are a total of 5,000 cash flows 
to be matched, which exceeds the number of replicating instruments. Since the problem is overdetermined in this 
case, one might expect the effects of regularization to be less significant than when all cash flows are consolidated 
into a single bucket. 
 

With linear matching, the unique, unconstrained replicating portfolio comprises 883 instruments and a total 
position size of 78,512 units. The in- and out-of-sample LM replication error is 128,386 and 212,404, respectively. 
The efficient portfolios produced by regularized LM minimization (Figure 9) do not dramatically improve out-of-
sample performance. As shown in TABLE 5, all cost schemes deliver relatively modest reductions of 5 percent to 8 
percent in out-of-sample replication error with approximately 300 to 400 instruments. The reason for the large 
number of instruments is evident in Figure 10, which shows the composition of x[LM, , 102]; since cash flows 
must be matched in 20 time buckets, replicating instruments are distinguished by the timing of their cash flows (in 
contrast, when cash flows are consolidated into a single bucket, the timing of the cash flows is largely immaterial). 

 
Figure 9 

Efficient Portfolios Obtained by Minimizing Linear Mismatch, Multiple Buckets 
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TABLE 5 
Best Out-of-Sample Replicating Portfolios (Multiple Time Buckets, Minimize LM) 

 
 Trading Cost 

 EQ LM MLM MQM     

Total Cost 2,419 151 8 97 454 1,003 256 102

Cardinality 310 317 346 347 378 350 281 311

Total Position Size (Units) 2,136 12,766 6,359 7,709 23,109 6,201 3,640 6,742

LM Error (In-Sample) 154,832 143,085 145,558 143,442 140,891 150,543 153,121 147,543

LM Error (Out-of-Sample) 201,292 200,545 199,653 198,491 195,531 201,703 196,228 195,637
Improvement (Out-of-Sample) 5.23% 5.58% 6.00% 6.55% 7.94% 5.04% 7.62% 7.89%

 
This additional time dimension can be useful when validating replicating portfolios and/or using them to 

understand better the nature of the liability. For example, Figure 10 shows a gradual reduction in both fee income 
and payouts over the time horizon. 
 

When using quadratic matching, the unique, unconstrained replicating portfolio comprises 883 instruments 
and a total position size of 71,165 units. The in- and out-of-sample QM replication error is 3.2 billion and 18 billion, 
respectively. 
 

Figure 10 
Composition of x[LM, , 102] 
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Regularized quadratic matching produces more significant out-of-sample improvements than what is observed for its 
linear counterpart (Figure 11). Surprisingly, the QM costs are noticeably ineffective in this case, yielding only a 3 
percent reduction in out-of-sample replication error compared to the upwards of 20 percent reductions delivered by 
standard deviation scaling, correlation scaling and beta scaling (TABLE 6). While the portfolios in TABLE 6 
contain fewer instruments than those in TABLE 5, a comparison of x[QM, , 58] (Figure 12) and x[LM, , 102] 
(Figure 10) shows that they share the same dominant structure. 
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Figure 11 
Efficient Portfolios Obtained by Minimizing Quadratic Mismatch, Multiple Buckets 
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TABLE 6 

Best Out-of-Sample Replicating Portfolios (Multiple Time Buckets, Minimize QM) 
 

 Trading Cost 

 EQ QM MLM MQM     

Total Cost 1,507 498 4 51 248 749 196 58

Cardinality 163 469 172 196 207 252 180 178

Total Position Size (Units) 1,331 36,669 3,507 3,896 8,120 5,059 2,939 3,870

QM Error (In-Sample) 6.3E+09 3.3E+09 4.7E+09 4.4E+09 4.5E+09 4.7E+09 4.9E+09 4.6E+09

QM Error (Out-of-Sample) 1.5E+10 1.7E+10 1.5E+10 1.5E+10 1.4E+10 1.5E+10 1.3E+10 1.4E+10
Improvement (Out-of-Sample) 17.56% 3.06% 15.68% 14.17% 22.01% 15.72% 27.38% 24.29%
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Figure 12 
Composition of x[QM, , 58] 
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4.4 Practical Considerations of Trading Costs 

Based on the preceding examples, it is not possible to identify a single best way of specifying trading costs 
when constructing replicating portfolios with regularization. However, the equal cost approach (without 
standardized cash flows) and mean scaling appear to be rather ineffective. Among the other methods, computational 
considerations may further determine their usefulness. Notably, costs based on SPM, LM, QM, MGM and MLM 
require solving optimization problems (in particular, the marginal approaches require a separate problem to be 
solved for every instrument). In contrast, standard deviation scaling, correlation scaling and beta scaling allow 
trading costs to be computed analytically from cash flow data. Thus, the latter methods have an added appeal on a 
practical level. 
 

It is important to recognize, however, that trading cost regularization presents an enormous computational 
advantage over imposing cardinality constraints in the optimization. For example, we formulated cardinality-
constrained versions of both the single-bucket (50 and 100 instruments) and multiple-bucket (100, 200 and 300 
instruments) problems with both linear and quadratic matching. We attempted to solve the problems with a state-of-
the-art mixed-integer optimizer, within a 12-hour time limit (over 1,000 times greater than the time required to solve 
any of the regularized problems considered in this paper). Of the 10 problems attempted, we obtained feasible, but 
not optimal, solutions for eight of them (problems that minimize quadratic mismatches with a single time bucket 
gave no result whatsoever). In only one case, namely when minimizing linear mismatches for a single bucket with 
100 instruments, was the out-of-sample replication error lower than that of the best regularized solution with the 
same number of instruments.8 In contrast, producing an entire frontier of more than 200 efficient solutions using 
regularization takes only a matter of minutes. 

 
8 However, there exist regularized solutions with more than 100 instruments whose out-of-sample error is less than that of the cardinality-

constrained solution.  
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5. Concluding Remarks 
 

Replicating portfolios are computational tools that facilitate the calculation of economic capital for 
complex insurance liability portfolios. For practical reasons, a replicating portfolio needs to closely match the 
liability value with a minimal number of standard financial instruments. Trading restrictions are an effective way of 
regularizing optimization problems so that they produce small replicating portfolios. Making the trading costs in 
such restrictions instrument-dependent yields better results than using the same cost for all instruments. We 
investigated a number of different methods for obtaining effective trading costs, based on techniques used in 
regularized regression as well as several simpler approaches that have intuitive appeal. Experiments with a portfolio 
of variable annuities suggested that costs based on simple statistics provide good performance with minimal 
computational effort, making them an attractive choice in practice. 
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