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Abstract

Most stochastic entreprise risk management (ERM) models for life insur-
ance examine only the resultant output (specifically the economic capital),
and thereby separate the model results from the key input model assump-
tions, such as the term structure of interest rates. Now, with ERM modeling,
the calculation of economic capital (EC) is very expensive due to the com-
plexity of the products and regulatory controls placed on the industry. Add
to that the requirement of a large number of scenarios to produce the empiri-
cal distribution of EC. Certain techniques have arisen to reduce this modeling
cost, such as grid computing and replicating portfolios, but even with these
reductions, a high cost is exacted from the enterprise. However, despite all
the resources dedicated to the generation of EC, the analysis of results is
frequently limited to the determination of the empirical distribution and an
obligatory examination of the relationships of the five worst and five best
scenarios to the EC.

If we can expand our understanding of the impact of all the scenarios on
the EC, while also targeting specific percentiles of the EC, such as the 98 per-
cent empirical value at risk (VaR), our understanding of the enterprise’s risk
exposure is greatly enhanced. Also, this analysis becomes the springboard
for the creation of EC dashboards that allow the study of daily changes in
the economy on the VaR.

The above is accomplished by use of the quantile regression (QR) mod-
eling of Koenker and Basset [16].

Key Words:

Enterprise Risk Management, Quantile Regression, Economic Capital, Risk
Dashboards.
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1 Introduction

In the life insurance industry, regulation and/or professional standards re-
quire us to conduct computer simulations on different lines of business to
determine when the business performs poorly. We model our business as
accurately as possible, allowing for interest and asset performance, changing
premiums and expense loads. We may or may not make assumptions on the
claims count or amount distributions. In addition, we often make many other
assumptions such as the term structure of interest rates, future interest rates,
projected stock market returns, asset default probabilities, policyholder psy-
chology, and the relationships of our decrements to the level of interest rates
or the stock market. Computer simulations reveal the behavior of the busi-
ness relative to these assumptions. We do not know the actual statistical
distribution of our business model results. We assume that the computer
simulation results are representative (within some degree of confidence) in
certain areas of interest, such as the extreme tail. We need to determine if
our models are valid (again within some degree of confidence). If valid, then
we calculate either economic capital or stand-alone capital within the accu-
racy of these computer models. In addition, we want to observe the potential
risks associated with either the enterprise, product or line of business.

Computer simulations of complex corporate models become very expen-
sive in processing time as the number of scenarios increases. The need to
obtain a timely answer often outweighs the need for information from addi-
tional scenarios.

In ERM life insurance modeling this cost is reduced by using either pre-
dictive modeling, see Craighead [7] or replicating portfolio approaches, see
Algorithmics [1].

Most computer business models are limited by the knowledge that we
have about the basic assumptions used. We must be careful in how we think
about and use these models. At a fundamental level, the models are neither
correct nor assumed to be accurate. However, the benefit of using the com-
puter to model actual business products and lines is that we can obtain an
understanding of the different risks to which that product or line is exposed.
Once we have this understanding, we can consider several methods to reduce
the impact of any given risk. Such methods include product redesign, reserve
strengthening, deferred expense write downs, asset hedging strategies, stop-
ping rules (rules that recommend when to get out of a market), derivative
positions and reinsurance, or the addition of extra capital.
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However, once we have gained the basic understanding of the risks and
have designed, say, a hedge strategy, we must remember that these models
are not accurate, due to oversimplification of the model, lack of knowledge
and insight, lack of confidence in the assumptions or incorrect computer
code. We cannot trust the model output as the “truth,” but we can trust
the knowledge and insight that we have gained from the process of modeling.
If done correctly, we know both the strengths and weaknesses of the model.
For instance, when constructing a hedge to protect against the risks demon-
strated by the model, we must not implement a hedge that optimizes against
areas of model weakness. Ultimately, the model does not tell us what to do,
but the model does make us more comfortable in making business decisions.

It is important to keep a clear perspective when using multiple economic
scenarios in computer simulations. We can gain significant insight about the
risk exposure from the economy using stochastic simulation. By examining
multiple possibilities, we can protect ourselves as best as possible. However,
we realize that only one path actually emerges, as seen in the recent economic
meltdown. Therefore, the practitioner must continually evaluate the economy
and make reasoned decisions to maintain existing business and to acquire new
business.

The risk appetite of company management must also govern these busi-
ness decisions. Insolvency must be considered and avoided. However, the
practitioner cannot remove all risk of insolvency because the cost of the as-
sociated hedges would become so prohibitive the company could not afford
to conduct business. Accordingly, the practitioner should understand where
the product or business line places the company at risk and be able to com-
municate to upper management the specific risk exposure. For a further
discussion of the balancing act between company profit and insolvency risk,
see Craighead [4].

ERM practitioners, valuation actuaries, asset/liability management actu-
aries, chief financial officers (CFOs) and chief risk officers (CROs) of insur-
ance companies confront vast and complex issues, including:

1. Calculating the probability and/or impact of bankruptcy either by sce-
nario testing or by determining the company’s value at risk

2. Helping to determine the initial capital allocation for a new line of
business
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3. Assuring that reserves are adequate for new and existing lines of busi-
ness

4. Understanding how different lines of business are sensitive to the level of
interest rates, corporate spreads, volatility of other economic indicators
(such as stock indices) and the changes in the levels of these variables

5. Estimating other risks to which the company is exposed in a timely
fashion

6. Pricing complex policy features to obtain profitability, while maintain-
ing a competitive market position

7. Aiding in the design and pricing of dynamic hedges to reduce the risk
of extreme events

8. Designing and pricing the securitization of various cashflows to reduce
risk-based capital requirements

All of the above issues require timely and accurate valuation of different
complex corporate models. When conducting the analysis on models, the
practitioner goes through the following model life cycle.

1. Collect relevant data.

2. Make relevant assumptions.

3. Construct the model.

4. Validate the model for reasonableness.

5. Revise the model.

After a corporate model is constructed, the practitioner uses the results
in several ways, including the following.

1. Gain insight on the business modeled.

2. Determine risks to the company.

3. Observe the scenarios that give adverse model results.
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4. Increase reserves, create hedges or make product enhancements to re-
duce the risk exposure or adverse results.

The internal company standards and the external regulatory controls re-
quire the practitioner to determine risk levels from corporate models. It is
of paramount importance to understand the impact that different economic
drivers, product designs or investment/disinvestment strategies have on the
behavior of a corporate model. This includes the determination of when
(and how often) model results from scenarios fall in “bad” locations. This
knowledge allows one to interpret the potential magnitude of the company’s
risk exposure. While adverse results occur relatively infrequently in sce-
nario testing, the practitioner would like to gain more knowledge of these
adverse results without paying the cost of projecting enough scenarios to get
the number of “hits” in the region of adverse results needed for statistical
validity.

These adverse locations are discovered by first placing a valuation of
economic capital on the company’s position, scenario by scenario. These
valuations are then sorted and put in increasing or decreasing order. From
these ordered results, the location of the adverse results is found at either
the highest or lowest valuations. The study and analysis of ordered or sorted
samples is done using either order or extreme value statistics or the theory
of records. Due to modeling costs, we have a need to approximate the re-
lationship between the input economic scenarios and the EC output results
without additional computer processing. Also, if one is able to target the
location of adverse results when developing this relationship, all the better.

In Figure 1, we have a nonlinear computer corporate model that takes
economic scenarios as input and produces certain model output, which rep-
resents the EC of the corporate model. Next, we define a risk driver to be a
function of the economic scenarios through time that distills the most infor-
mative characteristics of the economic scenarios, which have an impact on
the model output. The extraction of the time series of the 90-day Treasury
bill rate from each scenario is an example of a potential risk driver. Another
example is the time series of the spread of the 10-year Treasury note over the
90-day Treasury bill rate.

The dashboard model could be a linear or a nonlinear approximation of
the EC at specific percentiles that displays the relationship between the risk
drivers and the EC from the original nonlinear computer model.

Our dashboard model is based on the use of QR modeling developed by
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Figure 1: Concept of Risk Drivers

Koenker and Bassett [16]. QR has two major advantages in that it targets
specific percentiles (quantiles) and that the model calibration is not influ-
enced by extreme outliers of EC.

See Appendix A for a brief discussion of the theory underpinning QR.
Also, see Bassett and Koenker [2], Koenker [17], Koenker and Bassett [16],
Koenker and Portnoy [18], Portnoy [25], and Portnoy and Koenker [26] for
further discussions on QR. Buchinsky [3] also has an excellent overview of
the theory and applications of QR.

The remainder of this paper takes the following path.
In Section 2, we discuss the illustrative business model that uses the input

scenarios and capital results to form the basis of our analysis.
In Section 3, we create a model that displays two risk drivers and the

sensitivity of the model results to these drivers.
In Section 4, we discuss how to use a quantile regression model to con-

struct a economic dashboard.
In Section 5, we end the paper with a list of strengths and weaknesses of

the QR method and a brief discussion of potential uses.
Finally, Appendix A discusses the QR methodology, Appendix B dis-
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cusses the generation of the interest rate scenarios, and Appendix C discusses
quantile regression modeling in R.

2 Business Model-Input Economic Scenarios

and Economic Capital

For illustrative purposes, we use 10,000 economic scenarios, which are gen-
erated from the process outlined in Appendix B. This process was one of
the first used by Nationwide Life Insurance Company in the determination
of reserve adequacy in the early 1990s. It is a real-world process that has
arbitrage within the yield curve.

The projection horizon is 20 years with yield curves varying annually.
The capital model output is the equivalent value of accumulated surplus
(EVAS).1 These EVAS values are obtained at the end of the projection period
of 20 years and are discounted back to the valuation date. These values are
somewhat liberal in that if the company became insolvent in some year prior
to year 20, but then recovers subsequently, we do not have knowledge of this
event contained in the corresponding 20 year EVAS value.

The specific business model processed in 1993 is lost to history and the
EVAS values have been modified to no longer resemble any of the original
values from 1993. However, even though the scenario generation technique as
well as the EVAS that were determined from these scenarios are dated, they
still supply a rich enough environment to demonstrate the power of quantile
regression.

Graphs of the density and S-curve of the capital are in figures 2 and 3.
The basic statistics on the specific EVAS values are in Table 1.

1Equivalent value of accumulated surplus is somewhat similar in concept to a present
value, which is scenario dependent. It is also dependent upon the investment strategy used
and is obtained by dividing the surplus at the end of the projection period by a growth
factor. This factor represents the multiple by which a block of assets would grow from
the valuation date to the end of the period in which we are interested. It is computed by
accumulating existing assets or an initial lump-sum investment under the interest scenario
in question on an after-tax basis with the initial investment and any reinvestments being
made using the selected investment strategy. The growth factor is the resulting asset
amount at the end of the projection period divided by the initial amount at the valuation
date, Sedlak [29].
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Figure 2: Density of Capital

Variable n Min q1 x̃ x̄ q3 Max s IQR
LOB 10000 -16.1 19.8 25.1 23.1 28.3 34.9 7.4 8.6

Table 1: Line of Business (LOB) Capital Statistics

Since only the interest rate scenarios are available for the data, we restrict
our risk drivers to be:

1. The change in the 10-year Treasury bond rates in the input scenarios.
These will be denoted Y 10

t .

2. The spread between the 10-year Treasury bond rates and the 90-day
Treasury bill rates. These will be denoted St.

3 Modeling of QR

In the analysis of corporate models, the need to observe the effect of an
economic scenario on the model output (specifically economic capital for
ERMmodels) gives the practitioner a critical understanding of the underlying
economic risks contained in the model. Observe the formula

8



0 2000 4000 6000 8000

−
10

0
10

20
30

Index

so
rt

(L
O

B
)

Density of LOB Capital

Figure 3: S-Curve of Surplus

Rq = B0,q +B1,qX1 +B2,qX2 + · · ·+B19,qX19 +B20,qX20 + Uq. (1)

Rq is the capital response (specifically at the qth quantile), and Xt is one of
the risk drivers mentioned in Section 2 at the end of each year t. Bt,q are
the related coefficients for the specific quantile q, and Uq is the error. The
assumption is that Quant(Uq) = 0 leads to the formula of the conditional
quantile regression

Quant(Rq) = B0,q +B1,qX1 +B2,qX2 + · · ·+B19,qX19 +B20,qX20. (2)

Koenker and Machado [19] have developed a goodness of fit statistic for
QR, which they refer to as the R1 statistic that corresponds to the LSR R2

statistic.2 The R1 statistic has similar attributes to that of the R2 statistic

2The design matrix of a regression demonstrates its completeness in how well the in-
ner product of the coefficients against the design matrix replicates the responses Rq. In
ordinary least squares regression (LSR), the effectiveness (or goodness of fit) is measured
by the R2 statistic. As one adds relevant variables to the design matrix, R2 will move
closer to 1, thus indicating that the design matrix contains sufficient variables. However,
if R2 is close to zero, this implies that variability within the residuals is not well explained
with the LSR model. This implies that additional variables should be added to the design
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for LSR. They also discuss another statistic called a Wald estimator, which
can be used in a fashion similar to the Student t statistic to indicate whether
a specific variable in the design matrix is significant. (Also see Press et
al. [27] for an additional discussion of the Wald estimator.) In Leggett and
Craighead [23], they use the R1 and the Wald estimator as a goodness of fit
measure and as a test for variable significance. But, since that time, the the-
ory underpinning QR has improved, and now the use of the Frisch–Newton
interior point fitting algorithm returns the measurement of coefficient signif-
icance back to the use of Student t statistics as in LSR. Modeling quantile
regression models have also been greatly simplified by the use of Koenker’s
quantile package quantreg [20] in the R language [28]. Koenker has also
created several R vignette documents [21] within the quantreg package with
several advanced demonstrations to expand the practitioner knowledge as
well.

Please refer to Koenker [19] and Koenker and Machado [22] for further
discussions of the use and interpretation of these and other statistics.

Our interest for a specific quantile is in its sensitivity to the coefficients
through time. By treating the coefficients as a time series, we can observe
this effect.

In this section, we develop models though methods outlined in Appendix C,
which reveals the relevant information needed for the practitioner. Initially,
the actual value of the QR coefficients is not as critical to our understanding
as is the QR coefficients’ relative magnitude when compared to all of the
coefficients. We use the absolute magnitude of the coefficients to locate the
year of a specific risk driver as defined in the design matrix of the regression.
This approach takes on a qualitative nature in that we do not try to predict
the actual percentiles, but we use it to see what influences risk or profit. The
pricing actuary can use this qualitative approach to determine design flaws
when examining low quantiles and positive upside design features in high
quantiles. The valuation actuary can use this type of report to locate vari-
ous risks and locations of those risks in existing lines of business. This also

matrix or one should try other types of regression. Note: By the use of the Student t test,
one can determine if a variable is significant to the model even when R2 is small. However,
low values of R2 still point to model ineffectiveness. An LSR model can still be ineffective
with high R2 due to other problems with the residuals. For instance, if the residuals are
serially correlated or if the variance of the residuals is not constant then other problems
ensue with the model effectiveness. See Venables and Ripley [33] for a further discussion
and for other references relative to the use of LSR.
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Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Percent Ranking
(Intercept) 1.28 0.475 2.696 0.007 NA NA NA
1 92.396 32.402 2.852 0.004 92.396 9.5 F
2 -98.147 35.508 -2.764 0.006 -98.147 10.1 E
3 -247.593 36.637 -6.758 0 -247.593 25.5 A
4 -160.356 30.791 -5.208 0 -160.356 16.5 C
5 -180.837 29.105 -6.213 0 -180.837 18.6 B
6 -143.592 37.984 -3.78 0 -143.592 14.8 D
7 -56.589 28.901 -1.958 0.05 0 0
8 10.903 32.151 0.339 0.735 0 0
9 -27.137 32.934 -0.824 0.41 0 0
10 46.794 23.697 1.975 0.048 46.794 4.8 G
11 21.298 33.883 0.629 0.53 0 0
12 -39.627 26.886 -1.474 0.141 0 0
13 -26.421 26.396 -1.001 0.317 0 0
14 4.211 28.431 0.148 0.882 0 0
15 -17.096 29.455 -0.58 0.562 0 0
16 10.098 26.652 0.379 0.705 0 0
17 17.748 27.474 0.646 0.518 0 0
18 10.361 27.314 0.379 0.704 0 0
19 -24.687 22.986 -1.074 0.283 0 0
20 3.466 29.769 0.116 0.907 0 0
Absolute Sum 969.715

Table 2: Quantile Regression Results for 0.5% 10-Year Treasury

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Percent Ranking
(Intercept) 30.111 0.036 838.224 0 NA NA NA
1 316.13 2.311 136.765 0 316.13 19.8 A
2 277.366 1.855 149.504 0 277.366 17.4 B
3 215.893 1.936 111.538 0 215.893 13.6 C
4 162.752 2.492 65.305 0 162.752 10.2 D
5 109.761 2.295 47.833 0 109.761 6.9 E
6 100.18 1.844 54.317 0 100.18 6.3 F
7 62.215 2.329 26.708 0 62.215 3.9 G
8 29.721 1.99 14.932 0 29.721 1.9
9 8.861 1.783 4.97 0 8.861 0.6
10 -1.118 2.958 -0.378 0.705 0 0
11 -21.232 2.985 -7.113 0 -21.232 1.3
12 -42.542 2.297 -18.517 0 -42.542 2.7
13 -46.397 3.393 -13.675 0 -46.397 2.9
14 -53.058 2.219 -23.907 0 -53.058 3.3
15 -53.757 1.975 -27.223 0 -53.757 3.4
16 -46.399 2.154 -21.542 0 -46.399 2.9
17 -17.927 1.745 -10.273 0 -17.927 1.1
18 -14.432 2.14 -6.743 0 -14.432 0.9
19 -11.283 1.826 -6.179 0 -11.283 0.7
20 -3.315 1.607 -2.063 0.039 -3.315 0.2
Absolute Sum 1593.221

Table 3: Quantile Regression Results for 99.5% 10-Year Treasury
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Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Percent Ranking
(Intercept) 4.87 0.838 5.811 0 NA NA NA
1 105.298 29.034 3.627 0 105.298 17.5 C
2 64.159 33.175 1.934 0.053 0 0
3 6.93 27.296 0.254 0.8 0 0
4 -1.485 28.757 -0.052 0.959 0 0
5 -1.419 31.594 -0.045 0.964 0 0
6 -2.549 21.582 -0.118 0.906 0 0
7 -128.521 25.545 -5.031 0 -128.521 21.4 A
8 -25.51 29.807 -0.856 0.392 0 0
9 -19.174 27.395 -0.7 0.484 0 0
10 -3.872 22.871 -0.169 0.866 0 0
11 -102.406 27.291 -3.752 0 -102.406 17 D
12 62.226 24.814 2.508 0.012 62.226 10.4 F
13 -106.32 28.619 -3.715 0 -106.32 17.7 B
14 -22.804 26.974 -0.845 0.398 0 0
15 -17.732 24.887 -0.713 0.476 0 0
16 8.841 25.07 0.353 0.724 0 0
17 -95.977 23.723 -4.046 0 -95.977 16 E
18 -29.025 24.025 -1.208 0.227 0 0
19 -3.542 25.964 -0.136 0.891 0 0
20 5.335 23.544 0.227 0.821 0 0
Absolute Sum 600.7471

Table 4: Quantile Regression Results for 0.5% Spread

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Percent Ranking
(Intercept) 24.829 0.101 245.979 0 NA NA NA
1 62.052 2.839 21.859 0 62.052 10.1 B
2 66.058 3.503 18.857 0 66.058 10.8 A
3 57.881 3.517 16.455 0 57.881 9.5 D
4 59.441 3.293 18.052 0 59.441 9.7 C
5 52.954 3.214 16.478 0 52.954 8.6 E
6 45.733 3.537 12.928 0 45.733 7.5 F
7 39.189 3.144 12.464 0 39.189 6.4 G
8 29.201 3.028 9.644 0 29.201 4.8
9 35.306 3.694 9.557 0 35.306 5.8
10 33.004 3.799 8.687 0 33.004 5.4
11 20.313 3.917 5.186 0 20.313 3.3
12 28.866 3.718 7.763 0 28.866 4.7
13 10.842 4.127 2.627 0.009 10.842 1.8
14 2.942 3.245 0.907 0.365 0 0
15 -9.965 2.532 -3.936 0 -9.965 1.6
16 -13.632 2.96 -4.605 0 -13.632 2.2
17 -4.236 4.311 -0.983 0.326 0 0
18 -8.559 2.827 -3.028 0.002 -8.559 1.4
19 -16.598 2.937 -5.652 0 -16.598 2.7
20 -22.794 3.297 -6.914 0 -22.794 3.7
Absolute Sum 612.38719

Table 5: Quantile Regression Results for 99.5% Spread
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allows the actuary and the financial engineer to determine risk exposure from
embedded options in the business. The financial engineer can also use these
methods to improve his or her derivative hedge. This method also examines
the effect from all scenarios on the specific Rq. In the past, the practitioner
may have used different deterministic scenarios to decide the direction of the
markets that created risk exposure to the business. However, the determin-
istic scenarios do not indicate the significance or aid in the determination
of the exact location in the projection period where the business is at the
highest risk.

Note the following relationship for Rq to the various risk drivers Xt. If
the value of the Xt can have either positive or negative values, we need only
to examine the large |Bt,q|. Here, if one is studying where profit is enhanced
at the specific percentage being studied, if Xt is positive and |Bt,q| is large
and Bt,q is positive, Rq increases. If Xt is negative and Bt,q is negative, Rq

also increases. Just reverse this reasoning if one is interested in determining
when the business model is at risk.

In Table 2, we display the QR model regression that corresponds to the
0.5 percent target percentile of the EVAS as modeled against the change in
10-year Treasuries risk driver Y 10

t as mentioned in Section 2.
In this table, the values in the coefficient column correspond to the Bt,.005

in Equation 2. The Standard Error column displays confidence bounds on
a specific coefficient’s estimate. A good rule of thumb for significance is
for the standard error to be less than the absolute value of the associated
coefficient. The t–value column displays the value of the Student t statistic,
which relates the standard error to the coefficient’s value. The Pr(> |t|)
column is the actual probability associated with the t–value. If Pr(> |t|)
is less than 5 percent, then one can be at least 95 percent confident in the
estimate of the coefficients. These five columns are direct output from the
rq function in R as discussed in Appendix C. The additional columns are to
display the impact of the coefficients on the model. First, in our analysis, we
want each risk driver through time to have the same behavior. So, we will
exclude the intercept coefficient in our analysis below, but if a QR model is
actually implemented as a dashboard model, the intercept should always be
included. The Significant Coefficient column only has nonzero values if the t
probability is less than 5 percent. The absolute sum of the coefficients is at
the bottom of this column.

Since we denote the influence of the sign of the Bt,q by the risk direction,
we are only concerned with the absolute magnitude of the Bt,q. To determine
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the influence of specific coefficients, we mimic the process used in principal
components analysis (PCA), where the influence of a specific eigenvalue is
determined by ranking the ratios of each of the eigenvalues to the sum of
all of the absolute values of the eigenvalues. See Dillon and Goldstein [14],
Johnson and Wichern [15], and Mardia, Kent and Biddy [24] for a further
discussion of PCA. For the Influence Percent column, we use this formula

St = |Bt,q|/
n∑

i=1

|Bt,q|. (3)

Note that the effectiveness of this relevance formula only holds if the
underlying Xt are of similar magnitude. For instance, this approach would
not work if a risk driver was the combination of a time series of interest rate
changes and a time series of changes in equity returns. Since the change
in interest rates is less volatile than that of the change in equity returns,
larger coefficients would arise from the interest rate changes than from the
coefficients associated with the equity changes.

The Ranking column is just an alphabetical ranking to further distinguish
at which time in the future the risk driver has the greatest impact.

Below, we interpret the different QR models,

1. Change in 10-year rates: Risk driver Y 10
t

• The 0.5 percent model corresponds to severe downside possibili-
ties. For instance, year 3 has the most impact on the downside
risk since it has a large negative coefficient, and, if there is a
large positive change in the 10-year rate, the model indicates that
things will worsen. From the Influence Percent, we see that this
one coefficient explains 25.5 percent of the change in the model.
In addition, note that if the change in the 10-year rates are in-
creasing in years 2 through 6, the company is at increased risk.
Howerver, if the change in rates is small or negative in years 1 and
10, the capital will worsen.

Let us examine the worst-case scenario in the 10,000 set. This is
scenario 9,418 and it has the worst EVAS value of −16.1. Figure 4
is a graph of the change in 10-year rates through time. It is labeled
with the Rankings to the right of the vertical lines. Observe how
the scenario is sharply increasing from 5 percent to nearly 20 per-
cent in the first seven years and that all of the slopes are positive
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and large in years 3 through 6, with the steepest in year 5 and 6.
Notice how our interpretation of the QR model is consistent with
these results.

• Look at the 99.5 percent upside model in Table 3. Notice how the
largest significant coefficient starts at year 1 and the significance
is high through year 7. If the slope is sharply increasing in these
years, we should see positive increases in the model, which means
that the capital will grow.

Out of the 10,000 scenarios, scenario 289 is the best. Notice in
Figure 5, where the change in the 10-year rate moderately rises
in the beginning years, reaching a peak in year 7 and then be-
gins to decline in later years. Since the slopes are positive in the
early years and negative in the later years, the negative significant
coefficients in the later years continue to make positive capital.

• Note how both scenarios start with rising rates, but in the worst-
case, the new money rate quickly out strips any portfolio returns
where the opposite is occurring in the best-case since the portfolio
is moderately building up in the first seven years and continues to
contribute in the down years.

2. Spread of 10-year rates over the 90-day rates: Risk driver St

• In Table 4, the modeled capital suffers if the scenario is strongly
positive in years 7, 11, 13, and 16, and strongly inverted in year 1
and 12. In Figure 6, even though year 7 is only slightly positive,
it is very positive in years 11, 13 and 16 and the spread, though
positive in years 1 and 12, is very narrow. In fact, we can see
that in the worst-case scenario, the yield is very flat from year 1
through year 7 and finally turns more positive in the later years.
This reaffirms the fact that the asset portfolio backing the business
has very little to no chance to build up in the first seven years, as
discussed before.

• In Table 5, the modeled capital improves if the yield curve is
very strongly positive in years 1 through 14, especially in years
1 through 7. Observe in Figure 7 how strongly positive the yield
curve is in years 1 through 15 and how the spread narrows after
that.
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• Observe how all of the strong spreads throughout most of the pro-
jection have built up the initial asset portfolio and this is main-
tained so that, as rates fall, the LOB’s capital is still adequate.

QR analysis allows the practitioner to conduct risk analysis on several
different risk measures. In fact, in the past, the practitioner did not consider
some of the above analyses without extensive additional computer runs. This
increased ability may initially raise more questions for the practitioner to
analyze, but this type of risk analysis appears to be an excellent tool to
conduct these analyses, especially since the model is holistic in that it is
built on the results of all of the scenarios.

4 Dashboard model construction

Here is an outline of turning QR results into dashboards.

1. Pick a specific risk driver based on the scenarios, which can be easily
extracted from current daily or weekly economic data.

2. Choose the VaR target percent.

3. Produce the related QR model on the specific risk driver.

4. Use a technique to approximate future values of the economic indica-
tor. For example, if the risk driver is related to the change in 10-year
Treasuries, take the current yield curve and produce the implied 10-
year forward rates at times where the QR coefficients are significant.
Using these forward rates, replace the QR predictors with the change
of rates between the separate 10-year forwards.

To model spreads, create the 90-day forward rates and calculate the
spread at each time in the future.

If the risk driver is an equity return, there are two approaches to the
construction of the dashboard. One, assume that the current economic return
is held constant into the future due to a no-arbitrage assumption and all of the
predictors in the QR model will be replaced with that single value. Another
approach is to actually use a simple economic generator for that equity return
and produce multiple equity scenarios. Quickly process these future returns
through the QR model and average the results.
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If the risk driver is either a change in call prices, put prices or equity
volatilities, take a similar simulation approach as for equity returns.

5 General Comments, Conclusions and Fu-

ture Research

Koenker and Machado [19] and Craighead [5] discuss several ways to display
QR results.

Craighead [5] discusses other issues surrounding subsampling and data
dependency issues involving QR.

We will next develop a list of strengths and weaknesses of the QR method-
ology and finish with a list of further research topics and concluding remarks.

5.1 Strengths and Weaknesses

The strengths of the QR methodology are:

1. The input scenarios tie to the output.

2. The sign and magnitude of the coefficients give insight into risk expo-
sures.

3. Specific percentiles are targets in the output.

4. The model is holistic. The QR results are determined across all sce-
narios and not just on a small restricted subgroup.

5. The model reveals the influence of a specific period in time to the
capital for a specific risk driver.

6. Extreme outliers do not affect the results as much as in LSR.

7. The QR model can be calibrated very quickly. The regression on 10,000
scenarios took less than 1 minute in R.

8. With the Frisch-Newton methodology, very reliable goodness of fit
statistics are finally available.

9. The QR models allows for quick sensitivity testing.
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10. Though the examples in this paper are linear models, QR models can
be done on a nonlinear basis as well, in the R quantreg package.

The main weakness of the use of QR are

1. It is relatively complex but no more so than LSR.

2. Close scrutiny is required to not oversimplify the impact of specific risk
drivers on the capital models.

5.2 Concluding Remarks

We have data representing the capital on one illustrative line of business,
which is modeled against two separate risk driver time series. We apply the
QR methodology to this data and develop a QR report and related graphics,
which reveal the impact of the two risk drivers at specific times. Even though
only the best- and worst-case scenarios compose the graphical analysis, we
see that the QR models give another quantitative approach to understand
our business.

Also, we discuss how QR models can be used to create dashboard models
that allow monitoring the change in EC on a more frequent basis.

A The QR Methodology3

In multivariate linear regression, a column vector of T responses {Yt} are
related to a design matrix X of predictors in the following way,

Yt = β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk + ut, and (4)

E[Yt] = β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk. (5)

Let t = 1, · · · , T and denote the “errors” as {ut}. These “errors” are
where the predicted value from the formula in Xti does not exactly corre-
spond to the observation Yt. The {ut} are considered to be independent and
identically distributed with a distribution Fu and E[ut] = 0.

Another way to look at the problem is a comparison between a model

Ŷt = β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk, (6)

3A further presentation of the following material is contained in Buchinsky [3].
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which tries to predict the responses Yt from that of some linear combination
of the elements of the design matrix. The residuals ut = Yt − Ŷt then are
how well or how poorly the model fits the actual responses. In ordinary LSR
the expectation of the residuals are considered to be zero. Also since the
expectation operator is linear, E[ut] = E[Yt]− E[Ŷ ].

In multivariate linear regression, the βi are determined by minimizing the
following sum:

T∑
1

(Yt − (β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk))
2. (7)

The determination of the {βi} is referred to as an LSR or as a l2 re-
gression estimator. See Portnoy and Koenker [25] for a further discussion of
l2-estimation. After the {βi} are determined, the equation relates the sample
mean of the Yt to the predictors.

However, one major difficulty of using LSR is that the values of the {βi}
can be very sensitive to outliers in the responses {Yt}. The area of robust
statistics has arisen to deal with this outlier sensitivity. See Venables and
Ripley [33] for a series of references on robust statistics.

Koenker and Basset [16] develop quantile regression, where the regression
is related to specific quantiles instead of the mean. We will now describe the
process.

Let xt = {1, Xt1, Xt2, · · · , Xtk} and βθ = {β0, β1, · · · , βk} and consider the
following:

Yt = β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk + uθt , (8)

or in matrix format,

Yt = βθx
′
t + uθt . (9)

Quantθ(Yt|{Xt1, Xt2, · · · , Xtk}) = β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk, (10)

or in matrix format,

Quantθ(Yt|xt) = βθx
′
t. (11)
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Quantθ(Yt|{Xt1, Xt2, · · · , Xtk}) denotes the conditional quantile of Yt,
which is conditional on {Xt1, Xt2, · · · , Xtk}, the regression vector. The dis-
tribution Fuθ of uθt , the error term is not specified. Formula 10 implies that
Quantθ(uθt|{xt1, xt2, · · · , xtk}) = 0 for a specific component vector,
{xt1, xt2, · · · , xtk}.

Let’s look at this from the perspective of the residual or error term.
Assume that there is a model

Ŷt = β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk, (12)

which tries to predict certain behavior of the responses Yt that is some linear
combination of the elements of the design matrix. The residuals ut = Yt− Ŷt

then are a measurement of how well the model relates to the actual responses.
The difference between QR and LSR is that instead of the fact that E[ut] = 0,
one assumes that Quantθ(ut) = 0. This leads to the relationship

Quantθ(ut) = Quantθ(Yt − Ŷt) = 0. (13)

The determination of the {βi} that allows this relationship to hold will pro-
duce the necessary model. However, because the determination of a quantile
requires sorting, the quantile operator is not linear. Hence

Quantθ(Yt − Ŷt) ̸= Quantθ(Yt)−Quantθ(Ŷt). (14)

Koenker and Basset [16] made the following observation: Let Y be a
random variable with distribution F. Let {yt : t = 1, · · · , T} be a random
sample on Y. The θth sample quantile for 0 < θ < 1 is defined to be any
solution of the following minimization problem:

minb∈IR

 ∑
t∈{t:yt≥b}

θ|yt − b|+
∑

t∈{t:yt<b}
(1− θ)|yt − b|

 . (15)

From the above, Koenker and Basset are able to generalize the l1 regres-
sion estimator from the median to all quantiles 0 < θ < 1, by finding the
{βi} that minimizes the following:

T∑
t=1

ρθ(Yt − (β0 + β1Xt1 + β2Xt2 + · · ·+ βkXtk)), (16)
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where 0 < θ < 1 and

ρθ(u) =

{
θu when u ≥ 0,
(θ − 1)u when u < 0.

(17)

Buchinsky [3] discusses that under certain regularity conditions, the con-
sistency and asymptotic normality of β̂θ = (β̂0, β̂1, · · · , β̂k), which is the es-
timator of βθ = (β0, β1, · · · , βk), converges in distribution to a multivariate
normal distribution

√
n((β̂0, β̂1, · · · , β̂k)− (β0, β1, · · · , βk))

L−→ N((0, 0, · · · , 0),Λθ). (18)

The multivariate normal covariance matrix is

Λθ = θ(1− θ)(E[fuθ(0|xt)xtx
′
t])

−1E[xtx
′
t](E[fuθ(0|xi)xix

′
i])

−1. (19)

If the density of the error term uθ at 0 is independent of xt, formula 19
simplifies to

Λθ =
θ(1− θ)E[xtx

′
t]
−1

f 2
uθ(0)

, (20)

which corresponds to the result in Koenker and Basset [16]. Since the estima-
tor converges in distribution to a multivariate normal distribution, techniques
of least squares regression can be used to determine significance of the param-
eters. For example, a Student t statistic can be calculated for each coefficient
and from that the retention and/or elimination of a predictor can be as eas-
ily done as in stepwise regression. This is much simpler than using Wald
estimators and the Koenker R1 factor, as in Leggett and Craighead [23].

For any y, if fuθ(y|x) is independent of x, then the only difference between
the quantile regression parameters βθ for all quantiles θ is in the intercept
β0. In this situation, using quantile regression for risk drivers would indicate
that the risks to a company are symmetric. The same reason that a company
profits in an up market is the same reason it loses in a down market.

The major advantage of using quantile regression is the ability to relate
the behavior of a specific quantile of the responses to the design matrix
X of predictors. The partial derivative of the conditional quantile of yt
with respect to a specific regressor k is ∂Quantθ(yt|xt)/∂Xtk. Interpret this
derivative as the change in the θth conditional quantile due to the change in
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the kth element of x. Note: When the kth element of x changes, this does
not imply that when the yt in a specific quantile θ changes, it will remain in
the θth quantile.

B Interest Rate Scenarios

The generation of the yield curves used in the interest rate scenarios is not
arbitrage free. This requires setting up a diffusion process of state variables
and making sure that the various par bond prices are consistent with the
resultant bond pricing partial differential equation. Instead, we used a two-
factor model with a lognormal diffusion process on the short rate (90-day)
and a lognormal diffusion process on the long rate (10-year). This model does
not have mean reversion and has fixed boundaries above and below. These
fixed boundaries are not reflecting. See Tenney [30, 31, 32] for a further
discussion of the behavior and requirements of good interest rate generators.

Below, we use the notation Y m
t , where m denotes the maturity of the

interest rate on the yield curve and t denotes the time epoch. The only
exception of this notation is that we use Y 90

t to denote the value of the
90-day rate instead of Y .25

t . Note m = {1, . . . , 20}.
First, obtain the initial yield curve. Set Y 5

0 to be constant maturity trea-
sury (CMT) 5-year interest rate for the last day of the year and calculate the
90-day rate to be

Y 90
0 = Y 5

0 e
µ90 . (21)

µ90 and σ90 and σ10 are based on a historical lognormal analysis of the short
and long rates. We assume below that µ10 is zero.

With maturity m, we use the log regression formula

N(m) = 1.349ln(2m+ 1) + 1.051ln(m+ 1) (22)

to assure a “nice” positive or inverted yield curve. This formula precludes
the possibility of humped yield curves.

Define the spread slope constant

C = (Y 5
0 − Y 90

0 )/N(5). (23)

Letting m range from 1 to 20, we obtain the entire initial yield curve from

Y m
0 = Y 90

0 + CN(m). (24)
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For time t > 0, the subsequent yield curves are based on a lognormal
diffusion processes of the 10-year rate and the 90-day rate as follows. The
10-year rate is projected as follows:

Y 10
t+1 = Y 10

t eσ10Z10 . (25)

The 90-day rate is projected as:

Y 90
t+1 = Y 90

t eµ90+σ90Z90 . (26)

The Z90 and Z10 are uncorrelated standard normal samples.
These values are then bracketed. The 90-day rate have brackets of 0.5

percent and 20 percent and the brackets of the 10-year rates are 1 percent
and 25 percent.

However, in the belief that inverted yield curves are only observed in a
rising interest rate environment, if the yield curve is inverted and the rates
are falling (measured by the fact that Y 90

t+1 > Y 10
t+1 and Y 10

t+1 < Y 10
t ) then the

Y 90
t+1 is adjusted to be:

Y 90
t+1 = Y 10

t+1e
µ90 . (27)

This new value of Y 90
t+1 is then bracketed as before.

Now define the spread slope constant

C = (Y 10
t+1 − Y 90

t+1)/N(10) (28)

and obtain the entire yield curve by interpolating by the following formula:

Y m
t+1 = Y 90

t+1 + CN(m). (29)

C Quantile Regression Modeling in R

R [28] has become the lingua franca of the statistical world. Though most of
the analysis from ERM models occurs in Excel, R is still a good candidate
to conduct extensive statistical analyses with the related graphical output.
Some of R’s benefits are:

1. It is an open source system.

2. It runs on multiple platforms.
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3. It is free.

4. It can easily be integrated into multiple packages, including Excel.

5. It is constantly improving with cutting-edge statistical tools being de-
veloped by researchers.

6. World experts such as Koenker have created and continue to maintain
high-quality packages that can be used by anyone willing to learn a
new computer language.

A collection of articles on the use of R has been done by Craighead for
the Technology Section newsletter of the Society of Actuaries. To learn the
basics of R, here is a list of some recommended topics:

1. Introduction to R [6],

2. Importing data [8],

3. Manipulating data [9],

4. Model formula framework [10],

5. Functions [11],

6. Graphics [12],

7. Memory management [13].

Using techniques outlined in the above articles, import the scenario data
and the EC data into R, and then manipulate the data so that a data frame
contains the EC as the first column of the data frame and the specific risk
driver’s time series in subsequent columns. Once the data has been prepared
in this fashion, access the R quantreg package by Koenker [20] with the
library command in R. Next, use the rq function and the model formula
framework to create the quantile regression.

Below are some of the commands used in the creation of the QR model
for the change in the 10-year Treasury rate study.

library(quantreg)

rqcase<-data.frame(cbind(evasadj[,39],nmrs10diff))

rq10<-rq(V1~.,data=rqcase,tau=c(.005,.995),method="fn")

summary(rq10)
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The first command loads the quantreg package into R.
The second line creates the data frame. The term evasadj[,39] references

the EVAS data frame for the 39th line of business’s values and the nmrs10diff
data frame is the change in the 10-year Treasuries. These are combined into
one data frame using cbind and data.frame commands. The results are stored
in rqcase.

The third command line is where the actual QR model is built by the use
of the rq function. Using the model formula framework, the first variable in
the data frame is named V1 (which is the EVAS)and is modeled against all
of the other variables in the data frame by the use of the V1~. command.
The data frame is referenced by the data = command and the 0.5 percent
and 99.5 percent quantiles are input by the tau=c(.005,.995) command.
The method of fitting indicated by the method="fn" command specifies the
Frisch-Newton interior point method. Finally, the model is stored into the
QR object rq10.

The summary command produces these QR results:

Call: rq(formula = V1 ~ ., tau = c(0.005, 0.995), data = rqcase, method = "fn")

tau: [1] 0.005

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 1.28037 0.47487 2.69627 0.00702

t1 92.39614 32.40217 2.85154 0.00436

t2 -98.14702 35.50807 -2.76408 0.00572

t3 -247.59339 36.63717 -6.75798 0.00000

t4 -160.35555 30.79115 -5.20784 0.00000

t5 -180.83712 29.10544 -6.21317 0.00000

t6 -143.59239 37.98391 -3.78035 0.00016

t7 -56.58887 28.90110 -1.95802 0.05026

t8 10.90279 32.15112 0.33911 0.73453

t9 -27.13700 32.93402 -0.82398 0.40997

t10 46.79366 23.69718 1.97465 0.04834

t11 21.29753 33.88260 0.62857 0.52965

t12 -39.62687 26.88594 -1.47389 0.14054

t13 -26.42105 26.39622 -1.00094 0.31688

t14 4.21118 28.43113 0.14812 0.88225

t15 -17.09598 29.45516 -0.58041 0.56165

t16 10.09816 26.65172 0.37889 0.70478

t17 17.74801 27.47426 0.64599 0.51830

t18 10.36056 27.31359 0.37932 0.70446

t19 -24.68656 22.98565 -1.07400 0.28285

t20 3.46574 29.76938 0.11642 0.90732
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Call: rq(formula = V1 ~ ., tau = c(0.005, 0.995), data = rqcase, method = "fn")

tau: [1] 0.995

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 30.11057 0.03592 838.22390 0.00000

t1 316.12966 2.31148 136.76476 0.00000

t2 277.36559 1.85524 149.50425 0.00000

t3 215.89263 1.93559 111.53825 0.00000

t4 162.75161 2.49216 65.30546 0.00000

t5 109.76131 2.29469 47.83283 0.00000

t6 100.17991 1.84436 54.31691 0.00000

t7 62.21496 2.32947 26.70774 0.00000

t8 29.72095 1.99046 14.93167 0.00000

t9 8.86119 1.78286 4.97020 0.00000

t10 -1.11805 2.95772 -0.37801 0.70543

t11 -21.23153 2.98478 -7.11326 0.00000

t12 -42.54223 2.29743 -18.51735 0.00000

t13 -46.39661 3.39269 -13.67545 0.00000

t14 -53.05779 2.21938 -23.90663 0.00000

t15 -53.75742 1.97467 -27.22343 0.00000

t16 -46.39921 2.15389 -21.54210 0.00000

t17 -17.92702 1.74502 -10.27324 0.00000

t18 -14.43172 2.14027 -6.74294 0.00000

t19 -11.28290 1.82601 -6.17899 0.00000

t20 -3.31534 1.60680 -2.06332 0.03911
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