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A Note on the Upper-Truncated Pareto Distribution 

David R. Clark* 

 
ABSTRACT 

The Pareto distribution is widely used in modeling losses in Property and Casualty insurance. 

The thick-tailed nature of the distribution allows for inclusion of large events. However, in 

practice it may be necessary to apply an upper truncation point so as to eliminate unreasonably 

large loss amounts and to ensure that the first and second moments of the distribution exist. 

This paper provides background on the characteristics of the upper-truncated Pareto 

distribution and suggests diagnostics, based on order statistics, to assist in selecting the upper 

truncation point. 

 

1. Introduction 

The Pareto distribution is useful as a model for losses in Property and Casualty insurance. It 

has heavy right tail behavior, making it appropriate for including large events in applications 

such as excess-of-loss pricing and Enterprise Risk Management (ERM). 

For applications in ERM, however, there may be practical problems with the Pareto 

distribution because nonremote probabilities can still be assigned to loss amounts that are 

unreasonably large or even physically impossible. Further, a Pareto distribution with shape 

parameter ߙ ൏ 2 will not have a finite variance, meaning we cannot calculate a correlation 

matrix between lines of business. In practice, an upper truncation point (T) is introduced, and 

losses above that point are not included in the model. This upper truncation point may be 

considered the Maximum Possible Loss (MPL). 

The difficulty for setting the upper truncation point is that the true maximum possible loss 

for a given risk portfolio may not be easily determined. Analysts may hold different opinions 

as to what is possible. 

 
*David R. Clark is a Senior Actuary with Munich Reinsurance America and a Fellow of the 
Casualty Actuarial Society (FCAS). His prior papers include “LDF Curve-Fitting and 
Stochastic Reserving: A Maximum Likelihood Approach,” which received the 2003 Best 
Reserve Call Paper prize, and “Insurance Applications of Bivariate Distributions,” cowritten 
with David Homer, which received the 2004 Dorweiler Prize.  
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In ERM models, one goal is to evaluate the “tail” of the distribution, which can be very 

sensitive to the selection of the upper truncation point. 

The goal of this paper is to describe the characteristics of the upper-truncated Pareto and 

to offer some measures that may be useful in selecting the upper truncation point based on 

the sample of historical loss data. Some of these measures are results taken from the field of 

order statistics. We will not eliminate the need for the analyst to make an informed judgment 

when selecting the upper truncation, but we can give some objective measures to assist in 

making that judgment more informed. 

 

1.1. Research Context 

The literature on the Pareto distribution is vast. Johnson et al. (1993, 1994) provide the 

standard overview including historical genesis of the mathematical form, key characteristics, 

and a comprehensive bibliography. Within the Casualty Actuarial Society literature, the paper 

by Philbrick (1985) is a recommended introduction and includes a brief discussion of upper 

truncation. 

Our primary focus will be those characteristics of the Pareto distribution, particularly order 

statistics, that will be most useful for the ERM application. 

Order statistics is a branch of statistics that has grown over recent decades. It is concerned 

with inferences from an ordered sample of observations. In the CAS literature, an introduction 

to this topic related to estimating Probable Maximum Loss (PML, as distinguished from MPL) 

is given by Wilkinson (1982). 

Extreme Value Theory (EVT) has developed as a branch from order statistics, with 

attention given to the distribution of the largest value of a sample. Much of EVT deals with 

approximations to the distribution of the largest value assuming the original distribution form 

is unknown. 

 

1.2. Objective 

The objective of this paper is entirely practical: Given that the upper-truncated Pareto is widely 

used in insurance applications, we wish to supply analysts with additional information for 

selecting the upper truncation point. 
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1.3. Outline 

The remainder of the paper proceeds as follows: 

 Section 2 will discuss the characteristics of the upper-truncated Pareto distribution 

itself. 

 Section 3 will review the maximum likelihood method for estimating the model 

distribution parameter. 

 Section 4 will introduce order statistics related to the upper-truncated Pareto and 

how they can be useful for selecting the upper truncation point. 

 Section 5 will present two brief examples to illustrate the technique of estimating 

the upper truncation based on the order statistics for the largest loss. 

 

2. Characteristics of the Upper-Truncated Pareto 

2.1. The (Untruncated) Single-Parameter Pareto 

The cumulative distribution function for the Pareto distribution is given in formula (2.1). This 

form represents losses that are at least as large as some lower threshold ߠ, following the 

notation in Klugman et al. This form is sometimes referred to as the “single-parameter Pareto” 

with shape parameter ߙ and a lower threshold used to define the range of loss amounts 

supported (ߠ is not considered a parameter). Sometimes this form of the distribution is 

referred to as a “European Pareto” (see Rytgaard 1990) to distinguish it from the two-

parameter form. An alternative form uses a shift ܻ ൌ ܺ െ  representing just the portion of ,ߠ

the excess loss above the threshold and ߠ treated as a scale parameter. For the remainder of 

this paper we will consider only the single-parameter or “European” form of the distribution: 

ሻݔሺܨ ൌ 1 െ ቀఏ
௫
ቁ
ఈ
, ߠ ൑ ,ݔ ߙ ൐ 0. (2.1)

The moments of the unlimited Pareto distribution are given as follows: 

ሺܺ௞ሻܧ ൌ ఈఏೖ

ఈି௞
, ߙ ൐ ݇. (2.2)

Note that not all moments exist for the Pareto distribution. For example, when ߙ ൑ 1 the 

expected value is undefined. 
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2.2. The Upper-Truncated Pareto 

When we introduce an upper truncation point ܶ, the random variable for loss can take on 

values only between the lower threshold and the upper truncation point. It is also interesting 

to note that the shape parameter ߙ can now be any real value and is no longer restricted to 

being strictly positive: 

ሻݔሺܨ ൌ

ە
ۖۖ

۔

ۖۖ

1ۓ െ ቀݔߠቁ
ఈ

1 െ ቀܶߠቁ
ఈ , ߠ ൑ ݔ ൑ ܶ, ߙ ് 0

lnሺߠ/ݔሻ
lnሺܶ/ߠሻ

, ߠ ൑ ݔ ൑ ܶ, ߙ ൌ 0

. (2.3)

For the special case ߙ ൌ െ1, the distribution of losses is uniform between ߠ and ܶ. This 

may be surprising given that most insurance applications are heavily skewed and restrict the 

shape parameter to positive values, but it does show the flexibility of the truncated form. 

Negative alphas are theoretically valid but unusual in insurance applications; we will be 

concerned in this paper mainly with cases for ߙ ൐ 0.  

All moments for the upper-truncated Pareto will always exist: 

ሺܺ௞ሻܧ ൌ
௞ߠߙ

ߙ െ ݇

1 െ ቀܶߠቁ
ఈି௞

1 െ ቀܶߠቁ
ఈ , ߙ ് 0, ݇. (2.4)

We may note that for the values ߙ ൌ 0 and ߙ ൌ ݇, formula (2.4) does not hold directly, 

but we can estimate the moments by making use of the following limiting function: 

lim
ఈ→଴

ଵିቀഇ
೅
ቁ
ഀ

ఈ
ൌ lim

௞→ఈ

ଵିቀഇ
೅
ቁ
ഀషೖ

ఈି௞
ൌ lnሺܶ/ߠሻ. (2.5)

To provide additional insight into the shape of the upper-truncated form, we consider the 

expected values for some special cases. The value ߙ ൌ െ1 produces a uniform distribution 

for which the expected value is the mid-point or arithmetic average between ߠ and ܶ. For the 

value ߙ ൌ 1/2 the expected value is the square-root of the product of ߠ and ܶ, also known 

as the geometric average. For the value ߙ ൌ 2 the expected value is the harmonic average of 

 :and ܶ, found by averaging their inverses ߠ

 

Shape Parameter ܧሺܺ|ߠ ൑ ܺ ൑ ܶሻ 
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ߙ ൌ െ1 ሺܶ ൅  ሻ/2ߠ

ߙ ൌ 0 ሺܶ െ  ሻߠ/ሻ/lnሺܶߠ

ߙ ൌ  ߠܶ√ 1/2

ߙ ൌ 1 lnሺܶ/ߠሻ/ሺିߠଵ െ ܶିଵሻ 

ߙ ൌ 2 2/ሺିߠଵ ൅ ܶିଵሻ 

 

Second moments are easily found by the recurrence relation: 

ሻߙ|ሺܺଶܧ ൌ ߙ|ሺܺܧሻߙ|ሺܺܧ െ 1ሻ. (2.6)

 

2.3. Moment Matching to Evaluate Upper Truncation 

We can make use of the first and second moments to make an estimate of the upper truncation 

point ෠ܶ . The moment-matched parameters are found by solving the following equations: 

,ොߙ|൫ܺܧ ෠ܶ൯ ൌ ݔ̅ ൌ
1
ܰ
෍ݔ௜

ே

௜ୀଵ
,

,ොߙ|൫ܺଶܧ ෠ܶ൯ െ ,ොߙ|൫ܺܧ ෠ܶ൯
ଶ
ൌ ଶݏ ൌ

1
ܰ െ 1

෍ሺݔ௜ െ ሻଶݔ̅
ே

௜ୀଵ

.

 (2.7)

In other words, we want to set an upper truncation point such that standard deviation of the 

fitted distribution is (at least) the standard deviation of the historical large losses. 

One obvious caution on this estimate, of course, is that it does not guarantee that the 

indicated upper truncation point ܶ෠  is greater than the largest loss actually observed historically. 

We therefore take it as only one part of our evaluation. 

 

3. Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is more commonly used than moment matching for 

estimating parameters. When there is no upper truncation, the maximum likelihood estimator 

for the Pareto shape parameter ߙ is found using a simple expression: 
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ොெ௅ாߙ ൌ ܰ ൭෍ln ቀ
௜ݔ
ߠ
ቁ

ே

௜ୀଵ

൱

ିଵ

. (3.1)

When there is an upper truncation point, the maximum likelihood estimator for ߙ is a bit 

more complicated and requires solving the equation below; we note again that both the lower 

threshold ߠ and the upper truncation ܶ are constraints supplied by the user and are not 

considered parameters to be estimated: 

ොெ௅ாߙ ൌ ܰ൮෍ln ቀ
௜ݔ
ߠ
ቁ

ே

௜ୀଵ

െ ൞
ܰ ln ቀܶߠቁ ቀ

ߠ
ܶቁ

ఈෝಾಽಶ

1 െ ቀܶߠቁ
ఈෝಾಽಶ

ൢ൲

ିଵ

. (3.2)

If we do consider the lower and upper truncation points as parameters, then the MLE 

estimators are simply the smallest and largest observations respectively (see Aban et al. 2006), 

that is, the first and last order statistics from the sample: 

෠ெ௅ாߠ ൌ minሼݔଵ, ,ଶݔ … , ,ேሽݔ

෠ܶெ௅ா ൌ maxሼݔଵ, ,ଶݔ … , .ேሽݔ
 (3.3)

 

These MLE estimators are not as helpful for our purpose of selecting an upper truncation 

point. The goal of MLE is to find the model parameters that result in the highest probability 

assigned to events that we have actually observed. In the case of the upper-truncated Pareto, 

this goal is accomplished by assigning zero probability to values outside the range of what we 

have already observed. This is not helpful if we believe that worse events are possible. 

However, we may note that the MLE includes two statistics that summarize the sample of 

losses: 

݊ܽ݁ܯ ݂݋ ݏ݃݋ܮ ൌ
1
ܰ
෍lnሺݔ௜ሻ,

ே

௝ୀଵ

ேݔ ൌ maxሼݔଵ, ,ଶݔ … , .ேሽݔ

 (3.4)

 

Together these represent sufficient statistics for the model parameters ߙ and ܶ, informally 

meaning that they contain all of the information available from the sample concerning these 
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parameters.1 

The MLE for ܶ෠  is referred to as “nonregular,” meaning that we cannot estimate its variance 

through the regular procedure using the information matrix of second derivatives of the log-

likelihood function. This is not, however, a great problem because we can estimate Varሺܺேሻ 

using the moment functions given in Section 4.3.  

Finally, it is important to remember that there is a relationship between the shape parameter 

 and the upper truncation ܶ. A different alpha will be estimated depending upon the selected ߙ

upper truncation point. To illustrate this relationship, Table 1 shows how the expected value 

of loss severity changes based on these parameters. 

 

Table 1 

 
 

4. Order Statistics 

For a sample of losses drawn from a continuous distribution, the order statistics are simply 

the sample put into ascending order, with ݔଵ being the smallest observation and ݔே being the 

largest observation. 

 

4.1. The Distribution of the Largest of N Losses 

The upper-truncated Pareto, the distribution of the largest of a sample of size ܰ losses, is 

                                                           
1 Chapter 7 of Arnold et al. (2008) provides a longer discussion on order statistics and sufficiency. 

Expected Pareto Severity Subject to Upper Truncation

Lower Threshold (Theta): 1,000,000

Maximum Possible Loss (Upper Truncation)
10,000,000 25,000,000 50,000,000 100,000,000 999,999,999

Alpha 0.75 2,839,841 4,072,455 5,257,028 6,698,663 13,948,679
1.05 2,507,183 3,231,920 3,793,243 4,353,690 6,137,484
1.35 2,234,010 2,641,165 2,890,943 3,093,714 3,513,688
1.65 2,015,287 2,236,237 2,342,509 2,412,446 2,510,008
1.95 1,843,001 1,959,873 2,003,684 2,027,046 2,049,735



 

  9 

given as 

ேሻݔேሺܨ ൌ ேሻேݔሺܨ ൌ ൭
ଵି൬ ഇ

ೣಿ
൰
ഀ

ଵିቀഇ
೅
ቁ
ഀ ൱

ே

. (4.1)

This distribution is unimodal, with the mode defined below. The mode is not directly 

dependent upon the value of the upper truncation point ܶ except for the case in which ܶ is 

set, where the mode would otherwise be calculated: 

ே݁݀݋ܯ ൌ min ቊ ߠ ൬
ܰߙ ൅ 1
ߙ ൅ 1

൰
ଵ/ఈ

, ܶቋ. (4.2)

Percentiles from this distribution are easily calculated, and this provides us with a 

hypothesis test for the upper truncation point. 

 

4.2. Hypothesis Test for Existence of Upper Truncation 

One preliminary question is whether an upper truncation is indicated at all. A simple 

hypothesis test can help answer this question. The null hypothesis is that there is no upper 

truncation point (that is, ܶ ൌ ∞). We then compare the actual largest loss ݔே observed in the 

history and ask whether it is reasonable that a Pareto with no upper truncation would have 

generated that loss. If the largest observed loss is “significantly” less than would have been 

expected, then we reject the null hypothesis and conclude that an upper truncation point 

should be used. 

The test statistic is a p value: 

݌ ൌ ܶ|ேݔሺܨ ൌ ∞ሻே ൌ ቀ1 െ ቀ ఏ

௫ಿ
ቁ
ఈ
ቁ
ே
ൎ exp ቀെܰ ቀ ఏ

௫ಿ
ቁ
ఈ
ቁ. (4.3)

The shape parameter ߙ used in this test should be based on the MLE estimate with no upper 

truncation as given in formula (3.1). The test is only appropriate for a sample size ܰ large 

enough that the largest observation ݔே does not have a significant impact on the estimate of 

 .ߙ

The approximation on the right side of (4.3) is the Fréchet distribution, which is a limiting 

case for the sample maximum and a standard result from Extreme Value Theory.2 The 

hypothesis test is given in this form in Aban et al. (2006). The idea is that if the p value is small, 

                                                           
2 This is a result of the Gnedenko, Fisher-Tippett Theorem. The Fréchet distribution is given in Klugman et 
al. (1998) as the “Inverse Weibull” distribution. 
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say, ݌ ൏ 0.05, then we reject the null hypothesis that a Pareto with no upper truncation point 

is appropriate. Unfortunately, this test does not tell us what the upper truncation point should 

be; in fact, it does not even tell us that an upper-truncated Pareto is correct but only that an 

untruncated Pareto is unlikely. 

Conversely, if the p value is large, say, ݌ ൐ 0.05, that does not necessarily mean that an 

untruncated Pareto should be used, but only that our sample data are not sufficient to reject 

it. The usefulness of the test is therefore quite limited. 

 

4.3. Evaluating Moments for the Largest Loss 

The calculation for the moments of the distribution of the largest loss is not trivial but can be 

accomplished with a careful strategy. Using a binomial series expansion of the distribution of 

the largest loss, the moments can be written as follows: 

ே൫ܺேܧ
௞൯ ൌ ௞෍൬ߠ	

ܰ
݆ ൰ ሺെ1ሻ

௝ିଵ ௞ߠ݆ߙ

݆ߙ െ ݇

ቆ1 െ ቀܶߠቁ
ఈ௝ି௞

ቇ

൬1 െ ቀܶߠቁ
ఈ

൰
ே ,

ே

௝ୀଵ

ߙ ് ݇. (4.4)

As discussed above, the terms when ݆ߙ ൌ ݇ can be evaluated using the limit formula (2.5). 

The difficulty with this form is that for large sample sizes, say, ܰ ൐ 30, the factorial functions 

become extremely large, making the calculation numerically unstable. An alternative form that 

works for larger values of ܰ makes use of the incomplete beta distribution: 

ே൫ܺேܧ
௞൯ ൌ ௞ߠ	

Γሺܰ ൅ 1ሻΓ ቀ1 െ ݇
ቁߙ

Γ ቀܰ ൅ 1 െ ݇
ቁߙ

ߚ ൬1 െ ቀ
ߠ
ܶቁ

ఈ

;ܰ, 1 െ
݇
൰ߙ

ߚ ൬1 െ ቀܶߠቁ
ఈ

;ܰ, 1൰
, ߙ ൐ ݇. (4.5)

This form makes use of the incomplete beta function, defined as follows: 

,ܰ;ݕሺߚ ܾሻ ൌ 	න
ேିଵሺ1ݐ െ ሻ௕ିଵݐ

,ሺܰܤ ܾሻ
,ݐ݀

௬

଴

ܰ, ܾ ൐ 0, 0 ൏ ݕ ൏ 1. (4.6)

The incomplete beta function cannot be used directly when ߙ ൑ ݇. Klugman et al. (1998) 

give a recursive form that can be used for small values of ߙ when ܰ is large. This form will 

not work when ݇/ߙ is exactly equal to an integer (e.g., the cases ߙ ൌ 1	or	1/2). A third 

alternative is needed for those cases. 

Another form is written in terms of an infinite series. Formulas (4.7) and (4.8) provide two 
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infinite series that converge to the expected dollar moments: 

ே൫ܺேܧ
௞൯ ൌ ௞෍൬ߠ	

ܰ
ܰ ൅ ݆

൰ቌ
Γ ቀ݆ ൅ ݇

ቁߙ

݆! Γ ቀ݇ߙቁ
ቍቆ1 െ ൬

ߠ
ܶ
൰
ఈ

ቇ
௝

,

ஶ

௝ୀ଴

ߙ	 ൐ 0, (4.7)

 

ே൫ܺேܧ
௞൯ ൌ 	ܶ௞ െ ௞෍൬ߠ

݆
ܰ ൅ ݆

൰ቌ
Γ ቀ݆ ൅ ݇

ቁߙ

݆! Γ ቀ݇ߙቁ
ቍቆ1 െ ൬

ߠ
ܶ
൰
ఈ

ቇ
௝

,

ஶ

௝ୀ଴

ߙ	 ൐ 0. (4.8)

These series may be slow to converge when ቀ1 െ ቀఏ
்
ቁ
ఈ
ቁ is close to 1.00, so this may not 

be an optimal formula for evaluating the moments. However, they do not have the numerical 

instability of formulas (4.4) or (4.5). Further, each term in the summation is a positive value, 

so the first series converges from below whereas the second series converges from above. The 

use of these two series together therefore lets us calculate moments to within any desired 

degree of accuracy. 

We may note also that there are various recurrence relationships between moments of order 

statistics, for example, as given by Khurana and Jha (1987), that can produce other methods 

for calculating the moments. However, these do not seem to offer more numerical stability 

than the formulas given above. 

Just as we estimated ߙො and ෠ܶ  by matching the mean and standard deviation of historical 

losses, we can alternatively estimate them by matching to the mean and largest value of the 

historical losses only:3 

,ොߙ|൫ܺܧ ෠ܶ൯ ൌ ,ݔ̅

,ොߙ|ே൫ܺேܧ ෠ܶ൯ ൌ .ேݔ
 (4.9)

However, we can make a better estimate by using the order statistics of the logarithms of 

the losses, instead of the losses themselves. 

 

4.4. Evaluating Moments for the Largest ln(Loss) 

Where we had used ܧே൫ܺே|ߙො, ෠ܶ൯ to represent the expected value of the largest loss in a sample 

                                                           
3 This procedure is essentially the same as the recommendation in Cooke (1979). 
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of ܰ, we now define ܧே൫lnሺܺே/ߠሻ|ߙො, ෠ܶ൯ as the expected value of the logarithm of the largest 

loss, relative to the lower threshold. 

The transformed variable lnሺܺ/ߠሻ follows an exponential distribution, and this allows for 

simpler calculations of the order statistic moments. This form will turn out to have some 

advantages over working with the order statistics of the loss dollars themselves: 

ேܧ ቆln ൬
ܺே
ߠ
൰ቇ ൌ න ln ቀ

ݔ
ߠ
ቁ
ܰ ൬1 െ ቀ

ߠ
ቁݔ

ఈ

൰
ேିଵ

ఈିଵିݔఈߠߙ

൬1 െ ቀܶߠቁ
ఈ

൰
ே ,ݔ݀

்

ఏ

ߙ ് 0. (4.10)

This integral can be evaluated as follows. 

ேܧ ቆln ൬
ܺே
ߠ
൰ቇ ൌ 	

ቊ1ߙ ∑
1
݆ ൬1 െ ቀܶߠቁ

ఈ

൰
௝

ே
௝ୀଵ ቋ െ ln ቀܶߠቁ ቆ1 െ ൬1 െ ቀܶߠቁ

ఈ

൰
ே

ቇ

൬1 െ ቀܶߠቁ
ఈ

൰
ே 	, ߙ ് 0. (4.11)

We may also note that for the untruncated Pareto as ܶ → ∞ this expression simplifies to 

ேܧ ቀln ቀ
௑ಿ
ఏ
ቁ |ܶ → ∞ቁ ൌ ଵ

ఈ
∑ ଵ

௝
ே
௝ୀଵ , ߙ ് 0. (4.12)

These formulas can be rewritten as a simple recurrence relationship between different 

sample sizes: 

ேܧ ቆln ൬
ܺே
ߠ
൰ቇ ൌ ln ൬

ܶ
ߠ
൰ ൅

1
ܰߙ

െ
ln ቀܶߠቁ െ ேିଵܧ ቆln ቀ

ܺேିଵ
ߠ ቁቇ

൬1 െ ቀܶߠቁ
ఈ

൰
, ߙ ് 0. (4.13)

The sequence is starting by using the expected ܧ൫lnሺܺ/ߠሻ൯ for a single loss: 

ଵܧ ቆln ൬
ଵܺ

ߠ
൰ቇ ൌ ܧ ቆln ൬

ܺ
ߠ
൰ቇ ൌ

1
ߙ
െ
ln ቀܶߠቁ ቀ

ߠ
ܶቁ

ఈ

൬1 െ ቀܶߠቁ
ఈ

൰
, ߙ ് 0. (4.14)

It can also be quickly recognized that if the expected value ܧ൫lnሺܺሻ൯ is replaced by the 

mean of the logarithms of the sample of observed losses, then formula (4.14) is equivalent to 

the MLE formula (3.2). Matching the first moment of the logs is the same as performing a 

maximum likelihood estimate for the shape parameter ߙ. This is a very useful result because 

it means that anyone currently using MLE to estimate the shape parameter will be able to use 

this moment matching strategy as an enhancement to their existing model. 

Formulas (4.13) and (4.14) are not valid when ߙ ൌ 0, but the moments for that special case 
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are easily calculated: 

ேܧ ቆln ൬
ܺே
ߠ
൰ቇ ൌ ൬

ܰ
ܰ ൅ 1

൰ ln ൬
ܶ
ߠ
൰ , ߙ ൌ 0. (4.15)

We can also evaluate the expected value of the largest log-loss using infinite series similar 

to those in formulas (4.7) and (4.8). As with those earlier expressions, we have a series that 

converges from below and a second that converges from above. These series are also 

somewhat faster to converge that those for the dollar moments: 
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With these formulas, we are able to match the moments: 

,ොߙ|൫lnሺܺሻܧ ෠ܶ൯ ൌ
1
ܰ
෍lnሺݔ௜ሻ,

ே

௝ୀଵ

,ොߙ|ே൫lnሺܺேሻܧ ෠ܶ൯ ൌ lnሺݔேሻ.

 (4.18)

These moment-matching equations make use of the same sufficient statistics identified in 

formula (3.4). The parameters ߙො and ෠ܶ  are solved for numerically. 

We may note a few advantages to the use of the estimators in formula (4.18): 

1) The estimated ߙො is equivalent to the MLE estimate conditional upon ෠ܶ . 

2) The estimates rely upon sufficient statistics, meaning they make use of all of the 

information about the truncated Pareto parameters contained in the sample. 

3) The recurrence formula is easily calculated. 

4) The estimate of ෠ܶ  based on log-order statistics is slightly more conservative than the 

estimate based directly on the order statistics of the loss dollars. This is due to Jensen’s 

Inequality: 

൫lnሺܺሻ൯ܧ ൑ ln൫ܧሺܺሻ൯. 

We now go on to show how this procedure can be applied in real-world examples. 
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5. Two Illustrative Examples 

Having outlined a basic approach for estimating an upper truncation point, we will now look 

at two examples to illustrate the approach. The examples are not intended for use as actual 

pricing factors but just to show the thought process. 

The numbers used in these examples are historical statistics related to natural disasters, and 

the samples are shown in Appendix A. The fact that these examples are from natural disasters 

does not mean that the same techniques could not be used for casualty events. 

 

5.1. Earthquake Fatalities 1900–2011 

The earthquake statistics are the estimated number of deaths for events from 1900 to 2011 as 

published by the U.S. Geological Survey (USGS). In many cases, these numbers are rough 

estimates. For this example, we look at the 21 earthquakes with 20,000 or more deaths. None 

of these figures has been adjusted for population changes or other factors. 

The numbers can be summarized by the following statistics: 

 

Number of events 21 

Lower threshold 20,000 ߠ 

Average no. deaths 89,964 

Standard deviation of no. deaths 86,416 

Largest no. deaths 316,000 

Pareto shape parameter ߙ (from MLE) 0.89993 

 

The largest earthquake event, in terms of number of deaths, occurred in 2010 in Haiti, with 

316,000 fatalities. 

The p value from these data is 0.173, meaning that there is a 17.3 percent chance that the 

largest event in a sample of 21 would be 316,000 or less from an untruncated Pareto. This is 

not strong evidence for rejecting the untruncated Pareto but does not rule out the possibility 

of including an upper truncation point. 
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A Pareto fit with no upper truncation indicates a shape parameter of 0.89993. Because this 

is less than 1.00000, the expected value would be undefined (infinite). This would create a 

serious problem in modeling the events, as simulation results could be chaotic. It is desirable 

to include an upper truncation. 

We can select an indicated upper truncation point by matching the expected values to the 

average and largest amounts in our sample. As Figure 1 shows, this is an improved fit to the 

data also. The empirical points on the log-log graph show a downward curving shape, rather 

than a pure linear relationship that would indicate an untruncated curve. 

 

Figure 1 
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The values from this moment-matching calculation are as follows: 

 

Lower threshold 20,000 ߠ 

Estimated upper truncation ܶ 437,171 

Pareto shape parameter ߙ conditional on ܶ 0.57122 

Expected value of no. fatalities 88,563 

Expected standard deviation 88,334 

Expected largest of 21 events ܧேሺܺேሻ 326,681 

 

The key output from this analysis is the estimated upper truncation point as 437,171. This 

implies that the maximum possible number of deaths from an earthquake is 437,171 or about 

38 percent higher than the worst event seen in the history. 

The standard deviation and actual observed largest loss the actual data are slightly lower 

than would have been predicted by the model. This means our estimate of the upper truncation 

point is slightly higher than what would be needed to exactly match the sample; this 

conservatism is desirable since our goal is to select an upper truncation point that represents 

the largest possible loss. 

We can also refit the model with different lower thresholds to include more or fewer losses 

to evaluate the sensitivity of the calculation. 

Most importantly, we want to compare the moment-matching indication to what is known 

about the physical world that might create an upper bound on the possible number of deaths. 

Factors such as population density, construction of buildings, and the possible intensities of 

earthquakes should be considered. Catastrophe models attempt to estimate the probability 

distribution based on these factors, and output from these models should be compared. 

  

5.2. Large U.S. Weather Losses 1980–2011 

The weather statistics come from the National Climatic Data Center (NCDC), a part of the 

National Oceanic and Atmospheric Association (NOAA). The dollars are listed in thousands 
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and have been adjusted (by NCDC) to 2012 cost levels using the CPI. The losses represent 

estimates of total damages, not limited to just the insured portion. The sample in the Appendix 

are those events that caused $5 billion or more in 2012 dollars. 

The numbers can be summarized by the following statistics: 

 

Number of events 36 

Lower threshold 5,000,000 ߠ 

Average loss > threshold 18,994,444 

Standard deviation of losses 26,701,171 

Largest loss damage 146,300,000 

Pareto shape parameter ߙ (from MLE) 1.11299 

 

The largest weather event in this sample was Hurricane Katrina in 2005, estimated to be 

$146 billion in 2012 dollars. 

The p value from these data is 0.432, meaning we fail to reject the null hypothesis that the 

losses came from an untruncated Pareto. In practice, this implies that if we want to include an 

upper truncation point, it should be well above the largest order statistic. 

The graph below shows the log-log graph of damage amount (in thousands) compared to 

the empirical survival probabilities (probability of exceeding the dollar amount). The historical 

amounts line up pretty closely along a straight line, indicating, again, that if there is an upper 

truncation point, then it must be much larger than the largest historical point. 
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Figure 2 

 

 

If we calculate an upper truncation point so as to match the average and largest of the 

historical events, we find the following: 

 

Lower threshold 5,000,000 ߠ 

Estimated upper truncation ܶ 480,073,321 

Pareto shape parameter ߙ conditional on ܶ 1.07182 

Expected amount of damage  21,014,276 

Expected standard deviation 39,261,964 

Expected largest of 36 events ܧேሺܺேሻ 178,675,516 
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The estimated upper truncation point of 480,073,321 is more than three times the largest 

observed historical event. The conclusion is that the largest possible hurricane damage is 

significantly larger than Hurricane Katrina in 2005. This indication is itself subject to 

estimation uncertainty, but it does provide one more piece of information for use in modeling 

loss exposure. 

 

5.3. Discussion of the Examples 

These two numerical examples illustrate some of the assumptions and limitations of this 

estimation process. 

First, we may note that the estimation is dependent upon the truncated Pareto being the 

“true” distribution for the phenomenon. Our estimate does not reflect the possibility that 

some other distributional model might be correct. If a different model would have been better, 

then it is possible that a higher upper truncation point would have been estimated. 

Second, we are assuming that the sample we have observed is representative, and that future 

events will be of the same kind as those that have taken place historically. Events that are 

qualitatively different (not just bigger events of the same kind) need to be modeled separately. 

It is common to talk of events that have never been observed as “black swans,” and we should 

recognize that a model that is parameterized based on past observations cannot account for 

these. 

Third, we note that in both of the examples above the amounts observed were only 

estimates of the actual values and include estimating error in themselves. An exact count of 

deaths from the Haiti earthquake was not made, so the upper truncation point is also less 

exact. This estimation error is compounded by uncertainty in inflation or demographic trends. 

The number of earthquake deaths or losses from weather events were gathered from a variety 

of sources, including newspaper reports. This type of uncertainty is also an issue in insurance 

losses where claim values may include case reserves rather than actual ultimate payments. 

These factors are common to many statistical estimation problems. In the case of 

estimating an upper truncation point, we have the further difficulty that we are necessarily 

extrapolating beyond the range represented in our sample data. Given this level of uncertainty, 

our final reality check needs to be to ask if the upper truncation point corresponds to some 

true physical limit on the size of the loss, and if not to consider it a lower bound on the MPL. 
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6. Conclusions 

The selection of an upper truncation point for the Pareto can be difficult in insurance 

applications. It represents, in theory, the maximum possible loss (MPL) that could occur on 

the exposures written by the insurance company. This amount is generally selected based upon 

management’s judgment about possible loss events. The use of order statistics allows us to 

squeeze some additional information out of the observed historical losses. 

At the very least, we are able to calculate statistics such as standard deviation and expected 

largest loss for the upper-truncated Pareto and compare these to the historical loss data. This 

provides more information to inform the judgment being made. 
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Appendix A. Data Sets for Examples 

The data sets below are used as examples in Section 5. The earthquake statistics come from 

the U.S. National Geological Survey and represent estimated fatalities for international 

earthquakes since 1900. The U.S. Weather/Climate Disasters come from the National Climatic 

Data Center and represent total economic damages from weather events in the United States 

for 1980–2011, adjusted to 2012 dollars. 
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Rank # Deaths Rank $ Damage
1 316,000 1 146,300,000
2 242,769 2 77,600,000
3 227,898 3 55,600,000
4 200,000 4 44,300,000
5 142,800 5 33,400,000
6 110,000 6 28,900,000
7 87,587 7 18,700,000
8 86,000 8 18,700,000
9 72,000 9 18,200,000
10 70,000 10 16,900,000
11 50,000 11 16,700,000
12 40,900 12 16,100,000
13 32,700 13 12,800,000
14 32,610 14 12,200,000
15 31,000 15 10,900,000
16 30,000 16 10,600,000
17 28,000 17 10,400,000
18 25,000 18 10,000,000
19 23,000 19 9,300,000
20 20,896 20 8,700,000
21 20,085 21 8,500,000

22 8,300,000
23 8,300,000
24 8,300,000
25 7,300,000
26 7,300,000
27 6,900,000
28 6,800,000
29 6,500,000
30 6,300,000
31 6,000,000
32 5,600,000
33 5,400,000
34 5,400,000
35 5,300,000
36 5,300,000

Earthqake Deaths NOAA Weather Losses
1980-2011Since 1900
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Abbreviations and Notations 
 

ܰ = number of large losses observed in a sample 
 ܰ ேሺܺேሻ = expected value of largest loss in a sample size ofܧ
ܺ = random variable representing a single loss amount; ߠ ൑ ܺ ൑ ܶ 
  ܰ ே = largest observed loss in a sample size ofݔ
 theta, representing the lower threshold of losses = ߠ
ܶ = upper truncation point; loss amounts above this are not considered possible 
 alpha, representing the “shape parameter” of the Pareto distribution = ߙ

 
 


