THE JOKE
Two types of stochastic scenarios sets I will be discussing:

<table>
<thead>
<tr>
<th>Real World ("RW")</th>
<th>Risk Neutral ("RN")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Also referred to as simulation</td>
<td>Also referred to as market-consistent</td>
</tr>
<tr>
<td>Used by actuaries for financial analysis</td>
<td>Used to set capital market prices</td>
</tr>
<tr>
<td>and valuation purposes</td>
<td>Sometimes shorter-term focus</td>
</tr>
<tr>
<td>Long-term focus</td>
<td>Characteristics:</td>
</tr>
<tr>
<td>Intended to be consistent with historical</td>
<td>- Expected return = risk-free rate</td>
</tr>
<tr>
<td>market returns</td>
<td>- Implied volatility based on marketplace prices</td>
</tr>
<tr>
<td>However, often generated as forward looking, not actual historical results</td>
<td>- Combination of lower expected return and (sometimes) higher volatility results in higher expected cost than real world</td>
</tr>
<tr>
<td>Used for “real” expectations of risk/return tradeoffs</td>
<td></td>
</tr>
</tbody>
</table>

A Brief Example of What we’re Talking About

- Imagine a game that takes this form
 - A quarter and a dime are both flipped
 - For each coin, heads means the player receives 1,000 times the value of the coin
 - Tails on either coin means he pays that same amount – 1,000 times the value
 - It’s a totally fair game, right? So no up-front cost to play
 - Possible results are: -$350, -$150, +$150, and +$350, with equal probability

- Now imagine “the house” offers insurance
 - “The house,” by definition here, is “The MARKET”
 - The offer is, for a $100 premium, you can play, and the house will cover any of your losses over and above $100 for one game
 - Possible results are now: -$200, -$200, $50, and +$250, with equal probability (net of the $100 premium for the insurance)

- What scenarios make sense of the house offer of insurance (a put option)?
 - The “real world” tells you that the probabilities are all equal, so the expected outcome of the game, including the insurance, is $25 per play – this is the risk premium
 - This would indicate that the insurance is (as usual with a “house”) a bad deal
 - But what if you only brought $200 with you, and you really, REALLY . . .
 - . . . REALLY want to PLAY??
 - Then a market-consistent approach gives you the cost of adequately managing your risk
GAAP: Which Measure is Better for VA Guarantees?

- **What is FAS133 telling you?**
 - VAs contain guarantees
 - The market sets the price for guarantees
 - The actuary must evaluate the guarantees consistently with that market (use RN scenarios)

- **What is SOP 03-1 telling you?**
 - VAs contain guarantees with a mortality component
 - Only actuaries can properly value those
 - Use RW-ish scenarios, consistent with DAC economic assumptions
 - May include mean reversion
 - Probably a fairly optimistic combination of expected return and volatility

- **Any other important GAAP guidance**
 - What about valuation of hedge assets?
 - For various reasons, may also need stochastic valuation, probably RN scenarios
 - Dynamic hedging programs
 - Complex options with no closed-form solutions for values

Stat: Which Measure is Better for VA Guarantees?

- **What are regulators telling you (reserves)?**
 - Scenarios should be RW
 - Expected returns may be fairly optimistic
 - Tail returns will be somewhat conservative

- **What are rating agencies and regulators telling you (capital)?**
 - Scenarios should be RW
 - Expected returns may be fairly optimistic
 - Tail returns will be extremely conservative

- **Except . . .**
 - What if you are hedging?
 - Hedges can be included to at least some extent in asset adequacy testing
 - But can we evaluate the cost of hedging on a RW basis? Probably not
 - Testing the program may be a little of both
What Internal Conflicts can you get Into

What is the company Risk Manager telling you?
- Maybe: We need to hedge this. What will it cost? (Use RN approach)
- Maybe: We need to reinsure this. What will it cost? (Hmmmm.)
- Maybe: We need to cover out to the X%-ile of tail risk? (Use RW approach)
- Maybeeee: Are there any potential issues related to charging too much? More on that later

What is the Appointed Actuary telling you?
- Probably some of the same stuff
- Maybe: Shouldn’t we consider stochastic mortality? ($%^*&#$%^!!)
- Mostly, he wants to know that you are considering reserves and capital properly

What does the Marketing Department have to say?
- Probably: What can I get for free?
- Or better yet: If our 5 key competitors can each offer one modern rider feature for 50 basis points, . . .
- . . . why can’t our company have all 5 of those for 50 basis points?

What Potential Snags Lie Out There?

Conflict between RN and RW results?
- Let’s say you decide to charge the projected mean RN cost:
- What percentile of RW results will you cover?
- Any guesses out there?
- What would affect the answer?

Can there be statutory reporting conflicts?
- “RW-regulatory” vs. “your view on RW”?
- Even more so for “RW-rating agency”

Who will be upset if you decide to go with the higher cost?
- Marketing certainly (Should you even mention what RW %-ile you cover?)
- Anyone else?
- How about an eventual jury?
Other Conflicts

- **Name some things triggered by scenario results**
 - Lapse Rates
 - Annuitizations
 - Other Dynamic Eventualities

- **Even if RN scenarios value options correctly, are they correct for this purpose?**

- **What is different?**

GAAP for Variable Annuities: 2007

- **DAC, SOP03-1, and FAS133 liabilities (and assets?) potentially valued 3 completely different ways**

- **What are some issues that this causes for reporting of GAAP income?**
In Summary

Stochastic Modeling for Variable Annuities takes many conflicting forms, and it can be a lot of work to make sense of the overall set of results that you get

Perhaps even more thought should go into deciding how to communicate those results!!
Stochastic Modeling for Life Insurance: Stochastic Mortality

2007 SOA Annual Meeting

David J. Weinsier

October 17, 2007

Outline

- Overview
- Sources of variance in mortality
- Techniques for generating stochastic mortality scenarios
- Case study: structured settlements
- Closing thoughts
Overview

Mortality has traditionally been viewed as a deterministic process

- Mortality assumptions have been defined by a table of death rates. This approach is simple and allows for risks to be easily replicated and compared.
- Either industry tables (e.g., SOA 1975-80, 2001VBT) or company-specific tables are utilized.
- Factors are often applied to the table to represent variations in mortality by risk class, duration, or band.

- The deterministic approach, while often sufficient for most analyses, ignores two important aspects of mortality:
 - Mortality volatility risk
 - Misestimation risk
Stochastic mortality techniques can provide enhanced insights into financial performance

- Increased focus on quarterly earnings leads to focus on volatility in mortality results
 - How much volatility is reasonable in one quarter?
- Stochastic mortality can also provide guidance in setting economic capital levels
- Stochastic mortality can be especially useful when:
 - There are a limited number of lives at risk
 - The economic consequences of death have a high severity but low probability of occurrence, such as the case of stop loss reinsurance
- Stochastic mortality projections are typically a required component of any life insurance securitization

Sources of Variance in Mortality
Sources of mortality variance can be broken down as follows

Sources of mortality variance

<table>
<thead>
<tr>
<th>Mortality Volatility Risk</th>
<th>Mis-estimation Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard random fluctuations in mortality</td>
<td>Mis-estimation due to sampling</td>
</tr>
<tr>
<td>Fluctuation in population mortality due to various environmental factors</td>
<td>Mis-estimation of mortality slope</td>
</tr>
<tr>
<td>Fluctuation due to catastrophic events</td>
<td></td>
</tr>
</tbody>
</table>

Standard random fluctuations in mortality

- Many assume that variance in mortality due to random fluctuations is immaterial due to the law of large numbers
- However, even in a portfolio of 1,000,000 lives, actual to expected ratios in a single year can have a standard deviation of 3%
- Depends on mix of business
- There is general agreement that this can be approximated using a binomial function
Fluctuation in population mortality due to various environmental factors

- External environmental factors can have a measurable effect on general mortality levels, and in turn, insured mortality levels
- U.S. population annual mortality improvement has varied from (2.3%) to 3.1% from 1981-2001

![Graph showing US Population Mortality Improvement from 1981 to 2001](image)

Time series models can be used to incorporate this fluctuation into stochastic mortality models

Fluctuation due to catastrophic events

- A large scale catastrophic event can have a material impact on mortality
- The 1918 Influenza epidemic is most often cited as a catastrophic mortality event in the U.S.
 - The epidemic resulted in an extra 5 deaths per 1,000 in the U.S. over a single year
- Can be modeled as a one-time shock to mortality
Mis-estimation due to sampling

- Typically, a mortality assumption is based on, or at least influenced by, the mortality experience of a finite number of lives
 - For example, the results of a 5-year mortality study
- We can never be certain of the “true” mortality rate
- Mis-estimation due to sampling may be estimated in Monte Carlo analysis using standard deviations from the underlying mortality studies used to set the mortality assumption(s)

Mis-estimation of mortality slope

- A current issue in mortality is slope of the underlying mortality table
- The slope of SOA 1975-80 is generally flatter than SOA 2001 VBT
 - The last industry mortality table based on homogenous risk selection techniques throughout the select and ultimate periods is the SOA 1975-80 table
 - Introduction of smoker distinct rates, lower blood testing limits and preferred rates have influenced the slope of later industry tables
- Mis-estimation of mortality slope is more challenging to build into a stochastic process
 - It may be better to look at this risk on a deterministic basis, but could have “standard deviation” developed using delphi techniques
Techniques for Generating Stochastic Mortality Scenarios

Monte Carlo simulation is a common technique used to generate stochastic mortality scenarios

- Monte Carlo simulations associate a sequence of random numbers with a probability distribution to explain a real-life process, system or behavior.
- The key elements of a Monte Carlo simulation include:
 - Random number generator
 - Choice of a parameterized probability distribution
 - Real-life interpretation of the random number generation
- A graphical representation of Monte Carlo simulation follows:

 ![Monte Carlo Simulation Diagram]

 - Random Number Generator
 \[X_i = \varepsilon [0,1] \]
 - PDF (Defined Process)
 \[Y_i \sim \text{Dist}(\text{parm1, parm2,...}) \]
 - Solve for \(Y_i \) st
 \[X_i = F(Y_i; \text{parm1, parm2,...}) \]
Example of Monte Carlo simulation of death rates on a cohort of N policies:
- N random numbers \(X_i \) are generated on the unit interval.
- The parameterized probability distribution \(Y_i \sim \text{Bernoulli}(q_{x+t}^i) \).
- \(Y_i = 1 \) if \(X_i > q_{x+t}^i \) (real-life interpretation: insured survives), 0 if \(X_i \leq q_{x+t}^i \) (real-life interpretation: insured dies).

The 1918 Flu Epidemic can be utilized to demonstrate how catastrophic mortality fluctuation can be incorporated into a stochastic mortality model; characteristics of the Flu Epidemic are as follows:
- It is often characterized as a once every 100 years event
- It resulted in an additional five deaths per 1,000

A catastrophic event, such as the Flu Epidemic, can be modeled using Monte Carlo simulation techniques as follows:
\[
q_{x+1} = (a_t \cdot q_x + b \cdot I_t) \cdot \prod_{k=1}^{t} (1 - i_k),
\]
where
- \(q_x \) = tabular mortality
- \(a_t \) = random deviations around \(q_x \)
- \(i_k \) = mortality improvement
- \(b = 5 \) deaths per 1,000
- \(I_t \) = Bernoulli variable with probability of 0.01
Comparisons of mortality slope can provide a range for deterministic scenario

Mortality Slope Comparison – Male age 65

SOA 1985-90 and VBT Composite multiplied by 98% and 169% respectively such that duration 1 mortality is equal for all three tables

Case Study: Structured Settlements

Practical Applications of Stochastic Mortality
<table>
<thead>
<tr>
<th>Case Study: reserves released on death for structured settlements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured settlements contain an element of mortality risk</td>
</tr>
<tr>
<td>- Various payment structures (life annuity, certain annuity,</td>
</tr>
<tr>
<td>certain + life annuity, bullet payments, etc.)</td>
</tr>
<tr>
<td>- Value of a policy is the combination of discounted certain</td>
</tr>
<tr>
<td>payments and estimated life contingent payments in the</td>
</tr>
<tr>
<td>future</td>
</tr>
<tr>
<td>- Reserves backing the life contingent components released</td>
</tr>
<tr>
<td>when the policyholder dies</td>
</tr>
<tr>
<td>- Profits decline when fewer than expected number of</td>
</tr>
<tr>
<td>deaths occur or policies with large payments survive</td>
</tr>
<tr>
<td>longer than expected</td>
</tr>
<tr>
<td>- This demonstration focuses on reserves released on death</td>
</tr>
<tr>
<td>and the volatility of this metric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario and methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A 300-policy structured settlement block was analyzed</td>
</tr>
<tr>
<td>- All policies are life contingent only</td>
</tr>
<tr>
<td>- Life contingent reserves at quarter-end have been</td>
</tr>
<tr>
<td>projected for five years based on gender, issue/rated</td>
</tr>
<tr>
<td>age, attained age and the selected mortality basis</td>
</tr>
<tr>
<td>- Large variance in size among contracts</td>
</tr>
<tr>
<td>- Methodology</td>
</tr>
<tr>
<td>- Monte Carlo simulation to project deaths each quarter for</td>
</tr>
<tr>
<td>five years</td>
</tr>
<tr>
<td>- Reserves released upon death and aggregated each</td>
</tr>
<tr>
<td>quarter</td>
</tr>
<tr>
<td>- 1,000 scenarios projected</td>
</tr>
</tbody>
</table>
Quarterly reserves released on death are extremely volatile

Scenario representing 99th percentile in one quarter is not necessarily the 99th percentile scenario in a different quarter

Cumulative reserves released on death are significantly less volatile than quarterly reserves

Scenario representing 99th percentile in one quarter is not necessarily the 99th percentile scenario in a different quarter
Observations

- Quarterly reserves released
 - Very erratic
 - Median was 0 and mean greater than 75th percentile, i.e., results were very positively skewed

- Cumulative reserves released
 - Ranged across a large band
 - Mean was materially greater than the median

Closing Thoughts

- Stochastic modeling of mortality can be a useful enhancement of life insurance modeling
 - Particularly useful in certain cases
 - Low number of lives covered
 - Impact of mortality results on financial results is discontinuous

- Stochastic mortality may be especially relevant in assessing life insurance capital market solutions

- Certain organizations may be significantly exposed to mortality risk
 - Reinsurers
 - Investors in longevity risk