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Abstract
In “The Black Swan, The Impact of the Highly Improbable,” Taleb

(2010) makes a distinction between extreme scenarios that can be
modeled (Mandelbrotian Grey Swans) and those that cannot (Black
Swans). A Grey Swan model would consider the power law fractal
nature of the markets that Mandelbrot first described in the 1960s.
In this paper, we discuss the generation of Mandelbrotian Grey Swan
scenarios by using dependent multivariate fractional Brownian motion
(DMFBM), as implemented from the methodology in“Basic properties
of the Multivariate Fractional Brownian Motion” by Amblard et al.
(2010).

We discuss how real world Grey Swan scenarios are excellent choices
for stress and resiliency testing. In addition, we provide an example
of a set of Grey Swan scenarios, which correspond to the RBC C-3
Phase II Wealth Factors of 2005 Bennet et al. (2006).

Additional advanced material has been added as an addendum.
Key words: Hurst Exponent, Fractional Brownian Motion, Black

Swan, Grey Swan, Stress Testing, Wealth Factors, Multifractal Model
of Asset Returns (MMAR).

1 Introduction

Since 2007, we have watched the instability of the derivatives and the asso-
ciated insurance on the U.S. subprime mortgage market lead to the interna-

∗All views mentioned herein are expressly those of the author and in no means reflect
the views of prior or current employers.
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tional financial meltdown. As economies have moved to greater globalization,
they have become so tightly interdependent they are entangled. Mandelbrot
and Hudson (2004) prophetically said:

“In a networked world, mayhem in one market spreads instanta-
neously to all others—and we only have the vaguest of notions
how this happens, or how to regulate it.”

The management of risk during this entanglement is vastly more difficult,
since the majority of the pre-2007 risk models are not adequate to model
the interdependence of the market, let alone frequent and highly volatile
events. The economic scenarios used are too tame, where the interdepen-
dence between the separate series was measured by static correlations and
did not consider that the market correlations moved toward one as may-
hem spreads. This is all obvious when we look backwards from our present
vantage point. However, prior to the meltdown, risk managers had created
models that best encapsulated their knowledge of a relatively stable market.
Suddenly, the world as we knew changed forever, as we encountered in The
Black Swan, Taleb (2010).

Though it is impossible to anticipate these Black Swan events, we still
need to create economic scenarios that can be used in risk management.
Taleb (2010) does distinguish between extreme scenarios that can be modeled
(Mandelbrotian Grey Swans) and those that cannot (Black Swans). A Grey
Swan scenario model considers the power law fractal nature of the markets
that Mandelbrot first described in the 1960s. Mandelbrot’s models have
evolved from simple Fractional Brownian Motion (FBM) models discussed
in Mandelbrot and Van Ness (1968); Mandelbrot (1983) to more realistic
market models as discussed in Mandelbrot et al. (1997); Mandelbrot and
Hudson (2004).1

1. These later models are made up of compound processes, where each compound process
is the composition of an univariate FBM and a multifractral stochastic trading time
process. This trading time process contracts and expands time, so that in a contracted
time period, frequent market trading occurs with extreme volatility events rapidly
occurring. However, in an expanded trading time period, the market trading becomes
slow and sluggish with periods of low volatility. The univariate FBM introduces the
fractal, long-term dependence to the model. In a collection of market indices, each
index would have its own FBM model, and the stochastic trading time process is
common to all indices. This interdependence of the indices comes only from the
trading time process. In the past dependent multivariate fractional Brownian motion
(DMFBM) models have been difficult to simulate, and this restriction is one reason
for the emphasis on univariate FBM models.
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With the crisis, the use of market models within ERM has forever changed.
Consideration for extreme market interdependence with stress and resiliency
testing have become paramount.

In this paper, we provide a means of generating Mandelbrotian Grey
Swan scenarios through DMFBM by using the methodology in Amblard
et al. (2010). Though these DMFBM models do not consider a stochastic
trading time process, it does create a stepping stone to take existing depen-
dent Brownian motion and normal copula market models into the realm of
Mandelbrotian Grey Swan scenarios.

In Section 2, we discuss stress and resiliency testing, and in Section 2.1,
how to extract severe scenarios from extreme scenario sets.

In Section 3, the use of Hurst exponents in the modeling of fractional
Brownian motion and the methodology of Amblard et al. (2010) is outlined
along with the introduction of the DMFBM R function.

Section 4 contains the data sources and descriptive statistics of the funds
used to parameterize the model.

A discussion of the model construction is in Section 5, followed by a com-
parison of fund growth using the model scenarios against the RBC C3 Phase
II Wealth Factors Bennet et al. (2006) scenarios in Section 6. Section 6.1
examines the impact of two means of extracting severe scenarios from an
extreme scenario set.

Section 7 closes the paper with conclusions and future research.
The addendum includes results of additional research that has occurred

since the original publication of this paper.

2 Financial Stress and Resiliency Testing

Much of the use of scenarios in ERM start from the implementation of regu-
latory and rating agency requirements around external reserve adequacy and
risk-based capital. These scenarios could be deterministic, reflecting only
initial market condition, used for stress testing. Other required tests could
be around testing the sensitivity of a product or line of business to a small
change in an assumption, such as mortality or lapse. As the use of market
guarantees have increased as components of various products, full stochastic
evaluations are now required in the determination of reserves and risk-based
capital. The scenarios being used for these models may be prescribed or some
leeway may be granted to allow for the use of internal company scenarios.
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There are several benefits in the use of internal scenarios. A few of these
are:

1. Strategic planning – Shell Oil was able to use strategic scenarios to great
profit to determine how to position itself when oil supplies tightened
before the 1973 Oil Crisis.

2. “What ifs?” – What happens to the enterprise’s bottom line, if there
is a sudden drop in the market, or if market volatility dramatically
increases?

3. Educational –

(a) Risk Appetite – Disclosed results from the use of extreme or severe
scenarios can be used as an educational tool, to see how manage-
ment reacts to extreme or severe events. The use of both extreme
and severe sets of scenarios can aid in determining the best and
extreme case corporate risk appetite.

(b) Interdependence – The use of severe or extreme dependent sce-
narios reveals the second level effects arising from the entangled
networked market.

In the next section, we examine some techniques to reduce a set of extreme
stochastic scenarios into a set of severe scenarios.

2.1 Extreme vs. Severe Scenarios

Extreme scenarios cannot be used in basic product pricing or in financial
reporting, due to the fact that some scenarios are so extreme that they in-
dicate that any governmental underpinning of the economy no longer exists.
Though this is very possible, since there are very few governments that have
existed longer than 200 years, societal stability is critical to allow proper
business function to continue. Severe scenario sets should be designed so
that societal “killer” scenarios are not possible. Also, other extreme scenar-
ios may be industrial “killers,” where specific industries cease to exist. For
example, U.S.-based scenarios that indicate that the NYSE fails would be
excluded. Ultimately, there is no one indicator of when a scenario set is se-
vere or extreme, since the consumers of the scenario sets have varying risk
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appetites. Corporate culture is the final determining factor as to what is
severe and extreme.

For the scenario designer, below are several methods on how to extract
severe scenarios sets from extreme scenario sets.

1. Conduct cluster analysis on the extreme scenario set.

(a) Examine the membership size within each cluster. Clusters with
small membership size will identify extreme scenarios.2

(b) The inspection for reasonableness on each cluster’s representative
scenario also aids in the determination of which clusters should be
eliminated.

(c) This inspection will also point out how severe the interdependence
is between separate indices. Candidates of removal may be sce-
narios where the behavior of one index dominates all of the other
indices.

2. Remove all scenarios that indicate that the market of a specific index
has completely failed. For instance, failure may be indicated when an
index value drops below a specific target level, say 5 percent. Separate
scenario collections may be created by varying the target level.

3. Conduct a simple test, such as a non-life contingent return of premium
European option, on each separate scenario. For example, invest $1 in
each index at time 0, and examine the undiscounted total fund value at
some future point in time. Based on the distribution of the resulting net
amount at risk (NAR), discard scenarios where the NAR falls below a
specific level. Similarly, remove extreme upside scenarios by eliminating
scenarios where the total fund value exceeds a specific threshold.

4. Use existing corporate predictive or replicating portfolios models to
quickly examine the effectiveness of a new scenario set. This can in-
dicate if there is an over preponderance of corporate “killer” scenarios
within the severe set.

2. To obtain a collection of stress test scenarios just use each cluster’s representative
scenario. If the number of stress scenarios exceeds 200 the collection may be used as
scenario training sets for predictive modeling Craighead (2008) or replicating portfolio
analysis.
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In the next section, we will look at the key fractal measurement of
market self-similarity and a public domain function that can be used
to generate interdependent extreme scenarios.

3 Description of Fractal and DMFBMMethod-

ology

The Hurst Exponent (H) is a fractal statistic that is collected on a time
series. It indicates long-term dependency, self-similarity through a power
law, roughness of a series, and the color of noise. An FBM process BH(t) is
self-similar through a power rule, in how it rescales time t. For instance, for
a > 0, BH(at) is equivalent in finite dimensional distributions to aHBH(t).

Normally, 0 < H < 1, but occasionally (especially in financial data) it can
take values greater than 1. In these situations, the simple transformation,
H ′ = H − 1, resolves this Anonymous (2004).

FBM in all forms produce continuous non-differential functions for 0 <
H < 1. For H = 1/2, the corresponding FBM has no memory of the past,
and the FBM is just Brownian Motion and produces white noise. If H < 1/2,
the corresponding FBM has a long-term memory effect where if there is an
uptick, the next tick tends to be downward and vice versa. As H → 0,
this tendency increases. Because the innovations are constantly changing
directions, the series will be very rough. For H > 1/2, an uptick will tend
to be followed by another uptick (and vice versa). As H → 1, this tendency
increases. Since the ticks tend to be in the same direction, the resulting series
will not be as rough as with lower values of H. For H ≥ .5, the color of the
noise darkens as H → 1. See Mandelbrot (1983) for a further discussions
regarding the noise color.

Examples of H = 1/5, H = 1/2 and H = 4/5 are in Figure 1. For each
H, the first graph is a time series of the cumulated sum of the innovations
and the second is a time series graph of the actual innovations. Notice how
the graphs display the increase of smoothness as H → 1.

Additional discussion around the determination of the Hurst exponent
for the model is in Section 5.
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Figure 1: H = 1/5, H = 1/2, H = 4/5
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3.1 The DMFBM function

The methodology of Amblard et al. (2010) implements a tensor approach
to allow for correlation through time and across indices by the use of block
matrices. They also use a technique by Wood and Chan (1994) that converts
a multivariate normal simulation into a phase space problem by the use of
the fast Fourier transform (FFT). Once transformed, simulations occur in
phase space and the final results in the time domain are obtained by reusing
the FFT.

For a full understanding of the DMFBM process, this part of the paper
should be read in tandem with Amblard et al..

Let NA denote the number of funds modeled in the DMFBM. For the
model example in Section 5, NA = 6.

The public domain DMFBM function is available at Craighead (2010).
Its input is described in Table 1.

Parameter Name Description
HurstList A list of Hurst exponents, which are determined for each

asset on the cumulated sum of the total returns.
covar The covariance matrix of the price return portfolio.
correl The correlation matrix of the price return portfolio.
projperiod (T ) The projection period associated with the scenarios.

This defaults to 120 months.
numscen (n) The number of scenarios generated.

The default value is 1.
delta This variable allows the change of modality. For example, if

the price return portfolio has daily frequency, using
delta = 21, the scenarios will be approximately monthly
(there are approximately 21 working days a month).

GenKernel Generation kernel. The default value is NULL.
If this is supplied in subsequent runs, and if all of
the parameters (other than n) are identical, then
the DMFBM function will not regenerate the kernel and
will proceed directly to scenario generation.
Table 1: DMFBM Calling Parameters
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The output of DMFBM is outlined in Table 2.

Parameter Name Description
cusumX (Si) The cumulative sum of the innovations, which corresponds

to hydrological applications. The scenario array dimension is
n×NA × (T + 1).

Si =
∑i

j=0 rj where r0 = 0.

cuprodX (Pi) The cumulative product of (1+innovations), which corresponds
to return price indices.
Its dimension is n×NA × (T + 1).

Pi =
∏i

j=0(1 + rj) where r0 = 0.

DelX (ri) The individual innovations from the projection.
Its dimension is n×NA × (T + 1). These
innovations correspond to the total return series.

GenKernel The Generation Kernel used in the projection process.
This is a stored array of the circulant matrix discussed
in Amblard et al. (2010). This array can be reused as input
to DMFBM to generate additional scenario sets and
reduce processing time.
Table 2: DMFBM Output Parameters

The DMFBM R function is internally documented by the use of internal R
functions that implement the six steps in (Amblard et al., 2010, pages 14-15).

The list of internal functions are in Table 3.
Note: The indices i and j indicate separate funds.

Function Name Description
nu(i,j) This function should have been called eta.

It corresponds to the ηi,j causal anti-symmetrical
term component on (Amblard et al., 2010, page 8).
This implements the causal case.

nuhat(i,j) This function models η̃i,j , which is used when
some Hi +Hj = 1. Again see (Amblard et al., 2010, page 8).
Since the causal assumption creates undefined correlation,
this function implements the well-balanced case.

w(i,j,h) This function is a component function to the
gamma(i,j,h,delta) function. This corresponds to
wi,j(h) in (Amblard et al., 2010, Equation 5).

gamma(i,j,h,delta) This is the cross-correlation of the increments of size
δ of the components i and j. This corresponds to
γi,j(h, δ) in (Amblard et al., 2010, Equation 6).

CapG(h,delta=1) This is the p× p matrix G(h) := (γj,k(h))j,k=1,...,p.
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Function Name Description
CapC(j,m,delta=1) This is the block circulant matrix C(j)

in (Amblard et al., 2010, Equation 20).
CapB(k,m,delta=1) This is Bu,v(k) function in (Amblard et al., 2010, step 1).

CapBHat(j,m,delta=1) This corresponds to the ˜B(j) function obtained
from (Amblard et al., 2010, steps 2-3).

CapBHatMat This is a matrix storing the results from CapBHat.
This is the generation kernel GenKernel.

CapZ(j,m) This corresponds to the multivariate normal simulation
Z(j) in (Amblard et al., 2010, step 4).

CapWMat This is an internal matrix that corresponds to the W (j)
in (Amblard et al., 2010, step 4).

CapXMat This is an internal matrix that corresponds to ∆Xu(k)
in (Amblard et al., 2010, step 5).

Table 3: DMFBM Output Parameters

In the design and use of the DMFBM function two technical assumptions
are made. These are:

1. The anti-symmetrical term η is assumed to be causal and not well-
balanced (Amblard et al., 2010, page 8). Also, see Coeurjolly et al.
(2010) for additional discussions around the anti-symmetrical parame-
ter.

2. Negative eigenvalues were set to zero as the generation kernel is pro-
duced. This was done in a consistent manner as mentioned in (Amblard
et al., 2010, Remark 11, page 15).

In the next section, we examine the sources and characteristics of the
data used to parameterize the model.

4 Data

Based on a personal communication from Strommen (2010), the original
source of the data for the parameterization of the 2005 RBC C3 Phase II
Wealth Factors was from Ibbotson Associates (2006). The six funds that are
modeled and their sources are in Table 4.

The data is on the total return performance for each fund; the data spans
from January 1926 to December 2005. The associated basic statistics for the
funds are in Table 5. Note that the estimated Hurst Exponent H for each

10



fund is also contained in this table. A discussion on how these are estimated
is in the next section.

The static correlation matrix of the six funds’ total returns as of December
2005 is in Table 6.

RBC C3 Fund Name Ibbotson Series Name Series ID
Small U.S. Small Stk TR IBOR003368
US S&P 500 TR IBOR003450
AGGR Domestic Hi-Yld Corp TR IBOR006433
LTCorp U.S. LT Corp TR IBOR001753
ITGvt U.S. IT Gvt TR IBOR001145
Money U.S. 30 Day TBill IBOR003667

Table 4: Ibbotson Funds and Sources

Fund Min q1 x̄ x̃ q3 Max s H
Small -0.3674 -0.0256 0.0134 0.0143 0.0500 0.7346 0.0849 0.6401
US -0.2973 -0.0169 0.0098 0.0130 0.0397 0.4256 0.0556 0.5253
AGGR -0.1705 -0.0068 0.0059 0.0068 0.0180 0.2294 0.0302 0.6374
LTCorp -0.0890 -0.0030 0.0050 0.0040 0.0127 0.1376 0.0200 0.5672
ITGvt -0.0641 -0.0007 0.0044 0.0027 0.0095 0.1198 0.0127 0.5783
Money -0.0006 0.0009 0.0030 0.0027 0.0045 0.0135 0.0025 0.3029

Table 5: Fund Basic Statistics with Hurst Exponent

Fund Small US AGGR LTCorp ITGvt Money
Small 1.0000 0.8268 0.6991 0.1618 0.04378 -0.0435
US 0.8268 1.0000 0.6450 0.2053 0.1004 -0.0189
AGGR 0.6991 0.6450 1.0000 0.4192 0.2833 0.0111
LTCorp 0.1618 0.2053 0.4192 1.0000 0.7795 0.0915
ITGvt 0.0438 0.1004 0.2833 0.7795 1.0000 0.2124
Money -0.0435 -0.0189 0.0111 0.0915 0.2124 1.0000

Table 6: Total Return Correlation Matrix

See Ibbotson Associates (2006) for further information on the descriptions
and graphical displays of the funds.

5 Model Construction

To construct the model, several assumptions are made. These are:
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1. For simplicity, the DMFBM RBC model will be a correlated noise
model having no deterministic time component unlike the RBC C3
Phase II scenarios. This implies that the model scenarios do not mean
revert. With no mean reversion, volatility will become infinite as the
time horizon approaches infinity.

2. The entire total return history (from 1926 to 2005) of the six funds Ib-
botson Associates (2006) will be used in the parameterization. The
RBC C3 Phase II Wealth factors were parameterized from data from
December 1955 to December 2005 (Bennet et al., 2006, page 7). Since
the total returns during the Great Depression are included, the resul-
tant scenarios have additional extreme behavior.

3. There will not be a term structure model for interest rates in the model,
since we are only interested in modeling the equity components..

4. Inflation will not be modeled.

5. In the model the order of fund models are Small, US, AGGR, LTCorp,
ITGvt and Money Market where the ordering is based on decreasing
volatility. The order of generation is critical because if a low volatility
fund is used first, the higher volatility funds will become very tame
and produce counterintuitive results. There are two reasons why this
occurs. The first is that all of the simulated prices are scaled to start at
$1 at time 0. Second, because of the scaling, the multivariate dependent
normal simulations process used in the simulation step of DMFBM, the
first fund has all of the variability, where the second fund’s variability is
reduced by correlation with the first fund. This cascade effect reduces
each subsequent fund’s variability. The implication of this assumption
is that the model results in the Section 6 are mostly influenced by the
Small fund’s behavior.

Creating a DMFBM model of the six funds consists of first determining
the variance and correlation statistics on the funds, as summarized in the
prior section. The second step is to estimate each fund’s Hurst exponent.
Finally, the DMFBM R function Craighead (2010) is used in a two-step
process, where first the generation kernel is created, and then the scenarios
are produced. All subsequent modeling is done within the R environment R
Development Core Team (2010).
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The Hurst exponents for the funds are estimated by using the R func-
tion dvFBM from the dvfBm package, which was developed and maintained
by Coeurjolly (2009). This function is an implementation of various estima-
tion techniques for H in the presence of outliers by Achard and Coeurjolly
(2010). Since estimations of H are made on attained levels of a time series
and not on the changes in the values of the time series, each separate fund’s
total return time series {ri} is transformed into a cumulative sum time series
{Si} by the formula Si =

∑i
j=1 rj. This time series is then processed within

the dvFBM function using the “B1-ST” method.
Note: In the estimation of the Hurst exponent for the Money fund, H is

greater than 1.0. The Hurst exponent that is used in the model construction
is obtained by subtracting 1.0 from the estimated value.

First process the DMFBM function with the list of Hurst exponents,
covariances correlations and T = 360, which produces the generation kernel.
Second, the effectiveness of the generation kernel is tested by generating small
scenario sets with small n. Finally, the final set of n = 10, 000 scenarios is
produced. Table 7 provides the basic statistics on the prices series Pi for
each fund at 12, 24, 60, 120, 240 and 360 months across all 10,000 scenarios.
Observe how the standard deviation increases through time for each fund.
Note, also, how the minimum and maximum values of the funds expand
through time as well, especially for the Small fund at 360 months. The
median value stays near 1 for all of the funds at all times. This is due to the
fact that there is no upward biased mean reversion in the model.

Figures 2 and 3 display scenarios 1 and 2 of the fund prices through the
entire 30-year projection horizon.

Notice in Figure 2 that the Small and the U.S.funds climb then fall in the
last 100 months, but the AGGR and the LTCorp funds have a stable trading
range in that same 100-month time frame. The ITGvt fund first falls and
then grows during that period. Since the Hurst exponent for the Money fund
is less than 0.5, observe that the fund prices have greater volatility than the
other funds.

Regarding Scenario 2 in Figure 3, all of the funds except Money decline
over the 30 years. The LTCorp and ITGvt hold steady for the first 175
months and then sharply drop, while the Money fund sharply increases.

To examine how well the fractal nature is simulated by DMFBM, the
dvFBM function estimates each fund’s Hurst exponent for each scenario Si.
The basic statistics on each fund’s H across the 10,000 scenarios are in Ta-
ble 8. Note how the average H for each fund is accurate to two places when
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compared to the original Hurst exponents in Table 5. In separate experiments
with increased numbers of scenarios, the accuracy of the average Hurst expo-
nent to the actual Hurst exponent improves as is expected. The variability,
indicated by s and IQR, is very stable for each fund, but this does reveal
that DMFBM creates a spectrum of Hurst exponents, that are both persis-
tent (H > 0.5) and anti-persistent (H < 0.5), except for the Money fund
which always is anti-persistent.

Examining the stability of the cross-correlation modeling in the model,
the Pearson correlation of the funds from each scenario is produced from the
ri total returns. Each correlation in the upper matrix portion of the corre-
lation matrix is then subtracted from the corresponding static correlation in
Table 6 and then squared. These squared differences are then summed over
all of the correlations and displayed in Table 9. Notice how average squared
difference is 0.031 and the standard deviation s and IQR are stable at .02
and .023. The results of this table demonstrate that the cross-correlations
are well modeled over the 10,000 scenarios.

In the next section, we use a simple return of premium feature on the fund
values and observe how the results compares to the corresponding values from
using the 10,000 RBC C3 Phase II Wealth Factor scenarios.

Fund Months Min q1 x̃ x̄ q3 Max s IQR
Small 12 0.605 0.922 0.999 1.005 1.081 1.577 0.117 0.158
Small 24 0.445 0.875 0.994 1.012 1.133 2.000 0.192 0.258
Small 60 0.275 0.775 0.985 1.049 1.250 3.776 0.389 0.475
Small 120 0.121 0.652 0.969 1.150 1.441 8.501 0.733 0.789
Small 240 0.025 0.481 0.922 1.476 1.800 42.811 1.813 1.318
Small 360 0.005 0.362 0.888 2.102 2.215 144.797 4.365 1.853

US 12 0.800 0.962 0.999 1.001 1.039 1.206 0.057 0.077
US 24 0.686 0.943 0.998 1.001 1.056 1.363 0.085 0.114
US 60 0.551 0.900 0.995 1.004 1.094 1.899 0.145 0.195
US 120 0.459 0.857 0.987 1.009 1.137 2.332 0.217 0.280
US 240 0.277 0.779 0.970 1.020 1.206 3.184 0.339 0.427
US 360 0.147 0.721 0.956 1.041 1.267 4.706 0.454 0.546

AGGR 12 0.833 0.972 1.000 1.001 1.028 1.160 0.042 0.056
AGGR 24 0.765 0.955 1.000 1.002 1.046 1.294 0.068 0.091
AGGR 60 0.622 0.918 1.000 1.008 1.092 1.601 0.128 0.174
AGGR 120 0.470 0.871 1.000 1.019 1.145 1.976 0.207 0.274
AGGR 240 0.275 0.790 0.994 1.047 1.249 4.378 0.355 0.458
AGGR 360 0.157 0.731 0.989 1.091 1.340 7.688 0.516 0.609
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Fund Months Min q1 x̃ x̄ q3 Max s IQR
LTCorp 12 0.921 0.985 1.000 1.000 1.016 1.086 0.023 0.031
LTCorp 24 0.866 0.977 1.000 1.001 1.024 1.151 0.035 0.047
LTCorp 60 0.766 0.959 1.000 1.002 1.042 1.300 0.062 0.083
LTCorp 120 0.678 0.937 1.000 1.003 1.065 1.393 0.095 0.127
LTCorp 240 0.561 0.902 0.998 1.008 1.102 1.825 0.150 0.200
LTCorp 360 0.473 0.871 0.998 1.014 1.137 2.117 0.201 0.266

ITGvt 12 0.940 0.990 1.000 1.000 1.010 1.050 0.015 0.020
ITGvt 24 0.915 0.985 1.000 1.000 1.016 1.089 0.023 0.031
ITGvt 60 0.856 0.972 1.000 1.001 1.028 1.205 0.041 0.055
ITGvt 120 0.786 0.958 1.000 1.001 1.043 1.259 0.064 0.085
ITGvt 240 0.684 0.933 0.999 1.003 1.069 1.448 0.101 0.135
ITGvt 360 0.605 0.911 0.999 1.006 1.092 1.658 0.135 0.181

Money 12 0.994 0.999 1.000 1.000 1.001 1.005 0.002 0.002
Money 24 0.993 0.999 1.000 1.000 1.001 1.007 0.002 0.003
Money 60 0.990 0.998 1.000 1.000 1.002 1.010 0.003 0.003
Money 120 0.988 0.998 1.000 1.000 1.002 1.016 0.003 0.004
Money 240 0.985 0.997 1.000 1.000 1.003 1.015 0.004 0.005
Money 360 0.983 0.997 1.000 1.000 1.003 1.018 0.005 0.006

Table 7: Fund Values Statistics through Time

Variable Min q1 x̃ x̄ q3 Max s IQR
Small 0.452 0.603 0.638 0.638 0.673 0.826 0.052 0.070
U.S. 0.332 0.488 0.523 0.523 0.557 0.703 0.051 0.069
AGGR 0.441 0.601 0.636 0.636 0.671 0.837 0.052 0.070
LTCorp 0.371 0.530 0.565 0.565 0.599 0.743 0.052 0.070
ITGvt 0.386 0.541 0.575 0.576 0.611 0.764 0.052 0.070
Money 0.138 0.270 0.300 0.301 0.331 0.480 0.045 0.060

Table 8: Simulated Funds Hurst Exponent Basic Statistics

Variable Min q1 x̃ x̄ q3 Max s IQR
SqDiff 0.002 0.017 0.025 0.031 0.040 0.202 0.020 0.023

Table 9: Sum of Squared Differences of Sample and Model Corre-
lation
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Figure 2: Scenario 1
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Figure 3: Scenario 2
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6 Comparison between DMFBM and RBC

C3 Phase II Scenarios

To make a simple comparison of the RBC C3 Phase II and DMFBM models,
assume that $1 is invested in each fund at time 0, with no additional deposits.
Also, assume that there are no deaths or lapses. Below we examine the values
of the aggregate fund portfolio arising from the DMFBM and RBC C3 Phase
III Wealth Factors models. To accomplish this, first the Pi prices series for
each scenario must be produced on each of the RBC Wealth Factors fund’s
total return. For both models, take each scenario, and sum each fund’s
P360 prices to produce the accumulated fund portfolio at time 360. This
accumulated sum is not discounted.

Figure 4 is a graph of the probability density of the RBC accumulated
fund values. The RBC statistics are in Table 10. Notice how the minimum
value is $8.34.

Figure 5 is the corresponding plot of the probability density of the DMFBM
accumulated fund portfolio. The first row of Table 11 contains the statistics
of the accumulated fund values. Note the minimum portfolio value of $2.85.

If there is a return of premium guarantee on the accumulated fund, the
net amount at risk (NAR) would be max{6.00 − FundV al, 0.00}. For each
RBC scenario, NAR = 0.0.

Figure 6 displays the probability density associated with the DMFBM
NAR and its statistics are in the second row of Table 11. Note how the
return of premium is in the money at T = 360 for 5,060 scenarios.

We can see from this simple example, the impact of how no mean reversion
and extreme scenarios reveal a risk that is underpriced with the use of the
RBC Wealth Factors.

Next we look at two examples of moving from extreme scenarios to severe
scenarios as discussed in Section 2.1.

6.1 Extreme vs. Severe Scenario Analysis

The first approach is to conduct cluster analysis on the entire DMFBM sce-
nario set. This is done in R using the clara function within the cluster
package Maechler et al. (2005). The analysis consisted of using the Manhat-
tan absolute difference metric to measure the closeness between the separate
scenarios. A target of 100 separate clusters is made. The smallest resulting
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cluster has only two scenarios. Table 11 displays the statistics on the accumu-
lated fund portfolio value and the associated NAR by removing all scenarios
associated with clusters less than or equal to specific sizes. Of course, size 0
has no scenarios removed, where size 50 has removed all scenarios belonging
to clusters of size 50 and lower.

Observe the impact on the NAR statistics is almost unchanged, with the
average NAR staying at 1.10, though the average and the standard devi-
ation of the fund value does drop. It appears that this technique is only
effective in removing scenarios with large fund values. The cluster analysis
was conducted on the price, but should have been done instead on the to-
tal returns. If this was done, both extreme scenarios from both high- and
low-prices would have been removed.

The second approach is to remove scenarios whose fund’s values drop
below a specific threshold at any time in the time horizon. This appears to
be move effective regarding the return of premium option, where the average
NAR values drops in Table 12 as scenarios are removed. Note how many
scenarios are removed as the threshold percentage increases, where at 50
percent 4,431 scenarios have been removed. Observe that the average fund
value increases, where the average NAR drops.

In the next section, we discuss our conclusions and future research and
development ideas.
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Figure 4: RBC Accumulated Fund Value Distribution
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Variable Min q1 x̃ x̄ q3 Max s IQR
FundValue 8.341 33.281 51.396 73.022 83.710 2733.694 81.065 50.429

Table 10: RBC C3 Phase II Accumulated Fund Values
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Figure 5: DMFBM Accumulated Fund Value Distribution

Size Variable n Min q1 x̃ x̄ q3 Max s IQR
0 FundVal 10,000 2.853 4.922 5.974 7.264 7.861 155.760 5.062 2.939

NAR 5,060 0.000 0.567 1.067 1.103 1.601 3.147 0.656 1.033
2 FundVal 9998 2.853 4.922 5.973 7.263 7.860 155.760 5.062 2.938

NAR 5,060 0.000 0.567 1.067 1.103 1.601 3.147 0.656 1.033
3 FundVal 9989 2.853 4.922 5.971 7.248 7.853 155.760 5.034 2.931

NAR 5,060 0.000 0.567 1.067 1.103 1.601 3.147 0.656 1.033
4 FundVal 9985 2.853 4.921 5.971 7.242 7.848 155.760 5.025 2.926

NAR 5,060 0.000 0.567 1.067 1.103 1.601 3.147 0.656 1.033
5 FundVal 9970 2.853 4.919 5.968 7.218 7.833 155.760 4.973 2.914

NAR 5,060 0.000 0.567 1.067 1.103 1.601 3.147 0.656 1.033
10 FundVal 9845 2.853 4.908 5.940 7.066 7.716 155.760 4.667 2.808

NAR 5,060 0.000 0.567 1.067 1.103 1.601 3.147 0.656 1.033
15 FundVal 9648 2.853 4.892 5.890 6.807 7.563 56.392 3.459 2.671

NAR 5,060 0.000 0.567 1.067 1.103 1.601 3.147 0.656 1.033
20 FundVal 9466 2.853 4.877 5.847 6.595 7.447 33.417 2.690 2.570

NAR 5,059 0.000 0.568 1.067 1.103 1.601 3.147 0.656 1.033
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Size Variable n Min q1 x̃ x̄ q3 Max s IQR
30 FundVal 9073 2.853 4.841 5.758 6.302 7.172 19.667 2.145 2.330

NAR 5054 0.000 0.570 1.068 1.104 1.601 3.147 0.656 1.032
40 FundVal 8940 2.853 4.831 5.725 6.212 7.089 18.947 1.976 2.258

NAR 5053 0.000 0.570 1.068 1.104 1.602 3.147 0.656 1.032
50 FundVal 8899 2.853 4.824 5.717 6.180 7.062 18.947 1.918 2.238

NAR 5053 0.000 0.570 1.068 1.104 1.602 3.147 0.656 1.032
Table 11: Cluster Removal Results on DMFBM Fund and NAR
Statistics

Threshold Variable n Min q1 x̃ x̄ q3 Max s IQR
1% FundVal 9998 2.908 4.922 5.974 7.265 7.862 155.760 5.062 2.940

NAR 5058 0.000 0.567 1.066 1.102 1.599 3.092 0.655 1.032
5% FundVal 9833 2.971 4.975 6.015 7.322 7.908 155.760 5.084 2.932

NAR 4893 0.000 0.547 1.029 1.067 1.549 3.029 0.631 1.002
10% FundVal 9422 3.187 5.092 6.123 7.462 8.044 155.760 5.148 2.952

NAR 4482 0.000 0.507 0.951 0.992 1.431 2.813 0.592 0.924
20% FundVal 8480 3.187 5.339 6.402 7.790 8.403 155.760 5.324 3.064

NAR 3547 0.000 0.423 0.816 0.858 1.234 2.813 0.537 0.810
30% FundVal 7441 3.712 5.631 6.742 8.195 8.845 155.760 5.559 3.215

NAR 2562 0.000 0.336 0.678 0.728 1.061 2.288 0.476 0.725
40% FundVal 6534 4.079 5.912 7.065 8.597 9.303 155.760 5.812 3.391

NAR 1785 0.000 0.282 0.581 0.636 0.928 1.921 0.432 0.647
50% FundVal 5569 4.205 6.249 7.493 9.108 9.863 155.760 6.139 3.614

NAR 1082 0.000 0.227 0.467 0.524 0.773 1.795 0.368 0.546
Table 12: Threshold Results on DMFBM Fund and NAR Statistics

7 Conclusions and Future Research

The use of DMFBM, as a source of creating scenario sets with interdepen-
dence between funds and a long-term dependence replicating the fractal na-
ture of the market, shows great promise. Though DMFBM does produce
scenarios with infinite variance, the use of these scenarios in risk analysis
reveals actual risks that scenarios generated with mean reversion do not.

In addition, we observed the effectiveness of controlled scenario removal
by either cluster analysis or fund thresholds. These methods allow the risk
manager a means to dial their results from extreme to severe.

Though DMFBM has greater complexity than simpler dependent Brow-
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Figure 6: DMFBM Net Amount at Risk Distribution

nian models, it does create a bridge between these simpler models into the
are of Mandelbrotian Grey Swan scenarios.

Below is a list of future improvements to the DMFBM model:

1. Revise the DMFBM model to allow for deterministic components such
as drift and mean reversion. This would entail using the DelX output in
tandem with a deterministic component. The addendum does examine
the results of this using an R model of the AAA generator.

2. As understanding increases regarding the estimation of the anti-symmetric
component η, the causal assumption for DMFBM may be replaced by
an estimated parameter or a functional family in the DMFMB R func-
tion.

3. Create additional functions within the R language to implement the
multifractal stochastic trading time approach Mandelbrot et al. (1997);
Mandelbrot and Hudson (2004) with the DMFBM market model. Cur-
rently, this is used with univariate FBM to create market models with
finite variance. By combining the stochastic trading time and DMFBM,
greater market realism is attained. This methodology is implemented
in the addendum.

4. Enrich the DMFBM process to model interest rate term structures in
a fashion similar to Jamdee (2005).
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5. Create a R package containing all of the related functions and meth-
ods associated with DMFBM to simplify user access to these modeling
tools.

8 Addendum

Upon further analysis of the various papers by Mandelbrot, Fisher and Cal-
vet, this addendum discusses the implementation of the Multifractal Model of
Asset Returns (MMAR) Mandelbrot et al. (1997); Calvet and Fisher (2008)
to DMFBM. Though the DMFBM model is a step toward scenario generation
of Mandelbrotian Grey Swan scenarios, the addition of MMAR completes
that process.

An MMAR model modifies an FBM model by allowing the FBM model
behavior to have greater realism around volatility. FBM models without
MMAR (or without other advanced models such as Markov Switching Mul-
tifractal Asset Return (MSM) models Calvet and Fisher (2004); Lux (2008))
exhibit unrealistic volatility structure over the entire time horizon. However
in the market, asset returns reflect various trading ranges. There are times
when the market is slow and the volatility is insignificant. At the other
extreme, when the market is fast, the volatility changes frequently and it
becomes difficult for market observers to keep up with what is happening.
Also, during an extremely fast market, the market resets, correlations tighten
and prices are discontinuous.

An MMAR model is a composition of an FBM BH(t) (or a DMFBM
BH1,...Hn(t)) with a cumulative distribution function θ(t) of a multifractal
measure. The MMAR resulting process is X(t) = BH(θ(t)). The function
θ(t) supplies a random trading time to the MMAR that models both slow
and fast markets and the corresponding volatility.

The θ(t) function is also known as a cascade model. The next five para-
graphs will describe the construction of some cascade models, by the use of
the outer product of two vectors.

The outer product of two density functions (dfs) is similar to a convolution
of the dfs.3 For instance, let F = {0.1, 0.9} and G = {0.2, 0.8} be two

3. Convolution of two probability density functions produce the probability density func-
tion of the sum of the individual random variables. For example, the probabilities
associated with the sum of two dice is obtained from the convolution of probabilities
associated with the throwing of one die by itself.
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examples. The convolution of F ∗G = {0.2∗0.1, 0.2∗0.9+0.8∗0.1, 0.8∗0.9} =
{0.02, 0.26, 0.72}. An outer product does not do any intermediate sums, but
instead adds another element to the new df. For instance, the outer product
would be {0.2 ∗ 0.1, 0.2 ∗ .09, 0.8 ∗ 0.1, 0.8 ∗ 0.9} = {.02, .18, .08, .72}.

A cascade model of base b and order k has k outer products with density
functions of length b. For a deterministic binomial distribution example,
let the df be fixed at F = {0.4, 0.6}. So, b = 2. A nil outer product
(k = 0) would produce just the boring uniform df {1}. When k = 1, this
is the outer product of {1} and F , which is just F . When k = 2, the outer
product of F with itself is F 2 = {0.16, 0.24, 0.24, .36}. When k = 3, the outer
product would be F 3 = {0.064, .096, 0.096, 0.096, 0.144, 0.144, 0.144, 0.216}.
The actual cascade model is the cumulative distribution function (cdf) of
the final F k outer product. This cdf is fractal in behavior. For instance,
the graph of the cdf over the entire region 1 . . . bk vs. the graph of the first
1 . . . bk−1, the graphs will appear to be identical, which demonstrates scale
invariance. Figure 7 demonstrates this scale invariance.
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Figure 7: Binomial Distribution Cascade

The binomial distribution example above is deterministic, however, if the

24



df F randomly changes at each outer loop calculation, the resulting cascade
is much more complex in nature. This type of cascade model, though still
fractal in nature, does not have scale invariance, since the df changes at each
level.

All of the subsequent MMAR examples use either a univariate 94 lognor-
mal cascade model or a 94 multivariate correlated lognormal cascade model.
This is because at each level, nine new samples are drawn from the lognormal
distribution with µ = 0, and σ2 = 1. The nine samples are normalized to
ensure that a density function is being used. Next, the outer product of the
prior level’s results and the new normalized samples produce the new level’s
df. Figure 8 is a graph of one random 94 cdf. This process has been imple-
mented in the Logcascade R function and is available at Craighead (2011c).
This R function is a good template to use in the creation of other random
univariate cascade models.

The multivariate correlated lognormal cascade allows for correlation ef-
fects to be added between each of the states. For instance assume that you
have three assets (or states) that are modeled with DMFBM BH1,H2,H3(t). If
the trading volatility of each corresponds to that of the other two states, you
could just use the same lognormal cascade model θ(t) for the MMAR calcu-
lation of each asset. However, if each asset has a different trading volatility
structure, you may want to use a separate lognormal cascade model for each
asset. If bk is the same for each asset, then you could use correlated lognormal
draws in the construction of each of the separate lognormal cascades. This
type of model could be denoted as BH1,H2,H3(θ1(t), θ2(t), θ3(t)). The corre-
sponding R function, Correllogcascade, is available at Craighead (2011a).

Once, the cascade cdf has been constructed, the composition of the FBM
and the cascade produces the MMAR X(t). To do this, first the scale
multiplier S is determined, which is bk divided by the projection period p
(360 months for our examples in Section 8.1). Now, for each time t in 1..p
transform it into t′ = θ(tS) ∗ p. Let w1 = θ(tS) and w2 = 1 − w1. Now,
X(t) = w1∗BH(bt′c)+w2∗BH(dt′e). This X(t) will have long memory corre-
lations arising from H of BH(t) and X(t) exhibits both slow and fast markets.
This composition is implemented in the two R functions SingleMMAR and
CorrelMultiMMAR.4 These R functions use the corresponding Logcascade
and Correllogcascade functions from above. The two MMAR functions are

4. These functions are based on a R conversion and modification of the MATLAB
mmar.m function written by Wengert (2010).
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Figure 8: Lognormal Distribution Cascade

available at Craighead (2011d,b).
In the next section, the American Academy of Actuaries Scenario Gen-

erator model is used to compare the use of Brownian Motion, DMFBM, and
MMAR models.

8.1 AAA

Using a R function that replicates the 2010 Interest Rate and Wealth Factors
workbook of the Academy of Actuaries generator Strommen et al. (2010),
each type of noise model was used to produce 10,000 scenarios. These noise
models are:

1. Brownian Motion - Generated by DMFBM with all Hurst exponents
set to 0.5. The correlation matrix used corresponds to that of the
academy’s generator.

2. DMFBM - This uses the academy’s correlation matrix and the Hurst
exponents from Table 5.

3. Brownian Motion - Single-MMAR applied to the Brownian Motion
model from item 1.
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4. DMFBM - Single-MMAR applied to the DMFBM model from item 2.

5. Brownian Motion - Multi-MMAR applied to the Brownian Motion
model from item 1.

6. DMFBM - Multi-MMAR applied to the DMFBM model from item 2.

To ensure that each noise model has the same random deviates, the same
random seed is used when the DMFBM function generates both the Brownian
Motion and the DMFBM models. Notice in Figure 9 how the Scenario 1
Small fund returns have similar patterns for both the Brownian Model and
the DMFBM model. But, also note that the Brownian model fund returns are
noisier than that of the DMFBM. This is evidence that the extra restrictions
being placed on the DMFBM model by the use of Hurst exponents tends to
reduce the overall noise level.

Again for consistency between models, a common random number seed
is set before creating the four Single- and Multi-MMAR models. Observe in
Figure 10 the impact of using the Single Lognormal Cascade on the Scenario
1 Small fund return series. Notice that the market is very slow the majority
of the time, but there are sudden bursts of activity when the market is fast.
It is interesting that in the DMFBM model there is a severe downward spike
early in the series, but the corresponding spike in the Brownian model is not
prominent. Notice that in the middle of the series, this behavior switches.

Though the Multi-MMAR model has the capability to use correlations
between the separate lognormal cascade models, the covariance matrix is
set as the identity matrix. Observe in Figure 11 the use of the Correlated
Lognormal Cascade. The fast periods correspond between the two separate
models, but the Brownian Model actually has greater volatility. The full
impact of the use of the Multi-MMAR approach can only be observed when
comparing two separate funds against the same funds when using Single-
MMAR models. This is because the Single-MMAR assumes that one θ(t)
applies to all funds, where Multi-MMAR has separate θi(t) for each fund.
However, the additional random draws required by the Multi-MMAR does
not allow a clear one-to-one comparison with Single-MMAR scenarios.

8.2 Portfolio Comparison

As in Section 6, comparison portfolios are created by investing $1 in each
of the same six funds. A portfolio is built for each model constructed in

27



0 50 100 150 200 250 300 350

−
0
.0

2
0
.0

2
0
.0

4

Small Fund Brownian Basic

Index

A
A

A
b
m

B
a
s
ic

[1
, 
8
, 
2
:3

6
0
]

0 50 100 150 200 250 300 350

−
0
.0

2
0
.0

2
0
.0

4

Small Fund FBM Basic

Index

A
A

A
fb

m
B

a
s
ic

[1
, 
8
, 
2
:3

6
0
]

Figure 9: Simple Small Fund Scenario 1 Returns
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Figure 10: Single-MMAR Small Fund Scenario 1 Returns
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Figure 11: Multi-MMAR Small Fund Scenario 1 Returns

Section 8.1. Again the models are listed with the corresponding portfolio
names here:

1. Brownian Motion Basic - BMBas

2. DMFBM Basic - FBMBas

3. Brownian Motion Single MMAR - BMSgl

4. DMFBM Single MMAR - FBMSgl

5. Brownian Motion Multi MMAR - BMMlt

6. DMFBM Multi MMAR - FBMMlt

Basic statistics on the portfolios are in Table 13. Figure 12 displays the
box plots associated with each portfolio. The removal of the high outlier in
the BMMlt portfolio results in Figure 13. Notice how that the interquartile
range are very similar between all of the portfolios. Observations from both
the statistics and Figure 13 reveal that the interquartile range of FBMBas
and FBMSgl portfolios are sightly wider than the corresponding BMBas and
BMSgl portfolios. What is interesting is that the BMSgl and BMMlt results
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have outliers lower than the FBMSgl and FBMMlt portfolios. The last four
portfolios demonstrate that the return of premium option from Section 6 do
go in-the-money where BMBas and FBMBas do not, which is consistent with
the results in Section 6.
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Variable Min q1 x̄ x̃ q3 Max IQR s
BMBas 11.101 16.060 18.487 17.870 20.194 42.293 4.134 3.510
FBMBas 9.772 15.216 17.820 17.110 19.509 49.239 4.293 3.856
BMSgl 1.477 16.171 18.242 17.776 19.699 52.868 3.529 3.238
FBMSgl 1.772 15.402 17.634 17.095 19.094 49.668 3.691 3.613
BMMlt 1.615 16.278 18.319 17.851 19.736 130.651 3.457 3.280
FBMMlt 3.879 16.048 18.293 17.708 19.845 51.015 3.797 3.514

Table 13: Basic Statistics of the 30-year values of the Six Portfolio
Series
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Figure 12: Portfolios Box Plots

8.3 Comments and Future Work

The use of MMAR in the modeling of market models completes the imple-
mentation of Mandelbrotian Grey Swan scenario generation. A important
observation is that when using just Brownian Motion models combined with
MMAR that portfolios with low fund values are obtained. So, the addition
of MMAR reveals that a return of premium option is not free.
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This addendum has not discussed the proper parameterization of the
various MMAR models, nor has it discussed the determination of the proper
bk in the lognormal cascade models. This addendum used 94 arbitrarily
for the base and level of the cascade models and all lognormal draws have
been based on a mean of 0 and a variance of 1. Primarily the models in
this addendum were created as a proof of concept and there has been no
attempt to ensure that the MMAR parameters correspond to actual market
conditions.

The parameterization of MMAR models is discussed in Mandelbrot (1997)
and in Calvet and Fisher (2008), and in many other publicly available papers.
There is a need to create R functions to aid in the determination of the
parameters.

Additional areas for development are:

1. Create an R function that models correlated Multi-MMAR, that allow
the correlations to goto 1 at times of extreme volatility.

2. Develop other cascade R functions using various statistical distribu-
tions.
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3. Develop copula cascade R functions.

4. Create an R function that models Markov-Switching Multi-fractal asset
returns.

5. Create R functions to aid in the parameterization and calibration of
MMAR or MSM models.

References

Achard, S. and J.-F. Coeurjolly (2010). Discrete variations of the fractional Brown-
ian motion in the presence of outliers and an additive noise. Statistics Surveys 4,
117–147.

Amblard, P.-O., J.-F. Coeurjolly, F. Lavancier, and A. Philippe (2010). Basic
properties of the multivariate fractional brownian motion. Website. http:

//hal.archives-ouvertes.fr/hal-00497639/en/.

Anonymous (2004, december). Lecture 5: Estimation of hurst exponent. Website.
http://www.mi.imati.cnr.it/conferences/brani04/Lec5.pdf.

Bennet, N. E. et al. (2006). Construction and use of pre-packaged scenarios to sup-
port the determination of regulatory risk-based capital requirements for variable
annuities and similar products. Technical report, American Academy of Actu-
aries, Washington, DC. http://www.actuary.org/pdf/life/c3supp_jan06.

pdf.

Calvet, L. and A. Fisher (2008). Multifractal Volatility, Theory, Forecasting, and
Pricing. 84 Theobald’s Rd, London UK: Elsevier, Inc.

Calvet, L. E. and A. J. Fisher (2004). How to Forecast Long-Run Volatility:
Regime Switching and the Estimation of Multifractal Processes. Journal of
Financial Econometrics 2 (1), 49–83.

Coeurjolly, J.-F. (2009). dvfBm: Discrete variations of a fractional Brownian
motion. R package version 1.0.

Coeurjolly, J.-F., P.-O. Amblard, and S. Achard (2010). Normalized causal and
well-balanced multivariate fractional brownian motion. Website. http://hal.

archives-ouvertes.fr/hal-00501720/en/.

33



Craighead, S. (2008, june). PBA reserves and capital modeling efficiency: Rep-
resentative scenarios and predictive modeling. The Financial Reporter (73).
http://www.soa.org/library/newsletters/financial-reporter/2008/

june/frn-2008-iss73.pdf.

Craighead, S. (2010). The R function: DMFBM. Website. http://dl.dropbox.

com/u/6617438/R\%20Corner\%20Attachments/DMFBM/DMFBM.html.

Craighead, S. (2011a). The R function: Correllogcascade. Website.
http://dl.dropbox.com/u/6617438/R%20Corner%20Attachments/DMFBM/

Correllogcascade.htm.

Craighead, S. (2011b). The R function: CorrelMultiMMAR. Website.
http://dl.dropbox.com/u/6617438/R%20Corner%20Attachments/DMFBM/

CorrelMultiMMAR.htm.

Craighead, S. (2011c). The R function: Logcascade. Website.
http://dl.dropbox.com/u/6617438/R%20Corner%20Attachments/DMFBM/

Logcascade.htm.

Craighead, S. (2011d). The R function: SingleMMAR. Website.
http://dl.dropbox.com/u/6617438/R%20Corner%20Attachments/DMFBM/

SingleMMAR.htm.

Ibbotson Associates (Ed.) (2006). Stocks, Bonds, Bills, and Inflation 2006 Year-
book. Chicago, IL: Ibbotson Associates.

Jamdee, S. (2005). Multifractal models and simulations of the U. S. term structure.
Ph. D. thesis, Kent State University. http://olc1.ohiolink.edu/record=

b24933576~S0.

Lux, T. (2008). The markov-switching multifractal model of asset returns. Journal
of Business and Economic Statistics 26 (2), 194–210.

Maechler, M., P. Rousseeuw, A. Struyf, and M. Hubert (2005). Cluster analy-
sis basics and extensions. Rousseeuw et al provided the S original which has
been ported to R by Kurt Hornik and has since been enhanced by Martin
Maechler: speed improvements, silhouette() functionality, bug fixes, etc. See
the ‘Changelog’ file (in the package source).

Mandelbrot, B. B. (1983). The Fractial Geometry Of Nature. New York, NY: W.
H. Freeman and Company.

34



Mandelbrot, B. B., A. J. Fisher, and L. E. Calvet (1997). A multifractal model of
asset returns. Website. http://ssrn.com/paper=78588.

Mandelbrot, B. B. and R. L. Hudson (2004). The (mis) Behavior of Markets,
A Fractal View of Risk, Ruin, and Reward. New York, NY: Basic Books, A
Member of the Perseus Books Group.

Mandelbrot, B. B. and J. W. Van Ness (1968). Fractional brownian motions,
fractal noises and applications. Siam Review 10 (E2), 442–437.

Mandelbrot, B. B. a. (1997). Fractals and Scaling in Finance, Discontinuity, Con-
centration, Risk. New York, NY: Springer-Verlag.

R Development Core Team (2010). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN
3-900051-07-0.

Strommen, S. (2010). personal communication.

Strommen, S. et al. (2010). C3 phase iii interest rate scenario generator. Website.
http://www.actuary.org/life/phase3.asp#10.

Taleb, N. N. (2010). The Black Swan, The Impact of the Highly Improbable, 2nd
ed. New York, NY: Random House Trade Paperbacks.

Wengert, C. (2010). Multifractal model of asset returns. Web-
site. http://www.mathworks.com/matlabcentral/fileexchange/

29686-multifractal-model-of-asset-returns-mmar.

Wood, A. and G. Chan (1994). Simulation of stationary gaussian processes in
[0, 1]d. Journal of computational and graphical statistic 3 (4), 409–432.

35


