SOA 09 Annual Meeting & Exhibit
October 25-28, 2009

Session 16 PD, Stochastic Modeling - IAA
Monograph on Stochastic Processes & Modeling
in Financial Reporting & Capital Assessment

Moderator:
Andrew H. Dalton, FSA, MAAA

Presenters:
Ghalid Bagus, FSA, FIA, MAAA
Andrew H. Dalton, FSA, MAAA
Chad Michael Schuster, FRM
Stochastic Modeling:
IAA Monograph on Stochastic Processes and Modeling

Presented by:
Andrew H. Dalton

October 26, 2009

Agenda

- Overview of the monograph
- Motivation for development
- Expected usage of the monograph
- Review of Life EC Case Study
Overview of the Monograph

- Sponsored by the International Actuarial Association (IAA)
- Funded by actuarial organizations and societies around the world, including:
 - Society of Actuaries
 - Casualty Actuarial Society
 - Several non-US organizations

Overview of the Monograph

- Covers all insurance products
 - Contributing authors from
 - Life,
 - Health and
 - Property/Casualty
Overview of the Monograph: Contributing Authors

Contributing authors have credentials from the following actuarial societies worldwide:
- Society of Actuaries (North America)
- Casualty Actuarial Society (North America)
- Institute of Actuaries (United Kingdom)
- Institute of Actuaries of Australia (Australia)
- Institute of Actuaries of Japan (Japan)
- Actuarieel Genootschap (Dutch Society of Actuaries)
- Schweizerische Aktuarvereinigung (Swiss Association of Actuaries)

Overview of the Monograph: Contributing Authors

Contributing authors hold the following advanced degrees or other professional credentials:
- PhD in Chemical Physics
- PhD in Financial Mathematics
- Master of Business Administration (MBA)
- Chartered Financial Analyst Charterholder (CFA)
- Global Association of Risk Professionals (FRM)
- Chartered Enterprise Risk Analyst (CERA)
Overview of the Monograph: General Outline

Divided into Five Sections:
1. General Methodology & Techniques
2. Applications of Stochastic Modeling
3. Evaluation and Communication of Stochastic Results
4. Case Studies
5. Technical Appendix & References

Overview of the Monograph: Structure

- Each section builds on the previous one
 - Section I...
 - provides fundamental technical background material
 - Section II ...
 - applies the technical material developed in Section I to insurance models
Overview of the Monograph: Structure

- Each section builds on the previous one
 - Section III …
 - discusses practical considerations related to the models presented in Section II
 - Section IV…
 - Illustrates the real-world application of models developed in Sections I - III

Overview of the Monograph: Section I

Section I (General Methodology & Techniques):
- Risk-Neutral vs. Real World Scenarios
- Modeling Techniques
 - Stochastic vs. Non-Stochastic Methods
 - Monte Carlo Simulation
 - Lattice Models
 - Regime Switching Models
- Distributions and Fitting
- Random Number Generation
- Risk Measures
Overview of the Monograph: Section II

Section II (Applications):
- Economic scenario generation
- Capital testing
- Deflators
- Life/Health models
- Casualty Claim/Financial models
- Country/Region Specific Issues

Overview of the Monograph: Section III

Section III (Evaluation and Communication):
- Calibration
- Validation
- Auditing results
- Peer reviewing results
- Methods to communicate results
Overview of the Monograph: Section IV

Section IV (Case Studies):
- Development and management of a variable-annuity product
- Economic capital for a multi-line life insurance company
- Development of Embedded Value for a multi-line life insurance company
- Unpaid claim variability for a multi-line non-life insurance company
- Economic Capital for a multi-line non-life insurance company
- Combining Economic Capital results for life and non-life companies
- Stochastic reserve and capital calculations

Overview of the Monograph: The Case Studies

- Case studies presented in Section IV:
 - Touch on a wide variety of actuarial specialties
 - Address most of the risk factors discussed in Sections I-III
 - Illustrates use of the risk measures developed in Sections I-III
Motivation for Development

- Provide technical background in stochastic modeling to actuaries around the world
- Serve as technical reference
- Demonstrate application of stochastic modeling techniques to insurance
- Illustrate, through cases studies, real world examples of stochastic modeling in insurance

Motivation for Development

- Create stochastic modeling resource applicable to all countries
- Elevate awareness regarding importance of stochastic modeling in insurance
- Compare best practices across countries
Expected Uses

- Actuarial education
 - Exam syllabus for actuarial organizations
 - On-the-job learning resource
- Technical resource
 - For stochastic modeling concepts/techniques
 - For insurance application of stochastic modeling

Expected Uses

- By senior actuaries and senior management
 - Through case studies, to understand how stochastic modeling supports strategic and tactical decision making
 - To understand the ways in which stochastic modeling has been/is used around the world
Expected Uses

- As a starting point for future editions
 - Regional actuarial organizations may tailor and/or add case studies to fit unique needs
 - Expect to add case studies as actuarial practice evolves and expands

Review of Case Study: Economic Capital for Multi-Line Life Insurance Company

- Goals:
 - Introduce one of the case studies developed in the monograph
 - Illustrate the level of material covered in the monograph
 - Demonstrate how stochastic modeling concepts are applied to real-world settings
Background on Case Study Company

- Case study company, XYZ Life Insurance, is a large, multi-line life and health insurance company
 - Company writes primarily par individual life, variable annuity and group health business
- XYZ Life is headquartered in the U.S. However, EC analysis is not country-specific.

Economic Capital – Fundamental Concepts

- What confidence level would company like to target?
 - EC analysis intended to examine catastrophic events
 - Typical confidence levels are 99.5%, 99.9%, 99.95%

- CASE STUDY: Uses CTE-99, in which capital is set at the average of the worst 1% of losses
Economic Capital – Fundamental Concepts

- What risk metric will company use?
 - Commonly used metrics are Present Value of Future Profits (PVFP) and Greatest Present Value of Accumulated Loss (GPVL)

- **CASE STUDY**: Uses both PVFP and GPVL

Economic Capital – Fundamental Concepts

- With what time horizon is the company concerned?
 - Short-term shocks versus long-term risk exposure

- **CASE STUDY**: Uses 30-year projection horizon; XYZ Life is concerned with long-term solvency of business.
Economic Capital – Fundamental Concepts

- What projection techniques will be used?
 - Stochastic modeling is generally required
 - Stress testing or scenario analysis are generally inadequate for EC

- **CASE STUDY:** Uses stochastic modeling. Started with XYZ’s Cash Flow Testing (or Embedded Value models, with certain adjustments).

XYZ Life – Key Risk Analysis

The following table illustrates the key risk factors identified and modeled for XYZ Life:

Table 1 - Risks Modeled for XYZ Life Insurance Company Economic Capital

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Individual Life</th>
<th>Variable Life</th>
<th>Fixed Annuity</th>
<th>Variable Annuity</th>
<th>Fixed Income</th>
<th>Asset Management</th>
<th>Individual Disability</th>
<th>Group Health</th>
<th>Capital</th>
<th>Surplus</th>
<th>Consolidated Corporate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapse</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market/Equity Returns</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currency Exchange Rates</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Credit</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Strategic</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Operational</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Scenario Generation

- Based on the Key Risk Analysis, we determined that we needed 1,000 stochastic scenarios for each of the following risk factors:
 - Economic scenarios, including:
 - Interest rates
 - Equity returns
 - Spot currency exchange rates
 - Credit/default
 - Mortality
 - Morbidity
 - Lapses
 - Operational Failure and Strategic Risk

Economic Scenarios

- Equity Model
 - Uses Heston’s model (1993)
 - Has certain advantages over the traditional lognormal model, including the ability to make results consistent with certain stylized facts of the historical time series of S&P 500 index.
- Interest rate model
 - Views yield curve as having three components: level, slope and curvature.
 - Each component modeled stochastically
- Spot exchange rate model
 - Lognormal model
 - Maintains interest rate parity
Credit Risk Model

 - Borrower’s end of period state (default or no default) is driven by a normally distributed variable.

Mortality Scenarios

- Mortality generated as described in the mortality chapter in the monograph
- Scenarios rely on three models, which roll up into a single set of scenarios:
 - Baseline model
 • Reflects expected mortality and fluctuations during "normal" times.
 - Disease model
 • Reflects additional mortality that could occur during certain pandemic events.
 - Terrorism model
 • Reflects additional mortality that could occur as a result of voluntary acts of human violence.
Morbidity Scenarios

- Probability Distribution for New Claim Costs
 - Developed using Milliman’s Risk Simulation software
 - Monte Carlo analytical tool
- Probability Distribution of Claim Runoff
 - Also used Milliman’s Risk Simulation software

Lapse Scenarios

- Developed based on two key assumptions:
 - Historical company experience represents best-estimate for future experience.
 - Deviation from expected rates will follow a normal distribution, with standard deviation based on company’s historical experience.
Operational Risk and Strategic Risks

- Relied on two key pieces of analysis:
 - Data gathered from profit centers related to potential operational losses which were both high impact and low frequency.
 - Business experts contributing to this exercise drew on company’s historical experience as well as knowledge of similar events at other organizations.
 - Use of STRATrisk
 - Cutting-edge methodology to determine key sources of risk that a business faces.
 - Methodology is a result of research program led by Neil Allan of Bath University in the UK.

Presentation of Results – Present Value of Future Profits

<table>
<thead>
<tr>
<th>Summary of Indicated Economic Capital</th>
<th>Baseline</th>
<th>2,500 Worst</th>
<th>Worst 1,000 for each risk factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance Risk in Lines of Business</td>
<td>4,114</td>
<td>3,106</td>
<td>1,605</td>
</tr>
<tr>
<td>Credit Defaults</td>
<td>(380)</td>
<td>(668)</td>
<td>(1,170)</td>
</tr>
<tr>
<td>Strategic and Operational Risk</td>
<td>(306)</td>
<td>(306)</td>
<td>(306)</td>
</tr>
<tr>
<td>Total Present Value of Profits</td>
<td>3,428</td>
<td>2,132</td>
<td>130</td>
</tr>
<tr>
<td>Indicated Economic Capital</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Presentation of Results – Greatest Present Value of Accumulated Loss

Summary of Indicated Economic Capital (GPVL Risk Metric)

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Baseline</th>
<th>2,500 Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance Risk in Lines of Business</td>
<td>4,114</td>
<td>(113)</td>
</tr>
<tr>
<td>Credit Defaults</td>
<td>(380)</td>
<td>(960)</td>
</tr>
<tr>
<td>Strategic and Operational Risk</td>
<td>(306)</td>
<td>(306)</td>
</tr>
<tr>
<td>Total Present Value of Profits</td>
<td>3,428</td>
<td>(1,379)</td>
</tr>
<tr>
<td>Indicated Economic Capital</td>
<td>-</td>
<td>1,379</td>
</tr>
</tbody>
</table>
Overview

- Introduction

- Policyholder Behavior Modeling

- Pricing and Valuation of Variable Annuities (VA’s) using Stochastic Modeling
Policyholder Behavior Modeling

Policyholder Behavior

- Guaranteed Minimum Benefit (GMB) Behavior Considerations:
 - Utilization
 - Persistency
 - Asset Allocation
Policyholder Behavior

- Issues Predicting GMB Policyholder
 - Most products are only several years old
 - Product evolution influences policyholder behavior
 - Utilization is company specific
 - Most sales have occurred over a steady market environment

Guarantee Utilization

- GMWB: Withdrawal
 - Dynamic or cohort

- GMIB: Annuitzation
 - Dynamic

- What if there are multiple guarantees present?
Persistency

- Dynamic Lapse Assumption
 - Typically a factor applied to base lapse rate

![Dynamic Lapse Model](image)

Asset Allocation

- Majority Of GMBs Require Asset Allocation
 - Balanced allocation 55-65% equity
 - "Lifestyle" models
 - Equity content varies considerably by company:
 - Aggressive : 75-90%
 - Moderately Aggressive : 65-85%
 - Moderate : 50-70%
 - Moderately Conservative : 40-55%
 - Conservative : 20-40%
 - Typically a single charge which introduces pricing risk
Asset Allocation

Experience on “Lifestyle” models shows policyholder’s are not necessarily maximizing economic value of guarantee
 - Focused on maintaining asset value

Predicting Policyholder Behavior

Key Considerations:
 - Monitor experience
 - Sensitivity analysis on key assumptions
 - Add additional margin to reflect uncertainty in assumptions
 - Design products to reduce policyholder behavior risk
Pricing and Valuation of VA’s using Stochastic Modeling

Pricing and Valuation Considerations

- Guaranteed Minimum Benefits (GMBs)
- Base product
- Capital
- Reserves
- Hedging
Guarantee Valuation

- The value of GMB’s depend on market movements, therefore they are types of financial derivatives
- Risk-Neutral Valuation
 - The value of a derivative is its expected payoff in a risk-neutral world, discounted at the risk-free rate
 - Consistent with Option Pricing Theory

Option Value of Guarantee

<table>
<thead>
<tr>
<th>Expected Present Value of Future Guarantee Claims</th>
<th>minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Present Value of Future Revenues</td>
<td></td>
</tr>
<tr>
<td>over a set of Risk Neutral Scenarios</td>
<td></td>
</tr>
</tbody>
</table>

Illustrative Case Study

- Pricing analysis of a hypothetical lifetime GMWB
- Guarantee Design
 - Lifetime Guaranteed Minimum Withdrawal Benefit with a 5% withdrawal rate (issue ages 60-85)
 - Annual ratchet
 - 60% Equity / 40% Bonds
 - Rider Charge of 60bps of Benefit Base
- Modeling
 - Risk-neutral valuation of embedded guarantee
 • Theoretical cost of hedging
 • 5000 Monte Carlo simulations
 - Equity volatility of 20%
 - Interest rate of 5%
Case Study – Sample Assumptions

- **Mortality**
 - Annuity 2000 with mortality improvement based on Scale G

- **Dynamic Lapse**

 ![Dynamic Lapse Model](image)

- **Withdrawal Utilization**

<table>
<thead>
<tr>
<th>Withdrawal Delay</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>40%</td>
</tr>
<tr>
<td>10</td>
<td>10%</td>
</tr>
</tbody>
</table>

- **Issue Age distribution**

<table>
<thead>
<tr>
<th>Issue Age</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>10%</td>
</tr>
<tr>
<td>60</td>
<td>20%</td>
</tr>
<tr>
<td>65</td>
<td>35%</td>
</tr>
<tr>
<td>70</td>
<td>20%</td>
</tr>
<tr>
<td>75</td>
<td>10%</td>
</tr>
<tr>
<td>80</td>
<td>5%</td>
</tr>
</tbody>
</table>

Illustrative Costs

<table>
<thead>
<tr>
<th>Withdrawal Delay</th>
<th>Issue Age</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>0</td>
<td>0.78%</td>
<td>0.61%</td>
</tr>
<tr>
<td>5</td>
<td>0.51%</td>
<td>0.38%</td>
</tr>
<tr>
<td>10</td>
<td>0.29%</td>
<td>0.20%</td>
</tr>
<tr>
<td></td>
<td>0.61%</td>
<td>0.46%</td>
</tr>
</tbody>
</table>

- Decrease in cost with older ages
- Costs are also very sensitive to utilization assumption
Risk Management in Product Design

- Revised design (Design 2)
 - 5% simple bonus for each withdrawals are delayed
 - Likely results in more people waiting to withdraw

<table>
<thead>
<tr>
<th>WithdrawalDelay</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.78%</td>
<td>0.61%</td>
<td>0.44%</td>
<td>0.29%</td>
<td>0.17%</td>
<td>0.08%</td>
<td>0.45%</td>
</tr>
<tr>
<td>5</td>
<td>0.75%</td>
<td>0.58%</td>
<td>0.41%</td>
<td>0.26%</td>
<td>0.14%</td>
<td>0.07%</td>
<td>0.42%</td>
</tr>
<tr>
<td>10</td>
<td>0.61%</td>
<td>0.45%</td>
<td>0.30%</td>
<td>0.18%</td>
<td>0.09%</td>
<td>0.03%</td>
<td>0.32%</td>
</tr>
<tr>
<td>Total</td>
<td>0.72%</td>
<td>0.55%</td>
<td>0.39%</td>
<td>0.25%</td>
<td>0.14%</td>
<td>0.06%</td>
<td>0.40%</td>
</tr>
</tbody>
</table>

- Flatter costs by withdrawal delay
- Overall cost increases due to richer benefit
 - Some offset from delaying withdrawals

Sensitivity Tests – Dynamic Lapse

<table>
<thead>
<tr>
<th>Dynamic Lapse Function</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hedge Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>Dynamic Lapse Sensitivity</td>
</tr>
</tbody>
</table>
Asset Allocation Sensitivity

<table>
<thead>
<tr>
<th>Asset Allocation Model</th>
<th>Hedge Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% Equity</td>
<td>0.60%</td>
</tr>
<tr>
<td>60% Equity</td>
<td>0.40%</td>
</tr>
<tr>
<td>40% Equity</td>
<td>0.24%</td>
</tr>
</tbody>
</table>

- Higher equity allocation results in proportionally higher cost
 - Driven by higher volatility in the funds
- Note that risk-neutral pricing means higher equity allocation does not mean higher expected growth rates

Sensitivity Tests – Static Assumptions

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Hedge Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (design 2)</td>
<td>40</td>
</tr>
<tr>
<td>Lapse Sensitivity - 0.75 of base lapse table</td>
<td>43</td>
</tr>
<tr>
<td>Mortality Sensitivity - 0.7 mortality multiplier</td>
<td>51</td>
</tr>
<tr>
<td>Mortality Improvement - Double rate of improvement</td>
<td>48</td>
</tr>
<tr>
<td>Mortality Improvement - Triple rate of improvement</td>
<td>55</td>
</tr>
</tbody>
</table>

- Lower persistency means higher potential claims but also higher fees
 - Sensitivity does not consider offset from base product
- Longevity risk is a joint risk with equity markets
 - In up scenarios higher longevity means more fees are collected (lower average cost)
 - In down scenarios higher longevity means higher claims (higher average cost)
Risk Management in Product Design

- Revised design
 - Withdrawal rates varying by age at first withdrawal

<table>
<thead>
<tr>
<th>Age at First Withdrawal</th>
<th>Withdrawal Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-59</td>
<td>4%</td>
</tr>
<tr>
<td>60-69</td>
<td>5%</td>
</tr>
<tr>
<td>70+</td>
<td>6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design 3</th>
<th>Issue Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Withdrawal Delay</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.35%</td>
</tr>
<tr>
<td>5</td>
<td>0.75%</td>
</tr>
<tr>
<td>10</td>
<td>0.61%</td>
</tr>
<tr>
<td>Total</td>
<td>0.61%</td>
</tr>
</tbody>
</table>

- Flatter costs by issue age
- Overall cost increases due to richer benefit
 - Some offset from delaying withdrawals

Nested Stochastic Projections

- Stochastic on Stochastic
 - Additional layer of economic scenario dimensionality
 - Within each “outer scenario”, one or more sets of nested “inner scenarios” are embedded
 - Projection of capital and/or reserves in one or more future projection periods
 - Simulation of hedging program
Financial Projections

- Hedge strategy simulation
 - Stochastic on Stochastic
 - Short time-step – accurately reflect actual rebalancing approach
 - Full projection of liability evolution over time as well as hedge transactions
Strategy Testing

Quarterly Profit & Loss Over 1998-2005 Market Path

- Unhedged
- Hedged
- S&P 500

Quarterly P&L Volatility Unhedged

Quarterly P&L Volatility Delta-Vega Hedged

Quarterly P&L Volatility Delta-Vega-Rho Hedged
Catastrophic Mortality Modeling

Ghalid Bagus, FSA MAAA CFA
Principal and Consulting Actuary
October 2009

The material and content contained in this presentation are the proprietary information of Milliman, and Milliman retains all right, title, and interest in such material and content. This presentation, including all content, is copyrighted and protected by international copyright laws and treaty provisions.

This presentation summarizes information obtained through discussions with legal counsel and parties familiar with insurance and securities laws. Milliman is providing this information for discussion purposes. We are not providing a legal opinion.

The material and content contained in this presentation do not constitute an investment product, nor do they constitute an offer or solicitation with respect to the purchase or sale of any security.
Contents

1. Model structure
2. Baseline model
3. Pandemic model
4. Terrorism model
5. Combined results

Section 1

Model structure
Model overview

Baseline Model
- Expected mortality
- Expected volatility
- Country specific models using historic data

Disease Model
- Additional mortality due to potential pandemics
- Same model for each country

Terrorism Model
- Additional mortality due to potential non-disease events
- Country specific model using US State Department data

Combined Model
- Combines baseline scenarios, pandemic scenarios and terrorism scenarios for each country
- Combines the additional deaths for each model to determine the increase in mortality

Non-modelled items

- Natural disasters
- Industrial accidents
- Traditional war
- Nuclear war

Natural Disasters—Recent History

<table>
<thead>
<tr>
<th>Event</th>
<th>Country</th>
<th>Year</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake</td>
<td>Japan</td>
<td>1923</td>
<td>143,000</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Italy</td>
<td>1908</td>
<td>75,000</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Italy</td>
<td>1915</td>
<td>30,000</td>
</tr>
<tr>
<td>Hurricane</td>
<td>United States</td>
<td>1900</td>
<td>6,000</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Japan</td>
<td>1948</td>
<td>5,131</td>
</tr>
<tr>
<td>Wind Storm</td>
<td>Japan</td>
<td>1919</td>
<td>5,098</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Italy</td>
<td>1980</td>
<td>4,689</td>
</tr>
<tr>
<td>Wind Storm</td>
<td>United Kingdom</td>
<td>1912</td>
<td>4,000</td>
</tr>
<tr>
<td>Wind Storm</td>
<td>Japan</td>
<td>1917</td>
<td>4,000</td>
</tr>
<tr>
<td>Wind Storm</td>
<td>Japan</td>
<td>1945</td>
<td>1,746</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Japan</td>
<td>1933</td>
<td>3,008</td>
</tr>
<tr>
<td>Wind Storm</td>
<td>Japan</td>
<td>1934</td>
<td>3,006</td>
</tr>
<tr>
<td>Wind Storm</td>
<td>Japan</td>
<td>1933</td>
<td>3,000</td>
</tr>
<tr>
<td>Wave / Surge</td>
<td>Japan</td>
<td>1913</td>
<td>3,000</td>
</tr>
</tbody>
</table>

More Recent (1980-2005)

<table>
<thead>
<tr>
<th>Event</th>
<th>Country</th>
<th>Year</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Wave</td>
<td>Europe</td>
<td>2003</td>
<td>19,000</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Japan</td>
<td>1995</td>
<td>5,297</td>
</tr>
<tr>
<td>Hurricane (Katrina)</td>
<td>United States</td>
<td>2005</td>
<td>1,836</td>
</tr>
<tr>
<td>Heat Wave</td>
<td>United States</td>
<td>1995</td>
<td>670</td>
</tr>
<tr>
<td>Tornado</td>
<td>United States</td>
<td>1984</td>
<td>600</td>
</tr>
<tr>
<td>Winter Storm</td>
<td>United States</td>
<td>1983</td>
<td>500</td>
</tr>
<tr>
<td>Flood</td>
<td>Japan</td>
<td>1982</td>
<td>345</td>
</tr>
<tr>
<td>Winter Storm</td>
<td>United States</td>
<td>1982</td>
<td>270</td>
</tr>
</tbody>
</table>
Section 2

Baseline model

Baseline model: modeling approach

- The baseline model uses a time series model to project base mortality rates into the future
- The approach is to test different modeling methods and to consider the goodness of fit for various algebraic models using different parameters
- 35 years of mortality data (1969 to 2003) are used for the analysis under the baseline model
Index calculation formulae

Mortality rates are calculated as:

\[q_t = \sum_x a_x b_x q_{m,x,t} + a_x b_x q_{f,x,t} \]

Where:
- \(a_x b_x \) = the gender weightings for males and females respectively
- \(b_x \) = the weight for age group \(x \)
- \(q_{m,x,t}, q_{f,x,t} \) = the mortality rates for age group \(x \) for year \(t \) for males and females respectively

<table>
<thead>
<tr>
<th>Age and Gender Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Range</td>
</tr>
<tr>
<td>< 1</td>
</tr>
<tr>
<td>25 to 34</td>
</tr>
<tr>
<td>35 to 44</td>
</tr>
<tr>
<td>45 to 54</td>
</tr>
<tr>
<td>55 to 64</td>
</tr>
<tr>
<td>65 to 74</td>
</tr>
<tr>
<td>> 74</td>
</tr>
</tbody>
</table>

Baseline mortality projection

The auto-regressive formulation for the change in mortality rates is:

\[x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + \ldots + a_n x_{t-n} + \varepsilon \]

Where:
- \(x_t \) = the rate of change in the mortality rate from time \(t - 1 \) to time \(t \)
- \(\varepsilon \) = the error term

1995-2003 U.S. Rates per 100,000

<table>
<thead>
<tr>
<th>Year</th>
<th>Mortality Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>601.2</td>
</tr>
<tr>
<td>1996</td>
<td>583.3</td>
</tr>
<tr>
<td>1997</td>
<td>563.7</td>
</tr>
<tr>
<td>1998</td>
<td>552</td>
</tr>
<tr>
<td>1999</td>
<td>550.3</td>
</tr>
<tr>
<td>2000</td>
<td>537.4</td>
</tr>
<tr>
<td>2001</td>
<td>532.3</td>
</tr>
<tr>
<td>2002</td>
<td>527.7</td>
</tr>
<tr>
<td>2003</td>
<td>522.9</td>
</tr>
</tbody>
</table>
Results: baseline model

- The baseline model does not project large increases in mortality rates.
- Even when the effect of the projected mortality improvements is removed, the increases in mortality projected are not large enough to be considered of a catastrophic nature.

<table>
<thead>
<tr>
<th>Mortality Increase Range</th>
<th>With Mortality Improvements</th>
<th>Without Mortality Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Percentage Upper Percentage</td>
<td>0.00%</td>
<td>36.19%</td>
</tr>
<tr>
<td>0.0 0.5</td>
<td>0.00%</td>
<td>38.37%</td>
</tr>
<tr>
<td>0.5 1.0</td>
<td>0.00%</td>
<td>25.45%</td>
</tr>
<tr>
<td>1.0 1.5+</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Section 3

Pandemic model
Pandemic model: modeling approach

- The pandemic model projects the additional deaths that are due to potential disease pandemics.

- The approach taken in modeling a severe pandemic is to assume a somewhat regularly occurring spike in deaths that is due to an infectious disease outbreak.

- Historic influenza pandemics were used as a guide in developing the methods and assumptions for the pandemic model.

Frequency and severity calibration

- Actuarial model projecting frequency and severity

 - Frequency
 - Modeled frequency of 7.4% per year
 - Based on 31 epidemics over the last 420 years, resulting in on average 1 event every 14 years

 - Severity
 - The severity curve used is fitted by attaching a probability of exceedance to the percentage of excess mortality as evidenced in a set of historical epidemic events
 - The 1918 severity data is based on US population experience
Modelling severity

- The severity curve is fitted using exponential and tangent functions
- The 1918 data point is placed at the 3.2 percentile level
- Other data points are attached at higher percentile levels corresponding to events of lower severity

<table>
<thead>
<tr>
<th>Pandemic</th>
<th>Actual Percentile</th>
<th>Actual Excess Mortality Percentage</th>
<th>Fitted Excess Mortality Percentage</th>
<th>Fitted Excess Mortality Rate (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted 1918</td>
<td>0.00%</td>
<td>47.00%</td>
<td>47.00%</td>
<td>200.86</td>
</tr>
<tr>
<td>1918</td>
<td>3.20%</td>
<td>25.50%</td>
<td>22.72%</td>
<td>121.07</td>
</tr>
<tr>
<td>1957</td>
<td>27.80%</td>
<td>1.30%</td>
<td>5.85%</td>
<td>20.45</td>
</tr>
<tr>
<td>2003 SARS</td>
<td>51.60%</td>
<td>0.63%</td>
<td>2.68%</td>
<td>13.64</td>
</tr>
<tr>
<td>1968</td>
<td>75.80%</td>
<td>0.73%</td>
<td>1.45%</td>
<td>7.37</td>
</tr>
<tr>
<td>1977</td>
<td>100.00%</td>
<td>0.60%</td>
<td>0.87%</td>
<td>4.51</td>
</tr>
</tbody>
</table>

Results: pandemic model

- The pandemic model projects larger increases in mortality rates
- However, the probability of extremely large increases is still remote
The objective of the model is to determine whether a potential terrorist attack would cause catastrophic increases in mortality rates.

A lack of historical data for the probability of such an event poses a serious challenge to constructing the model.

As a result, a multi-level trinomial lattice model was used.
Multi-level logic tree

- Multi-level logic tree approach using a trinomial lattice structure with 20 ‘levels’ in total
- Each “level” within the lattice structure is associated with three possible outcomes:
 - ‘Success’ assumes a random number of deaths within a pre-determined range
 - ‘Failure’ indicates no deaths have occurred
 - ‘Escalate’ to the next higher level
- Higher ‘levels’ represent increased severity in terms of deaths with a corresponding increase in the difficulty of achieving a ‘Success’

Frequency of events

- Frequency of terrorist events is chosen from a normal distribution, with an expected number of 27.2 events per quarter and standard deviation of 8.6
- This is based on a total of 730 recorded terrorist occurrences world-wide between 1999 and 2003 from U.S. State Department data

Terrorism Model: Number of Reported Terrorist Events

- Frequency distribution of terrorist events per quarter from 1999 to 2003.

Terrorism Model: Reported Deaths from Terrorist Events

- Frequency distribution of terrorist deaths per quarter from 1999 to 2003.
Severity: defining the levels

- The model’s highest level reflects terrorist events causing between 393,217 and 786,432 deaths

- Model parameters were selected by minimizing the sum of the squares of the difference between model and actual number of deaths

<table>
<thead>
<tr>
<th>Level</th>
<th>Lower Range</th>
<th>Upper Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>97</td>
<td>192</td>
</tr>
<tr>
<td>9</td>
<td>193</td>
<td>384</td>
</tr>
<tr>
<td>10</td>
<td>385</td>
<td>768</td>
</tr>
<tr>
<td>11</td>
<td>769</td>
<td>1,536</td>
</tr>
<tr>
<td>12</td>
<td>1,537</td>
<td>3,072</td>
</tr>
<tr>
<td>13</td>
<td>3,073</td>
<td>6,144</td>
</tr>
<tr>
<td>14</td>
<td>6,145</td>
<td>12,288</td>
</tr>
<tr>
<td>15</td>
<td>12,289</td>
<td>24,576</td>
</tr>
<tr>
<td>16</td>
<td>24,577</td>
<td>49,152</td>
</tr>
<tr>
<td>17</td>
<td>49,153</td>
<td>98,304</td>
</tr>
<tr>
<td>18</td>
<td>98,305</td>
<td>196,608</td>
</tr>
<tr>
<td>19</td>
<td>196,609</td>
<td>393,216</td>
</tr>
<tr>
<td>20</td>
<td>393,217</td>
<td>786,432</td>
</tr>
</tbody>
</table>

Results: terrorism model

- The terrorism model does not project large enough increases in mortality to be considered catastrophic

<table>
<thead>
<tr>
<th>Mortality Increase Range</th>
<th>Proportion of Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>79.377%</td>
</tr>
<tr>
<td>0.5</td>
<td>17.495%</td>
</tr>
<tr>
<td>1.0</td>
<td>2.238%</td>
</tr>
<tr>
<td>1.5</td>
<td>0.574%</td>
</tr>
<tr>
<td>2.0</td>
<td>0.150%</td>
</tr>
<tr>
<td>2.5</td>
<td>0.100%</td>
</tr>
<tr>
<td>3.0</td>
<td>0.029%</td>
</tr>
<tr>
<td>3.5</td>
<td>0.032%</td>
</tr>
<tr>
<td>4.0+</td>
<td>0.000%</td>
</tr>
</tbody>
</table>
Section 5

Combined results

- Combined results benefit from projected mortality improvements in the baseline model
- Catastrophic mortality increases are largely due to the pandemic model