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Abstract: 

 

Global financial crises like the one recently experienced affect both large and small 

institutions. Today, when there is heightened need for enhanced risk management 

tools, some entities are unable to employ sophisticated mechanisms due to limited 

data availability. Moreover, from the Basel Committee on Banking Supervision’s 

point of view via Basel II and Basel III, the internal ratings-based (IRB) approach 

requires institutions have some reliable estimates of default probabilities for each 

rating grade. Taking the work of previous researches a step further, this paper 

intends to propose a new dynamic mechanism for the risk management industry to 

calculate probabilities of default (PD). Through this, we calculate the realized 

probability of defaults and Bayesian estimates in the initial phase and then, using 

these estimates as inputs for the core model, we generate implied probability of 

default through actuarial estimation tools and different probability distributions. 

This mechanism is specialized to work best for low-default portfolios (LDPs). 

Furthermore, scenario testing is adopted to validate the model against any model-

specific bias. 

 

Key Words: Probability of Defaults (PDs), Realized PDs, Bayesian Estimates, 

Probability Distributions 
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1. Introduction 

 

Today, in this gigantic pasture of risk management, improved credit risk management has 

become the need of financial institutions around the world. Specifically, many financial 

institutions have either moved or are about to move toward the internal ratings-based (IRB) 

approach proposed by Basel Committee on Banking Supervision’s Basel II. The most 

important step in switching to the IRB approach—whether foundation or advanced—is to 

determine probability of default (PD) for each risk grade. Probability of default has much 

significance as it is one of the core parts for improved allocation of capital, pricing, client 

judgment, regulatory compliance and, finally, monitoring of high-risk customers. Due to 

these significant reasons, a financial institution should be assured that the PD 

determination is sophisticated and, more importantly, shows the true picture of the 

portfolio in present, as well as future, scenarios. 

 

Many financial institutions use long-term realized probability of default for calculating 

capital charges but this methodology has its limitations. Another issue raised in last few 

years is the estimation of probability of default for low-default portfolios (LDPs). For LDPs, 

realized PDs cannot show the true behavior of defaults. Less defaults or data always creates 

a hurdle in determining the true probability of default. Despite that, realized probability of 

defaults cannot be ignored and should be used as an input in determining the final results. 

 

Another important property to take into account is the posterior probability of default of 

each grade. Knowledge of how specific grades perform within the default portfolio or, 

alternatively, the weight of default of each grade within the portfolio should also be used as 

input to evaluate this behavior. Bayes’ theorem is a widely used criteria to obtain each 

grade’s weight of default within the total number of the portfolio’s defaults. This paper also 

uses the Bayesian estimates inputs for the model. 

 

The subprime crisis taught financial institutions several lessons in enhanced risk 

management. For this practical reason, we believe every low-grade portfolio should take 

into account the behavior of a higher-grade portfolio. Big organizations having better credit 

ratings start to default, and, simultaneously, organizations with lower ratings follow suit. 

This paper captures this relationship between the grades through specific models and brief 

cases. 

 

Taking into account all of the above features, we propose a new mechanism to obtain the 

probability of default for every grade. This model is very dynamic; it incorporates all the 

necessary aspects and returns an implied probability of default for each grade. The theme 

of the model is mainly based on a mechanism called convolution. Being over 100 years old 

with applications in signal processing, optics, engineering, statistics and actuarial sciences, 

practitioners must be aware of this mechanism. Also, this mechanism had been used in 

one of the approaches to develop operational value at risk (VaR) models through loss 

distribution. Convolution actually combines two probability distributions to produce a new 

and modified distribution. We will further explain the mechanism in the following section. 
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Revisiting LDPs, few practitioners have in last few years developed sophisticated 

mechanisms for probability of default estimations. Pluto and Tasche (2005), Kiefer (2008) 

and a few more practitioners proposed some refined tools and methodologies for the same 

purpose. Now, stepping forward, through this paper we propose another advanced 

mechanism that takes into account the inputs in very different manner. The model 

incorporates simple inputs from different angles but returns a single result in the form of 

implied PD, eliminating the problem of limited data. 

  

In short, implied probability of default will be the terminology of our desired results. One of 

the probabilities used will be Bayesian estimates and the other will be the realized 

probability of default of each grade (number of defaults divided by number of customers). 

 

2. The Model 

 

This paper presents a new methodology for obtaining rating grades’ probability of default 

that can be further used in the IRB approach to credit risk. This model specifically caters to 

the issue of LDPs for obtaining probability of defaults.1 Another specialty of the model is to 

incorporate the relationship between the grades. For instance, a major change in 

speculative grades will result in a change in the investment grades and vice versa. This 

model is suitable during times of financial crises where highly rated institutions default.  

 

The main idea behind this paper is to propose a new dynamic model that can be widely 

used in credit risk management to obtain probability of default. We are using an actuarial 

methodology of convolution, which will be the base of our model. Mathematically speaking, 

convolution is an operation on two functions, f(x) and g(x), that returns a third function 

which is actually the modified version of one of the original functions. Here, we are 

convoluting two probability distributions that return a modified new distribution which 

forms the cross of those distributions. Convolution has also been used in developing an 

operational VaR model but this is the first time it is being applied for credit risk 

management. Up till now, many practitioners have used different distributions for obtaining 

probability of default of each grade, but here, we are combining two probability 

distributions to get a new modified probability distribution. The results will definitely 

provide better estimates and the model can be widely used in every kind of portfolio, 

especially in LDPs. 

 

Our model will utilize simple information from the portfolio. As discussed in the preceding 

section, the model only uses the total number of customers and the total number of 

defaults in each grade. One of our main concerns is to utilize the weight of default of each 

grade within the defaulted portfolio, which will be obtained simply by applying Bayes’ 

theorem. It will produce the probability of default in each grade of the next customer who 

will be part of the portfolio. From the following portfolio, we can discover the Bayesian 

estimate. 

 

 

 

                                                 
1
 The use of this model is not restricted and can be applied to a variety of portfolios. 
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Grade  Number of Obligors Number of Defaults 

AAA 34 1 

AA 56 1 

A 119 3 

BBB 257 2 

BB 191 2 

B 102 6 

CCC 50 3 

CC 34 1 

C 12 2 

Sum of Defaults                 21 

                             Table 1.1 

 

Now, as Bayes’ theorem says, 

 

 
 

A is a percentage of obligors in a grade and B is an event of default. 

 

Our table will provide results for each grade in this way. 

 

Grade  Number of 

Obligors  

Number of 

Defaults  

Bayesian Estimates 

AAA 34 1 4.76% 

AA 56 1 4.76% 

A 119 3 14.29% 

BBB 257 2 9.52% 

BB 191 2 9.52% 

B 102 6 28.57% 

CCC 50 3 14.29% 

CC 34 1 4.76% 

C 12 2 9.52% 

Sum of Defaults              21  

              Table 1.2 

 

The above derives the Bayesian estimate, which provides the weights of default in each 

grade given the total number of defaults of the whole portfolio or, simply, the probabilities 

of each grade given the total number of defaults in that grade. This estimate can only 

answer the question that, given a default, what is the probability the obligor has a 

particular grade. 
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Therefore, to make this estimate useful, we will develop a probability distribution function 

that will enable us to calculate the probabilities of grades with multiple defaults, given the 

total number of defaults in that grade. For example, in the above table, for grade BBB, 

Bayesian estimate generates 0.0952, which shows the probability of the grade BBB if the 

default occurs in the portfolio or we can state that given a default in the portfolio, there is a 

9.52 percent chance the default belongs to the grade BBB.  

 

Going forward, one of our objectives is to determine the probability of the number of 

defaults differing from the number of default in grade BBB. For example, in our portfolio, 

the number of defaults in grade BBB is 2 but we want to know the probability if the 

number of defaults is other than 2. For this purpose, the binomial distribution is the most 

suited distribution, which will provide the desired probability at a varying number of 

defaults in a particular grade. 

 

Considering the above example, we have 21 defaults in our portfolio and we want to know 

the probability of every possible occurrence of default in grade BBB.  

 

As we know, the binomial distribution has the probability mass function (pmf), 

 
where the parameters are defined as, 

 

n = total number of defaults in the portfolio, 

k = number of defaults in particular grade, and 

p = probability as estimated by Bayes’ theorem. 

 

By doing so, we are able to get the results for each grade (e.g., BBB in the following table) in 

the form shown in Table 1.3. 

     

Grade BBB 

Total Defaults 2 

Bayesian 

estimate 

9.52% 

                                                      Table 1.3 

 

Hence, the estimated probabilities of default of different occurrences are generated through 

binomial distribution as 

  

x P ( X=x ) 

0 0.358942365 

1 0.376889483 

2 0.188444741 

3 0.059674168 

4 0.013426688 
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5 0.002282537 

6 0.000304338 

7 3.26077E-05 

8 2.85317E-06 

9 2.06062E-07 

10 1.23637E-08 

11 6.18187E-10 

12 2.57578E-11 

13 8.91616E-13 

14 2.54747E-14 

15 5.94411E-16 

16 1.11452E-17 

17 1.639E-19 

18 1.82111E-21 

19 1.43772E-23 

20 7.1886E-26 

. . 

. . 

                                                             Table 1.4 

 

Similar tables for remaining grades will be illustrated later in the paper.  

 

Up till now, we have generated probabilities of default by just using the actual and total 

number of defaults in the portfolio. We have not taken into account the number of 

customers in each grade (or the default frequencies). Next we take into account the above 

as well and generate a frequency distribution, with Poisson distribution being the most 

suitable. 

 

Refer to Table 1.1; we first calculate the parameter of the distribution, lambda (λ), which 

will take the impact of number of obligors and defaults against them in each grade. Results 

are shown in Table 1.5. 

 

 

Grade  Number of Obligors  Number of Defaults  Lambda (λ) 

AAA 34 1 2.9% 

AA 56 1 1.8% 

A 119 3 2.5% 

BBB 257 2 0.8% 

BB 191 2 1.0% 

B 102 6 5.9% 

CCC 50 3 6.0% 

CC 34 1 2.9% 

C 12 2 16.7% 

   Table 1.5 
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Once the lambda for each grade has been estimated, we can fit the Poisson distribution, 

results of which will be further included in our next step, convolution. 

 

As we know, the Poisson distribution’s pmf is: 

 

    
 

where, 

 

λ = frequency of default in each grade, and 

x = number of incremental defaults in the specific grade. 

 

Poisson distribution will generate the probabilities of incremental default in every grade and 

these results will then be injected into our foundation model, convolution. In our example 

of grade BBB, the results follow.   

   

λ 0.0077821 

n P ( N=n ) 

0 0.9922481 

1 0.0077218 

2 0.0000300 

3 0.0000001 

4 0.0000000 

5 0.0000000 

6 0.0000000 

7 0.0000000 

. . 

. . 

                                                                Table 1.6 

 

The results after running the convolution model provide a matrix for every grade. The 

resultant matrix for our example of BBB grade is provided here. 
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  f(x)  f1(x)  f2(x)  f3(x)  f4(x)  f5(x)   f6(x)   f7(x)    

0 1.00          0.96935110  

1 0.00 0.00186750         0.00005635  

2 0.00 0.00828704 0.00000349        0.00025006  

3 0.00 0.02417052 0.00003095 0.00000001       0.00072934  

4 0.00 0.05211769 0.00015895 0.00000009 0.00000000      0.00157269  

5 0.00 0.08860008 0.00059526 0.00000064 0.00000000 0.00000000     0.00267373  

6 0.00 0.12367094 0.00177894 0.00000336 0.00000000 0.00000000 0.00000000    0.00373253  

7 0.00 0.14575503 0.00444980 0.00001402 0.00000001 0.00000000 0.00000000 0.00000000   0.00440015  

8 0.00 0.14803246 0.00959340 0.00004890 0.00000007 0.00000000 0.00000000 0.00000000   0.00447129  

9 0.00 0.13158441 0.01818230 0.00014723 0.00000033 0.00000000 0.00000000 0.00000000   0.00397901  

10 0.00 0.10362272 0.03073178 0.00039115 0.00000126 0.00000000 0.00000000 0.00000000   0.00314118  

11 0.00 0.07300692 0.04683131 0.00093130 0.00000425 0.00000001 0.00000000 0.00000000   0.00222493  

12 0.00 0.04638981 0.06490359 0.00201058 0.00001285 0.00000003 0.00000000 0.00000000   0.00143027  

13 0.00 0.02676335 0.08239097 0.00397180 0.00003526 0.00000012 0.00000000 0.00000000   0.00084628  

14 0.00 0.01409855 0.09637515 0.00723185 0.00008870 0.00000038 0.00000000 0.00000000   0.00047071  

15 0.00 0.00681430 0.10440992 0.01220961 0.00020614 0.00000116 0.00000000 0.00000000   0.00025471  

16 0.00 0.00303449 0.10522721 0.01920946 0.00044535 0.00000324 0.00000001 0.00000000   0.00014108  

17 0.00 0.00124950 0.09903804 0.02828389 0.00089914 0.00000843 0.00000004 0.00000000   0.00008435  

18 0.00 0.00047724 0.08734631 0.03911759 0.00170386 0.00002055 0.00000011 0.00000000   0.00005561  

19 0.00 0.00016955 0.07240559 0.05098156 0.00304198 0.00004707 0.00000030 0.00000000   0.00003937  

20 0.00 0.00005616 0.05115924 0.06279133 0.00513337 0.00010174 0.00000080 0.00000000   0.00002603  

21 0.00 0.00001738 0.04175177 0.07326154 0.00821128 0.00020818 0.00000144 0.00000001   0.00002049  

22 0.00 0.00000504 0.02917880 0.08114747 0.01248175 0.00040447 0.00000483 0.00000003   0.00001425  

23 0.00 0.00000137 0.01934681 0.08548131 0.01807050 0.00074806 0.00001096 0.00000007   0.00000954  

24 0.00 0.00000035 0.01219252 0.08578059 0.02496707 0.00132003 0.00002467 0.00000018   0.00000616  

25 0.00 0.00000008 0.01387388 0.08214354 0.03298016 0.00222698 0.00004895 0.00000046   0.00000692  

26 0.00 0.00000002 0.00418532 0.07521490 0.04158442 0.00359855 0.00009674 0.00000111   0.00000233  

27 0.00 0.00000000 0.00228642 0.06600578 0.05061230 0.00557856 0.00018333 0.00000254   0.00000140  

28 0.00 0.00000000 0.00119425 0.05567002 0.05896651 0.00830911 0.00033366 0.00000556   0.00000083  

29 0.00 0.00000000 0.00059712 0.04526262 0.06605829 0.01190756 0.00058429 0.00001164   0.00000050  

30 0.00 0.00000000 0.00028612 0.03557606 0.07124197 0.01643955 0.00098555 0.00002333   0.00000031  

31 0.00 0.00000000 0.00013152 0.02708284 0.07405044 0.02189192 0.00160344 0.00004501   0.00000020  

32 0.00 0.00000000 0.00005806 0.01997583 0.07998445 0.02815056 0.00251916 0.00008376   0.00000013  

33 0.00 0.00000000 0.00002017 0.01425728 0.07194993 0.03500002 0.00382616 0.00015067   0.00000008  

34 0.00 0.00000000 0.00001005 0.00982314 0.06741280 0.04212260 0.00562359 0.00026229   0.00000006  

35 0.00 0.00000000 0.00000395 0.00646835 0.05242444 0.04913030 0.00800613 0.00044228   0.00000004  

36 0.00 0.00000000 0.00000149 0.00415373 0.05378246 0.05556377 0.01013803 0.00072307   0.00000002  

37 0.00 0.00000000 0.00000055 0.00254205 0.04590126 0.06093202 0.01480040 0.00114534   0.00000001  

38 0.00 0.00000000 0.00000036 0.00149432 0.03805710 0.06475348 0.01925087 0.00175947   0.00000001  

39 0.00 0.00000000 0.00000007 0.00084508 0.03067917 0.06667035 0.02433588 0.00262346   0.00000001  

40 0.00 0.00000000 0.00000002 0.00056379 0.02406176 0.06655026 0.02991997 0.00380444   0.00000000  

41 0.00 0.00000000 0.00000001 0.00024296 0.01836844 0.06451775 0.03579687 0.00537768   0.00000000  

42 0.00 0.00000000 0.00000000 0.00012416 0.01365145 0.06089151 0.04169667 0.00741047   0.00000000  

43 0.00 0.00000000 0.00000000 0.00006164 0.00987867 0.05607366 0.04730336 0.00999722   0.00000000  

44 0.00 0.00000000 0.00000000 0.00002978 0.00696097 0.05045905 0.05228268 0.01048966   0.00000000  

45 0.00 0.00000000 0.00000000 0.00001403 0.01105983 0.04439653 0.05631805 0.01477617   0.00000000  
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Similarly, matrices for each grade have been generated that provided us with the final 

results of the model. The values in the last column give the convoluted probabilities for 

BBB grade. The number of defaults was 2 in BBB in our example; hence we are interested 

to pick the value calculated in front of number 2, i.e., 0.00025006. Be sure, this is not the 

probability of default for grade BBB. To obtain the final probability of default, we must 

calculate the convoluted probability against the original number of defaults in a specific 

grade and then the resulting cumulated probabilities will be the desired probabilities of 

default for that grade. Results are given in the table below.  

 

Grade PDs 

AAA 1.08% 

AA 1.74% 

A 2.33% 

BBB 2.55% 

BB 2.85% 

B 3.90% 

CCC 5.28% 

CC 6.36% 

C 10.46% 

                                                                      Table 1.7 

   

3. Scenarios 

 

In this section, we intend to develop various scenarios and evaluate the model. We appraise 

the behavior of the model in different circumstances and the PD behavior in a specific grade 

along with its impact on the whole portfolio. For instance, increasing the number of 

customers, making the first probability distribution active, changes the realized probability 

of default and then convolutes with the second probability distribution, providing modified 

probability distribution to produce the implied probability of default for each grade. On the 

other hand, when we change the number of defaults in any grade, the first and second 

probability distributions both become active, and the realized probability of default and the 

Bayesian estimates both change and then convolute with each other to produce modified 

probability distribution. Finally, the implied PD for each grade will be produced. Let’s create 

different scenarios and see the results. 
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3.1. Actual Portfolio 

 

First, we gathered all the inputs and results of the actual portfolio2 as tabulated below.  

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

AAA 34 1 2.94% 4.76% 1.08% 

AA 56 1 1.79% 4.76% 1.74% 

A 119 3 2.52% 14.29% 2.33% 

BBB 257 2 0.78% 9.52% 2.55% 

BB 191 2 1.05% 9.52% 2.85% 

B 102 6 5.88% 28.57% 3.90% 

CCC 50 3 6.00% 14.29% 5.28% 

CC 34 1 2.94% 4.76% 6.36% 

C 12 2 16.67% 9.52% 10.46% 

Total 855 21       

    Table 2.1 

 

3.2. Scenario 1 

 

In our first scenario, we simply study the model behavior by increasing the number of 

customers in the portfolio. The details of the inputs, implied probabilities of default from 

the actual portfolio and the implied probability of default under the given scenario are as 

follows. 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 68 1 1.47% 4.76% 1.08% 0.55% 

AA 112 1 0.89% 4.76% 1.74% 0.88% 

A 238 3 1.26% 14.29% 2.33% 1.18% 

BBB 514 2 0.39% 9.52% 2.55% 1.29% 

BB 382 2 0.52% 9.52% 2.85% 1.44% 

B 204 6 2.94% 28.57% 3.90% 1.98% 

CCC 100 3 3.00% 14.29% 5.28% 2.69% 

CC 68 1 1.47% 4.76% 6.36% 3.24% 

C 24 2 8.33% 9.52% 10.46% 5.44% 

Total 1,710 21         

   Table 2.2 

 

                                                 
2
 For the purpose of comparison, we show the final results from the actual portfolio under all scenarios. 
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We see the number of customers has doubled in each grade. Realized probabilities of 

default change and become less for each grade, Bayesian estimates are unchanged and, 

finally, the implied probabilities of default decrease with the realized probabilities of default. 

 

3.3. Scenario 2 

 

In the second scenario, we have increased the number of defaults, in fact, doubled the 

number in each grade. The table below shows the complete details. 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied PDs 

in Current 

Scenario 

AAA 34 2 5.88% 4.76% 1.08% 1.55% 

AA 56 2 3.57% 4.76% 1.74% 2.51% 

A 119 6 5.04% 14.29% 2.33% 3.34% 

BBB 257 4 1.56% 9.52% 2.55% 3.66% 

BB 191 4 2.09% 9.52% 2.85% 4.08% 

B 102 12 11.76% 28.57% 3.90% 5.50% 

CCC 50 6 12.00% 14.29% 5.28% 7.36% 

CC 34 2 5.88% 4.76% 6.36% 8.91% 

C 12 4 33.33% 9.52% 10.46% 14.00% 

Total 855 42         

Table 2.3 

 

Table 2.3 shows that as the number of defaults increase, the probabilities of default also 

increase. However, it is the results of Bayesian estimates that are noteworthy. If we 

compare the Bayesian estimates of Table 2.2 with Table 2.3, we will find no change in any 

grade. This is because the defaults increase with the same weightage in all the grades. 

Therefore, in convoluted probabilities, the process only takes effect on the increment in 

defaults from the realized probabilities of default, while the Bayesian estimates show the 

same properties in both cases. 

 

3.4. Scenario 3 

 

Under this scenario, we try to find the relationship between implied probabilities of default 

and all the other inputs if both the number of defaults and number of customers increase. 

Applying this scenario to the realized probabilities of default would not change values since 

the number of customers and the number of defaults are both doubled. Here are the details 

after running the model. 
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Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied PDs 

in Current 

Scenario 

AAA 68 2 2.94% 4.76% 1.08% 0.80% 

AA 112 2 1.79% 4.76% 1.74% 1.28% 

A 238 6 2.52% 14.29% 2.33% 1.71% 

BBB 514 4 0.78% 9.52% 2.55% 1.87% 

BB 382 4 1.05% 9.52% 2.85% 2.08% 

B 204 12 5.88% 28.57% 3.90% 2.83% 

CCC 100 6 6.00% 14.29% 5.28% 3.81% 

CC 68 2 2.94% 4.76% 6.36% 4.61% 

C 24 4 16.67% 9.52% 10.46% 7.56% 

Total 1,710 42         

 Table 2.4 

 

The above table illustrates that the implied probabilities of default under this scenario 

change compared to the implied probabilities of default of the actual portfolio. It is 

interesting to note that although inputs in both scenarios were the same, the probabilities 

of default have decreased. This proves the practicality and uniqueness of the model. 

 

3.5. Scenario 4 

 
In this scenario, we observe the behavior of the model if the defaults occur only in the 

higher-level grades. Let’s see the results first. 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 3 8.82% 8.57% 1.08% 1.92% 

AA 56 7 10.71% 20.00% 1.74% 3.65% 

A 119 9 5.88% 25.71% 2.33% 4.58% 

BBB 257 2 0.78% 5.71% 2.55% 4.80% 

BB 191 2 1.05% 5.71% 2.85% 5.09% 

B 102 6 5.88% 17.14% 3.90% 6.08% 

CCC 50 3 6.00% 8.57% 5.28% 7.42% 

CC 34 1 2.94% 2.86% 6.36% 8.49% 

C 12 2 16.67% 5.71% 10.46% 12.52% 

Total 855 35         

       Table 2.5 

 

It’s evident that as the number of defaults increase in the higher grades, the implied 

probabilities of default also increase and, as per our model, it creates an impact on the 

lower grades as well; hence, the implied probabilities for lower grades. This behavior 
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happens due to higher realized probabilities of default as well as the higher Bayesian 

estimates for the upper grades. 

 

3.6. Scenario 5 

 

We want to see the behavior if the number of defaults increases only in the lower grades. By 

doing so, realized probabilities of default and the Bayesian estimates both will increase in 

the lower grades. Let’s check the behavior of these changes on the whole portfolio. 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 1 2.94% 3.70% 1.08% 1.07% 

AA 56 1 1.79% 3.70% 1.74% 1.73% 

A 119 3 2.52% 11.11% 2.33% 2.31% 

BBB 257 2 0.78% 7.41% 2.55% 2.53% 

BB 191 2 1.05% 7.41% 2.85% 2.82% 

B 102 6 5.88% 22.22% 3.90% 3.84% 

CCC 50 6 12.00% 22.22% 5.28% 5.78% 

CC 34 2 5.88% 7.41% 6.36% 7.35% 

C 12 4 33.33% 14.81% 10.46% 12.59% 

Total 855 27         

  Table 2.6 

 
This scenario produces some interesting results. The implied probabilities of default of the 

lower grades increased as expected but, amazingly, the implied probabilities of default in 

the upper grades slightly decreased. This happens due the decreasing Bayesian estimates 

in the upper grades. If only realized probabilities of default are considered or only Bayesian 

estimates are considered, the dynamic nature of the model could not be observed.  

 

3.7. Scenario 6 

 
In this scenario, we will determine the impact on implied probabilities of default if only the 

customers in the middle grade, i.e., from BBB to B, default. The results follow. 

 

 

 

 

 

 

 

 

 



 
 
Copyright © 2012 Nabil Iqbal & Syed Afraz Ali. No part of this publication may be reproduced, stored in a retrieval system, 
used in a spreadsheet or transmitted in any form or by any means—electronic, mechanical, photocopying, recording or 
otherwise—without the permission of the authors. 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied PDs 

in Current 

Scenario 

AAA 34 1 2.94% 3.03% 1.08% 1.07% 

AA 56 1 1.79% 3.03% 1.74% 1.72% 

A 119 3 2.52% 9.09% 2.33% 2.30% 

BBB 257 4 1.56% 12.12% 2.55% 2.62% 

BB 191 7 3.66% 21.21% 2.85% 3.21% 

B 102 11 10.78% 33.33% 3.90% 4.63% 

CCC 50 3 6.00% 9.09% 5.28% 5.97% 

CC 34 1 2.94% 3.03% 6.36% 7.03% 

C 12 2 16.67% 6.06% 10.46% 11.06% 

Total 855 33         

   Table 2.7 

 

The realized probabilities of default as well as the Bayesian estimates of the middle grades 

increased. Due to this, the lower grades, i.e., from CCC to C, received a negative impact and 

slightly increased. Actually, the decreasing Bayesian estimates in the lower grades are 

netting off the implied probabilities of default in these grades, thus the implied probabilities 

of default increased but not as much as in the middle grades. Higher grades showed 

interesting behavior too as the implied probabilities of default decreased with a minimal 

margin. This is because the activeness of defaults in these grades decreased due to the 

decreasing Bayesian estimates. 

 

3.8. Scenario 7 

 

In this scenario, we ignore the increase or decrease in the number of defaults. However, we 

will see the behavior of the portfolio if the number of customers increases instead. 

Therefore, we doubled the number of customers in the upper grade. Here are the results. 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 68 1 1.47% 4.76% 1.08% 0.55% 

AA 112 1 0.89% 4.76% 1.74% 0.88% 

A 238 3 1.26% 14.29% 2.33% 1.18% 

BBB 257 2 0.78% 9.52% 2.55% 1.40% 

BB 191 2 1.05% 9.52% 2.85% 1.70% 

B 102 6 5.88% 28.57% 3.90% 2.75% 

CCC 50 3 6.00% 14.29% 5.28% 4.13% 

CC 34 1 2.94% 4.76% 6.36% 5.20% 

C 12 2 16.67% 9.52% 10.46% 9.30% 

Total 1,064 21         

  Table 2.8 
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The results show that realized probabilities of default only decreased in the upper grades, 

while Bayesian estimates remained the same in the whole portfolio. In this case, the model 

is only taking the effect of decreasing realized probabilities of default in the upper grades 

while running the convolution mechanism. All other inputs are the same for the process. In 

the end, the implied probabilities of default show the decreasing behavior in the whole 

portfolio. It started with a major fall in the upper grades impacting middle and lower grades 

too. 

 

3.9. Scenario 8 

 
Similarly, in this scenario we will increase the number of customers in the middle grades, 

i.e., from BBB to B, given that the number of defaults remain same. Results are below. 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 1 2.94% 4.76% 1.08% 1.08% 

AA 56 1 1.79% 4.76% 1.74% 1.74% 

A 119 3 2.52% 14.29% 2.33% 2.33% 

BBB 514 2 0.39% 9.52% 2.55% 2.44% 

BB 382 2 0.52% 9.52% 2.85% 2.59% 

B 204 6 2.94% 28.57% 3.90% 3.14% 

CCC 50 3 6.00% 14.29% 5.28% 4.51% 

CC 34 1 2.94% 4.76% 6.36% 5.59% 

C 12 2 16.67% 9.52% 10.46% 9.69% 

Total 1,405 21         

 Table 2.9 

 

Interestingly, implied probabilities of default of the middle grades decreased due to the 

decrement in the realized probabilities of default, while Bayesian estimates remained the 

same for the entire portfolio. This is the main reason the higher grades, i.e., from AAA to A, 

faced no impact in their implied probabilities of default. However, the implied probabilities 

of default of the lower grades decreased as per the mechanism of the model taking the 

decreasing effect from middle grades. 

 

3.10. Scenario 9 

 

Similarly as in scenarios 7 and 8, in the final scenario, we increase the number of 

customers. However, this time we will observe the behavior of the model by showing the 

increase in the lower grades, i.e., from CCC to C. Results are shown below. 
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Grades No. of 

Customers 

No of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 1 2.94% 4.76% 1.08% 1.08% 

AA 56 1 1.79% 4.76% 1.74% 1.74% 

A 119 3 2.52% 14.29% 2.33% 2.33% 

BBB 257 2 0.78% 9.52% 2.55% 2.55% 

BB 191 2 1.05% 9.52% 2.85% 2.85% 

B 102 6 5.88% 28.57% 3.90% 3.90% 

CCC 100 3 3.00% 14.29% 5.28% 4.61% 

CC 68 1 1.47% 4.76% 6.36% 5.16% 

C 24 2 8.33% 9.52% 10.46% 7.36% 

 Total 951 21         

   Table 2.10 

 
We can see that the implied probabilities of default from the grades AAA to B remain 

unchanged from the actual portfolio. Bayesian estimates and realized probabilities of 

default both remain unchanged from the previous scenario. That is the reason there was no 

change in that range. In contrast, the lower grades, i.e., from CCC to C, possess decreasing 

implied probabilities of default. 

 

4. Open Issues 

 

As this is a very new mechanism for calculating PD, there are a few limitations to be 

discussed. In our next version, we will come up with further workings, including 

overcoming limitations. 

 

 The first shortcoming is the decision to select the distributions. Binomial and 

Poisson distributions were very sophisticated as per the portfolio and the 

mechanism; however, we can use other distributions as well. It should purely be the 

practitioner’s choice.  

 

 The second shortcoming is the practice to cumulate the PDs of upper grades with a 

specific grade’s PD. According to our mechanism, every grade should have a relation 

to the performance of other grades. If the PD of a better grade increases, it should 

impact its comparative lower grade in such a way that the PDs for lower grades 

increase as well. However, in this case, PDs of the higher grades should remain the 

same.   

 

5. Conclusion  

 
In this paper, we introduced a new model to estimate the probability of default for low-

default portfolios. The methodology is based on an actuarial mechanism named 

convolution. We calculated Bayesian probability and realized PD for each scenario by using 
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these two estimates. We generated an implied distribution of each scenario with the 

convolution technique. Besides that, we have developed different scenarios to see the 

behavior of the model. The model justified its performance very well. This model is very 

practical and related organizations can use it accordingly. 
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