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Abstract 
 

It has become common to use historical data as a guide in analyzing future risks. 
However, the statistical tools used often are based on the assumption that the data (regardless of 
the source) may be treated as independent data for risk analysis purposes. In some cases, the data 
is conditional in nature, and the proper tool needs to be one that reflects this characteristic of the 
data. This paper highlights the impact such a change would have on a variety of risk assessment 
models, with specific emphasis on investment forecasting. 
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Introduction 
 

It is common to use mathematical techniques in risk assessment. In fact, these techniques 
are the cornerstone of the entire insurance industry. The probabilities of any particular event 
happening are developed using highly sophisticated projections of past results. Traditionally, 
these methods have worked well, and have served the needs of both the insurance industry and 
the policyholders. 
 

In using historical data, insurance actuaries are careful to segregate appropriate risk 
classifications, such as male vs. female or smoker vs. non-smoker, to make sure the risks under 
consideration are based on the data, which does not introduce unintended bias. In situations 
where bias is potentially likely to enter, the actuary still must deal with the contingency. For 
example, if a pension plan is planning to provide a significantly improved early retirement 
benefit, the actual experience-to-date of the early retirements under the plan may be of little use. 
The new provision is likely to bring about an increase in utilization.  
 

However, in some risk assessment models, it is fairly clear that the data under 
consideration is conditional in nature, whereas the tool being used does not reflect this important 
aspect of the data. This introduces an unintended error into the process, and care needs to be 
exercised to be sure this error does not lead to significantly inaccurate conclusions. This paper 
will focus on the types of situations where conditional probabilities may play a greater role in 
risk modeling, with special emphasis on investment forecasting. 
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Conditional Probabilities 
 

To begin, let’s look at a simple illustration to show how conditional probabilities can 
affect conclusions. If someone tosses a single six-sided die, and asks you for the probability that 
the number on the die comes up a 1, your answer is sure to be 1/6. Each of the six possible 
outcomes has an equal chance of occurring. If the person tosses a second die, and asks the same 
question, your answer would again be that the probability of seeing a 1 is still 1/6. However, if 
the person then adds the condition that the sum of the two dice is 8, this condition affects your 
answer. Once the condition is added, the probability that either one or both of the dice is showing 
the number 1 is now zero. The new probability space, given the condition that the sum of the two 
dice is 8, is different than the regular probability space for a single die. Now, each of the 
numbers 2 through 6 has a probability of appearing of 1/5, whereas the probability of seeing a 1 
is zero.  
 

In this simple illustration, if lots of dice were tossed, the probabilities based on the 
numbers seen would not differ significantly from the 1/6 possibility expected. The law of large 
numbers kicks in. However, in other illustrations, this same dynamic does not occur and the use 
of conditional probabilities becomes more critical. One of these situations is the use of history-
based stock market forecasting.  
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Stock Market Forecasting 
 

It has been common in modern academic finance to assume that historically observed 
stock market investment returns may be treated as independent events in making an investment 
forecast for the future. It is as if actually observed returns are written on little balls, the balls are 
then dropped into a giant rotating bin, and then future returns may be modeled by drawing the 
balls out of the bin. Sometimes the results are taken directly; other times the results are used to 
calculate an equity risk premium or return in excess of the risk-free rate of return. On the surface, 
this approach seems very straight forward.  
 

Furthermore, using the actual data in this approach leads to a distribution of future returns 
that can be described by the lognormal probability density function. Hence, the mechanical 
process may be replaced with a mathematical formula approach. The outcome of either approach 
is substantially the same. 
 

Using the lognormal density function tool (or actually drawing results out of a bin), it is 
possible not only to provide an expected rate of investment return but a complete distribution of 
such returns. In short, using the tool one could say the expected return on stock investments 
might be 12 percent but that there is a 30 percent chance your equity investments could exceed a 
return of 25 percent for the year. On the down side, it is also possible to say there is a 30 percent 
chance your equity investments could lose money for the year. 
 

To select the lognormal probability density function parameters, finance textbooks 
provide detailed instructions using the arithmetic mean and sample standard deviation from a set 
of historical returns. What is often missing, however, is a comparison of the actual historical 
results, and the expected results provided by the lognormal probability density function. This 
comparison is not as good as one might expect given the widespread use of this particular model.  
 

To illustrate this point, the 2008 Ibbotson and Associates SBBI Yearbook provides a 
history of 984 months of stock return data. The chart below compares the distribution of the 
actual data with the expected distribution provided by the “best estimate” lognormal density 
function.  
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Actual Data Distribution Compared with Lognormal Assumption 
 

 
 
 

As an example of the difference between the two distributions, the actual distribution 
shows that for 118 of the 984 months (12 percent of the total), stock returns were 5.8 percent or 
more for the month. Whereas the “best estimate” lognormal density function assumes that 189 
out of 984 months (19 percent of the total) will have a return of 5.8 percent or more. This is a 
substantial difference. It calls into question the use of the basic lognormal probability density 
function to describe the historical data. Keep in mind that the use of the lognormal density 
function does not produce results that are any different than if the data had been used directly. 
 
The Conditional Nature of Historical Investment Return Data 
 

The problem with the above model is that all of the data is conditional in nature, not 
independent. The only way one gets a historical rate of return is to observe actual market 
behavior. If an investment grows from $100 to $110 over a one-year period, it is possible to 
calculate the rate of return from the actual change in wealth. In this case, the rate of return is 10 
percent.  
 

But as one contemplates the source of all historical investment return data, it is clear the 
data are periodic observations of a single long-term historical asset growth. For example, using 
the Ibbotson data described above, $1 invested on Jan. 1, 1926, grew to $3,246 as of Dec. 31, 
2007. Rates of return for any given historical period are then calculated by looking at the change 
in wealth over the given period. But the basic nature of each of these data sets is conditional.  
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If one is looking at monthly data, there is a data set of 984 monthly returns, given the 
condition that $1 invested on Jan. 1, 1926, grew to $3,246 by Dec. 31, 2007. If one is looking at 
quarterly returns, there is a data set of 328 quarterly returns, given the condition that $1 invested 
on Jan. 1, 1926, grew to $3,246 by Dec. 31, 2007. Finally, if one is looking at annual returns, 
there is a data set of 82 annual returns, given the condition that $1 invested on Jan. 1, 1926, grew 
to $3,246 by Dec. 31, 2007.  
 

In these illustrations, the condition on investment growth is similar to the sum of two dice 
being 8 in the simple conditional probability illustration. It has a bearing on the appropriate 
probability density function that describes the data. And given the poor “match” between the 
actual historical data and the common lognormal assumption, consideration of a different density 
function appears to be warranted. 
 
The Conditional Lognormal Density Function 
 

The mathematical theory of probability and statistics would place the single observation 
of investment growth from $1 in 1926 to $3,246 in 2007 at the mean of long-term results, with 
each of the periodic returns being described by a conditional lognormal probability density 
function. (For completeness, the formula for the conditional lognormal density function is 
attached as Appendix 1.) When this one change is made, the comparison between the actual 
historical results and those described by the probability density function improves dramatically, 
as is shown in the following chart. 
 

Actual Data Distribution Compared with Conditional Lognormal Assumption 
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Of course, the match is never perfect. In one case, the data is the actually observed 
historical returns, and in the other it is data created by a mathematical formula specifically 
selected to describe the data. However, the improvement in the match between the data and the 
formula is significant, especially when it is compared with the previous chart.  
 
Impact of Making the Change 
 

Not only is the comparison significantly improved, but this one change helps explain 
several problems recently seen in the financial services industry. The change provides additional 
insight into the collapse of Long-Term Capital Management about a decade ago, and the more 
recent collapses of Bear Stearns and Lehman Brothers Holdings. In addition, the experience to 
date in 401(k) savings plans has shown actual accounts of near retirees to be significantly less 
than what the participants had been anticipating. The hardship caused by this situation was 
described in the lead article of the Oct. 19, 2009, issue of Time Magazine.  
 

The change in density function from an independent lognormal function to a conditional 
lognormal function causes the best estimate rate of return to change from an arithmetic mean of 
historical returns to the lower geometric mean of historical returns. For large company stocks 
that have been the focus of the illustration used for this paper, the expected rate of return is 
lowered from about 12 percent to about 10 percent. For data that is more volatile, the degree of 
change will be even larger. Given that employee participants have been led to believe they would 
receive the higher arithmetic mean returns, it is not surprising they are disappointed with the 
lower actual geometric mean results.  
 

Table 1 below shows the complete impact this change from an arithmetic mean-based 
forecasting philosophy to a geometric mean-based forecasting philosophy would have on the 
information provided to an average investor. The same impact affects any risk assessment 
models that have an investment-based component. In all cases, the anticipated wealth decreases 
significantly from former expectations based on the traditional lognormal approach.  
 
TABLE 1 
A Comparison of Projected Large Company Stock Returns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Percentile 

Geometric 
Annual Return 

Arithmetic 
Annual Return 

90% 34.23% 38.64% 
75 21.57 24.53 
60 13.49 15.59 
50 8.89 10.52 
40 4.48 5.67 
25 (2.46) (1.92) 
10 (11.66) (11.90) 

Expected Value 10.36% 12.26% 
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Summary 
 

Although the current approach of treating historical investment returns as independent 
statistical events has been in place for about a half a century, the results from using these models 
has not been great. The actual experience in the past two years in the financial services industry 
bears witness to these problems. As shown above, the conversion to an approach based on 
conditional probabilities not only makes sense from a purely mathematical perspective, it 
achieves a better match with historical data and helps explain some of the problems seen in the 
financial services industry. 
 

While this paper has focused primarily on investment forecasting, the basic conditional 
approach has a huge impact on traditional stock option pricing and affects any risk assessment 
model where the basic nature of the data is conditional rather than independent. Any risk 
assessment professional needs to be aware of conditional probability density functions and the 
role they can play in making sure risk-assessment models are as accurate as they can be. 
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Appendix 1 
 

For completeness, the conditional probability density function used in this paper is shown 
below. The formula assumes that the underlying investment return data is lognormally 
distributed but that the single observed long-term result lies at the mean of the probability space 
of long-term results. The periodic shorter term observations are then anticipated to be distributed 
in accordance with the conditional lognormal density function shown below. The parameters mu 
and sigma are the classic lognormal distribution parameters; n is the number of periods included 
in the single long-term result; x is the value of the return expressed as a return relative.  

 

c(x) = . .  
x
1

1−n
n

πσ 2
1 e 




















−

+−−

2)1(2

2))
2

2
((ln

σ

σ
µ

n

xn


	The Role of Conditional Probabilities in Risk Assessment
	Abstract
	It has become common to use historical data as a guide in analyzing future risks. However, the statistical tools used often are based on the assumption that the data (regardless of the source) may be treated as independent data for risk analysis purpo...
	Introduction
	Conditional Probabilities
	Stock Market Forecasting
	Actual Data Distribution Compared with Lognormal Assumption
	The Conditional Nature of Historical Investment Return Data
	The Conditional Lognormal Density Function
	Actual Data Distribution Compared with Conditional Lognormal Assumption
	Impact of Making the Change
	TABLE 1
	Summary

