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GROUPED MULTIVARIATE AND FUNCTIONAL TIME SERIES FORECASTING:

AN APPLICATION TO ANNUITY PRICING

Han Lin Shang∗ and Steven Haberman

Abstract

Age-specific mortality rates are often disaggregated by different attributes, such as sex, state,

ethnic group and socioeconomic status. In making social policies and pricing annuities at national

and sub-national levels, not only is it important to forecast mortality accurately, but also, forecasts

at sub-national levels should add up to the forecasts at the national level. This motivates recent

developments of grouped functional time series methods (Shang, Han and Rob Hyndman., 2017)

to reconcile age-specific mortality forecasts. We extend these grouped functional time series

forecasting methods to multivariate time series and apply them to produce point forecasts of

mortality rates at older ages, from which fixed-term annuities for different ages and maturities

can be priced. Using the regional age-specific mortality rates in Japan obtained from the Japanese

Mortality Database, we investigate the one-step-ahead to 15-step-ahead point forecast accuracy

between the independent and grouped forecasting methods. The grouped forecasting methods are

shown not only to be useful for reconciling forecasts of age-specific mortality rates at national and

sub-national levels, but also to enjoy improved forecast accuracy. The improved forecast accuracy

of mortality rates would be of great interest to the insurance and pension industries for estimating

annuity prices, in particular at the level of population subgroups defined by key factors such as

gender, region and socioeconomic grouping.
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method; Lee-Carter method; Japanese Mortality Database.
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1 Introduction

In many developed countries such as Japan, increases in longevity and an aging population have

led to concerns regarding the sustainability of pensions and health and aged-care systems (see,

for example, Coulmas, Florian., 2007; Organisation for Economic Co-operation and Development,

2013). These concerns have resulted in a surge of interest among government policy makers and

planners in accurately modeling and forecasting age-specific mortality rates. Any improvements in

the forecast accuracy of mortality would be beneficial for annuity providers, corporate pension funds

and governments (see, for example, Koissia, Marie-Claire., 2006; Denuit, Michel, Pierre Devolder

and Anne-Cécile Goderniaux., 2007; Hanewald, Katja, Thomas Post and Helmut Gründl., 2011)—in

particular, for determining age of retirements and allocating pension benefits at the national and

sub-national levels.

Several authors have proposed new approaches for forecasting age-specific mortality at the na-

tional level using statistical models (see Booth, Heather., 2006; Booth, Heather and Leonie Tickle.,

2008, for reviews). These models can be categorized into three main streams: explanation, expec-

tation and extrapolation approaches. Among the extrapolation methods, a significant milestone

in demographic forecasting was the work of Lee, Ronald and Lawrence Carter. (1992), which has

since received widespread attention. This model has been extensively studied and widely used for

forecasting mortality rates in various countries (see Shang, Han, Heather Booth and Rob Hyndman.,

2011, and references herein).

The strengths of the Lee-Carter method are its simplicity and robustness in situations where

age-specific log mortality rates have linear trends (Booth, Heather, Rob Hyndman, Leonie Tickle

and Piet De Jong., 2006). The main weakness of the Lee-Carter method is that it attempts to capture

the patterns of mortality rates using only one principal component and its scores. To rectify this

deficiency, the Lee-Carter model has been extended and modified in several directions; see, for

example, Brouhns, Natacha, Michel Denuit and Jeroen Vermunt. (2002), Renshaw, A and S Haberman.

(2003), Currie, Iain, Maria Durban and Paul Eilers. (2004), Renshaw, A and S Haberman. (2006),

Hyndman and Ullah (2007) and Pitacco, Ermanno, Michel Denuit, Steven Haberman and Annamaria

Olivieri. (2009).

Although mortality forecasts at the national level are comparably accurate, mortality forecasts at

the sub-national level often suffer from relatively poor data quality and/or missing data. However,

sub-national forecasts of age-specific mortality are valuable for informing policy within local regions

and allow us to appreciate the heterogeneity in the population and understand individuals’ differ-

ences. If one can better understand individual characteristics, an assurer can better price an annuity

for annuitants.

In insurance and pension companies, one is typically interested in forecasting age-specific mor-

tality for multiple subpopulations that often obey a hierarchical (unique) or group (non-unique)
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structure. Let us consider a simple group structure, where total age-specific mortality rates can be

disaggregated by sex. If we forecast female, male and total age-specific mortality independently, the

forecast female and male mortality may not add up to the forecast total mortality. This is known

as the problem of forecast reconciliation, which has been considered in economics for balancing

national accounts (see Stone, Richard, D Champernowne and J Meade., 1942, for an example), in

statistics for forecasting tourism demand (Hyndman, Rob, Roman Ahmed, George Athanasopoulos

and Han Shang., 2011), and in demography for forecasting age-specific mortality rates (Shang, Han.,

2017; Shang, Han and Rob Hyndman., 2017). To the best of our knowledge, forecast reconciliation of

age-specific mortality has not been considered in actuarial studies to date, and it is our goal to fill this

methodological gap.

As two forecasting techniques, we apply the Lee-Carter method and functional time series method

of Hyndman and Ullah (2007) to a large set of multivariate or functional time series with rich structure,

respectively. We put forward two statistical methods—namely, bottom-up and optimal combination

methods—to reconcile point forecasts of age-specific mortality and potentially improve the point

forecast accuracy. In turn, this may lead to more accurate forecasts of mortality and conditional

life expectancy, and thus better estimates of annuity prices. The “bottom-up” method involves

forecasting each of the disaggregated series and then using simple aggregation to obtain forecasts

for the aggregated series (Kahn, Kenneth., 1998). This method works well when the bottom-level

series have a high signal-to-noise ratio. For highly disaggregated series, this does not work well, as

the series become too noisy. This motivated the development of an optimal combination method

(Hyndman, Rob, Roman Ahmed, George Athanasopoulos and Han Shang., 2011), where forecasts are

obtained independently for all series at all levels of disaggregation and then a linear regression is

used with an ordinary least-squares or a generalized least-squares estimator to optimally combine

and reconcile these forecasts.

Using the national and sub-national Japanese age-specific mortality rates from 1975 to 2013, we

compare the point forecast accuracy among the independent (base) forecasting, bottom-up and

optimal combination methods. The independent forecasts can be produced from any univariate

or multivariate time series forecasting method, such as exponential smoothing and autoregressive

integrated moving average. These independent forecasts are generally not reconciled according to

the group structure. To evaluate the point forecast accuracy, we consider the mean absolute forecast

and root mean squared forecast errors, and found that the bottom-up method performs the best

among these three methods in our data set.

The rest of this paper is structured as follows: In Section 2, we describe the motivating data set,

which is Japanese national and sub-national age-specific mortality rates. In Section 3, we briefly revisit

the Lee-Carter and functional time series methods for producing point forecasts, then introduce two

grouped forecasting methods in Section 4. Using the forecast error criteria in Section 5.2, we first
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evaluate and compare point forecast accuracy between the Lee-Carter and functional time series

methods, and then between independent and grouped forecasting methods in Section 5.3. In Section 6,

we apply the independent and grouped forecasting methods to estimate the fixed-term annuity prices

for different ages and maturities. Conclusions are presented in Section 7, along with some reflections

on how the methods presented here can be further extended.

2 Data

We study Japanese age-specific mortality rates from 1975 to 2013, obtained from the Japanese Mortality

Database (Japanese Mortality Database, 2016). Since our focus is on actuarial applications, we consider

ages from 60 to 99 in a single year of age, and the last age group is the age at and beyond 100. The

structure of the data is displayed in Table 1, where each row denotes a level of disaggregation.

Table 1. Hierarchy of Japanese Mortality Rates

Group Level Number of Series

Japan 1

Sex 2

Region 8

Region × Sex 16

Prefecture 47

Prefecture × Sex 94

Total 168

At the top level, we have total age-specific mortality rates for Japan. We can split these total

mortality rates by sex, by region or by prefecture. Japan is divided into eight regions, which contain a

total of 47 prefectures. The most disaggregated data arise when we consider the mortality rates for

each combination of prefecture and sex, giving a total of 47× 2 = 94 series. In total, across all levels

of disaggregation, there are 168 series.

2.1 Rainbow Plots

Figure 1 shows rainbow plots of the female and male age-specific log mortality rates in prefecture

Okinawa from 1975 to 2013. The time ordering of the curves follows the color order of a rainbow,

where curves from the distant past are shown in red and the more recent curves are shown in purple

(Hyndman, Rob and Han Shang., 2010). The figures show typical age-specific mortality curves with

gradually increasing mortality rates as age increases.
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From Figures 1a and 1b, the observed mortality rates are not smooth across age. Due to observa-

tional noise, male mortality rates in some years are above 1 (when log mortality rates are above 0). To

obtain smooth functions and deal with possible missing values, we consider a penalized regression

spline smoothing with monotonic constraint, described in Section 3.2. It incorporates the shape of log

mortality curves (see also Hyndman and Ullah, 2007; D’Amato, Valeria, Gabriella Piscopo and Maria

Russolillo., 2011).
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(a) Observed Female Mortality Rates
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(b) Observed Male Mortality Rates
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(c) Smoothed Female Mortality Rates
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Fig. 1. Functional Time Series Graphical Displays

Figures 1c and 1d display smooth age-specific mortality rates for Okinawa females and males, but

we apply smoothing to all series at different levels of disaggregation. We have developed a Shiny

app (Chang, Winston, Joe Cheng, J. Allaire, Yihui. Xie and Jonathan McPherson., 2017) in R (R Core

Team, 2017) to allow interactive exploration of the smoothing of all the data series; this is available in

the online supplementary material.
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2.2 Image Plots

Another visual perspective of the data is the image plot of Shang, Han and Rob Hyndman. (2017).

In Figure 2, we plot the log of the ratio of mortality rates for each prefecture to mortality rates for

Japan, as this facilitates relative mortality comparison. A divergent color palette is used, with blue

representing positive values and orange denoting negative values. The prefectures are ordered

geographically from north (Hokkaido) to south (Okinawa).
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Fig. 2. Image Plots Showing Log Ratios of Mortality Rates

Note: The top panels show mortality rates averaged over years, while the bottom panels show

mortality rates averaged over ages.

The top row of panels shows mortality rates for each prefecture and age, averaged over years.

There are strong differences between the prefectures for the elderly; this is possibly due to differences

in socioeconomic status and accessibility of health services. The most southerly prefecture of Okinawa

has very low mortality rates and thus extreme longevity for the elderly (see, for example, Takata,

Hajime, Toshiharu Ishii, Makoto Suzuki, Susumu Sekiguchi and Hisami Iri., 1987; Suzuki, Makoto,

Bradley Willcox and Craig Willcox., 2004; Willcox, Craig, Bradley J Willcox, Sanae Shimajiri, Sayuri

Kurechi and Makoto Suzuki., 2007).

The bottom row of panels shows mortality rates for each prefecture and year, averaged over all

ages. We found three abnormalities. In 2011, in prefecture 44 (Miyagi) and 45 (Iwate), there was an
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abnormally large increase in mortality compared with other prefectures. These are northern coastal

regions, and the inflated relative mortality is due to the tsunami of March 11, 2011 (Shang, Han

and Rob Hyndman., 2017). In 1995, there was an abnormal increase in mortality for prefecture 20

(Hyōgo), which corresponds to the Kobe (Great Hanshin) earthquake of Jan. 17, 1995. In prefecture

Okinawa, the residents enjoyed relatively low mortality rates until 2000 and even beyond, especially

for females; in recent years, the comparably lower mortality rates have become less evident.

3 Forecasting Methods

We revisit the Lee-Carter and functional time series models for forecasting age-specific mortality that

are compared in the present study. The Lee-Carter model considers age as a discrete variable (see,

for example, Li, Nan and Ronald Lee., 2005), while the functional time series model treats age as a

continuous variable (see, for example, D’Amato, Valeria, Gabriella Piscopo and Maria Russolillo.,

2011; Shang, Han., 2016). To stabilize the high variance associated with high age-specific mortality

rates, it is necessary to transform the raw data by taking the natural logarithm. We denote by mx,t

the observed mortality rate at age x in year t, calculated as the number of deaths aged x in calendar

year t, divided by the corresponding midyear population aged x. The models are all expressed in log

scale.

3.1 The Lee-Carter (LC) Method

The original formulation of the Lee-Carter (LC) model is given by

ln(mx,t) = ax + bxκt + εx,t, (1)

where ax is the age pattern of the log mortality rates averaged across years; bx is the first principal

component reflecting relative change in the log mortality rate at each age; κt is the first set of principal

component scores at year t and measures the general level of the log mortality rates; and εx,t is the

residual at age x and year t.

The LC model in (1) is over-parameterized in the sense that the model structure is invariant under

the following transformations:

{ax, bx, κt} 7→ {ax, bx/c, cκt},

{ax, bx, κt} 7→ {ax − cbx, bx, κt + c}

To ensure the model identifiability, Lee, Ronald and Lawrence Carter. (1992) imposed two constraints,

given as
n

∑
t=1

κt = 0,
xp

∑
x=x1

bx = 1,

where n denotes the number of years and p denotes the number of ages in the observed data set.
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The LC method adjusts κt by refitting the total number of deaths. The adjustment gives more

weight to high rates (Shang, Han, Heather Booth and Rob Hyndman., 2011). The adjusted κt is then

extrapolated using autoregressive integrated moving average (ARIMA) models. Lee, Ronald and

Lawrence Carter. (1992) used a random walk with drift model, which can be expressed as

κt = κt−1 + d + et,

where d is known as the drift parameter and measures the average annual change in the series, and et

is an uncorrelated error. Based on the forecast of principal component scores, the forecast age-specific

log mortality rates are obtained using the estimated mean function âx and estimated first principal

component b̂x in (1).

3.2 A Functional Time Series Method

The Lee-Carter model considers age as a discrete variable, while the functional time series model

treats age as a continuous variable. One advantage of the functional time series model is that a

nonparametric smoothing technique can be incorporated into the modeling procedure, in order to

obtain smoothed principal components. Among many possible nonparametric smoothing techniques,

we use penalized regression spline with a partial monotonic constraint, where the smoothed log

mortality rates can be expressed as

mt(xi) = ft(xi) + σt(xi)εt,i, i = 1, . . . , p, t = 1, . . . , n,

where mt(xi) denotes the log of the observed mortality rate for age xi in year t; σt(xi) allows the

amount of noise to vary with xi in year t, and εt,i is an independent and identically distributed

standard normal random variable.

The smoothed log mortality curves f (x) = { f1(x), . . . , fn(x)} are treated as realizations of a

stochastic process. Using functional principal component analysis, these smoothed log mortality

curves are decomposed into

ft(x) = a(x) +
J

∑
j=1

bj(x)kt,j + et(x), (2)

where a(x) denotes the mean function, {b1(x), . . . , bJ(x)} denotes a set of functional principal compo-

nents, {kt,1, . . . , kt,J} denotes a set of principal component scores in year t, et(x) is the error function

with mean 0, and J < n is the number of principal components retained. Decomposition (2) fa-

cilitates dimension reduction, as the first J terms often provide a reasonable approximation to the

infinite sums, and thus the information contained in f (x) can be adequately summarized by the

J-dimensional vector (b1, . . . , bJ). In contrast to the Lee-Carter model, the other advantage of the

functional time series model is that more than one component may be used.
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Conditioning on the observed data I = {m1(x), . . . , mn(x)} and the set of functional principal

componentsB = {b1(x), . . . , bJ(x)}, the h-step-ahead forecast of mn+h(x) can be obtained by

m̂n+h|n(x) = E[mn+h(x)|I ,B]

= â(x) +
J

∑
j=1

bj(x)k̂n+h|n,j,

where k̂n+h|n,j denotes the h-step-ahead forecast of kn+h,j using a univariate or multivariate time series

model (see Hyndman, Rob and Han Shang., 2009; Aue, Alexander, Diogo Norinho and Siegfried.

Hörmann., 2015, for more details). Here, we consider a univariate time series forecasting method and

implement the automatic algorithm of Hyndman, Rob and Yeasmin Khandakar. (2008) for selecting

optimal orders in the ARIMA model.

To select J, we determine the value of J as the minimum number of components that reaches a

certain level of the proportion of total variance explained by the J leading components such that

J = argmin
J:J≥1

{
J

∑
j=1

λ̂j

/ ∞

∑
j=1

λ̂j1{λ̂j > 0} ≥ δ

}
,

where δ = 99% and 1{·} denotes the binary indicator function, which excludes possible 0 eigenvalues.

4 Grouped Forecasting Methods

For ease of explanation, we will introduce the notation using the Japanese example given in Section 2.

The Japanese data follow a three-level geographical hierarchy coupled with a sex grouping variable.

The geographical hierarchy is shown in Figure 3. Japan can be split into eight regions from north to

south, which in turn can be split into 47 prefectures.

Japan

R1

P1

R2

P2 · · · P7

· · · R8

P40 · · · P47

Fig. 3. The Japanese Geographical Hierarchy Tree Diagram, With Eight Regions and 47 Prefectures

The data can also be split by sex. Each of the nodes in the geographical hierarchy can also be

split into males and females. We refer to a particular disaggregated series using the notation X ∗ S,

meaning the geographical area X and the sex S, where X can take the values shown in Figure 3 and S

can take values M (males), F (females) or T (total). For example, R1 ∗ F denotes females in Region 1;

P1 ∗ T denotes all females and males in Prefecture 1; and Japan ∗M denotes all males in Japan.
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Denote EX∗S,t(x) as the exposure-to-risk for series X ∗ S in year t and age x, and let DX∗S,t(x) be the

number of deaths for series X ∗ S in year t and age x. Then the age-specific mortality rate is given by

RX∗S,t(x) = DX∗S,t(x)/EX∗S,t(x). To simplify expressions, we will drop the age argument (x). Then,

for a given age, we can write

RJapan*T,t

RJapan*F,t

RJapan*M,t

RR1*T,t

RR2*T,t
...

RR8*T,t

RR1*F,t

RR2*F,t
...

RR8*F,t

RR1*M,t

RR2*M,t
...

RR8*M,t

RP1*T,t

RP2*T,t
...

RP47*T,t

RP1*F,t

RP1*M,t

RP2*F,t

RP2*M,t
...

RP47*F,t

RP47*M,t


︸ ︷︷ ︸

Rt

=



EP1*F,t
EJapan*T,t

EP1*M,t
EJapan*T,t

EP2*F,t
EJapan*T,t

EP2*M,t
EJapan*T,t

EP3*F,t
EJapan*T,t

EP3*M,t
EJapan*T,t

· · · EP47*F,t
EJapan*T,t

EP47*M,t
EJapan*T,t

EP1*F,t
EJapan*F,t

0 EP2*F,t
EJapan*F,t

0 EP3*F,t
EJapan*F,t

0 · · · EP47*F,t
EJapan*F,t

0

0 EP1*M,t
EJapan*M,t

0 EP2*M,t
EJapan*M,t

0 EP3*M,t
EJapan*M,t

· · · 0 EP47*M,t
EJapan*M,t

EP1*F,t
ER1,T,t

EP1*M,t
ER1,T,t

0 0 0 0 · · · 0 0

0 0 EP2*F,t
ER2,T,t

EP2*M,t
ER2,T,t

EP3*F,t
ER2,T,t

EP3*M,t
ER2,T,t

· · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · EP47*F,t
ER8,T,t

EP47*M,t
ER8,T,t

EP1*F,t
ER1,F,t

0 0 0 0 0 · · · 0 0

0 0 EP2*F,t
ER2,F,t

0 EP3*F,t
ER2,F,t

0 · · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · EP47*F,t
ER8,F,t

0

0 EP1*M,t
ER1,M,t

0 0 0 0 · · · 0 0

0 0 0 EP2*M,t
ER2,M,t

0 EP3*M,t
ER2,M,t

· · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · 0 EP47*M,t
ER8,M,t

EP1*F,t
EP1,T,t

EP1*M,t
EP1,T,t

0 0 0 0 · · · 0 0

0 0 EP2*F,t
EP2,T,t

EP2*M,t
EP2,T,t

0 0 · · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · EP47*F,t
EP47,T,t

EP47*M,t
EP47,T,t

1 0 0 0 0 0 · · · 0 0

0 1 0 0 0 0 · · · 0 0

0 0 1 0 0 0 · · · 0 0

0 0 0 1 0 0 · · · 0 0
...

...
...

...
...

... · · ·
...

...

0 0 0 0 0 0 · · · 1 0

0 0 0 0 0 0 · · · 0 1


︸ ︷︷ ︸

St



RP1*F,t

RP1*M,t

RP2*F,t

RP2*M,t
...

RP47*F,t

RP47*M,t


︸ ︷︷ ︸

bt

orRt = Stbt, whereRt is a vector containing all series at all levels of disaggregation, bt is a vector of

the most disaggregated series, and St shows how the two are connected.

Hyndman, Rob, Roman Ahmed, George Athanasopoulos and Han Shang. (2011) considered

four hierarchical forecasting methods for univariate time series—namely, the top-down, bottom-up,

middle-out and optimal combination methods. Among the four, the top-down and middle-out

methods rely on a unique hierarchy for assigning disaggregation weights from a higher-level series

to a lower-level series. In contrast, the bottom-up and optimal combination methods are suitable for

forecasting a non-unique group structure. These two methods are reviewed in Sections 4.1 and 4.2;

their point forecast accuracy comparison with the independent forecasting method are presented in
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Section 5.3.

4.1 Bottom-Up Method

As the simplest grouped forecasting method, the bottom-up method first generates independent fore-

casts for each series at the most disaggregated level, and then aggregates these to produce all required

forecasts. For example, let us revert to the Japanese data. We first generate h-step-ahead independent

forecasts for the most disaggregated series, namely, b̂n+h =
[
R̂P1∗F,n+h, R̂P1∗M,n+h, . . . , R̂P47∗F,n+h, R̂P47∗M,n+h

]>
.

The observed ratios that form the St summing matrix are forecast using an automatic ARIMA

algorithm of Hyndman, Rob and Yeasmin Khandakar. (2008), when age x = 60. For age above 60, we

assume the exposure-to-risk of age x + 1 in year t + 1 will be the same as the exposure-to-risk of age

x in year t. For example, let pt = EP1∗F,t/EJapan∗T,t be a nonzero element of St. Given that we observe

{p1, . . . , pn}, an h-step-ahead forecast p̂n+h can be obtained. These are then used to form the matrix

Sn+h. Thus, we obtain forecasts for all series as

Rn+h = Sn+hb̂n+h,

whereRn+h denotes reconciled forecasts.

The bottom-up method performs well when the bottom-level series have a strong signal-to-noise

ratio. However, it may lead to inaccurate forecasts of the top-level series, particularly when there are

missing or noisy data at the bottom level.

4.2 Optimal Combination Method

Instead of considering only the bottom-level series, Hyndman, Rob, Roman Ahmed, George Athana-

sopoulos and Han Shang. (2011) proposed the optimal combination method in which independent

forecasts for all series are computed independently and then the resultant forecasts are reconciled

so that they satisfy the aggregation constraints via the summing matrix. The optimal combination

method combines the independent forecasts through linear regression by generating a set of revised

forecasts that are as close as possible to the independent forecasts but that also aggregate consistently

within the group. The method is derived by expressing the independent forecasts as the response

variable of the linear regression

R̂n+h = Sn+hβn+h + εn+h,

where R̂n+h is a matrix of h-step-ahead independent forecasts for all series, stacked in the same

order as for the original data; βn+h = E[bn+h|R1, . . . ,Rn] is the unknown mean of the independent

forecasts of the most disaggregated series; and εn+h represents the reconciliation errors.

To estimate the regression coefficient, Hyndman, Rob, Roman Ahmed, George Athanasopoulos

and Han Shang. (2011) and Hyndman, Rob, Alan Lee and Earo Wang. (2016) proposed a weighted

11



least squares solution:

β̂n+h =
(
S>n+hW

−1
h Sn+h

)−1
S>n+hW

−1
h R̂n+h,

where Wh is a diagonal matrix. Assuming that Wh = khI and I denotes an identical matrix, the

revised forecasts are given by

Rn+h = Sn+hβ̂n+h = Sn+h

(
S>n+hSn+h

)−1
S>n+hR̂n+h,

where kh is a constant. These reconciled forecasts are aggregate consistent and involve a combination

of all the independent forecasts. They are unbiased as β̂n+h → βn+h and E[Rn+h] = Sn+hβn+h.

Alternatively, assuming thatWh = khW1, we approximateW1 by its diagonal in-sample one-step-

ahead forecast errors. This leads to the weighted least-squares estimate.

5 Results of the Point Forecasts

5.1 Functional Time Series Model Fitting

For the national and sub-national mortality rates, we examine the goodness of fit of the functional

time series model to the smoothed data. The number of retained components in the functional

principal component decomposition is determined by explaining at least 99 percent of the total

variation; we present and attempt to interpret the first two components for the female mortality series

in Hokkaido as an illustration.

In the first column of Figure 4, we present the average of female log mortality rates. In the first

row of Figure 4, we also present the first two functional principal components, which account for 99.4

percent of the total variation. Each functional principal component models different movements in

mortality rates. By inspecting the peaks, the first functional principal component models the mortality

at around age 80, while the second functional principal component models the mortality mainly at

around age 90. Since the principal component scores are surrogates of the original functional time

series, they are forecast to decrease over the next 20 years.

In Figure 5, we present the functional time series model fit to the smoothed data. The difference

between the fitted and smoothed data (i.e., residuals) is highlighted in a filled contour plot in Figure 5.

In addition to the graphical display, we measure goodness of fit via a functional version of the R2

criterion. It is given as

R2 = 1−

∫
x∈I ∑n

t=1

[
exp ft(x)− exp f̂t(x)

]2
dx∫

x∈I ∑n
t=1

[
exp ft(x)− exp f (x)

]2
dx

, (3)

where ft(x) denotes the smoothed age-specific log mortality rates and f̂t(x) denotes the fitted age-

specific log mortality rates. The larger the R2 value is, the better the goodness of fit by the functional

time series model.
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Fig. 4. Functional Principal Component Decomposition for the Female Mortality Data in Hokkaido

Note: In the bottom panels, the solid blue line represents the point forecasts of scores, and the dark-

and light-gray regions represent the 80% and 95% pointwise prediction intervals, respectively.
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Based on the historical mortality from 1975 to 2013, we produce the point forecasts of age-specific

mortality rates from 2014 to 2033. As shown in Figure 6, the mortality rates are continuing to decline,

especially for the population over 60.
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Fig. 6. Point Forecasts of Age-Specific Mortality Rates From 2014 to 2033

Note: While the historical functional time series is shown in gray, the forecasts are highlighted in

rainbow colors.

Due to the limited space, we cannot show the functional time series model fitting and forecasts

for each sub-national group. However, in Table 2, we report the retained number of components

determined by explaining at least 99 percent of total variation, and the goodness of fit of the functional

time series model as measured by the R2 criterion in (3). The retained number of components is used

in the functional time series model for fitting each sub-national age-specific mortality.

5.2 Point Forecast Evaluation

An expanding window analysis of a time series model is commonly used to assess model and

parameters stabilities over time, as well as prediction accuracy. The expanding window analysis

assesses the constancy of a model’s parameter by computing parameter estimates and their resultant

forecasts over a rolling window of a fixed size through the sample (see Zivot, Eric and Jiahui Wang.,

2006, Chapter 9 for details). Using the first 24 observations from 1975 to 1998 in the Japanese age-

specific mortality rates, we produce one- to 15-step-ahead point forecasts. Through a rolling window

approach, we re-estimate the parameters in the time series forecasting models, using the first 25

observations from 1975 to 1999. Forecasts are then produced for one- to 14-step-ahead from the
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Table 2. Number of Retained Functional Principal Components J and the Goodness of Fit as Mea-

sured by the R2 for Each National and Sub-national Female, Male and Total Mortality

Rates in Japan

Female Male Total Female Male Total

Prefecture J R2 J R2 J R2 Prefecture J R2 J R2 J R2

Japan 1 0.98 2 0.98 2 0.99 Mie 2 0.96 4 0.97 3 0.93

Hokkaido 2 0.96 3 0.97 2 0.96 Shiga 2 0.94 3 0.99 3 0.96

Aomori 2 0.95 3 0.96 2 0.95 Kyoto 2 0.96 3 0.97 3 0.99

Iwate 2 0.95 4 0.97 3 0.99 Osaka 1 0.95 3 0.98 3 0.97

Miyagi 2 0.91 3 0.98 2 0.94 Hyogo 1 0.97 3 0.98 2 0.94

Akita 3 0.99 4 0.98 3 0.98 Nara 2 0.96 4 0.99 3 0.97

Yamagata 2 0.95 3 0.97 2 0.99 Wakayama 2 0.98 5 0.98 3 0.99

Fukushima 2 0.95 3 0.98 2 0.97 Tottori 2 0.96 4 0.97 3 0.98

Ibaraki 2 0.95 4 0.97 3 0.97 Shimane 2 0.94 3 0.99 3 0.99

Tochigi 2 0.96 3 0.99 3 0.99 Okayama 2 0.96 4 0.98 3 0.97

Gunma 2 0.96 4 0.98 3 0.96 Hiroshima 2 0.95 4 0.98 2 0.97

Saitama 2 0.98 3 0.97 3 0.97 Yamaguchi 2 0.98 4 0.98 3 0.99

Chiba 1 0.98 4 0.99 3 0.96 Tokushima 2 0.93 3 0.99 3 0.99

Tokyo 1 0.94 3 0.98 2 0.98 Kagawa 2 0.94 4 0.98 3 0.98

Kanagawa 1 0.96 3 0.97 2 0.96 Ehime 2 0.97 4 0.98 3 0.99

Niigata 2 0.95 3 0.98 2 0.97 Kochi 2 0.98 3 0.99 2 0.99

Toyama 2 0.96 4 0.99 2 0.95 Fukuoka 1 0.98 4 0.98 3 0.95

Ishikawa 2 0.96 4 0.96 2 0.95 Saga 2 0.99 3 0.98 3 0.99

Fukui 2 0.93 3 0.99 3 0.99 Nagasaki 2 0.97 3 0.98 2 0.97

Yamanashi 2 0.97 4 0.98 3 0.98 Kumamoto 2 0.99 3 0.98 2 0.99

Nagano 2 0.97 3 0.98 2 0.96 Oita 2 0.99 3 0.98 3 0.99

Gifu 2 0.95 4 0.98 3 0.97 Miyazaki 2 0.99 4 0.97 2 0.98

Shizuoka 2 0.99 4 0.97 3 0.94 Kagoshima 2 0.95 4 0.97 2 0.96

Aichi 2 0.98 4 0.97 3 0.95 Okinawa 2 0.98 4 0.99 3 0.99

estimated models. We iterate this process by increasing the sample size by one year until reaching the

end of the data period in 2013. This process produces 15 one-step-ahead forecasts, 14 two-step-ahead

forecasts, . . . , and one 15-step-ahead forecast. We compare these forecasts with the holdout samples

to determine the out-of-sample point forecast accuracy.

To evaluate the point forecast accuracy, we consider the mean absolute forecast error (MAFE) and

15



root mean squared forecast error (RMSFE). They measure how close the forecasts are in comparison

to the actual values of the variable being forecast, regardless the direction of forecast errors. For each

series k, they can be written as

MAFEk(h) =
1

41× (16− h)

15

∑
ς=h

41

∑
j=1
|mk

n+ς(xj)− m̂k
n+ς(xj)|

RMSFEk(h) =

√√√√ 1
41× (16− h)

15

∑
ς=h

41

∑
j=1

[
mk

n+ς(xj)− m̂k
n+ς(xj)

]2
,

where mk
n+ς(xj) denotes the actual holdout sample for the jth age and ςth curve in the kth series,

while m̂k
n+ς(xj) denotes the point forecasts for the holdout sample.

By averaging MAFEk(h) and RMSFEk(h) across the number of series within each level of disag-

gregation, we obtain an overall assessment of the point forecast accuracy for each level within the

collection of series, denoted by MAFE(h) and RMSFE(h). They are defined as

MAFE(h) =
1

mk

mk

∑
k=1

MAFEk(h),

RMSFE(h) =
1

mk

mk

∑
k=1

RMSFEk(h),

where mk denotes the number of series at the kth level of disaggregation, for k = 1, . . . , K.

For 15 different forecast horizons, we consider two summary statistics to evaluate overall point

forecast accuracy among the methods for national and sub-national mortality forecasts. The summary

statistics chosen are the mean and median values, due to their suitability for handling squared and

absolute errors (Gneiting, Tilmann., 2011). They are given by

Mean (RMSFE) =
1
15

15

∑
h=1

RMSFE(h),

Median (MAFE) = MAFE[8],

where [8] denotes the eighth term after ranking MAFE(h) for h = 1, . . . , 15 from smallest to largest.

5.3 Comparison of Point Forecast Accuracy

Averaging over all series at each level of a hierarchy, Table 3 presents MAFE(h) and RMSFE(h)

between the Lee-Carter and functional time series methods. As measured by the MAFE, the functional

time series method produces more accurate point forecasts than the ones obtained by the Lee-Carter

method, at each level of the hierarchy. As measured by the RMSFE, the functional time series method

outperforms the Lee-Carter method for all levels of the hierarchy, except when total mortality rates

are disaggregated by regions. The superior forecast accuracy of the functional time series model

over the Lee-Carter model stems from two sources. First, a smoothing technique is implemented to

remove any noise in the data series, especially at older ages. Second, more than one component is

used to achieve improved model fitting.

16



Since the functional time series method outperforms the Lee-Carter method, we evaluate and

compare MAFE(h) and RMSFE(h) between the independent and grouped functional time series

forecasting methods for each level within the Japanese data hierarchy. From Table 4, the optimal

combination method produces most accurate point forecast accuracy in the short-term forecast

horizon (h = 1). As the forecast horizon increases, the bottom-up method generally gives the most

accurate forecasts at the national and sub-national levels for the total series. Based on averaged

forecast errors, the bottom-up method performs the best at each level of the hierarchy. Averaged over

all levels of the hierarchy, it is advantageous to use the bottom-up method, followed by the optimal

combination method.

6 Application to Annuity Pricing

One main use of mortality forecasts for the elderly (at, say, ages over 60) is in pension and insurance

industries, whose profitability relies on accurate mortality forecasts to appropriately hedge longevity

Table 3. MAFEs and RMSFEs (×100) in the Holdout Sample Between the Functional Time Series

and Lee-Carter Methods Applied to the Japanese Mortality Rates

MAFE RMSFE

Level h = 1 5 10 15 Median 1 5 10 15 Mean

Functional Time Series Method

Total 0.27 0.52 0.78 0.96 0.68 0.52 0.95 1.42 1.54 1.15

Sex 0.34 0.58 0.85 0.96 0.73 0.70 1.15 1.69 1.75 1.39

Region 0.38 0.57 0.83 0.92 0.73 0.85 1.16 1.61 1.63 1.35

Region + Sex 0.51 0.67 0.93 1.02 0.81 1.18 1.45 1.95 1.99 1.69

Prefecture 0.58 0.70 0.89 0.96 0.82 1.29 1.40 1.68 1.70 1.53

Prefecture + Sex 0.94 0.97 1.12 1.17 1.06 2.21 2.15 2.35 2.32 2.26

Lee-Carter Method

Total 0.30 0.54 0.84 0.97 0.71 0.56 0.96 1.49 1.59 1.19

Sex 0.35 0.61 0.95 1.05 0.79 0.73 1.17 1.80 1.90 1.46

Region 0.39 0.58 0.87 1.00 0.74 0.80 1.11 1.59 1.74 1.33

Region + Sex 0.54 0.74 1.08 1.26 0.92 1.24 1.61 2.25 2.61 1.93

Prefecture 0.66 0.81 1.10 1.27 0.97 1.48 1.73 2.27 2.70 2.04

Prefecture + Sex 1.19 1.43 1.87 2.18 1.67 3.01 3.57 4.56 5.32 4.13

Note: The bold entries highlight the method that gives the most accurate forecasts for each level of

the hierarchy. The forecast errors have been multiplied by 100, in order to keep 2 decimal places.
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risks. When one reaches retirement, an optimal way (as demonstrated by Yaari, Menahem., 1965)

of guaranteeing an individual’s financial income in retirement and of ensuring that an individual

does not outlive their financial assets is to purchase an annuity. An annuity is a contract offered

by insurers guaranteeing a steady stream of payments for either a fixed term or the lifetime of the

annuitants in exchange for an initial premium fee (Roy, Amlan., 2012).

We apply the mortality forecasts to the calculation of a fixed-term annuity (see Dickson, David,

Mary Hardy and Howard Waters., 2009, p114), and we take a cohort approach to the calculation of

the survival probabilities. The τ-year survival probability of a person aged x currently at t = 0 is

determined by

τ px =
τ

∏
j=1

1px+j−1 =
τ

∏
j=1

e−mx+j−1,j−1 ,

which is a random variable, since mortality rates for j = 1, . . . , τ are forecasts obtained by the

Table 4. MAFEs and RMSFEs (×100) in the Holdout Sample Among the Independent (Base) Fore-

casting, Bottom-Up and Optimal Combination Methods

MAFE RMSFE

Level Method h = 1 5 10 15 Median 1 5 10 15 Mean

Total Base 0.27 0.52 0.78 0.96 0.68 0.52 0.95 1.42 1.54 1.15

BU 0.31 0.43 0.53 0.47 0.45 0.62 0.82 1.00 0.94 0.87

OLS 0.27 0.44 0.60 0.68 0.52 0.52 0.84 1.18 1.24 0.98

Sex Base 0.34 0.58 0.85 0.96 0.73 0.70 1.15 1.69 1.75 1.39

BU 0.35 0.54 0.80 0.93 0.67 0.69 1.01 1.52 1.62 1.25

OLS 0.31 0.58 0.93 1.14 0.77 0.63 1.09 1.72 1.92 1.40

Region Base 0.38 0.57 0.83 0.92 0.73 0.85 1.16 1.61 1.63 1.35

BU 0.39 0.49 0.60 0.57 0.52 0.83 0.96 1.17 1.13 1.03

OLS 0.36 0.48 0.65 0.72 0.57 0.74 0.97 1.30 1.35 1.12

Region + Sex Base 0.51 0.67 0.93 1.02 0.81 1.18 1.45 1.95 1.99 1.69

BU 0.50 0.64 0.89 1.01 0.77 1.10 1.29 1.76 1.85 1.53

OLS 0.47 0.67 0.99 1.19 0.83 1.04 1.35 1.92 2.11 1.65

Prefecture Base 0.58 0.70 0.89 0.96 0.82 1.29 1.40 1.68 1.70 1.53

BU 0.61 0.65 0.72 0.67 0.66 1.35 1.36 1.45 1.35 1.39

OLS 0.58 0.65 0.77 0.78 0.72 1.29 1.36 1.55 1.53 1.44

Prefecture + Sex Base 0.94 0.97 1.12 1.17 1.06 2.21 2.15 2.35 2.32 2.26

BU 0.94 0.97 1.12 1.17 1.06 2.21 2.15 2.35 2.32 2.26

OLS 0.93 0.99 1.20 1.30 1.11 2.18 2.18 2.47 2.50 2.35
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functional time series method. Here, we assume the central mortality rates are constant throughout a

one-year period.

The price of an annuity with maturity T years, written for a x-year-old with benefit $1 per year

and conditional on the path, is given by

aT
x (m

x
1:T) =

T

∑
τ=1

B(0, τ)E(1Tx>τ|mx
1:τ)

=
T

∑
τ=1

B(0, τ)τ px(m
x
1:τ),

where B(0, τ) is the τ-year bond price,mx
1:τ is the first τ elements ofmx

1:T, and τ px(mx
1:τ) denotes the

survival probability given a randommx
1:τ (see also Fung, M, Gareth Peters and Pavel Shevchenko.,

2015). It is vital to produce an accurate forecast of the survival curve τ px that best captures the

mortality experience of a portfolio for pricing purposes and risk management.

In Table 5, we compare the best estimate of the annuity prices for different ages and maturities

between the three forecasting methods for a female policyholder residing in Region 2, as an example.

We assume a constant interest rate at τ = 3%, and hence B(0, τ) = e−τ. Although the annuity price

difference might appear to be small, any mispricing can have a significant risk when considering

a large annuity portfolio. For an annuity portfolio that consists of N policies where the benefit per

year is B, any underpricing of γ% of the actual annuity price will result in a shortfall of NBa>x γ/100,

where a>x is the estimated annuity price being charged with benefit $1 per year. For example, we have

γ = 0.1%, N = 10, 000 policies written to 85-year-old policyholders with maturity τ = 15 years, and

$20, 000 benefit per year will result in a shortfall of 10, 000× 20, 000× 8.2478× 0.1% = 1.65 million.

Table 5. Estimates of Annuity Prices With Different Ages and Maturities (T) for Female Policy-

holder Residing in Region 2

T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

Age = 60

Base 4.5214 8.3227 11.4984 14.1234 16.2410 17.8464

BU 4.5250 8.3362 11.5243 14.1563 16.2664 17.8457

OLS 4.5269 8.3435 11.5426 14.1925 16.3307 17.9514

Age = 65

Base 4.5071 8.2723 11.3848 13.8954 15.7990 17.0569

BU 4.5122 8.2867 11.4028 13.9010 15.7708 16.9868

OLS 4.5142 8.2982 11.4325 13.9615 15.8784 17.1489

Age = 70

Continued on next page
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T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

Base 4.4892 8.2000 11.1934 13.4630 14.9627 15.7340

BU 4.4916 8.1997 11.1725 13.3976 14.8446 15.5933

OLS 4.4974 8.2226 11.2284 13.5068 15.0168 15.8112

Age = 75

Base 4.4564 8.0512 10.7767 12.5778 13.5039 NA

BU 4.4506 8.0187 10.6893 12.4260 13.3245 NA

OLS 4.4601 8.0589 10.7867 12.5946 13.5457 NA

Age = 80

Base 4.3786 7.6984 9.8922 11.0203 NA NA

BU 4.3584 7.6206 9.7421 10.8396 NA NA

OLS 4.3773 7.6952 9.8942 11.0510 NA NA

Age = 85

Base 4.1866 6.9532 8.3758 NA NA NA

BU 4.1513 6.8510 8.2478 NA NA NA

OLS 4.1850 6.9588 8.4180 NA NA NA

Age = 90

Base 3.8122 5.7725 NA NA NA NA

BU 3.7776 5.7320 NA NA NA NA

OLS 3.8192 5.8284 NA NA NA NA

Age = 95

Base 3.2376 NA NA NA NA NA

BU 3.2768 NA NA NA NA NA

OLS 3.2991 NA NA NA NA NA

Note: These estimates are based on forecast mortality rates from 2014 to 2054. We only consider

contracts with maturity so that age + maturity ≤ 100. If age + maturity > 100, NA will be shown in

the table.

7 Conclusions

Using the national and sub-national Japanese mortality data, we evaluate and compare the point

forecast accuracy between the Lee-Carter and functional time series methods. Based on the forecast

accuracy criteria, we found that the functional time series method outperforms the Lee-Carter method.
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The superiority of the functional time series method is driven by the use of nonparametric smoothing

techniques in order to deal with noisy mortality rates at older ages, in particular for males, and more

than one component is used to achieve improved model fitting.

By using the functional time series method to produce base forecasts, we consider the issue of

forecast reconciliation by applying two grouped functional time series forecasting methods, namely

the bottom-up and optimal combination methods. The bottom-up method models and forecasts data

series at the most disaggregated level, and then aggregates the forecasts using the summing matrix

constructed on the basis of forecast exposure to risk.

Using the Japanese data, we compare the one-step-ahead to 15-step-ahead forecast accuracy

between the independent functional time series forecasting method and two proposed grouped

functional time series forecasting methods. We found that the grouped functional time series

forecasting methods produce more accurate point forecasts than those obtained by the independent

functional time series forecasting method, averaged over all levels of the hierarchy. In addition,

the grouped functional time series forecasting methods produce forecasts that obey the natural

group structure, thus giving forecast mortalities at the sub-national levels that add up to the forecast

mortality rates at the national level. Between the two grouped functional time series forecasting

methods, the bottom-up method is recommended.

We apply the independent functional time series and two grouped functional time series methods

to forecast age-specific mortality rates from 2014 to 2054. Then we calculate the cumulative survival

probability and obtain the fixed-term annuity prices. We found that the cumulative survival probabil-

ity has a pronounced impact on annuity prices. Although annuity prices do not differ much for the

mortality forecasts obtained by the three methods, mispricing could have a dramatic impact for a

portfolio, especially when the yearly benefit is much larger than $1 per year.

There are a few ways in which this paper can be further extended, and we briefly mention three.

First, we will compare interval forecast accuracy between the methods to assess forecast uncertainties

associated with best estimates of annuity prices. Second, subject to the availability of data, the

hierarchy can be disaggregated finer by considering different causes (Murray, Christopher and Alan

Lopez., 1997; Gaille, Séverine and Michael Sherris., 2015) or socioeconomic status (Bassuk, Shari, Lisa

Berkman and Benjamin. Amick III., 2002; Singh, Gopal, Romuladus Azuine, Mohammad Siahpush

and Michael Kogan., 2013; Villegas, Andrés and Steven Haberman., 2014). Third, the methodology

can be applied to calculate other types of annuity price, such as whole life immediate annuity or

deferred annuity.

Supplementary Material

R package for functional time series forecasting The R package ftsa containing code to produce

point forecasts from the Lee-Carter and functional time series forecasting methods described in
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the article. The R package can be obtained from CRAN (https://cran.r-project.org/web/

packages/ftsa/index.html).

Code for grouped functional time series forecasting The R code to produce point forecasts from

the two grouped functional time series forecasts described in the article (https://www.researchgate.

net/publication/317088999_Code_for_grouped_functional_time_series_forecasting).

Code for shiny application in statistical software R The R code to produce a shiny user interface

(https://www.researchgate.net/publication/317089428_Code_for_shiny_application_in_

the_grouped_functional_time_series_forecasting_paper) for plotting every series in the

Japanese data hierarchy.
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