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I’ve been fascinated by the broad and important worldwide decisions in recent months that have leveraged the 
power of predictive analytics. Equity and currency exchange markets rose and fell as forward-looking models 
estimated the chances of the Brexit from the European Union. Business decision-makers in Canada began 
estimating the outlook for privately sponsored pension plans as finance ministers looked to expand the Canada 
Pension Plan. And in the United States, it wouldn’t be the 2016 election cycle without a wide variety of predictive 
models using every new piece of information to estimate probabilities on a variety of outcomes. I’m guilty myself 
of gleefully over-indulging on FiveThirtyEight podcasts to catch up on the most recent changes to general election 
forecasts.

It seems we’re to the point where not a day goes by that the topic of predictive analytics doesn’t come into our 
actuarial conversations. With the growing amount of data continuously being generated on consumer behavior, 
analytics tools and methods continue to grow in importance for our profession. These methods have become more 
engrained in how we determine prices for products, estimate future liabilities and help our businesses make better 
decisions. SOA meetings now routinely include more education and opportunity for actuaries to learn deeper 
concepts in predictive analytics.

As a continuing way to highlight how actuaries are using these concepts in practice, we invite you to read through 
the following collection of articles from our members. They provide additional insights into how actuaries are using 
predictive analytics to provide solutions in their work. Let us know your thoughts and share other examples of 
predictive analytics in action at the SOA Engage Research Community, our new online forum for discussing ideas. 
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Introduction
People are living longer and healthier lives. The need for 
retirement products to supplement retirement income 
is also increasing. The life insurance industry has 
responded to this increasing demand by offering a wide 
array of annuity products. In particular, variable annuity 
products have grown to become an important part of 
retirement planning, due to the attractive benefit of 
guaranteed lifetime income.

There are many types of options embedded within a 
variable annuity contract. These range from product 
features such as income guarantees to implicit options 
such as the choice to keep or cancel the contract. 
Options are valuable to customers, and how customers 
use these options provide important information for 
insurance providers. In this article, we will study three 
common factors that actuaries use to formulate the 
lapse assumption for Guaranteed Lifetime Withdrawal 
Benefit (GLWB) policies and how predictive modeling 
can help actuaries establish more appropriate lapse 
functions. Lapse behavior, or conversely persistency 
behavior, is a key assumption in the pricing, valuation 
and risk management of variable annuity contracts. 
Given the embedded guarantees in the variable annuity 
product, the economic impact of lapses can vary based 
on how valuable the guarantees are. Companies that 
are better positioned to use data to understand how 
policyholders behave can ultimately gain an edge.

Model Forms
Under the traditional framework used by companies 
to set their assumptions, the lapse rate for a policy is 
assumed to follow a simple equation:

Lapse Rate = Base Lapse Rate × Dynamic Lapse Factor

where the base lapse rate is a function of the policy’s 
duration and the dynamic lapse factor is a function  
of moneyness. 

Moneyness is defined as the ratio of guaranteed benefit 
value to account value. To set these assumptions, 
companies often rely on a tabular experience study 
approach or on their own judgment in situations where 
data are not available. 

Under a logistic predictive model framework, a number 
of coefficients are jointly estimated for an underlying 
data set, and the model directly outputs lapse 
probabilities as a function of a number of explanatory 
variables. The basic functional form of these predictive 
models is as follows:

Lapse Rate = Odds / (1 + Odds)

where 

Odds = exp(Intercept + B1 × Variable1 + ... + Bn × Variablen).

Both traditional and predictive models account for 
the effects of duration, moneyness and product type. 
However, the predictive model framework provides 
a statistically grounded method for estimating these 
effects together and can be readily expanded to include 
additional variables, as well as interactions between 
variables. In addition to the duration and moneyness 
factors, a predictive model can include other policy, 
demographic and macroeconomic variables. In this 
article, we have focused on a simplified version of the 
predictive model using just duration and moneyness 
for comparison with the traditional model.

Data
The “traditional model” referenced in this article is a 
set of pricing assumptions for a GLWB product with a 
seven-year surrender charge (SC), taken from a recent 
survey of variable annuity writers. Note that this model 
is not representative of any single company but reflects 
the average assumptions for base lapse rates and 
dynamic lapse factors across a number of companies. 

The “predictive model” referenced in this article is 
based on a Milliman study referred to in this paper 
as the VALUES1  model. For building the predictive 
model, we looked at quarterly lapse experience of 

Comparing 
Policyholder 
Efficiency in Variable 
Annuity Lapses

Jenny Jin, FSA, MAAA, and  
Vincent Embser, ASA, CERA, MAAA

33
1 Variable Annuity Lapse Utilization Experience Study



4

Comparing Policyholder Efficiency in Variable Annuity Lapses

observed between 2007 and 2013. Finally, the green 
line provide the lapse rates from our predictive model, 
aggregated across these same policies.

One key observation is that the traditional model 
produces higher aggregate lapse rates for the shock year 
(the year immediately after SCs expire) and the post-SC 
years. In particular, the post-SC aggregate lapse rates 
from the predictive model are approximately 3 to 3.5% 
lower per year than rates from the average industry 
assumption. This could have significant implications for 
pricing and valuation, because the difference in annual 
lapse rates would be compounded over years. 

MONEYNESS EFFECT
If we hold all else equal and vary the moneyness 
variable in our predictive formula, we can construct a 
dynamic lapse curve for comparison with the industry 
assumption. Figure 2 shows this relationship. 

The slope of the dynamic lapse factors reflects the 
efficiency of policyholder behavior. This graph indicates 

GLWB products based on 21 million records from 12 
major variable annuity writers. We used a 70% random 
sample of these records as a training data set to fit the 
predictive model. We evaluated the predictability of the 
model on the remaining 30% holdout data set.

Comparison of Lapse Models

DURATION EFFECT
Figure 1 shows lapse rate predictions from these models 
when applied to the seven-year SC policies in the 
holdout data set. The blue line gives the base lapse rates 
for a hypothetical at-the-money policy during the first 
15 policy years according to our representative industry 
model. The orange line shows the average lapse rate 
predicted by the same model, but incorporating the 
dynamic effect from each record’s individual level of 
moneyness. This line is lower than the base lapse rate, 
as policies issued in the last 10 years emerged from the 
2008 global financial crisis and tended to be in-the-
money over time, which reduced the predicted lapse 
rates. The red line shows the actual lapse experience 
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To illustrate this dynamic, we added interactions between 
the in-the-moneyness variable and the three distinct SC 
phases. Figure 3 uses this expanded model to derive 
dynamic lapse curves for each phase (during in blue, end 
in red, after in green) of a seven-year GLWB product. 
 
This new model implies that policyholder behavior with 
respect to moneyness varies across the life of the policy. 
In particular, policyholders seem to be most efficient 
at the end of their SC periods (red line). Within the SC 
period, policies are observed to behave inefficiently, 
which results in an inverted slope (blue line).

In future work, we will continue to explore these and 
other interactions and evaluate the significance of 
their effects. By analyzing policy behavior, companies 
can gain further insights into how their customers are 
interacting with their products. Doing this well will 
empower companies to use these insights for better 
product development and in-force management.

Jenny Jin, FSA, MAAA, is a consulting actuary at Milliman 
Inc. in Chicago, IL. She can be reached at jenny.jin@
milliman.com

Vincent Embser, ASA, CERA, MAAA, is an associate actuary 
at Milliman Inc. in Chicago, IL. He can be reached at 
vincent.embser@milliman.com
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that the traditional model (red line) assumes lower 
dynamic lapse factors for policies both in- and out-
of-the-money, compared with the predictive model. 
That is, typical industry assumptions underestimate 
sensitivity for out-of-the-money policies and 
overestimate sensitivity to in-the-money policies. On 
average, the overall lapse rates predicted from the 
industry assumption are higher than actual experience, 
as shown in Figure 1. This means that companies 
are likely overestimating lapses despite adjusting 
for dynamic behavior, and the true dynamics of how 
policies behave is potentially lost in the data.

Lapse Behavior During and After the SC Period
Some actuaries believe that policyholders do not 
behave the same way when a SC is levied. If the 
relationship between a target variable and an 
explanatory variable differs depending on the value of 
another explanatory variable, then there is an 
interaction between the two explanatory variables. One 
of the most attractive aspects of a predictive modeling 
approach, relative to the traditional model, is the ease 
with which this type of interaction relationship can be 
explored and added to a model, arriving at credible 
estimates. In a traditional framework, data insufficiency 
across multiple dimensions would preclude such 
interactions from being incorporated. 

Comparing Policyholder Efficiency in Variable Annuity Lapses

Figure 2 GLWB Dynamic Lapse Relative  
to Moneyness

Figure 3 GLWB Dynamic Lapse Behavior 
Using Predictive Model
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Recommending an appropriate insurance product 
is important for insurers to acquire new business 
from either a new client or an existing client. The 
client’s demographic and financial information is 
useful for predicting the most wanted insurance 
product type. With the right recommendation, the 
probability of completing a sale will be higher and 
the length of time to make a sale can be shortened. 
Traditionally, insurance agents have used household 
financial planning to help clients choose insurance 
products. However, it requires significant time, skill 
and experience on the agent’s part. Other distribution 
channels such as telemarketing may not provide the 
opportunity to conduct such a complicated analysis for 
customers. On the other hand, insurance companies 
hold relevant information that is very helpful for 
predicting the next likely sale to a client.

Business Case
A life insurance company wanted to improve the 
effectiveness of its selling efforts to reduce cost and 
increase sales volume. The company has millions 
of existing policyholders, and it had established a 
partnership with another financial institution that 
allows cross-selling. Demographic information, 
purchase history, financial information and claim 
information on existing customers are available. 
The company was interested in knowing the most 
likely product that a client would purchase and the 
probability that the sale would be completed. 

Data
Five categories of data are used for the project:

1. Demographic information including age, gender, 
address, ZIP code, smoker/nonsmoker, health 
status, occupation, marital status and information 
about dependents

2. Financial information including assets, real 
estate, income, loans and spending

3. Purchase history including product type, product 
name, issue age, face amount, premium rate, face 
amount change, partial withdrawal, policy loan 
and product conversion

4. Claim history including time, amount, payment, etc.
5. Communication history including last contact 

time, reason, outcome, complaints, etc.

For categorical variables such as address, ZIP code and 
communication reasons, dummy variables are created 
to represent them. The data are not complete for all 
clients. For missing demographic or financial data, the 
value in the most similar record is used. The similarity is 
measured by the Euclidean distance given by

(Yi — Xi )
2  i ≠ l

i=1

n

where

X is the data record with missing value for variable l.
Y is a complete data record in the data set.
n is the number of variables in the data set.

Models
Given the large amount of explanatory variables and the 
complicated relationships, traditional linear and 
nonlinear regression models that require exact model 
specification are not suitable. An artificial neural network 
(ANN) model was chosen to estimate the probability of 
new insurance purchases. ANN models mimic human 
neural networks, which are capable of making 
complicated decisions with layers of neurons. ANN 
models can approximate complicated relationships 
whose model specifications are unknown. A multilayer 
free-forward neural network model was used for the 
estimation. Figure 1 shows the model structure.

Notes:
1. A sigmoid function is used for specifying the 

relations between layers,  
 g(x) = 1+e-x

1
.

2. Each node in the network is determined by the 
nodes in the previous layer, aj   = g (                  )i i–1 i–10j ax , where 
aj  

i is node j in layer I, and a i–1 is a column vector 
including all the nodes in the previous layer, where 

i–10j  is a row vector including the weights for all the 
nodes in layer i−1 for estimating aj  

i . 

Insurance Product 
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are used to construct part of the second layer. Four 
nodes are used to represent the affordability, risk 
appetite, client satisfaction and new insurance needs 
determined by selected subsets of input data. Experts’ 
inputs on the weights ( 00j , j = 0 to 4) of input data for 
the four nodes are used for parameter initialization. The 
remaining node  a4

1  in the second layer is assumed to 
be affected by all input data to allow model flexibility.

Some existing customers had already bought two or 
more products. They are used as the positive examples 
in the calibration and are the key to predicting the 
likelihood of buying a second product and its most 
likely type. The data set was divided randomly into 
training data and validation data. The calibrated model 
based on the training data was validated using several 
practical approaches. For example, the ANN outputs for 
a customer who has bought a universal life (UL) product 
are that the customer has a probability of 80%, 30% 
and 50% to buy a new term life (TL), new UL and 
long-term care (LTC) product, respectively. Therefore, 
the recommended product is TL. The 10 most similar 
customers with two or more products including at least 
one UL product are sought. If no fewer than 50% (80%/
[80%+30%+50%]) of the 10 customers have bought a TL 
product, the ANN model is considered reasonable. The 
similarity is measured using Euclidean distance. Because 
of the large number of input variables, the impact of 
important variables could be diminished by unimportant 
variables if equal weights are applied. The four nodes in 
the second layer (affordability, risk appetite, satisfaction 
and new insurance needs) are used instead to determine 
the similarity of customers. Using the validation data, 
the model has a reasonable rate of 69%.

The model was also validated using a pilot sales 
project by contacting around 2,000 existing customers 
with only one insurance purchase in the past. These 
customers are those with a high chance of purchasing 
a second product as predicted by the ANN model. 
The success rate of selling a second product is 4.5% 
compared to a past average level of 1.3% when the 
selection of contacted customers was based on 
qualitative analysis targeting high-net-worth clients. 
The 4.5% success rate is lower than expected based on 
the model prediction, with possible reasons including 
changes in family and financial conditions and having 
made purchases with other insurers.

The first layer is the input data. The second and third 
layers are hidden layers. The fourth layer is the output 
layer, which comprises the probabilities of buying each 
of three insurance products. Back-propagation with 
random initialization of model parameters is used to 
train the ANN. For some nodes in the second layer, not 
all the input data (first layer) are used to determine 
their values. As shown in Figure 2, expert opinions 
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Results
The ANN model was used to estimate the most likely 
product to be bought and the probability of completing 
the new sale for each existing customer. The customers 
were then ordered by the probability. Table 1 shows the 
percentage of customers who will buy a product with 
a probability higher than a certain value based on the 
model result. For example, 3% of the existing customers 
will buy an LTC product with a probability of 50%.

Using these results, existing customers can be contacted 
with relevant product information. The cost can also be 
managed by limiting the selling efforts only to customers 
with a high probability of completing the sale. The model 
can be further enhanced by estimating the cost and face 
amount of a product that a customer is likely to accept.

Insurance Product Recommendation System

Table 1  ANN Result Summary for a  
Sample Data Set

Probability

Product 70% 50% 30%

TL 5% 11% 17%

UL 1% 3% 4%

LTC 2% 3% 6%

Kailan Shang, FSA, CFA, PRM, SCJP, is co-founder of 
Swin Solutions Inc. He can be reached at kailan.shang@
swinsolutions.com.



Two hundred years ago a captain may have had only a 
sounding line and his experience to navigate through 
uncharted waters. Today a captain has access to many 
other data sources and tools to aid in his navigation, 
including paper charts, online charts, engineering 
surveys, a depth sounder, radar and GPS. These new 
tools don’t make the old tools obsolete, but any 
mariner would be safer and more accurate in their 
piloting by employing all the tools at their disposal. 

In the same vein, actuaries who solely use traditional 
reserving techniques, such as triangle-based methods, 
aren’t capitalizing on new technologies. Actuaries should 
start adopting other techniques such as machine learning 
(ML). ML is a field of predictive analytics that focuses on 
ways to automatically learn from the data and improve 
with experience. It does so by uncovering insights in the 
data without being told exactly where to look. 

ML is the GPS for actuaries. As GPS improved 
navigation, ML has the potential to greatly enhance 
our reserves. It is important to note though that ML is 
not just about running algorithms; it is a process. At a 
high level this process includes defining the problem, 

gathering data and engineering features from the data, 
and building and evaluating the models. As in the 
actuarial control cycle, it is important to continually 
monitor results.

Through our research, we have found significant 
improvements in the prediction of reserves by employing 
this ML process. Overall we have found a reduction in 
the standard and worst case errors by 10%. To assist 
actuaries in testing the value of ML for themselves, this 
paper will provide an outline of the ML process.

Define the Problem
Similar to the Actuarial Control Cycle, the first step is to 
define the problem. In our context, we are interested 
in efficiently calculating the unpaid claims liability 
(UCL). We want to calculate this quantity in an accurate 
manner that minimizes the potential variance in the 
error of our estimate. 

Actuaries often use various triangle-based methods such 
as the Development and the Paid Per Member Per Month 
(Pd PMPM) to set reserves. These methods in principle 
attempt to perform pattern recognition on limited 
information contained within the triangles. Although these 
methods continue to serve actuaries well, information 
is being left out that could enhance the overall reserve 
estimate. To make up for the lack of information used to 
estimate the reserves, an actuary relies heavily on his or 
her judgment. Although judgment is invaluable, biases 
and other elements can come into play, leading to large 
variances and the need for higher reserve margins. 

As described in our prior article1, the range of reserve 
estimate error present in company statements pulled 
from the Washington State Office of the Insurance 
Commissioner website was −10% to 40%. This 

Machine Reserving: 
Integrating Machine 
Learning Into Your 
Reserve Estimates

Dale Cap, ASA, MAAA

9
1 Cap, Coulter, & McCoy, 2015

Define the
Problem

Data & Feature
Engineering

Modeling &
Evaluating Results

Figure 1  Machine Learning Process



represents a wide range of error and has significant 
implications, including an impact to the insurer’s 
rating status, future pricing and forecasting decisions, 
calculation of premium deficiency reserves, or even 
unnecessary payout of performance bonuses. 

Data and Feature Engineering
Gathering data is something that actuaries are already 
good at. Leveraging off their expertise along with other 
subject matter experts will be helpful in identifying all 
available sources for use. There is often a saying with 
ML that more data often beat a sophisticated algorithm. 

Once the data have been gathered, the actuary will 
need to engineer the data to improve the model’s 
predictive power. This is referred to as feature 
engineering and can include the transformation, 
creation, conversion or other edits/additions to the 
data that will benefit the process. As an example, 
suppose we were estimating the cost of a house 
with only two fields: the length and the width of the 
house. We could help improve the model by feature 
engineering a new feature called square footage, where 
we would multiply the length and width. 

The gathering and engineering of the data can be a difficult 
stage to get through, and without the right people on the 
team, it could lead to a wasted effort. Having domain 
knowledge on the team enables a more thoughtful 
consideration of what sources and features are important. 
In our research we have found many features that have 
predictive power for reserve setting. The following is a 
sample list of features that could provide value:

• Seasonality
• Number of workdays
• Check runs in a month
• Large claims
• Inventory 
• Inpatient admits/days
• Membership mix by product
• Change in duration
• Cost-sharing components
• Demographics
• Place of service

Modeling and Evaluating
Once the data have been prepared, the user will apply 
various ML models to the data set. In general, there are 
two types of data: the training set and the testing set.

10
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Figure 2  Supervised Machine Learning 
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The training set is the data used to train and cross-
validate the model and comprises historical data (in 
the case of reserving, historical completed data). The 
testing data on the other hand include only the data 
from which you wish to derive predictions (for example, 
the current month’s reserve data). 

To evaluate the model, a portion of the training set is 
withheld in order to cross-validate the results. The models 
that are identified to perform well on the withhold set are 
then applied to the testing data to create the predictions. 

There are many different machine learning models, each 
of which has its own strengths and weaknesses. Thus 
there is no one model that works best on all problems. 

Results
For our research we used supervised learning techniques 
classified as regression. We ran various ML models and 
determined which ones were the most appropriate for 
the problem based on cross-validation techniques. We 
then used an ensemble method to blend the various 
model outputs for an overall prediction. An example of 
this type of technique can be found in our prior article2.

Machine Reserving

These results were then compared against typical 
triangle-based methods, where we tested the percentage 
range of UCL error over 24 different reserving months. 
Overall we found that ML added significant value in 
reserve setting, and we highly encourage reserving 
teams to explore this process for themselves. 
 
Conclusion
Predictive analytics are not new to actuaries. Methods 
like these are fairly common on the casualty side and 
have recently become more popular within health care 
for predicting fraud, readmission and other aspects. 
However, those within health care are often being led 
by data science teams, who continue to fill a larger 
analytics role within the health space. It is only a matter 
of time before these techniques become standard to 
reserving. The question is: Who will fill this role? Will 
actuaries stay at the helm, or will we transfer some of 
our functions to data science teams? 

We hope that the process outlined above will provide 
some guidance and at least prepare actuaries for their 
first steps in this space.
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Triangle Based Machine Learning Models Ensemble

Statistics
Paid 
PMPM Development Model 1 Model 2 Model 3 Model 4 Model 5

Linear 
Stacking

Mean Error 1.1% 4.5% –2.6% –1.6% –0.5% 2.5% –1.1% –0.9%

Standard Error 22.1% 21.7% 9.8% 16.7% 13.5% 14.0% 9.1% 8.8%

Kurtosis –43.8% 34.0% 78.7% –18.9% –17.6% –38.4% 181.5% 114.4%

Skew 24.1% 100.8% –65.1% –58.1% 87.0% 83.9% –75.3% –95.1%

Cumulative Error 431.2% 390.1% 184.7% 329.0% 264.6% 264.4% 162.6% 157.6%

Worst Error 49.1% 57.7% 29.0% 41.1% 28.5% 31.4% 27.0% 25.3%



In the last few years, the industry has started 
moving away from traditional actuarial methods 
toward more statistically sound methodologies 
including parametric and nonparametric approaches 
such as generalized linear models and machine 
learning algorithms to better assess risks. Using 
such techniques and utilizing the full potential of 
underwriting data can improve mortality prediction 
greatly. In the life insurance industry, actuaries and 
underwriters need to process a substantial amount of 
data in order to assess the mortality of applicants as 
quickly and accurately as possible. Examples of such 
data include, but are not limited to, demographic, 
paramedic and medical history. The data can be 
numerical (age, face amount), categorical (gender, 
smoking status) and even free text. However, using 
such data is not always straightforward.

In this article we present a practical example of the 
intersection of life insurance, machine learning and big 
data technology. The aim is to use a random forest (RF) 
algorithm to identify the most important predictors 
(from a set of hundreds of variables) that can be used 
in mortality prediction, that is, to reduce number of 
variables from hundreds to dozens while retaining 
the predictive power. In addition, the use of parallel 
computing to speed the process and stratified sampling 
to deal with highly imbalanced data is discussed.

The medical history of applicants includes hundreds, 
if not thousands, of unique keywords that have the 
potential to increase the accuracy of risk assessment. 
Typically, one can include this information as predictors 
in regression analysis following two approaches: first, 
by manually selecting the most important terms, and, 
second, by grouping medical terms by disease type. 
Note that both approaches aim to reduce the number of 
predictors to a manageable size, since building a closed-
form regression equation using hundreds or thousands 
of predictors may not seem practical, especially when 
the number of observations is small. Furthermore, in 
both approaches one can lose information either by 
ignoring rare important variables or by averaging out 
the severity of these medical terms. In addition, medical 
and underwriting expertise are needed for selecting or 
grouping the medical terms, and thus the process can 
be time-consuming and expensive.

In this article we use historical underwriting data 
of more than 130,000 applications along with their 
demographic (age, sex and smoking status) and 
medical history information. Medical history includes 
more than 1,200 unique medical and disease 
terminologies (e.g., CAD, hypertension, alcohol, 
anemia, Parkinson’s disease). Furthermore, the data set 
is considered highly imbalanced since the number of 
claims represents less than 5% of the total population.
The first step in the process is to extract the historical 
underwriting data from different databases and then 
convert it from long to wide, binary and sparse matrix 
so that each medical terminology can be used as a 
predictor in the analysis. After converting, the final data 
have a dimension of more than 130,000 rows and more 
than 1,200 columns (see Figure 1). 

Method
RF, introduced by Breiman in 20011,  is a machine 
learning approach that can be used for regression and 
classification problems. RF is an ensemble algorithm 
of unpruned decision trees in which each tree is built 
from the learning data using a randomly selected 
sample with replacement (a bootstrap sample) and 
a number of randomly selected predictors from the 
set of all features. The RF technique has become 
popular in the machine learning literature because 
of its smaller prediction variance and ability to deal 
with a large number of predictors while capturing 
the interaction structure in the data. Breiman’s 
RF algorithm can be implemented in R using the 
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In regard to the first issue, since the number 
of computations that need to be carried out is 
tremendous because of the large number of features 
and relatively large number of observations, the run 
time using a single-core CPU (the default option in R) 
was estimated to take more than a week to complete. 
To reduce the run time, a parallel RF using eight-
core CPUs was built instead, reducing the run time 
to less than 48 hours. Utilizing parallel computing in 
R was possible by using packages such as snowfall3  
and rlecuyer.4  In Figure 2 we provide a schematic 
comparison of sequential versus parallel RFs.

randomForest2  package, which is available from the 
CRAN website. Another great advantage of the supervised 
RF is that it can measure the importance of each predictor 
in classifying the response variable appropriately. 

Having converted the data into an appropriate shape, 
we used a training set (75% of the data) to build a 
RF model. The claim variable (binary) was used as a 
response, while age, sex, smoking status and medical 
terminologies were used as predictors. During the 
process, we ran into two issues: slow run time and poor 
predictive performance when using the test set (the 
remaining 25% of the data).

Variable Selection Using Parallel Random Forest for Mortality Prediction in Highly Imbalanced Data

Figure 1 Converting the Data from Long to Wide, Binary and Sparse Matrix Structure

2  Andy Liaw and Matthew Wiener, “Classification and Regression by randomForest,” R News 2, no. 3 (2000): 18–22.

3 Jochen Knaus, “Easier Cluster Computing (Based on Snow),” R Package Version 1.84-6.1 (2015), http://CRAN.R-project.org/
package=snowfall.

4  H. Sevcikova and T. Rossini, “Rlecuyer: R Interface to RNG with Multiple Streams,” R Package Version 0.3-4 (2015),  
http://CRAN.R-project.org/package=rlecuyer.
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the bootstrap samples contain few (or even none) of 
the claim observations. Fortunately, the randomForest 
package has the option of using stratified bootstrap 
samples (random samples with replacement from 
claim and nonclaim observations). Utilizing the 
stratified bootstrap samples option, we ran the model 
again, and we were able to correctly identify 67% of 
the claims. As expected, age, sex and smoking status, 
along with other major impairments, were found to be 
highly predictive. 

Results
Upon successfully building the model, we tested its 
predictive performance using the test data, and the 
results were poor. The model was able to identify fewer 
than 1% of the claims because of the imbalanced 
structure of the data, where the number of no-claim 
observations excessively exceeds the number of 
observations with claims. As we explained earlier, the 
RF model is built using bootstrap samples, and in the 
case of imbalanced data there is a high chance that 

Figure 2  Sequential vs. Parallel Random Forests Consist of K Decision Trees
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number of predictors from more than 1,200 to 34 while 
still retaining most of the predictive power. Ultimately 
the results can be used to support underwriting 
decisions. In future work we will try different ensemble 
approaches and other stratified sampling techniques.
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The next goal in the process is to reduce number of 
predictors from more than 1,200 to a manageable size 
while retaining the predictive power. To do so, we relied 
on the results of the second model to arbitrarily select 
the top 34 most important predictors. Then, using only 
these predictors and the same training set as before, we 
built a new RF model that was able to correctly predict 
65% of the claims.

Conclusion
In this article we introduced and applied the RF classifier 
to predict claim observations using a hold-out sample. 
Issues related to a slow run time and poor predictive 
performance were successfully avoided by utilizing the 
power of parallel computing and the stratified bootstrap 
samples. In addition, we were able to reduce the 
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