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Abstract

A central problem for regulators and risk managers concerns the risk assessment
of an aggregate portfolio defined as the sum of d individual dependent risksXi. This
problem is mainly a numerical issue once the joint distribution of (X1, X2, . . . , Xd)
is fully specified. Unfortunately, while the marginal distributions of the risks Xi

are often known, their interaction (dependence) is usually either unknown or only
partially known, implying that any computed risk measure of the portfolio is subject
to model uncertainty.

Previous academic research has focused on the maximum and minimum possible
values of a given risk measure of the portfolio, in the case in which only the marginal
distributions are known. This approach leads to wide bounds, as all information
on the dependence is ignored.

In this paper, we integrate in a natural way available information on the mul-
tivariate dependence and provide easy-to-compute bounds for the risk measure at
hand. We observe that incorporating the information of a well-fitted multivariate
model may, or may not, lead to much tighter bounds, a feature that also depends on
the risk measure used. We illustrate this point by showing that the Value-at-Risk
at a very high confidence level (as used in Basel II) is typically prone to very high
model risk, even if one knows the multivariate distribution almost completely.

Our results make it possible to determine which risk measures can benefit from
adding dependence information (i.e., leading to narrower bounds when used to
assess portfolio risk), and, hence, to identify those models for which it would be
meaningful to develop accurate multivariate models.
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1 Introduction

The risk assessment of high dimensional portfolios (X1, X2, . . . , Xd) is a core issue in
the regulation of financial institutions and in quantitative risk management. In this
regard, one usually attempts to measure the risk of the aggregate portfolio (defined as
the sum of individual risks Xi) using a risk measure (such as the variance or the Value-
at-Risk (VaR)). It is clear that solving this problem is mainly a numerical issue once the
joint distribution of (X1, X2, . . . , Xd) is completely specified. Unfortunately, estimating
a multivariate distribution is a difficult task, and thus the assessment of portfolio risk is
prone to model misspecification (model risk). At present, there is no generally accepted
framework for quantifying model risk. A natural way to do so consists in finding the
minimum and maximum possible values of a chosen risk measure evaluated in a family of
candidate models. For example, Cont (2006) found bounds on prices of contingent claims,
incorporating model risk on the choice of the risk neutral measure used for pricing. In the
same spirit, Kerkhof, Melenberg, and Schumacher (2010) assess model risk in the context
of management of market risk by computing the worst-case VaR across a range of models
chosen based on econometric estimates involving past and present data. A related but
different approach, moreover, can be found in Alexander and Sarabia (2012). These
authors compare VaR estimates of the model actually used with those of a benchmark
model (i.e., the regulatory model) and use the observed deviations to estimate a capital
charge supplement to cover for VaR model risk.

In a recent paper, Embrechts, Puccetti, and Rüschendorf (2013) find bounds on the
VaR of high dimensional portfolios, assuming that marginal distributions of the individual
risks are known (or prone to negligible model risk) and that the dependence structure
(also called the copula) among the risks is not specified or only partially specified. This
assumption is natural, as fitting the marginal distribution of a single riskXi (i = 1, 2, ..., d)
can often be performed in a relatively accurate manner, whereas fitting a multivariate
model for (X1, X2, . . . , Xd) is challenging, even when the number of observations is large.
The bounds derived by Embrechts, Puccetti, and Rüschendorf (2013) are wide, as they
neglect all information on the interaction among the individual risks. In this paper, we
propose to integrate in a natural way the information from a fitted multivariate model.

Standard approaches to estimating a multivariate distribution use a multivariate
Gaussian distribution or a multivariate Student’s t distribution, but there is ample evi-
dence that these models are not always adequate. More precisely, while the multivariate
Gaussian distribution can be suitable as a fit to a dataset “on the whole,” it is usually
a poor choice if one wants to use it to obtain accurate estimates of the probability of
simultaneous extreme (“tail”) events, or, equivalently, if one wants to estimate the VaR
of the aggregate portfolio S =

∑d

i=1 Xi at a given high confidence interval; see McNeil,
Frey, and Embrechts (2010). There is recent literature dealing with the development of
flexible multivariate models that allow a much better fit to the data. However, no model
is perfect, and while such developments are clearly needed for an accurate assessment of
portfolio risk, they are only useful to regulators and risk managers if they are able to
significantly reduce the model risk inherent in risk assessments.

In this paper, we develop a framework that allows practical quantification of model
risk. Our results make it possible to identify risk measures for which additional informa-
tion of a well-fitted multivariate model reduces the model risk significantly, making them
meaningful candidates for use by risk managers and regulators. In particular, we observe
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from numerical experiments that the portfolio VaR at a very high confidence level (as
used in the current Basel regulation) might be prone to such a high level of model risk
that, even if one knows the multivariate distribution nearly perfectly, its range of possible
values remains wide. In fact, one may then not even be able to reduce the model risk as
computed in Embrechts, Puccetti, and Rüschendorf (2013), where no information on the
dependence among the risks is used at all.

The idea pursued in our approach is intuitive and corresponds to real-world situ-
ations. Let us assume that we have observed N d-dimensional vectors of observations
{(x1i, ..., xdi)}i=1,...,N and that a multivariate model has already been fitted to this dataset.
In other words, there is a joint distribution of (X1, X2, ..., Xd) available (benchmark
model). However, we are aware that the model is subject to misspecification, espe-
cially due to lack of data. Hence, we split Rd into two subsets: F will be referred to as
the “fixed” or “trusted” area and U as the “unfixed” or “untrusted”area. U reflects the
area in which the data are not considered trustworthy (rich) enough to conclude that the
fitted model is appropriate (in that area). Note that

R
d = F

⋃
U .

If one has perfect trust in the model, then all observations reside in the “trusted” part
(U = ∅) and there is no model risk. On the contrary, F = ∅ when there is no trust in
the fit of the dependence, which corresponds to the case studied by Embrechts, Puccetti,
and Rüschendorf (2013).

A closely related problem has already been studied for two-dimensional portfolios
(d = 2) when some information on the dependence (copula) is available; see for example,
Tankov (2011); Bernard, Jiang, and Vanduffel (2012) and Bernard, Liu, MacGillivray,
and Zhang (2013). Tankov (2011) uses extreme dependence scenarios to find model-free
bounds for the prices of some bivariate derivatives, whereas Bernard, Boyle, and Van-
duffel (2014) and Bernard, Chen, and Vanduffel (2014) use such scenarios to determine
optimal investment strategies for investors with state-dependent constraints. While both
applications show that finding bounds on copulas in the bivariate case can be of interest,
portfolio risk management involves more than two risks. Unfortunately, finding bounds on
copulas in the general d−dimensional case in the presence of constraints is not only more
difficult but also less useful for risk management applications. The reason is that when
d > 2, in most cases, the worst copula (under constraints) of a vector (X1, X2, ..., Xd) does
not give rise to the highest possible value of the risk measure at hand of S =

∑d

i=1 Xi,
because the marginal distributions also have an impact; see e.g., Bernard, Jiang, and
Wang (2014) for illustrations of this feature.

Hence, in this paper we study bounds for risk measures of the aggregate risk S by
using information on the multivariate joint distribution of its components Xi (which
embeds information on the dependence) rather than using copula information. There are
few papers in the literature that deal explicitly with the presence of (partial) information
on the dependence structure: Rüschendorf (1991), Embrechts and Puccetti (2010) and
Embrechts, Puccetti, and Rüschendorf (2013) consider the situation in which some of
the bivariate distributions are known, Denuit, Genest, and Marceau (1999) study VaR
bounds assuming that the joint distribution of the risks is bounded by some distribution
and Bernard, Rüschendorf, and Vanduffel (2013) compute VaR bounds when the variance
of the sum is known. However, the setup in these papers is often harder to reconcile with
the information that is available in practice; or, it does not make use of all available
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dependence information. Furthermore, while the bounds that are proposed in these
papers might be sharp (attainable), they are often hard to compute numerically, especially
for higher dimensions with inhomogeneous risks. Note also that the bounds obtained do
not always make it possible to strengthen the unconstrained bounds in a significant way,
suggesting that additional dependence information is needed in order to obtain better
bounds; see also Wang and Wang (2011); Embrechts, Puccetti, and Rüschendorf (2013);
Wang, Peng, and Yang (2013) and Bernard, Jiang, and Wang (2014) for related results.

We propose two methods for deriving bounds on risk measures. The first method
is presented in Section 2 and provides bounds that can be computed directly (using,
for instance, Monte Carlo simulations) but that may not be sharp. The second method
(Section 3) is more practical as we provide an algorithm to approximate the sharp bounds,
which can be performed directly using the data at hand (without fitting a model), so that
in this case model risk can be assessed in a fully non-parametric way. This method builds
on the rearrangement algorithm that was recently developed by Puccetti and Rüschendorf
(2012) and further studied by Embrechts, Puccetti, and Rüschendorf (2013). It relies on
a discretized version of the problem described above and uses a matrix representation to
approximate the worst case dependence structures.

We illustrate the theoretical results by various examples and apply both approaches
to assessing the model risk of a portfolio of financial indexes. Our numerical results
indicate that in high dimensions the bounds computed using the direct method in Section
2 are close to the non-parametric bounds as computed in Section 3. In other words,
while finding sharp bounds is theoretically a difficult problem, the numerical illustrations
suggest that the algorithm that we propose in Section 2 leads to nearly sharp bounds. The
numerical results also show that the new bounds typically outperform the (unconstrained)
ones already available in the literature and thus allow for more realistic assessment of
model risk. However, model risk remains a significant concern, especially when using a
risk measure that focuses on “tail type” events, such as the VaR.

2 Bounds for Risk Measures of Portfolios with De-

pendence Uncertainty

Let (X1, X2, ..., Xd) be some random vector of interest. Let F ⊂ R
d and U =R

d\F . We
assume that we know

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., d,

(ii) the distribution of (X1, X2, ..., Xd) | {(X1, X2, ..., Xd) ∈ F}

(iii) and the probability pf := P ((X1, X2, ..., Xd) ∈ F), as well as pu := P ((X1, X2, ..., Xd) ∈
U) = 1− pf .

The joint distribution of (X1, X2, ..., Xd) is thus not completely specified (unless
F =R

d and U = ∅). Consequently, risk measures (e.g., the VaR) of the aggregate sum∑d

i=1 Xi cannot be computed precisely. In fact, there are many vectors (Y1, Y2, ..., Yd)
that agree with (X1, X2, ..., Xd) for the properties (i), (ii) and (iii) but have a different
risk measure of their sum. In this paper, we are interested in finding the extreme possible
values of the risk measure at hand, as the gap between the minimum and the maximum
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can be useful in measuring model risk. Formally, we use in this paper the following def-
inition of model risk. This definition is in the same spirit as in Barrieu and Scandolo
(2013).

Definition 2.1 (Model risk). Let (X1, X2, ..., Xd) be a random vector satisfying (i), (ii)
and (iii) and assume that one uses a (law-invariant) risk measure ρ(·) to assess the risk
of
∑d

i=1 Xi. Define

ρ+F := sup

{
ρ

(
d∑

i=1

Yi

)}
, ρ−F := inf

{
ρ

(
d∑

i=1

Yi

)}

where the supremum and the infimum are taken over all other (joint distributions of)
random vectors (Y1, Y2, ..., Yd) that agree with (i), (ii) and (iii). The model risk that
one underestimates the risk by computing a direct estimate of ρ(

∑
Xi) in some chosen

benchmark model (i.e., when some multivariate distribution for (X1, . . . , Xd) has been
specified) is defined as

ρ+F − ρ(
∑n

i=1 Xi)

ρ+F
(1)

and, similarly, the model risk for overestimation is given as

ρ(
∑n

i=1 Xi)− ρ−F
ρ−F

. (2)

The rest of the paper aims at obtaining the maximum and minimum possible values
ρ+F and ρ−F of ρ(

∑d

i=1 Xi). The recent literature on model risk estimation has dealt mainly
with the case in which there is full uncertainty on the dependence among the risks Xi

(i = 1, 2, ..., d), i.e., when F = ∅. See for example Embrechts, Puccetti, and Rüschendorf
(2013) with respect to VaR and Bernard, Jiang, and Wang (2014) regarding a convex
risk measure. In this paper we consider the case in which information on the dependence
translates into joint distributions that are partially known.

In this respect, it will be useful to consider the indicator variable I corresponding to
the event “(X1, X2, ..., Xd) ∈ F”

I := 1(X1,X2,...,Xd)∈F (3)

so that one can express the probabilities that a random vector takes values in F resp. U
as

pf = P (I = 1) and pu = P (I = 0). (4)

Let us also introduce a standard uniformly distributed random variable U independent
of the event “(X1, X2, ..., Xd) ∈ F” (and thus also independent of I) as well as a random
vector (Z1, Z2, ..., Zd) defined by

Zi = F−1
Xi|(X1,X2,...,Xd)∈U

(U), i = 1, 2, ..., d, (5)

where F−1
Xi|(X1,X2,...,Xd)∈U

denotes the (left) inverse of the distribution function

FXi|(X1,X2,...,Xd)∈U(x) := P (Xi 6 x|(X1, X2, ..., Xd) ∈ U).

Note that F−1
Xi|(X1,X2,...,Xd)∈U

(x) can be computed, as the marginal distribution of Xi is

known and the joint distribution of (X1, X2, ..., Xd) is known on F (see the properties
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(i), (ii) and (iii)). Further, all Zi (i = 1, 2, ..., d) are increasing in the (common) variable
U, and thus (Z1, Z2, ..., Zd) is a comonotonic vector with known joint distribution. Define
also

T := F−1∑
i Xi|(X1,X2,...,Xd)∈F

(U). (6)

Hence, T is a random variable with distribution F∑
i Xi|(X1,X2,...,Xd)∈F(x).

While most of our results hold generally or can be extended in a straightforward way,
we will focus on bounds for the variance, the VaR and the Tail Value-at-Risk (TVaR).
Let us recall their definitions. For p ∈ (0, 1), we denote by VaRp(X) the VaR of X at
level p, or a quantile function at level p,

VaRp (X) = F−1
X (p) = inf {x ∈ R | FX(x) > p} . (7)

By convention, inf{∅} = ∞ and inf{R} = −∞, so that VaRp(X) is properly defined by
(7) for all p ∈ [0, 1]. Furthermore, TVaRp(X) denotes the Tail Value-at-Risk (TVaR) at
level p

TVaRp(X) =
1

1− p

∫ 1

p

VaRu(X)du, p ∈ (0, 1) .

Observe that p → TVaRp is continuous. We define TVaR1(X) = limpր1TVaRp(X).
TVaRp is a weighted average of all upper VaRs from probability level p onwards. Similarly,
we define the left Tail Value-at-Risk (LTVaR) at level p as LTVaRp(X) = 1

p

∫ p

0
VaRu(X)du

and LTVaR0(X) = LTVaR0+(X).

2.1 Bounds on Variance

In this section, we derive easy-to-compute upper and lower bounds for commonly used
risk measures of a portfolio sum

∑d

i=1 Xi. We start with the variance.

Proposition 2.2 (Bounds on the variance of
∑d

i=1 Xi). Let (X1, X2, ..., Xd) be a random
vector that satisfies properties (i), (ii) and (iii), and let I and (Z1, Z2, ..., Zd) be defined
as in (3) and (5). We have:

var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

E(Zi)

)
6 var

(
d∑

i=1

Xi

)
6 var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi

)
.

The proof of Proposition 2.2 is provided in Appendix A.

The stated upper and lower bounds in Proposition 2.2 are intuitive. When com-
puting the variance of the portfolio sum

∑d

i=1 Xi, one needs to consider the events

(X1, X2, ..., Xd) ∈ F and (X1, X2, ..., Xd) ∈ U separately. The distribution of
∑d

i=1 Xi is
known on the event {(X1, X2, ..., Xd) ∈ F} , but unknown on the event {(X1, X2, ..., Xd) ∈ U}.
On U , one then substitutes sum

∑
i Xi by the constant

∑
i E(Zi) (to compute the lower

bound and thus to minimize variance) and by the comonotonic sum
∑

i Zi (to compute
the upper bound and thus to maximize variance). Note in particular that when U = ∅,
the upper bound is equal to the lower bound and there is no model risk.

The upper and lower bounds for the variance in Proposition 2.2 can be computed by
numerical integration or by Monte Carlo simulation. If the number of dimensions d is
high then it is clear that the best approach to computing the theoretical bounds is to
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use Monte Carlo techniques (using simulations from the fitted multidimensional model
on F). We illustrate Proposition 2.2 with an example. In this respect, it is appropriate
to use the standard deviation as the risk measure and not the variance (it is clear that
in this instance the bounds are the square roots of those presented in Proposition 2.2).
Doing so makes it possible to compare fairly the results of this example with those of
subsequent examples that use TVaR or VaR as the risk measure.

Example 2.3 (multivariate normal distribution as a benchmark model). Assume that
(X1, ..., Xd) is a random vector with standard normally distributed marginals. Further-
more, the joint distribution of (X1, ..., Xd) is assumed to be a multivariate standard
normal distribution with correlation parameter1 ρ on the subset F := [qβ, q1−β]

d ⊂ R
d

(for some β < 50%), where qγ denotes the quantile of the standard normal random vari-
able at probability level γ. In Table 1, we assume that d = 20, and we provide the upper
and lower bounds for the standard deviation of the portfolio sum for various confidence
levels β and correlation levels ρ. The first column (β = 0%) provides results for cases
in which there is no uncertainty on the multivariate distribution; as such, it provides a
benchmark for assessing model risk (see Definition 2.1). The last column (β = 50%)
provides bounds for cases in which there is full uncertainty on the dependence; as such,
it corresponds to the situation that is traditionally studied in the literature.

One observes from Table 1 that the impact of model risk on the standard devia-
tion can be substantial even when the joint distribution (X1, ..., Xd) is almost perfectly
known, i.e., when β is close to zero (pu is close to 0). Consider for instance β = 0.05%
and ρ = 0. In this case, pu = 1 − 0.99920 ≈ 0.02, and we find that using a multivariate
normal assumption (as the benchmark) might underestimate the standard deviation by
(5.65-4.47)/4.47=26.4% and overestimate it by (4.47-4.4)/4.4=1.6%. It thus seems that
the assumption of multivariate normality is not particularly robust against misspecifi-
cation. Here, in fact, it clearly gives rise to a situation in which one is more likely to
underestimate risk than to overestimate it. Furthermore, the example shows that adding
some partial information on the dependence (i.e., when β < 50%) can change the un-
constrained bounds (case in which β = 50%) and confirms that dependence is important
when assessing the risk of a portfolio. For instance, when β = 0.5% and ρ = 0, one
has that pu = 1 − 0.9920 ≈ 0.18 and the unconstrained upper bound for the standard
deviation shrinks by approximately 50% (from 20 to 10.6).

U = ∅ U = R
d

F = [qβ, q1−β]
d β = 0% β = 0.05% β = 0.5% β = 5% β = 50%

ρ = 0 4.47 (4.4 , 5.65) (3.89 , 10.6) (1.23 , 19.3) (0 , 20)
ρ = 0.1 7.62 (7.41 , 8.26) (6.23 , 11.7) (1.69 , 19.2) (0 , 20)
ρ = 0.5 14.5 (13.8 , 14.6) (11.1 , 15.4) (3.74 , 18.6) (0 , 20)

Table 1: In the first column we report the standard deviation of
∑20

i=1 Xi under the
assumption of multivariate normality (no dependence uncertainty, i.e., U = ∅). Lower
and upper bounds of the standard deviation of

∑20
i=1 Xi are reported as pairs (ρ−F , ρ

+
F)

for various confidence levels β. We use 3,000,000 simulations. All digits reported in the
table are significant.

1A multivariate standard normal distribution with correlation coefficient ρ is such that the pairwise
correlation is ρ for all pairs (Xi, Xj) with i 6= j.
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In Table 2 we report, for the levels of correlation ρ and confidence levels β used in Table
1, the probability pu that (X1, ..., Xd) takes values outside the d−cube F = [qβ, q1−β]

d.
Doing so allows us to better interpret the results of Table 1 and will also be useful in
understanding the effect of the choice of another design for the trusted area F .

U = ∅ U = R
d

pu β = 0% β = 0.05% β = 0.5% β = 5% β = 50%
ρ = 0 0 0.02 0.18 0.88 1
ρ = 0.1 0 0.02 0.18 0.87 1
ρ = 0.5 0 0.016 0.12 0.66 1

Table 2: Probability pu that (X1, ..., Xd) takes values outside the d−cube [qβ, q1−β]
d, for

a confidence level β and a correlation coefficient ρ. We use 3,000,000 simulations.

In the above example, the trusted area is based solely on the use of the marginal
densities, N(0, 1). More generally, assume that marginal densities have been fitted to

empirical densities f̂i for i = 1, ..., d, respectively. Then, F is defined as

F :=
{
(x1i, ..., xdi) ∈ R

d / ∀j ∈ {1, 2, ..., d}, f̂j(xji) > ε
}
. (8)

In the case that the rare events correspond to either the largest or the smallest outcomes
of the risks, this approach is consistent with the use of a d-cube as trusted area.

Another natural criterion by which to determine the trusted part of the multivariate
distribution consists in starting from a given fitted multivariate density f̂ (coming for
instance from a multivariate Gaussian model, a multivariate Student model or a Pair-
Copula Construction model (Aas, Czado, Frigessi, and Bakken (2009); Czado (2010))).
The trusted area is then based on the contour levels of the density,

F :=
{
(x1i, ..., xdi) ∈ R

d / f̂(x1i, ..., xdi) > ε
}
. (9)

The above example amounts to considering a trusted area F defined using the contours
of the multivariate normal distribution (which are ellipsoids). Let us denote by χ2(pf , d)
the quantile at level pf of a χ2 distribution with d degrees of freedom. It is then well-
known that P ((X1, X2, ..., Xd) ∈ F) = pf where F is the d−dimensional elliptical disk
given as

F = Cpf :=
{
X := (x1, x2, ..., xd) / (X− µ)tΣ−1(X− µ) < χ2(pf , d)

}
. (10)

We computed bounds as in Table 1, but we do now for F determined by the contour of
level pu (varying pu from 0 to 1 instead of varying β from 0 to 1). We do not report these
results in a table, but instead draw the bounds in Figure 1.On the x-axis, we plot the
probability pu that P ((X1, X2, ..., Xd) ∈ U). Full trust is obtained with pu = 0, in which
case there is no model risk. The graph shows that the model risk for an underestimation
of the standard deviation is more pronounced than for an overestimation. Note, indeed,
that the distance between the estimate (respectively 4.47 for ρ = 0 and 7.62 for ρ = 0.1)
and the upper bound ρ+F is larger than the distance between the estimate and the lower
bound ρ−F . These observations are also intuitive, as the standard deviation is sensitive to
high outcomes and these scenarios occur frequently when considering the upper bound
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(as the tail events are then assumed to be fully correlated). All in all, the numerical
results are very similar to those obtained in Table 1, and there is little difference whether
one uses a d−cube or a d−dimensional elliptical area as trusted area.
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Figure 1: Bounds on standard deviation when the trusted area is Cpf as a function of pu
and for the correlation coefficients ρ = 0 (blue curves) and ρ = 0.1 (red curves).

2.2 Bounds on TVaR

Next, we discuss bounds for the TVaR.

Proposition 2.4 (Bounds on the TVaR of
∑d

i=1 Xi). Let (X1, X2, ..., Xd) be a random
vector that satisfies properties (i), (ii) and (iii), and let I and (Z1, Z2, ..., Zd) as defined
in (3) and (5). We have that

TVaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

E(Zi)

)
6 TVaRp

(
d∑

i=1

Xi

)
6 TVaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi

)
.

There is no model risk (the bounds reduce to the same value) when U = ∅. We now
use the same illustrative example for the variance and compute the stated bounds using
Monte Carlo simulations.

Example 2.5 (multivariate normal distribution as a benchmark model). Table 3 provides
for various levels of probability level p, confidence level β, and correlation ρ the bounds
on TVaR. The results are in line with those of the previous example. Model risk is
already present for small levels of β, but at the same time the availability of dependence
information (β < 50%) allows for strengthening the unconstrained bounds (β = 50%)
significantly. Interestingly, the degree of model risk also depends on the interplay between
the probability level p used to assess the TVaR and the degree of uncertainty on the
dependence as measured by β. When p is large (e.g., p = 99.5%), a small proportion of
model uncertainty (e.g., β = 0.05%) appears to have a tremendous effect on the model risk
of underestimation. We can explain this observation as follows. The TVaR is essentially
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measuring the average of all upper VaRs and its level is thus driven mainly by scenarios in
which one or more outcomes of the risks involved are high. These scenarios, however, are
not considered as trustworthy for depicting the (tail) dependence with negative impact
on the level of the TVaR. In fact, for a given level of p the model risk of underestimation
increases sharply with an increase in the level of β and approaches its maximum already
for small to moderate values of β. This effect is further emphasized when the level of
p increases. In other words, the TVaR is highly vulnerable to model misspecification,
especially when it is assessed at high probability levels.

U = ∅ U = R
d

F = [qβ, q1−β ]
d β = 0% β = 0.05% β = 0.5% β = 5% β = 50%

ρ = 0 9.21 (9.12 , 11.6 ) (8.49 , 27.5) (3.36 , 41.3) ( -0.002 , 41.3)
p = 95% ρ = 0.1 15.7 (15.4 , 17.3) (13.5 , 28.4) (4.72 , 41.3) ( 0.004 , 41.3)

ρ = 0.5 29.9 (28.1 , 30.5) (22.9 , 34.0) (10.0 , 41.3) ( -0.002 , 41.3)

ρ = 0 12.9 (12.8 , 30.4) (12.1 , 57.9) (7.52 , 57.9) ( -0.004 , 57.9)
p = 99.5% ρ = 0.1 22 (21.5 , 33.3) (19.0 , 57.8) (10.0 , 57.9) ( -0.002 , 57.9)

ρ = 0.5 42 (37.4 , 47.6) (29.6 , 57.9) (15.2 , 57.9) ( 0.019 , 57.9)

Table 3: TVaR95% and TVaR99.5% of
∑20

i=1 Xi are reported in the absence of uncertainty
(multivariate standard normal model with U = ∅). Bounds are then given for various
levels of confidence β, correlation ρ and probability p. Bounds are obtained based on
3,000,000 simulations. All digits reported are significant.

Similarly to the case of the standard deviation, one can also use a trusted area that
is based on the contours of the multivariate normal distribution in order to assess the
upper and lower bounds. As the results are similar, we do not report them in detail.

Remark 2.6 (Generalization). Note that the upper and lower bounds for the variance
(standard deviation) and the TVaR display similar forms (Propositions 2.2 and 2.4, re-
mark 2.7 when d = 2). In fact, both risk measures are consistent with the so-called
convex order, and one can show that for all risk measures ρ that are consistent with this
order the bounds have the same structure. In particular, this feature holds for all concave
distortion risk measures. Further details are provided in the Appendix, in the proofs of
Propositions 2.2 and 2.4.

Remark 2.7 (Bounds on copulas). Propositions 2.2 and 2.4 are stated in the general case
of a d-dimensional problem. We are able, in Proposition 2.2, to exhibit the dependence
structure such that the upper bound is sharp. For the lower bound, given that the lower
Fréchet bound exists for d = 2, it is straightforward to construct a sharp bound by using
the antimonotonic dependence. In fact, for all risk measures ρ that are consistent with
convex order,

ρ (I(X1 +X2) + (1− I)(A1 + A2)) 6 ρ (X1 +X2) 6 ρ (I(X1 +X2) + (1− I)(Z1 + Z2)) ,

where A1 = Z1 and A2 = F−1
X2|(X1,X2)∈U

(1− U) for the same U as defined earlier. Hence,
for d = 2 the lower bound in Proposition 2.2 is sharp if and only if A1 + A2 is constant,
which is not usually the case. However, we will show further in this paper that in
high dimensions the lower bounds can be expected to be nearly sharp. Our approach
is connected to the work of Tankov (2011). This author provides (for the case in which
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d = 2) the pointwise minimum and maximum over all dependence structures (copulas)
such that the joint distribution is fixed on some compact F of [0, 1]2. Generally, the
bounds obtained from Tankov (2011) are not copulas but quasi-copulas, and thus they
lead to non-sharp bounds for ρ (X1 +X2). Our setting does not require assumptions
regarding the compactness of F and generates sharp upper bounds and nearly sharp
lower ones. Importantly, the results in Tankov (2011) and extensions of Bernard, Jiang,
and Vanduffel (2012) and Bernard, Liu, MacGillivray, and Zhang (2013) are restricted
to d = 2, whereas our approach holds for general d, making it suitable for application in
portfolio risk management.

2.3 Bounds on VaR

VaR s a widely used risk measure in financial services. The following proposition provides
bounds on VaR.

Proposition 2.8 (VaR bounds for
∑d

i=1 Xi). Let (X1, X2, ..., Xd) be a random vector
that satisfies properties (i), (ii) and (iii), and let I, (Z1, Z2, ..., Zd) and U be defined as
in (3) and (5). Define the variables Li and Hi as

Li = LTVaRU (Zi) and Hi = TVaRU (Zi)

and let

Mp := VaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Hi

)
, mp := VaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Li

)
.

Bounds on the VaR of the aggregate risk are given as

mp 6 VaRp

(
d∑

i=1

Xi

)
6 Mp. (11)

The proof is provided in Appendix A.3. Initially, the appearance of variables Li and
Hi may seem somewhat odd. However, note that the variables Zi, which played crucial
roles in Propositions 2.2 and 2.4, can also be expressed as Zi = V aRU (Zi) , and here we
merely use TV aRU (Zi) and LTV aRU (Zi) instead. Thus, Proposition 2.8 has a similar
form2 to that of Proposition 2.4 resp. 2.2, but the bounds proposed are usually not
sharp.3 We observe that in the case of no uncertainty (i.e., U = ∅) there is no model
risk, as I = 1. When there is full uncertainty, i.e., U = R

d, then I = 0, and we are
returned to the unconstrained lower bound on the VaR of a portfolio given in Theorem
2.1 of Bernard, Rüschendorf, and Vanduffel (2013). Note also that the VaR bounds are
not sharp in general.

For practical calculations it might be convenient to use an alternative formulation of
the stated VaR bounds. To this end, we make use of a lemma that is of interest on its
own. In particular, it provides the inspiration for designing, in Section 3, an algorithm
that makes it possible to approximate sharp upper and lower bounds for the portfolio
VaR (see Section 3.1).

2Note that VaR is not consistent with convex order, although there are some connections (see Bernard,
Rüschendorf, and Vanduffel (2013) and Bernard, Jiang, and Vanduffel (2012)). Hence Remark 2.6 does
not apply.

3Note, indeed, that the variables Hi and Li are not distributed as (Xi|I =0).
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Lemma 2.9 (Computing VaR). Consider a sum S = IX+ (1−I)Y, where I is a Bernoulli
distributed random variable with parameter pf and where the components X and Y are
independent of I. Define α∗ ∈ [0, 1] by

α∗ := inf

{
α ∈ (0, 1) | ∃β ∈ (0, 1)

{ pfα + (1− pf )β = p
VaRα(X) > VaRβ(Y )

}

and let β∗ =
p−pfα∗

1−pf
∈ [0, 1]. Then, for p ∈ (0, 1) ,

VaRp(S) = max {VaRα∗
(X),VaRβ∗

(Y )} . (12)

The proof is provided in Appendix A.4. It is clear that in many cases4 VaRα∗
(X) =

VaRβ∗
(Y ). Using Lemma 2.9, we are now ready to generate other (more explicit) expres-

sions for the upper bound Mp and the lower bound mp.

Proposition 2.10 (Alternative formulation of the VaR bounds). Let (X1, X2, ..., Xd) be
a random vector that satisfies properties (i), (ii) and (iii), and let I, (Z1, Z2, ..., Zd) and
T be defined as in (3), (5) and (6). Recall that pf = P (I = 1). Define

α∗ := inf

{
α ∈ (α1, α2) | VaRα(T ) > TVaR p−pfα

1−pf

(
d∑

i=1

Zi

)}
,

where α1 = max
{
0,

p+pf−1

pf

}
and α2 = min

{
1, p

pf

}
. Then, for p ∈ (0, 1) ,

Mp =





TVaR p−pfα∗

1−pf

(∑d

i=1 Zi

)
if

p+pf−1

pf
< α∗ <

p

pf

VaRα∗
(T ) if α∗ =

p

pf

max

{
VaRα∗

(T ),TVaR p−pfα∗

1−pf

(∑d

i=1 Zi

)}
if α∗ =

p+pf−1

pf
.

(13)

The expressions for the lower bound mp are obtained by replacing, in the above state-
ments,“TVaR” with “LTVaR.”

The proof of Proposition 2.10 is provided in Appendix A.4.

Illustration: We illustrate the proposition in a discrete setting, in which the probability
space Ω has N states. Assume that the event {(X1, ..., Xd) ∈ F} corresponds to the
set {ω1, ..., ωℓf}, whereas {(X1, ..., Xd) /∈ F} corresponds to the set {ωℓf+1, ..., ωℓf+ℓu}
with ℓf + ℓu = N (N is the number of states). Then, pf =

ℓf
N

and pu = ℓu
N
. Assume

that
∑d

i=1 Zi takes ℓu values s̃1 > s̃2 > ... > s̃ℓu , and that T then takes ℓf values
s1 > s2 > ... > sℓf . Specifically, assume N = 8, ℓf = 3, ℓu = 5, s1 = 8 > s2 = 8 > s3 = 3
and s̃1 = 10 > s̃2 = 7 > s̃3 = 4 > s̃4 = 3 > s̃5 = 1, pf = 3/8 and pu = 5/8. For p = 5/8,
we apply (13) in Proposition 2.10 and find that α∗ = 0.75 and that the maximum VaRp

is equal to TV aR0.55(
∑

Zi) = 8. This value is illustrated in Figure 2.

Note that TVaR is continuous. When max
{
0,

p−pf
1−pf

}
< β∗ < min

{
1, p

1−pf

}
, then

there are two possible cases illustrated by Panel A and Panel B of Figure 2.

4For example, it is sufficient that the distribution functions of X and Y are strictly increasing with
unbounded support. See also the proof for more cases.
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Figure 2: V aRα and TV aRβ(α) for α ∈ (0, 1)

Note that the setting of this illustration will also be used in the following section
to discuss a non-parametric approach to computing bounds. Next, we assess the VaR
bounds when the benchmark model is a multivariate normal distribution.

Example 2.11 (Multivariate normal distribution as a benchmark model). The VaR
bounds reported in Table 4 were obtained within a few minutes, using 3,000,000 Monte
Carlo simulations. We make the following observations. First, model risk is clearly
present even when the dependence is “mostly” known (i.e., β is small). Furthermore, the
precise degree of model error depends highly on the level of the probability p that is used
to assess the VaR. Let us consider the benchmark model with ρ = 0 (the risks are inde-
pendent and standard normally distributed) and β = 0% (no uncertainty). We find that
VaR95%

(∑20
i=1 Xi

)
=

√
20Φ−1(95%) = 7.35 and, similarly, VaR99.5%

(∑20
i=1 Xi

)
= 11.5,

VaR99.95%

(∑20
i=1 Xi

)
= 14.7. However, if β = 0.05%, then pu ≈ 0.02, and the benchmark

model might underestimate the 95%−VaR by (8.08-7.36)/8.08=8.9% or overestimate it
by (7.36-7.27)/7.27=1.24%. However, when using the 99.5%−VaR, the degree of un-
derestimation may rise to (30.4-11.5)/30.4=62.2%, whereas the degree of overestimation
is equal only to (11.5-11.4)/11.4=0.9%. Hence, the risk of underestimation is sharply
increasing in the probability level that is used to assess VaR.

Finally, note that when very high probability levels are used in VaR calculations
(p = 99.95%; see the last three rows in Table 4), the constrained upper bounds are
very close to the unconstrained upper bound, even when there is almost no uncertainty
on the dependence (β = 0.05%). The bounds computed by Embrechts, Puccetti, and
Rüschendorf (2013) are thus nearly the best possible bounds, even though it seems that
the multivariate model is known at a very high confidence level. This implies that any
effort to accurately fit a multivariate model will not reduce the model risk on the risk
measure (and the capital requirement).

Note that when no information on the dependence is available (β = 50%) the upper
and lower bounds stated in Proposition 2.8 reduce to

∑d

i=1 TVaRp (Xi) and
∑d

i=1 LTVaRp (Xi),
respectively, and coincide with the lower bound A and upper bound B, given by Bernard,
Rüschendorf, and Vanduffel (2013). Using their formulas for A and B, we find that the
bounds on the VaRp of sums of 20 independent N (0, 1) risks are

A = −20
φ(Φ−1(p))

p
, B = 20

φ(Φ−1(p))

1− p
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and we observe that one obtains consistency with the bounds reported in Table 4. For
example, when p = 95%, we find that (A,B) = (−2.17, 41.25), which conforms with the
numbers in Table 4.

U = ∅ U = R
d

F = [qβ , q1−β ]
d β = 0% β = 0.05% β = 0.5% β = 5% β = 0.5

p=95% ρ = 0 7.36 ( 7.27 , 8.08 ) ( 6.65 , 27.5 ) ( 0.79 , 41.3 ) ( -2.17 , 41.3 )
p=95% ρ = 0.1 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( 1.51 , 41.2 ) ( -2.17 , 41.3 )
p=95% ρ = 0.5 23.8 ( 22.9 , 24.2 ) ( 18.9 , 30.9 ) ( 6.97 , 41.2 ) ( -2.17 , 41.3 )

p=99.5% ρ = 0 11.5 ( 11.4 , 30.4 ) ( 10.8 , 57.8 ) ( 6.13 , 57.8 ) ( -0.29 , 57.8 )
p=99.5% ρ = 0.1 19.6 ( 19.1 , 31.4 ) ( 16.9 , 57.8 ) ( 8.23 , 57.8 ) ( -0.29 , 57.8 )
p=99.5% ρ = 0.5 37.4 ( 34.3 , 45.1 ) ( 27.4 , 57.8 ) ( 13.5 , 57.8 ) ( -0.29 , 57.8 )

p=99.95% ρ = 0 14.7 ( 14.6 , 71.0 ) ( 13.8 , 71.1 ) ( 9.31 , 71.1 ) ( -0.036 , 71.1 )
p=99.95% ρ = 0.1 25.1 ( 24.2 , 71.1 ) ( 21.5 , 71.1 ) ( 12.1 , 71.1 ) ( -0.035 , 71.1 )
p=99.95% ρ = 0.5 47.7 ( 41.3 , 71.1 ) ( 32.3 , 71.1 ) ( 17.2 , 71.1 ) ( -0.036 , 71.1 )

Table 4: VaR95%, VaR99.5% and VaR99.95% of
∑20

i=1 Xi are reported in the absence of
uncertainty (multivariate standard normal model with U = ∅). Bounds are then given
for various levels of confidence β, correlation ρ and probability p. We use 3, 000, 000
simulations and all digits reported are significant.

2.4 Further Discussion on Model Risk

Let us consider again a random vector (X1, ..., Xd) having standard normally distributed
marginals all correlated with a coefficient of 10% (benchmark). We now focus on the
model risk for underestimation and overestimation; that is, we consider the quantities

ρ+F − ρ(
∑

i Xi)

ρ+F
and

ρ−F − ρ(
∑

i Xi)

ρ−F
, (14)

which were introduced in Section 2 (Definition 2.1 and expressions (1) and (2)). The
risk measure ρ(·) is the VaR and the TVaR, and, for the trusted area F , we consider the
elliptical contours as in (10) such that P ((X1, ..., Xd) ∈ F) = pf .

In Figure 3, we represent the risk of underestimating and overestimating VaR and
TVaR, respectively, at various probability levels p using the risk measures (14) for model
risk. From Figure 3, we observe that a slight misspecification of the model already
leads to a potentially significant underestimation of VaR and TVaR. By contrast, the
risk of overestimating appears to be less pronounced. We can explain these observations
as follows. In the benchmark model, the risks Xi (i = 1, 2, ..., d) are assumed to be
multivariate normally distributed, with a correlation coefficient of only 10%. However, in
the presence of uncertainty the risks are assumed to be fully dependent in the untrusted
area U when calculating the upper bound on TVaR and to behave as a constant when
calculating the lower bound (the portfolio sum is thus also constant in this instance).
The latter situation is closer to the one that is present in the benchmark model, and
therefore the risk of overestimating TVaR is relatively small. Conversely, the risk of
underestimation is rather significant. The same pattern holds true for the bounds on
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Figure 3: We assume that (X1, X2, ...X20) is a multivariate standard distribution with
pair correlation ρ = 0.1. Let pf = 90%. We show the model risk for overestimating or
underestimating VaRp and TVaRp as a function of p.

VaR, as these are based on the TVaR of a comonotonic sum and thus differ from the VaR
under the benchmark model (risks have low correlation).

We also observe that when the probability level p is high, the model risk of under-
estimating VaR appears to be larger than the model risk of underestimating TVaR. We
can explain this remarkable feature as follows. For p sufficiently large (as compared to
1− pu), the worst VaR and the worst TVaR of the portfolio sum are both based on the
untrusted scenarios, as the very largest outcomes for the portfolio sum usually correspond
to the untrusted scenarios. Hence, in this case, the worst VaR and the worst TVaR tend
to be close to each other.5 However, the difference between the modeled TVaR and the
modeled VaR, naturally, remains strictly positive. The two effects together imply that
the model risk of underestimating VaR is more significant than the risk of underestimat-
ing TVaR when p is very large. The example thus suggests that VaR is more sensitive
to model risk than TVaR. It also illustrates that a model may provide a good fit for the
data on the whole but still not be suitable for estimating VaR at high probability levels.

3 Approximating Sharp Bounds

A bound on a risk measure is “sharp” if there exists a dependence structure among the
risks such that this bound is attained. In this section we discuss the sharpness of upper
and lower bounds for the three risk measures considered in the previous section.

5Puccetti and Rüschendorf (2012) show that under mild conditions that for a given set of scenarios
the worst Value-at-Risk behaves asymptotically as the worst TVaR.
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3.1 Sharpness of the Bounds

Variance and TVaR: Some of the bounds stated in Propositions 2.2 and 2.4 can be
sharp. In particular, the upper bounds for the variance and for the TVaR stated in
Propositions 2.2 and 2.4 are sharp, without further conditions. Note, indeed, that the
multivariate vector

(IX1 + (1− I)Z1, IX2 + (1− I)Z2, ..., IXd + (1− I)Zd) (15)

satisfies conditions (i), (ii) and (iii). In contrast, the stated lower bounds may not be
sharp because IXi + (1 − I)E(Zi) is usually not distributed with Fi (i = 1, 2, ..., d). In
order to get close to the stated lower bounds, one should try to modify the dependence of
the vector (Z1, Z2, ..., Zd) such that Z1 + Z2 + ...+ Zd becomes constant (and thus equal
to E(Z1) +E(Z2) + ...+E(Zd)). We use this insight to propose an algorithm below that
makes it possible to approximate the sharp bounds when the risk measure used is the
standard deviation or the TVaR.

VaR: Recall from the discussion of Proposition 2.8 that the stated upper and lower
VaR bounds are not sharp in general. Nevertheless, thanks to Lemma 2.9, we are able to
propose an algorithm to approximate sharp bounds. We explain this idea further. Hence,
let p ∈ (0, 1) and let us observe that, almost surely,

I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi 6 I

d∑

i=1

Xi + (1− I)
d∑

i=1

Hi.

In particular, from Lemma 2.9, for all α, β in [0, 1] such that pfα + (1− pf )β = p,

max

{
VaRα(T ),VaRβ

(
d∑

i=1

Zi

)}
6 Mp = max

{
VaRα∗

(T ),TVaRβ∗

(
d∑

i=1

Zi

)}
(16)

where α∗ is defined as in Proposition 2.10 (consistent with Lemma 2.9) and β∗ =
p−pfα∗

1−pf
.

The critical issue is to choose α and β, as well as a dependence between the components
of the (comonotonic) vector (Z1, Z2, ..., Zd), such that the inequality (16) turns into an
equality. Such an equality is clearly obtained when taking β = β∗ (thus α∗ = α) and a
dependence in the vector (Z1, Z2, ..., Zd) such that

VaRβ∗

(
d∑

i=1

Zi

)
= TVaRβ∗

(
d∑

i=1

Zi

)
. (17)

Hence, the best approximation for the sharp bound for VaRp

(∑d

i=1 Xi

)
is likely to occur

when the quantile (VaR) function of the
∑d

i=1 Zi can be made (nearly) flat on [β∗, 1].
In cases in which this feature cannot be (nearly) obtained, it cannot be excluded that
better approximations can be found (for example, if the quantile function

∑d

i=1 Zi can
be made flat on another interval [β, 1] in which β is close to β∗). Similar reasoning shows
that in order to reach the stated lower bound as closely as possible one should make
the quantile function of the portfolio sum as flat as possible on the interval [0, β∗]. We
build on this idea to propose a practical algorithm to approximate sharp bounds in the
following section.
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3.2 Approximations

We have N observations of the d-dimensional vector (xi1, xi2, ..., xid) for i = 1, ..., N. De-
note by M = (xij) the corresponding N × d matrix. These N observations may simply
be N observed data vectors or N simulated vector values obtained from a fitted multi-
variate distribution of (X1, X2, ..., Xd). In both cases, each observation (xi1, xi2, ..., xid)
occurs with probability 1

N
naturally (possibly involving repetitions). We assume that

the matrix M contains enough data to allow for an accurate description of the marginal
distributions of Xk (k = 1, 2, ..., d) so that the matrix M can effectively be seen as a
representation of the random vector of interest (X1, X2, ..., Xd). Define SN by SN(i) =∑d

k=1 xik for (i = 1, 2, ..., N). In other words, SN can be seen as a random variable that
takes the value SN(i) in “state” i for i = 1, 2, ..., N. In general, it might be difficult to
find sharp bounds for risk measures of S =

∑
i Xi. The purpose of what follows is to deal

with this problem using the “sampled” counterpart SN of S, rather than S itself.

As before, we suppose that the joint distribution of (X1, X2, ..., Xd) is not completely
specified. In the context of the matrix representation M for the vector (X1, X2, ..., Xd),
we assume that the matrix M is effectively split into two parts. There is a submatrix
FN of trusted observations (xi1, xi2..., xid) and UN consists of the rest of the observations.
In the sequel, the set FN will be referred to as the “fixed” or “trusted” part and UN as
the “untrusted” part. In the case in which one has perfect trust in all observations, the
“untrusted” part contains no elements (UN = ∅) and SN can be used to assess the risk
of S. By contrast, if one has no trust in the observed dependence, then FN = ∅. In this
case, the observations (xi1, xi2, ..., xid) are useful only in modelling marginal distributions
Fk (k = 1, 2, ..., d) and do not allow for conclusions regarding the dependence. It is then
important to observe that rearranging the values xik (i = 1, 2, ..., N) within the k−th
column does not affect the empirical marginal distribution of Xk but only changes the
observed dependence (“interaction between elements of different columns”).

Let us denote by ℓf the number of elements in FN and by ℓu the number of elements
in UN , such that

N = ℓf + ℓu.

Without loss of generality, it is convenient to modify the matrix M by changing the
order of the rows so that the “trusted area” corresponds to the ℓf first rows and the
untrusted area corresponds to the last ones. By doing so, we have only reallocated the
states i = 1, 2, ..., N, without impact on the adequacy of M to describe the distributional
(law-invariant) properties of (X1, X2, ..., Xd). Similarly, as per definition of the submatrix
UN , we are allowed to rearrange the values within the columns of UN (and thus within the
corresponding parts of M), as this operation generates a new matrix that is considered as
trustworthy as the initial one (note, indeed, that we do not know the dependence between
the Xi, conditionally on (X1, X2, ..., Xd) ∈ U). Without loss of generality, we can thus
always assume that the matrix UN depicts a comonotonic dependence (in each column,
the values are sorted in decreasing order, that is, such that xm1k > xm2k > ... > xmℓuk

for
all k = 1, 2, ..., d). Finally, for FN (and thus also for the corresponding part of XN) we
can assume that the ℓf observations (xij1, xij2...xijd) appear in such a way that for the
sums of the components, i.e., sj := xij1 + xij2 + ... + xijd ( j = 1, 2, ..., ℓf ), it holds that
s1 >s2 >...> sℓf .

From now on, without any loss of generality, the observed data points are reported in
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the following matrix M

M =




xi11 xi12 ... xi1d

xi21 xi22 ... xi2d

...
...

...
...

xiℓf 1
xiℓf 2

... xiℓf d

xm11 xm12 ... xm1d

xm21 xm22 ... xm2d

...
...

...
...

xmℓu1
xmℓu2

... xmℓud




, (18)

where the gray area reflects FN and the white area reflects UN . The corresponding
vectors Sf

N and Su
N consist of sums of the components for each observation in the trusted

(respectively untrusted) part:

[
S
f
N

Su
N

]
=




s1
s2
...
sℓf

s̃1 := xm11 + xm12 + ...+ xm1d

s̃2 := xm21 + xm22 + ...+ xm2d

...
s̃ℓu := xmℓu1

+ xmℓu2
+ ...+ xmℓud




. (19)

While s1 >s2 >...> sℓf are trusted, the sums s̃i change when the choice of dependence in
UN is varied. In fact, the set {i1, ..., iℓf} can be seen as the collection of states (scenarios) in
which the corresponding observations are trusted, whereas the set {m1, ...,mℓu} provides
the states in which there is doubt with respect to the dependence structure.

For pedagogical purposes, we now provide a simple example of this setup. It will be
used throughout the paper to illustrate each algorithm that we propose. This toy example
is not meant to represent a realistic set of observations since, in true applications, there
would be a large number of observations (here N = 8) and possibly a large number of
variables (here d = 3). The eight observations are given as follows, with three observations
trusted (ℓf = 3), which appear in the gray area of the matrix:




3 4 1
1 1 1
0 3 2
0 2 1
2 4 2
3 0 1
1 1 2
4 2 3




. (20)

Without loss of generality, we can then consider for further analysis the following matrix
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M and the vectors of sums Sf
N and Su

N , as follows:

M =




3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1




, Sf
N =




8
8
3


 , Su

N =




10
7
4
3
1



. (21)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8
values), one also has the following representation of SN :

SN = ISf
N + (1− I)Su

N , (22)

where I =1 if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used previously (see Definition 6 and Proposition
2.10), whereas Su

N is a comonotonic sum and corresponds to the sampled version of∑d

i=1 Zi. In this paper, we aim at finding worst-case dependences allowing for a robust
risk assessment of the portfolio sum S (SN). This amounts to rearranging the outcomes in
the columns of the untrusted part UN such that the risk measure at hand for SN becomes
maximized (resp. minimized).

3.3 Bounds on Standard Deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have already initialized a comonotonic struc-
ture (without loss of generality), and the corresponding values of the sums are exactly
the values s̃i (i = 1, 2, ..., ℓu) reported for Su

N in (19). The upper bound on variance is
then computed as

1

N




ℓf∑

i=1

(si − s̄)2 +
ℓu∑

i=1

(s̃i − s̄)2


 , (23)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N




ℓf∑

i=1

si +
ℓu∑

i=1

s̃i


 . (24)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must

be as close as possible to each other; ideally, Su
N must be constant. In this regard, the

concept of complete mixability appears as a theoretical device. “Complete mixability”
refers to the dependence structure that makes the sum Su

N constant (Wang and Wang
(2011)). To make this the case, in practice, we apply the rearrangement algorithm (RA)
of Embrechts, Puccetti, and Rüschendorf (2013) to the matrix UN (untrusted part) to
render it as close as possible to the complete mixability condition. For completeness, the
algorithm is presented in Appendix B of this paper. Denote by s̃mi the corresponding
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values of the sums of Su
N after applying the RA. We then compute the minimum variance

as follows:

1

N




ℓf∑

i=1

(si − s̄)2 +
ℓu∑

i=1

(s̃mi − s̄)2


 , (25)

where s̄ is computed as in (24).

We illustrate the upper and lower bounds (23) and (25) for the variance derived
above with the matrix M of observations provided in (21). We then use the comonotonic
structure for the untrusted part of the matrix M and compute the vectors of sums Sf

N

and Su
N as defined above in (21). The average sum is s̄ = 5.5. The maximum variance is

equal to

1

8

(
3∑

i=1

(si − s̄)2 +
5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75.

For the lower bound, we apply the RA to the UN and we obtain

M =




3 4 1
2 4 2
0 2 1
1 1 3
0 3 2
1 2 2
3 1 1
4 0 1




, Sf
N =




8
8
3


 , Su

N =




5
5
5
5
5



. (26)

With an average sum s̄ = 5.5, the minimum variance can be calculated as

1

8

(
3∑

i=1

(si − s̄)2 +
5∑

i=1

(s̃mi − s̄)2

)
≈ 2.5.

3.4 Bounds on TVaR

Assume that we want to compute the TVaR at probability level p, so that, for ease of
exposition,

k := N(1− p), (27)

where k is an integer. Similarly to the case of maximizing the variance, it follows from
Proposition 2.4 that in order to obtain the maximum TVaR one needs a comonotonic
scenario on UN . Hence, we merely need to select the k highest values from Sf

N and Su
N as

computed in (19). Let us label these values by s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order),

and we can then easily compute the maximum TVaR at probability level p. Also, the
minimum TVaR is obtained similarly to the minimum variance. First, apply the RA to
the untrusted part of the matrix UN to render the variance of the (new) sum Su

N as small
as possible. Then, select the k highest values out of Sf

N and Su
N , say: s

∗
1,s

∗
2,...,s

∗
k (ranked

in decreasing order) and compute the minimum TVaR.

Let us consider the previous example again. Let us choose p = 5/8, so that k = 3.
The highest k = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67).
After application of the RA, we obtain (26) for Su

N and thus the highest three outcomes
that we observe for Su

N and Sf
N are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7.
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3.5 Bounds on VaR

To compute the maximum VaR, we present an algorithm that can be applied directly
to the matrix M of the observed data, and thus leads to non-parametric bounds on the
VaR. Recall that the first ℓf rows of matrix M correspond to FN , whereas ℓu denotes the

number of rows of UN (N = ℓf + ℓu). In the algorithm, we also make use of Sf
N and Su

N ,
which we treat as random variables. We compute the VaR at probability level p, so that,
for ease of exposition, k := N(1− p), where we assume that k is an integer.

The algorithm is based on Proposition 2.10 and is further inspired by the motivation
provided in subsection 3.1. Here, Sf

N plays the role of T and Su
N plays the role of

∑d

i=1 Zi

(see also (22)). Without loss of generality, assume that Sf
N takes values s1 > s2 > ... > sℓf .

Algorithm for computing the maximum VaR

1. Recall that pf =
ℓf
N
. Compute m1 := max{0, ℓf − k} (so that α1 = m1

ℓf
=

max{0, p+pf−1

pf
}) and m2 := min{ℓf , N − k} (then α2 =

m2

ℓf
= min{1, p

pf
}).

2. Compute α∗ where

α∗ := inf

{
α ∈ (α1, α2) | VaRα(S

f
N) > TVaR p−pfα

1−pf

(Su
N)

}
.

3. Apply the RA to the first ⌊(1− β∗)ℓu⌋ rows of the untrusted part UN of the matrix
M, where β∗ =

p−pfα∗

1−pf
and where ⌊·⌋ denotes the floor of a number. Observe that

⌊(1− β∗)ℓu⌋ = k +m∗ − ℓf where m∗ := ⌊α∗ℓf⌋ and note that m1 6 m∗ 6 m2.

4. By abuse of notation, denote the rearranged sums in the untrusted part as Su
N .

This is the dependence that potentially achieves the maximum VaR by making
TV aR ℓu−b∗

ℓu

(Su
N) as close as possible to V aR ℓu−b∗

ℓu

(Su
N). To compute this maximum

possible VaR, calculate all (row) sums for UN and FN and sort them from maximum
to minimum value, s̃1 > s̃2 > ... > s̃k > ... > s̃N . Then, the VaR is s̃k.

The above algorithm is a quick way to derive potentially attainable bounds for VaR of
the aggregate risk. It requires running the rearrangement algorithm only once. However,
as the RA will rarely generate a perfectly constant sum on the area where it is applied, it
is possible that a better bound might be obtained by applying Step 3 to the first k+m−ℓf
rows of the UN for some other m ( m1 6 m 6 m2).

We now illustrate the algorithm for obtaining the maximum VaR in the example with
d = 3, N = 8, k = 3 with the same matrix M given in (21) so that ℓf = 3 and ℓu = 5.
In this case, α∗ = 0.75 (as illustrated in Panel A of Figure 2 and as discussed in the
preceding section), so the theoretical maximum VaR is equal to TVaR p−pfα∗

1−pf

= 8. In the

algorithm, m∗ = ⌊α∗ℓf⌋ = ⌊2.25⌋ = 2 and the maximum VaR is obtained for m∗ = 2
(that is, by applying the RA to the first k+m∗− ℓf = 2 rows of the untrusted portion of
the matrix). By going through all possible values of m, we show below that this is indeed
the optimal value.

We find for the minimum and maximum value for m that m1 = max(0, 0) = 0 and
m2 = min(3, 8− 3) = 3, so that the number of rows to which one can consider applying
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the RA is between 0 and 3, as k +m1 − ℓf = 0 and k +m2 − ℓf = 3. The first VaR that
we compute by taking three rows of Su

N (m+ k− ℓf = 3 with m = 3) is equal to VaR=7:

M =




3 4 1
0 2 1
2 4 2
1 3 3
3 2 2
4 1 2



, Sf

N =




8
8
3


 , Su

N =




7
7
7


 .

The second value is equal to VaR=8 (m + k − ℓf = 2 with m = 2) and is already the
maximum possible value:

M =




3 4 1
0 2 1
2 4 2
3 3 3
4 2 2



, Sf

N =




8
8
3


 , Su

N =

[
9
10

]
.

Indeed, one more iteration (m = 1) will not change the value of the VaR, and two more
iterations (m = 0) will lead to a lower number.

The algorithm for computing the minimum VaR is similar to that for the maximum,
where TVaR is replaced by LTVaR to compute α∗. It can be found in Appendix C.

4 Application to a Portfolio

We illustrate the results in the paper in order to discuss the model risk of an investment
portfolio. The portfolio we consider consists of five blue chips, namely 3M (MMM), Bank
of America (BAC), Alcoa (AA), American Express (AXP) and General Electric (GE).
Let X1, X2, ... X5 denote their respective daily returns. Using Yahoo Finance, we built
a history of daily returns from Oct. 1, 1986 to Sept. 20, 2013, i.e., 6,807 observations in
total. We summarize the characteristics of the observed returns for the stocks involved.
In this respect, we report the annualized standard deviation (obtained by multiplying the
daily standard deviation by

√
252).

MMM AA BAC AXP GE
X1 X2 X3 X4 X5

daily mean 0.56 10−3 0.45 10−3 0.63 10−3 0.70 10−3 0.58 10−3

daily stdev 0.0152 0.0238 0.0273 0.0234 0.0184
annualized stdev 24.1% 37.7% 43.3% 37.1% 29.2%

Table 5: Summary statistics

We assume that the portfolio is always equally invested in the five stocks. Hence, the
daily return of the portfolio can be computed as

S =
X1 +X2 + ...+X5

5
.
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We are interested in assessing the risk (standard deviation, TVaR and VaR) of the port-
folio return S. To this end, it is more convenient to work with the variable L := −S.
To estimate the (benchmark) standard deviation, VaR and TVaR we make use of the
collected data in a straightforward way. Next, we use the results and the algorithms
described above to assess the upper and lower bounds on these estimates. For example,
the observed portfolio has an estimated annualized volatility of 26.42%. In the presence of
full uncertainty (pu = 100%) on the dependence (the stock returns are all comonotonic),
we observe that the annualized volatility becomes 34.14%, which provides an absolute
upper bound on the volatility. Note that the portfolio presented here thus contains risks
that are already highly dependent, as the distance between the observed volatility and
the maximum volatility is small.
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Figure 4: Panel A: Bounds on standard deviation (volatility): The lower bound is com-
puted either by Proposition 2.2 or by the algorithm described in Section 3.3. Panel B:
Bounds on TVaR of L = −S at 95%: The lower bound is computed either by Proposition
2.4 or by the algorithm described in Section 3.4. Panel C: Bounds on VaR of L = −S
at 95%: The lower bound is computed either by Proposition 2.10 or by the algorithm
described in Section 3.5.

Let us next compute upper and lower bounds for the different risk measures by varying
the level of the pu. It is clear that, as the initial situation represents risks that are already
highly dependent, the maximum bounds on standard deviation, VaR and TVaR are closer
to the observed ones (assuming that there is no uncertainty on the dependence) than are
the minimum bounds. In line with the observations made in Section 2.4 we see that
when p becomes large (as compared to 1− pu), the worst VaR and TVaR tend to match
each other. Consequently, the risk of underestimating the VaR is higher than the risk
of underestimating the TVaR. The results suggest that a regulation based on VaR at
lower probability levels (say 90%) would be more robust to model misspecification than a
regulation based on VaR at the high confidence level p = 99.5% (i.e., the current situation
under Solvency II and Basel III).

5 Final Remarks

Recent turbulent events such as the subprime crisis, have increased the pressure on reg-
ulators and financial institutions to carefully reconsider risk models and to understand
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the extent to which the outcomes of risk assessments based on these models are robust
with respect to changes in the underlying assumptions.

The measurement of model risk may be considered reasonably under control when
only the marginal distributions are assumed to be known (unconstrained bounds); see
Embrechts, Puccetti, and Rüschendorf (2013). However, these bounds are wide, as they
ignore the (partial) information on dependence that might be available. In this paper,
we integrate in a natural way information on the multivariate structure. We assume that
the marginal distributions are known while the joint model is only partially known (on
some subset F). We design a data-driven algorithm that approximates sharp bounds,
and numerical illustrations show that these bounds correspond closely to the easy-to-
compute bounds that we derived in the first section, and thus that they are nearly sharp
in practical situations.

Our approach may lead to bounds that are significantly tighter than the (uncon-
strained) ones available in the literature, accounting for the available information coming
from a multivariate fitted model and allowing for a more realistic assessment of model
risk. However, model risk remains a significant concern and we recommend caution re-
garding regulation based on VaR at a very high confidence level since such an assessment
is unable to benefit from careful risk management attempts to fit a multivariate model.
We remark that it could be of interest to consider also a “global” constraint, in addition
to the constraints (i), (ii) and (iii) (see Section 2), to sharpen the bounds further. A nat-
ural global statistic on the distribution of the aggregate risk is the variance and it would
be relatively easy to extend our study by using techniques similar to those employed in
Bernard, Rüschendorf, and Vanduffel (2013) to account for a maximum possible variance
of the aggregate portfolio.

Finally, the following comments and considerations may be interesting for further
research. In the paper, we do not study how to optimally choose the trusted area F ;
rather, we provide two ways to do so. The first way is based solely on the use of the
marginal densities, as in (8), and typically reduces the trusted area to a d dimensional
cube. The other criterion, in (9), is based on the contours of a given fitted multivariate

density f̂ (deriving, for instance, from a multivariate Gaussian model, a multivariate
Student model or a Pair-Copula Construction model (Aas, Czado, Frigessi, and Bakken
(2009), Czado (2010))). We leave it for future research to determine which criterion is
best to define the “trusted area”. The difficulty here resides in finding an appropriate
measure for the observed “density” of data points that is able to accurately reflect the
level of trust that one can have in a fitted model.

If there is a lack of data and yet one believes in the marginal distributions that have
been fitted, then it is possible to improve the efficiency of the algorithm by re-discretizing
using the fitted marginal f̂i. The idea is simple: in the “trusted” part, one repeats the
same observations k times and, in the “untrusted part,”one discretizes so that there are
k times more observations. Then, one applies to the new matrix the algorithms that are
described in this paper. This is carried out in the same spirit as bootstrapping.

Finally, in the paper we assume that the marginal distributions are fixed and known.
To capture the possible uncertainty of the marginal distributions one might consider
amplifying their tails. For example, a distortion (Wang transform) could be applied

when re-discretizing (instead of using f̂i).
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A Proofs

A.1 Proof of Proposition 2.2

It is well-known that for any vector (Y1, Y2, ..., Yd) and any convex function v(x), it holds
that

E

(
v

(
d∑

i=1

Yi

))
6 E

(
v

(
d∑

i=1

F−1
Yi

(U)

))
, (28)

where U is a uniformly distributed random variable on (0, 1); see Meilijson and Nádas
(1979). A simple conditioning argument and taking into account Jensen’s inequality then
shows that for all convex functions v(x),

E

(
v

(
d∑

i=1

(IXi + (1− I)E(Zi))

))
6 E

(
v

(
d∑

i=1

Xi

))
6 E

(
v

(
d∑

i=1

(IXi + (1− I)Zi)

))
.

Since v(x) = x2 is convex and all sums involved in the above inequality have the same
first moment, the stated result follows. �

A.2 Proof of Proposition 2.4

The proof is immediate by the fact that TVaRp(X) 6TVaRp(Y ) for all 0 < p < 1 if and
only if E(v(X)) 6 E(v(Y )) for all convex functions v(·).

In fact, the ordering result in the proposition holds for any risk measure that respects
convex order, and the variance and TVaR are merely two particular examples. An impor-
tant family of risk measures for which the ordering result holds is the family of concave
distortion risk measures (which contains the TVaR). �

A.3 Proof of Proposition 2.8

For a given random vector (X1, X2, ..., Xd) satisfying properties (i), (ii) and (iii), there
exists a certain vector (Y1, Y2, ...Yd) with marginals Yi that have the same distribution as
Zi such that

d∑

i=1

Xi =d

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Yi

)
.

As per definition of the VaR, it follows for all p ∈ (0, 1),

VaRp

(
d∑

i=1

Xi

)
= inf

{
x ∈ R | pfF(∑d

i=1 Xi|I=1)(x) + (1− pf )F∑d
i=1 Yi

(x) > p
}
, (29)

where pf := P (I =1). Note that for all p ∈ (0, 1),

F−1
∑d

i=1 Yi
(p) 6 TVaRp

(
d∑

i=1

Yi

)
6 TVaRp

(
d∑

i=1

Zi

)
,
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where the second inequality follows from the fact that the Zi are comonotonic (while
having the same distribution as the Yi). Thus,

F−1
∑d

i=1 Yi
(U) 6 R := TVaRU(

d∑

i=1

Zi) a.s.

which can be also written in terms of their cdf. Therefore, for all x ∈ R,

F∑d
i=1 Yi

(x) > FR(x). (30)

From (30) it follows that

VaRp

(
d∑

i=1

Xi

)
6 inf

{
x ∈ R | pfF(∑d

i=1 Xi|I=1)(x) + (1− pf )FR(x) > p
}
.

We observe that the right-hand side of the above equation is by definition the VaR of a
sum of mutually exclusive variables, it follows that

VaRp

(
d∑

i=1

Xi

)
6 VaRp

(
I

d∑

i=1

Xi + (1− I)TV aRU

(
d∑

i=1

Zi

))

= VaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Hi

)
,

where the last equality follows from the fact that TVaR is additive for the comonotonic
sum

∑d

i=1 Zi. The proof for the lower bound is similar and omitted. �

A.4 Proof of Lemma 2.9 and Proposition 2.10

Proof of Lemma 2.9 Denote by F (x) and G(x) the distributions of X resp. Y. Since
X and Y are independent of I we find for the distribution of S = IX+ (1− I)Y,

FS(x) = pfF (x) + puG(x) x ∈ R.

Let p ∈ (0, 1) and denote VaRp (S) by sp,

sp = inf {x ∈ R | pfF (x) + puG(x) > p} .

In what follows, when considering α, β ∈ (0, 1) we always assume that they satisfy pfα+
(1− pf )β = p. Note that we define α∗ as

α∗ := inf {α ∈ (0, 1) | ∃β ∈ (0, 1) / pfα + (1− pf )β = p and VaRα(X) > VaRβ(Y )}
(31)

and β∗ =
p−pfα∗

1−pf
. The proof consists in verifying that sp can always be expressed as

sp = max {VaRα∗
(X),VaRβ∗

(Y )} . (32)

To this end, we compute sp by distinguishing the 4 following cases for F (·) and for
G(·) :
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Case 1: F is continuous in sp and for all z < sp, F (z) < F (sp)
Case 2: F is continuous in sp and there exists z < sp, F (z) = F (sp)
Case 3: F is discontinuous in sp and for all z < sp, F (z) < F (s−p )
Case 4: F is discontinuous in sp and there exists z < sp, F (z) = F (s−p )
Case a: G is continuous in sp and for all z < sp, G(z) < G(sp)
Case b: G is continuous in sp and there exists z < sp, G(z) = G(sp)
Case c: G is discontinuous in sp and for all z < sp, G(z) < G(s−p )
Case d: G is discontinuous in sp and there exists z < sp, G(z) = G(s−p )

We have summarized the computations of sp in Table 6. From Table 6, it is clear that
(32) is proved. Let us now make the calculations case by case.

— (a) (b) (c) (d)

(1)

α∗ = F (sp)
β∗ = G(sp)
sp = V aRα∗

(X)
sp = V aRβ∗

(Y )

α∗ = F (sp)
β∗ = G(sp)
sp = V aRα∗

(X)
sp > V aRβ∗

(Y )

α∗ = F (sp)
sp = V aRα∗

(X)
sp = V aRβ∗

(Y )

α∗ = F (sp)
if FS(s

−
p ) < p,

sp = V aRα∗
(X)

sp = V aRβ∗
(Y )

if FS(s
−
p ) = p,

sp = V aRα∗
(X)

sp > V aRβ∗
(Y )

(2)

α∗ = F (sp)
β∗ = G(sp)
sp = V aRβ∗

(Y )
sp > V aRα∗

(X)

Impossible
α∗ = F (sp)
sp = V aRβ∗

(Y )
sp > V aRα∗

(X)

α∗ = F (sp)
sp = V aRβ∗

(Y )
sp > V aRα∗

(X)

(3)
β∗ = G(sp)
sp = V aRα∗

(X)
sp = V aRβ∗

(Y )

β∗ = G(sp)
sp = V aRα∗

(X)
sp > V aRβ∗

(Y )

sp = V aRα∗
(X)

sp = V aRβ∗
(Y )

if FS(s
−
p ) < p,

sp = V aRα∗
(X)

sp = V aRβ∗
(Y )

if FS(s
−
p ) = p,

sp = V aRα∗
(X)

sp > V aRβ∗
(Y )

(4)

β∗ = G(sp)
if FS(s

−
p ) < p,

sp = V aRβ∗
(Y )

sp = V aRα∗
(X)

if FS(s
−
p ) = p,

sp = V aRβ∗
(Y )

sp > V aRα∗
(X)

β∗ = G(sp)
sp = V aRα∗

(X)
sp > V aRβ∗

(Y )

if FS(s
−
p ) < p,

sp = V aRα∗
(X)

sp = V aRβ∗
(Y )

if FS(s
−
p ) = p,

sp = V aRβ∗
(Y )

sp > V aRα∗
(X)

Impossible

Table 6: Summary of all cases for the VaR of a mixture where sp = V aRp(S). In all

cases, α∗ is defined as (31) and β∗ =
p−pfα∗

1−pf
6 G(sp), α∗ =

p−(1−pf )β∗

pf
> F (sp).

Case 1: F is continuous in sp and for all z < sp, F (z) < F (sp)

In this case we always have that sp = VaRF (sp)(X). Hence, we only need to show that

α∗ = F (sp) (i.e. β∗ =
p−pfF (sp)

1−pf
) and that sp = VaRα∗

(X) > VaRβ∗
(Y ) as in this case

(32) will obviously hold.

Since V aRp(S) = sp then FS(s
−
p ) = pfF (s−p ) + puG(s−p ) 6 p 6 FS(sp) = pfF (sp) +
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puG(sp). Thus, by continuity of F , pfF (sp) + puG(s−p ) 6 p 6 pfF (sp) + puG(sp). Thus,

G(s−p ) 6
p− pfF (sp)

1− pf
6 G(sp) (33)

(1a): G is continuous in sp and for all z < sp, G(z) < G(sp). Then, sp = VaRG(sp)(Y ). It
is also clear that for α < F (sp) and thus β > G(sp), one has that VaRα(X) < VaRβ(Y ).
Hence, as per definition of α∗, one has α∗ = F (sp), β∗ = G(sp) and sp = VaRα∗

(X) =
VaRβ∗

(Y ).

(1b): G is continuous in sp and there exists z < sp, G(z) = G(sp) (thus, G is constant
on the interval (z, sp)). Then, VaRG(sp)(Y ) < sp = VaRF (sp)(X). However, for α < F (sp)
and thus β > G(sp), one has that VaRα(X) < VaRβ(Y ). Hence, as per definition of α∗,
α∗ = F (sp), β∗ = G(sp) and sp = VaRα∗

(X) > VaRβ∗
(Y ). Thus, sp = V aRα∗

(X) >
VaRβ∗

(Y ).

(1c): G has a discontinuity in sp and for all z < sp, G(z) < G(s−p ). From (33), in

this case, VaR p−pfF (sp)

1−pf

(Y ) = sp. For α < F (sp) and thus β >
p−pfF (sp)

1−pf
, VaRα(X) <

VaRβ(Y ). Hence, as per definition of α∗, α∗ = F (sp), β∗ =
p−pfF (sp)

1−pf
and sp = VaRα∗

(X) =

VaRβ∗
(Y ).

(1d): G has a discontinuity in sp and there exists z < sp, G(z) = G(s−p ) so that G is
constant on some interval (r, sp) with r < sp. From (33),

VaR p−pfF (sp)

1−pf

(Y ) 6 sp.

If
p−pfF (sp)

1−pf
> G(s−p ) (or equivalently, FS(s

−
p ) < p), then VaR p−pfF (sp)

1−pf

(Y ) = VaRF (sp)(X) =

sp. Clearly, for α < F (sp) and thus β >
p−pfF (sp)

1−pf
, one has that VaRα(X) < VaRβ(Y ).

Hence, as per definition of α∗, one has α∗ = F (sp), β∗ =
p−pfF (sp)

1−pf
and sp = VaRα∗

(X) =

VaRβ∗
(Y ). If

p−pfF (sp)

1−pf
= G(s−p ) (or equivalently, FS(s

−
p ) = p), then this implies that

VaR p−pfF (sp)

1−pf

(Y ) < sp. When α < F (sp) thus β >
p−pfF (sp)

1−pf
one has that VaRα(X) <

VaRβ(Y ) 6 sp. Hence, as per definition of α∗, one has α∗ = F (sp), β∗ =
p−pfF (sp)

1−pf
and

sp = VaRα∗
(X) > VaRβ∗

(Y ).

Case 2: F is continuous in sp and there is a z < sp, F (z) = F (sp) (F (·) is constant on (z, sp))

(2a): this case can be obtained from (1b) by changing the role of X and Y .

(2b): G is continuous in sp and there exists z < sp, G(z) = G(sp). Thus G is constant
on some interval (r, sp) with r < sp. Hence, V aRp(S) 6 min(z, z) < sp which contradicts
the definition of sp = V aRp(S). The case (2b) is impossible.

(2c): G is discontinuous in sp and for all z < sp, G(z) < G(s−p ). From (33), in this case,

VaR p−pfF (sp)

1−pf

(Y ) = sp > VaRF (sp)(X). However, for all α > F (sp) and thus β <
p−pfF (sp)

1−pf

it holds that VaRα(X) > VaRβ(Y ). Hence, as per definition of α∗, α∗ = F (sp), β∗ =
p−pfF (sp)

1−pf
and sp = VaRβ∗

(Y ) > VaRα∗
(X).

(2d): G is discontinuous in sp and there exists z < sp, G(z) = G(s−p ). From (33),

VaR p−pfF (sp)

1−pf

(Y ) 6 sp. If
p−pfF (sp)

1−pf
> G(s−p ) (or equivalently, FS(s

−
p ) < p), then VaR p−pfF (sp)

1−pf

(Y ) =
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sp > VaRF (sp)(X). For α > F (sp) and thus β <
p−pfF (sp)

1−pf
one has that VaRα(X) >

VaRβ(Y ). Hence, as per definition of α∗, α∗ = F (sp), β∗ =
p−pfF (sp)

1−pf
and VaRα∗

(X) <

VaRβ∗
(Y ) = sp. The case that

p−pfF (sp)

1−pf
= G(s−p ) is excluded as it implies that VaRp(S) <

sp should hold (similar to the case (2b)) which is a contradiction with the definition of
sp.

Case 3: F has a discontinuity in sp and for all z < sp, F (z) < F (s−p )

In this case, sp = VaRF (sp)(X). This situation is merely identical to previous cases.

(3a): it is the same as (1c) by changing the role of X and Y .

(3b): it is the same as (2d) by changing the role of X and Y .

(3c): Observe that V aRα(X) = sp for all F (s−p ) 6 α 6 F (sp) and also that V aRβ(Y ) =
sp for all G(s−p ) 6 β 6 G(sp).

We also know that FS(s
−
p ) 6 p 6 FS(sp) hence there exists F (s−p ) 6 α1 6 F (sp)

and G(s−p ) 6 β1 6 G(sp) so that pfα1 + puβ1 = p and V aRα1(X) = V aRβ1(Y ) = sp.
Therefore, V aRα∗

(X) = V aRβ∗
(Y ) = sp.

(3d): Observe that V aRα(X) = sp for all F (s−p ) 6 α 6 F (sp) and also that
V aRβ(Y ) = sp for all G(s−p ) < β 6 G(sp).

We also know that FS(s
−
p ) 6 p 6 FS(sp) and there are two possibilities:

In the case when FS(s
−
p ) < p, then there exists α1 ∈ (F (s−p ), F (sp)) and β1 ∈

(G(s−p ), G(sp)) so that pfα1 + puβ1 = p and V aRα1(X) = V aRβ1(Y ) = sp. Therefore,
V aRα∗

(X) = V aRβ∗
(Y ) = sp.

In the case when FS(s
−
p ) = p, then pfF (s−p ) + puG(s−p ) = p and one has that

V aRF (s−p )(X) > V aRG(s−p )∗
(Y ), while for α < F (s−p ) and β > G(s−p ) one has that

V aRα(X) < V aRβ(Y ). Hence, α∗ = F (s−p ), G(s−p ) = β∗ and sp = V aRα∗
(X) >

V aRβ∗
(Y ).

Case 4: F has a discontinuity in sp and there exists z < sp, F (z) = F (s−p )

By changing the role of X and Y we have that the case (4a) corresponds to (1d), the case
(4b) corresponds to (2d) and the case (4c) corresponds to (3d). Finally the case of (4d)
is treated as follows. In the case (4d), both F and G are discontinuous at sp, and there
exists z1 and z2 such that F (z1) = F (sp) and G(z2) = G(sp) so that F is constant on
(z1, sp) and G is constant on (z2, sp). Then V aRp(S) 6 min(z1, z2) < sp which contradicts
the definition of sp = V aRp(S). This case is thus impossible. �

Proof of Proposition 2.10 The proof follows as a direct application of Lemma 2.9.
Consider X = T with distribution F , and Y =

∑d

i=1 TV aRU(Zi) with distribution G.
From Lemma 2.9,

Mp = max {VaRα∗
(T ),TVaRβ∗

(Y )} . (34)

It is clear that the df G of Y is continuous and strictly increasing on its support. Let
0 < G(Mp) < 1. By inspection of the Table in proof of Lemma 2.9 we are in the situation
of the cases (1a), (1b), (1c) and (1d). We observe that β∗ = G(Mp) and

Mp = VaR
β∗
(Y ) = VaR

β∗

(
TV aRU

(
d∑

i=1

Zi

))
= TV aRβ∗

(
∑

i

Zi

)
. (35)

Thus, for all 0 < β∗ < 1, or, equivalently,
p+pf−1

pf
< α∗ < p

pf
one has that Mp =
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TV aRβ∗
(
∑

i Zi). When G(Mp) = 0, we are always in the cases (1b), (3b) and (4b) so
that Mp = VaRα∗

(T ) with β∗ = 0 and α∗ =
p

pf
. (this is also clear from the fact that in this

case V aR0 (Y ) = −∞). When G(Mp) = 1, we are either in the cases (1b), (3b) and (4b)
or in the cases (1a), (2a), (3a) and (4a ). In the first situation, it follows from inspection of
the table again thatMp = VaRα∗

(T ) with α∗ =
p

pf
and note that VaRα∗

(T ) > VaR1(Y )(=

TV aR1 (
∑

i Zi)) . In the second situation, one always has VaRβ∗
(Y ) > VaRα∗

(T ) with

β∗ = 1 and α∗ =
p−pf
1−pf

. Hence, one concludes that if G(Mp) = 1, then Mp = VaRα∗
(T )

with α∗ =
p−pf
1−pf

unless VaR1(Y ) > VaR p

pf

(T ) in which case, Mp = TV aR1 (
∑

i Zi).

The proof of the expression for mp follows by applying Lemma 2.9 again, where we

now take Y as Y =
∑d

i=1 LTV aRU(Zi). �

B Rearrangement Algorithm of Embrechts, Puccetti,

and Rüschendorf (2013)

The rearrangement algorithm (RA) can be seen as a method to construct dependence
between the variables Xj (j = 1, 2, . . . , d), such that the distribution of the variance of
the sum S = X1 + ... + Xd is as small as possible (more generally, the sum becomes as
small as possible in convex order).

Assume that the variables Xj are discretized and take n values put in a matrix A
randomly:

A =




x11 x12 ... x1d

x21 x22 ... x2d
...

...
...

...
xn1 xn2 ... xnd


 .

Recall that we do not change the respective marginal distributions of Xj, j = 1, 2, ..., d
by rearranging the outcomes within a column but only the dependence between the Xjs.

Rearrangement algorithm

1. For i from 2 to d, Make the ith column anti-monotonic with the sum of the other
columns.

2. Start again from column 1, and make it anti-monotonic with the sum of the columns
from 2 to d.

At each step of this algorithm, we make column j anti-monotonic, so that the columns,
say Xj before rearranging and X̃j after rearranging verify obviously:

var(
d∑

i=1

Xi) > var(
d∑

i=1

X̃j).

Indeed

var(
d∑

i=1

Xi) = var(Xj +
∑

i 6=j

Xi)
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and its minimum when Xj is anti-monotonic with
∑

i 6=j Xi. At each step of the algorithm

the variance decreases,6 it is bounded from below (by 0) and thus converges. If it gets
to 0, we have found a perfect mixability situation in which the dependence makes the
sum constant. Otherwise the algorithm will converge to a local minimum. There is no
guarantee that this minimum is the minimum of the variance of the sum optimized over
all dependence structure, this minimum may depend on the starting point. However, in
practice it turns out to converge very fast and to approximate the situation of complete
mixability in a few iterations. It works remarkably well for the case of homogeneous
portfolio or close distributions among the Xj.

This algorithm was successfully used to compute (approximate) VaR bounds on the
sum of n dependent risks with given marginal distributions by Embrechts, Puccetti, and
Rüschendorf (2013) by applying the RA to the largest rows of the matrix that depicts
the comonotonic structure between the risks.

In the paper we make use of it on submatrices throughout algorithms to obtain the
minimum variance, minimum TVaR and bounds on VaR.

C Algorithm for Computing the Minimum VaR

1. Compute m1 and m2, as in Step 1 in the algorithm for the maximum VaR (see 3.5).

2. Compute α∗ where

α∗ := inf

{
α ∈ (α1, α2) | VaRα(S

f
N) > LTVaR p−pfα

1−pf

(Su
N)

}
.

3. Apply the RA to the last ⌈β∗ℓu⌉ rows of the untrusted part UN of the matrix M,
where β∗ =

p−pfα∗

1−pf
and where ⌈·⌉ denotes that we take the ceiling. Observe that

⌈β∗ℓu⌉ = ℓu − (k + m∗ − ℓf ) = N − k − m∗, where m∗ := ⌈α∗ℓf⌉, and note that
m1 6 m∗ 6 m2.

4. If m∗ > m1. Apply the RA the last b∗ := N−k−m∗ rows of the untrusted part UN

of the matrix M. By abuse of notation, denote the rearranged sums in the untrusted
part as Su

N . This is the dependence that potentially achieves the minimum VaR by
making LTV aR ℓu−b∗

ℓu

(Su
N) as close as possible to V aR ℓu−b∗

ℓu

(Su
N). To compute this

minimum possible VaR, calculate all (row) sums for UN and FN and sort them from
maximum to minimum value, s̃1 > s̃2 > ... > s̃k > ... > s̃N . Then, the VaR is s̃k.

Illustration of the algorithm for obtaining minimum VaR in the example with d = 3,
N = 8, k = 3 with the same matrix M given in (21). In this case, α∗ = 1.3 > α1, so that
when applying Proposition 2.10, the theoretical minimum VaR is equal to LTVaR p−pfα∗

1−pf

=

3.75. In the algorithm, m∗ = ⌈α∗ℓf⌉ = ⌈0.12⌉ = 1 and the minimum VaR is likely (but
not certain) to be obtained for m∗ = 1 (which corresponds to applying the RA to the last
N − k−m∗ = 4 rows of the untrusted matrix). One can show that m∗ = 1 is the optimal
value, indeed, by applying Step 3 to the last N − k −m rows of the UN for m1 6 m 6

m2.

6Note that the situation in which all the columns are antimonotonic with the sum of all others is an
obvious necessary condition to have a dependence structure that minimizes the variance.
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Indeed, we first apply the RA on the last two rows of the UN (case m = 3 = m2, so
that N−k−m = 2 rows on the UN will be rearranged), which yields a rearranged matrix
and the corresponding sums S̃ :

[
1 0 1
0 1 1

]
, S̃ =

[
2
2

]
.

The sums are now {8, 8, 3, 2, 2, 10, 7, 4}, so that the first VaR is equal to VaR = 7 (as the
4th largest value).

Next, we apply the RA to the last three rows of the UN (case m = 2, so that N − k−
m = 8− 3− 2 = 3 rows on the UN are rearranged), which gives:




1 1 1
1 1 1
0 0 2


 , S̃ =




3
3
2


 .

The sums are now {8, 8, 3, 3, 3, 2, 10, 7}, so that the second VaR is equal to VaR = 7 (as
the 4th largest value).

Applying the RA to the last four rows of UN (corresponding to the case m = 1) gives
rise to: 



3 0 1
1 1 1
1 1 2
0 2 2


 , S̃ =




4
3
4
4


 .

The sums are now {8, 8, 3, 4, 4, 4, 3, 10} so that the third VaR is equal to VaR = 4 (as the
4th largest value); it is smaller than the others so we keep it.

The last step consists of applying the RA to the five rows of the UN (case m = 0),
which we have already done when computing the minimum variance and the minimum
TVaR. We find that the sums are now {8, 8, 3, 5, 5, 5, 5, 5}, so that the VaR computed is
VaR = 5 (as the 4th largest value). This value is larger than in the previous case, and we
cannot improve the VaR obtained previously.
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