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ABSTRACT. We describe a simple way to construct a bivariate copula with spec-
ified marginals and partially specified dependence. For example, our method
allows one to model tail behavior scenarios while holding the core of the joint dis-
tribution fixed. We provide an Excel workbook to illustrate the method, including
its use in Monte Carlo simulation.

1. INTRODUCTION

Any multivariate distribution may be constructed from its marginal distribu-
tions and a copula. This is described in general terms by Nelsen (1999), which
is a good introduction to copulas. Frees, Carriere and Valdez (1996) use copulas
to model dependent lifetimes, an early actuarial application of copulas. Venter
(2002) surveys copulas for actuarial applications, especially in the non–life fields.
McNeil, Frey and Embrechts (2005) describe copulas and how they arise in risk
management. Venter et al. (2007) discuss the possibilities for modeling more than
two dependent variables with applications to financial models.

While copulas are fundamental to modeling dependence, covariance is more
often used in discussion of risk. For example, Gorski, Longley-Cook and Reiskytl
(2002) discuss the importance of covariance in risk-based capital models, but they
do not mention copulas explicitly. The American Academy of Actuaries reports
similarly use the term covariance, but probably do not intend to exclude other
kinds of dependence1. The covariance concept cannot capture all aspects of de-
pendence, but it seems that the term covariance is often used in a general, non-
technical way to describe dependence in general.

The key concept is that the dependence structure of any multivariate distribu-
tion is represented by a copula. In the case of continuous distributions the copula
is unique, however the uniqueness does not play an important role in the simu-
lation process. The representation of a multivariate distribution by a copula and
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its marginal distributions is totally general, with no restrictions on the marginal
distributions or the dependence structure.

A 2-dimensional copula is a distribution function C(u, v) on I× I with standard
uniform marginal distributions where I is the closed unit interval [0, 1]. Nelsen
(1999, page 8) gives this simple equivalent definition:

A 2-dimensional copula is is a function C : I × I −→ I with the
following properties:

(i) For all x, y ∈ I,

C(u, 0) = 0 = C(0, v)

and
C(u, 1) = u and C(1, v) = v.

(ii) For u1, u2, v1, v2 ∈ I with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The condition (ii) above is equivalent to the non-negativity of the probability as-
sociated with [u1, u2] × [v1, v2]. In high dimensions, the analogous condition is
much more complicated.

We will also use the fundamental result in the theory of copulas, Sklar’s theorem
(McNeil, Frey and Embrechts, 2005, page 186) or (Nelsen, 1999, page 15):

If F(x, y) is a joint distribution function with marginals F1(x) and
F2(y), then there is a copula C(u, v) such that

F(x, y) = C(F1(x), F2(y)).

2. Excel EXAMPLE

We have prepared an Excel workbook to be used as an educational tool for ac-
tuaries who would like to explore the use of copulas for simulation of extreme
events. This section provides brief instructions on the use of the workbook. The
workbook example is highly simplified in the sense that the levels of probability
are limited to a small set of values. In this way the conceptual issues are illus-
trated while keeping the level of detail within reasonable bounds. The example
can be scaled up to any degree without introducing any new conceptual issues. In
preparing this workbook our principal reference on copulas was An Introduction
to Copulas by Nelsen (1999).

The dependence structure of empirical probability distributions is difficult to es-
tablish for the extremes of the distribution, because of the rarity of data that could
be used for empirical determination of the dependence relationship. Actuaries
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encounter situations in which the distributions of important individual variables
are known, as well as the dependence structure between the variables for com-
mon events, but the dependence structure in the tails is either unknown or based
on very limited data. The workbook discussed in this paper allows distributions
to be established to use this known information, but to allow exploration of hy-
pothetical dependence relationships that satisfy the criteria for a valid probability
distribution.

In the situation described in the paragraph above, the use of a copula allows the
focus of the modeling process to be placed on the unknown elements of depen-
dence, while maintaining the known information on marginal distributions and
dependence for common events. The concept of a copula is not limited to two
dimensions. The process outlined in this paper could be extended to any number
of dependent marginal distributions with a copula of the corresponding dimen-
sionality. The practical implementation of such an approach involves, of course,
an exponential increase in the work involved.

The Excel workbook that we have prepared can be used with software such as

Simtools2 or @Risk3 to simulate events with the known marginal distributions and
dependence relationships. The use of a copula allows fully general evaluation
of dependence, subject to the known information, while maintaining the neces-
sary characteristics of a probability distribution. To illustrate the procedure we
have constructed copulas with a bivariate normal distribution for common events
(defined in this case as a cumulative probability between 0.05 and 0.95) and an
arbitrary relative density for other (i.e., relatively uncommon) events. The use of
the normal copula for this purpose was purely a matter of convenience any cop-
ula could be substituted for the normal copula without any change in the rest of
the process. The correlation coefficient for the bivariate normal distribution may
be specified, and an estimate of Spearman’s rho is produced for the combined
numerical copula. This numerical copula may then be used for simulation.

3. BASIC STRUCTURE OF THE EXCEL WORKBOOK

The workbook CopulaExample.xls consists of eight spreadsheets. The user can
focus on the first four of these spreadsheets, as the remaining sheets are only used
to provide values for the normal copula (described in Appendix A), which did not
seem to be readily available in prepared form. The spreadsheets of interest to the
user are shown in the following table.

2This is an Excel add-in developed by Roger Myerson of the University of Chicago. It is avail-
able to be downloaded for free at http://home.uchicago.edu/~rmyerson/addins.htm

3This is a popular commercial Excel simulation add-in. More information here: http://www.
palisade.com/risk/
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Worksheet Purpose

Constructed Copula Allows user to build copula with known
“core”

Marginals & Simulation Using marginals and constructed copula
simulates values

Simulation Output Results of applying Simtools to
“Marginals & Simulation”

Copula Examples Seven examples of known copulas with
various properties

The starting point for use of the workbook is the first spreadsheet, Constructed
Copula. This is set up for the creation of a copula where the dependence structure
for common events is based on the normal copula. In other words, if the marginal
distributions were normal distributions, this example would result in the bivariate
normal distribution for common events. The normal copula is a one-parameter
family of copulas where the parameter is the linear correlation coefficient for the
bivariate normal distribution. The spreadsheet initially has this value specified as
0.6 in cell C2 of the spreadsheet, but this value can be specified by the user as any
value in the open interval (−1, 1).

The spreadsheet consists of a series of tables with headings that represent the
cumulative probabilities of the two marginal distributions. Our convention for
presenting density values is to present the value for a cell with the headings rep-
resenting the upper right corner of the cell. For example, the default value of
0.00393 shown in cell E20 with an X value of 0.2 and a Y value of 0.95 is actually
the total density in the cell [0.05, 0.2]× [0.8, 0.95].

The starting point for the construction of the copula example consists of the two
tables in C17:J25 and C34:J40. In C17:J25 the density values of the normal copula
are entered for common events, which we have arbitrarily defined as events with
a cumulative probability between 0.05 and 0.95. These values of the copula are
assumed to be based on known dependence relationships obtained from empirical
data, and are fixed throughout the rest of the construction.

The values in cells C34:J40 are intended to be changed by the user to construct
a copula with desired properties. Initially these are filled in with numerical val-
ues from the normal copula. (Note: If the correlation coefficient is changed, the
values in cells M19:S25 will have to be copied to M34:S40 using “paste special,”
“values.” These values are then copied to the appropriate cells within C34:I40.)
These values are entered initially simply to provide a valid starting point for the
construction.
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A reasonable starting point for using the workbook would be for the user to
perform a simulation on the basis of the workbook as provided, before mak-
ing any changes to the spreadsheets. As we noted earlier, Roger Myerson of
the University of Chicago offers an Excel simulation add-in, Simtools for free at
http://home.uchicago.edu/~rmyerson/addins.htm. If this add-in tool is used,
a simulation can be performed by highlighting cells A1:C501 in the “Simulation
Output” spreadsheet, and then running the “simulation table” function of Sim-
tools. This will fill in the simulated values, and update the graph included in this
spreadsheet.

A function on [0, 1]× [0, 1] is a copula if and only if it is a cumulative probability
distribution with uniform marginal distributions. These conditions are equivalent
to the set of formulas in cells C74:J81 of the “Constructed Copula” worksheet,
together with the condition that all of the weights in cells C74:J81 and C34:I40

are non-negative (assuming that the non-negative values in E20:H23 are used).
The cell computations are automatic as values in C34:I40 are changed. The non-
negativity is tested and reported in cell K30. The user may alter values in C34:I40

as desired, and as long as K30 shows “OK,” the final copula will adhere to the
required conditions.

Cell L59 of the ”Constructed Copula” spreadsheet provides an approximation
for Spearman’s rho, a measure of dependence frequently used for copulas (as dis-
cussed below). A simple second step in using the program would be to modify
one of the cells in C34:I40 and observe the change in Spearman’s rho, as well as
carry out a simulation with the modified value. With 81% of the values deter-
mined by the fixed central region of the copula, the degree of change in Spear-
man’s rho is limited, but still illustrates the process for constructing a copula with
desired properties. For example, replace the entries in cells F34 and I37 with 0.003
and G34 and I36 with 0.01. Cell K30 indicates that these changes do not violate the
non-negativity constraints. The value of Spearman’s rho increases from 0.51802 to
0.51873. While this is a very modest increase, when we performed one example
of a simulation of 500 observations, the number of cases in which both variables
were either below the 5th percentile or above the 95th percentile increased from
9 cases to 13 cases, a significant increase if these cases represented occurrences
associated with financial losses.
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4. CONSTRUCTION OF MODIFIED COPULA

In the situations that we envision as applications of these techniques the mar-
ginal distributions can be approximated reasonably well, and the dependence be-
tween the variables is known to a reasonable approximation for commonly en-
countered values. We assume that linear correlation is a reasonable approxima-
tion to the dependence pattern for commonly encountered values, but that the
dependence relationship for extreme values is not well known.

The calculations presented in the spreadsheet are for purposes of illustration of
the concepts. As such, the granularity of the computation grid was purposely lim-
ited to a coarse grid with few coordinate points, to simplify review of the model.
The values of the constructed copula are specified on a rectangular grid of coordi-
nates. The coordinates are chosen so that the grid points include all of the points
with x and/or y equal to 0 or 1. Our method involves stipulating the probability
associated with each sub-rectangle of the grid. The conditions for a copula are
satisfied if these probabilities are non-negative, and the sums of the probabilities
in each row or column are equal to the difference between respective cumula-
tive marginal probabilities. The copula will satisfy the conditions C(x, 0) = 0,
C(0, y) = 0, C(x, 1) = x and C(1, y) = y. A real-world model would follow these
procedures, but would likely have a much more detailed computation grid.

Our procedure creates a copula that matches the probability densities of the bi-
variate normal with a correlation coefficient specified by the user. The marginal
probabilities for the bivariate normal range between 0.05 and 0.95. These values
were chosen arbitrarily to mark the transition from common to rare events, and
could be adjusted by a modification of the Excel workbook. The structure outside
of this range is created separately, and combined with the normal copula values
within the common range. The constructed portion of the copula is controlled to
meet the conditions required of a copula. It is necessary and sufficient that the
values be equal to those of a cumulative probability distribution on [0, 1] × [0, 1]
with uniform marginals. The normal copula automatically satisfies these condi-
tions, so it is known that at least one feasible solution exists for the constructed
cells. The constructed portion of the copula must be determined so that the final
product continues to satisfy these constraints.

5. MEASURES OF DEPENDENCE

The linear correlation coefficient of a joint probability distribution depends not
only on the dependence structure of the distribution, but also on the specifics of
the marginal distributions. For example, consider a joint probability distribution
in which X follows a uniform distribution on [0, 1], but Y follows the exponential
distribution f (y) = e−y for 0 < y < ∞. Suppose also that X and Y are completely
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order dependent, i.e. that if X is given then Y = − log(1 − X). In this case the
correlation of X and Y is given by

1

σXσY

∫ 1

0
(x − 1/2)(− log(1 − x)− 1) dx =

√
3

2
.

Thus, even though there is a perfect association between X and Y, the correlation
coefficient is less than 1. Of course if the marginal distributions were identical,
the correlation coefficient in this case would be 1. This shows that the dependence
structure does not determine the correlation coefficient, so the copula does not
determine a unique correlation coefficient. To measure association in a way that
is determined by the copula we turn to order statistics. An example of a mea-
sure of the degree of association between variables using order statistics is rank
correlation. Such a measure is Spearman’s rho, which is given for a copula C by

ρS = 12
∫ 1

0

∫ 1

0
(C(x, y) − xy) dx dy.

We have approximated this value numerically in the Excel workbook by using
average values over each cell of the grid. We tested this numerical approximation
on the basis of the bivariate normal copula, for which Spearman’s rho, ρS , is given
by

ρS =
6

π
arcsin

ρ

2
where the symbol ρ on the right side of the equation represents the linear corre-
lation coefficient (McNeil, Frey and Embrechts, 2005, page 215). Tests using cor-
relation coefficients from plus or minus 0.1 to plus or minus 0.9 showed that the
approximation was accurate to within one percent of the true value on the basis
of the grid spacing used in this workbook. The user can observe the changes to
Spearman’s rho, shown in cell L59 of the “Constructed Copula” spreadsheet as
changes are introduced in cells C34:I40.

6. MARGINAL DISTRIBUTIONS

The marginal distributions are specified in the “Marginals & Simulation” spread-
sheet of the workbook. The selection of the copula and of the marginal distribu-
tions are totally independent of each other – the choice of marginal distributions is
not restricted in any way. We have chosen to illustrate the process with X based on
a normal distribution and Y based on a lognormal distribution. These are spec-
ified in the “Marginals & Simulation” spreadsheet in rows 33 to 48. The upper
portion of that spreadsheet demonstrates the simulation of uniform random vari-
ables with the dependence structure specified by the bivariate copula.
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The process of selecting dependent uniform variables is straightforward, but
appears complex because of the workaround needed to look up the boundaries of
a particular grid cell using the =vlookup() function in Excel. The simulation of X
and Y starts with the selection of a uniform pseudo-random number u1. A second
uniform pseudo-random number u2 is then used with the copula to approximate
c2 such that for the bivariate uniform probability distribution associated with C
the cumulative probability of c2 given u1 is u2. To perform this calculation we
look at the copula as a cumulative probability distribution, and find c2 such that
the cumulative probability of c2 given u1 is u2. The two uniform random variables
with dependence based on the copula are then used to compute X and Y with
these values as, respectively, the cumulative probability of X and the cumulative
probability of Y given X.

The user may modify the marginal distributions as desired without the neces-
sity of making any other changes to the workbook. This may be of interest as a
way to observe the separate effects of the copula and the marginal distributions
on the simulated results.

7. MAXIMIZATION OR MINIMIZATION OF SPEARMAN’S RHO

The constraints resulting from the construction of a copula on an M by M grid
with a fixed N by N sub-grid specified by the densities of the normal copula can
be reduced to a system of 2M − 1 linear equations in M2 − N2 variables with
M2 − N2 non-negativity constraints on the respective variables. Assume a grid
spacing given by

x0 = 0, x1, x2, . . . , xM−1, xM = 1

y0 = 0, y1, y2, . . . , yM−1, yM = 1

Let the density in the grid sector [xi−1, xi] × [yj−1, yj] be denoted by dij. The
following system of equations and constraints is equivalent to the conditions re-
quired of a copula:

diM = yi+1 − yi −
M−1

∑
j=1

dij

dMj = xj+1 − xj −
M−1

∑
i=1

dij

dMM = 1 −
M−1

∑
i=1

M−1

∑
j=1

dij −
M−1

∑
i=1

diM −
M−1

∑
j=1

dMj

dij ≥ 0 i, j = 1, 2, . . . , M
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The existence of the normal copula demonstrates that solutions exist for this
system of equations and constraints. The set of values satisfying these constraints
is a simplex.

The calculation to estimate Spearman’s rho is linear in the copula values. There-
fore the problem of maximizing or minimizing Spearman’s rho subject to the
above constraints is a problem in linear programming. The simplex method of
linear programming can be used to solve this problem in a finite number of steps.
In this way a dependence structure can be created that maximizes or minimizes
the rank correlation, subject to the known core of the copula. We have not imple-
mented the simplex method within the Excel workbook, but software for the sim-
plex method is readily available. We have provided an example of the adjusted
cells of a copula in which we approximated the result that would be obtained
by using the simplex method to maximize rho. The values are included in cells
C88:I94 of the “Constructed Copula” spreadsheet. The resulting value of Spear-
man’s rho is 0.54598. The specific simplex problem used to find this solution is
presented in Appendix B.

8. CONCLUSION

This workbook is intended as an example of how a constructed copula could
be used in simulation when the marginals of the variables are known. Use of
this approach in a practical implementation would involve extending the grid
to a more refined set of values, but would not involve any conceptual changes.
We hope this example will help users to apply the copula methodology in risk
management.
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APPENDIX A. CALCULATION OF BIVARIATE NORMAL DISTRIBUTION WITH Excel

To compute the cumulative bivariate normal distribution function we prepared
an Excel spreadsheet to compute densities for the bivariate standard normal dis-
tribution function FN(x, y) with a variable correlation coefficient ρ with x and y
varying from −4 to 4 with a grid spacing equal to the lesser of 0.025 or one fourth

the difference between F−1
N (0.05n) and the nearest multiple of 0.1. In other words,

our grid spacing was 0.025 unless we needed to shrink the spacing to achieve an
exact marginal probability equal to a multiple of 0.05.

We used Simpson’s rule to carry out numerical integration of the densities to
obtain the cumulative bivariate normal distribution. The standard bivariate nor-
mal density is given by

fN(x, y) =
1

2π
√

1 − ρ2
e
−

x2 − 2ρxy + y2

2(1 − ρ2)

= Pr(Y = y|X = x) Pr(X = x)

= fN(x) fN

(

y − ρx
√

1 − ρ2

)

We are using the fact that the conditional distribution of Y|X = x is normally

distributed with mean ρx and standard deviation
√

1 − ρ2. Integrating over the
rectangle (−∞, x] × (−∞, y] gives the cumulative probability as an iterated inte-
gral:

FN(x, y) =
∫ x

−∞

∫ y

−∞
fN(u, v) dv du

=
∫ x

−∞
g(u) du

g(x) = fN(x)
∫ y

−∞
fN

(

v − ρx
√

1 − ρ2

)

dv

= fN(x)FN

(

y − ρx
√

1 − ρ2

)

We used this fact to calculate densities , using the Excel worksheet function NORMDIST

to get FN

(

y − ρx
√

1 − ρ2

)

, and then integrating g(u) numerically to get FN(x, y). The
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worksheet Bivariate Normal CDF has this numerical integration. It needs a start-
ing value for FN(4,−4), which is determined in the worksheet Lower Tailusing
numerical integration.

Since this NORMDIST is highly accurate, the only source of error in the cumulative
density would arise from the approximations in the numerical integration.

A check on the accuracy of the numerical integration indicated that the degree
of approximation is adequate. We compared the Excel worksheet results to the
values obtained from Mathematica for some key values.

Excel Mathematica
ρ = 0.5
FN(4, 4) 0.999938 0.999937
FN(0, 0) 0.333334 0.333333
FN(1, 0) 0.468744 0.468743
FN(0, 1) 0.468744 0.468743
FN(−4,−4) 1.12669 × 10−6 4.87055 × 10−7

ρ = −0.5
FN(4, 4) 0.999938 0.999937
FN(0, 0) 0.166668 0.166667
FN(1, 0) 0.372603 0.372602
FN(0, 1) 0.372603 0.372602
FN(−4,−4) 1.126688× 10−6 3.46191 × 10−17

The spreadsheet values of the copula are shown to four decimal places, so the
error in numerical integration is insignificant in relation to the values shown.
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APPENDIX B. SIMPLEX PROBLEM GENERATED BY CONSTRAINTS WITH NORMAL

CORE AND CORRELATION ρ = 0.6

Maximize t = 0.586a + 2.665b + 7.942c + 14.978d + 20.256e + 22.334 f + 11.46g

+ 0.571h + 2.597i + 7.739j + 14.595k + 19.737l + 10.881m + 0.518n

+ 0.383o + 0.203p + 0.068q + 0.015r

subject to

a + b + c + d + e + f + g ≤ 0.022750062

f + h + i + j + k + l + m ≤ 0.027249938

a + h + n + o + p + q + r ≤ 0.027249938

n + l + e ≤ 0.018867098

o + k + d ≤ 0.015599035

p + j + c ≤ 0.015599035

q + i + b ≤ 0.018867098

2a + 2b + 2c + 2d + 2e + 2 f + g + 2h + 2i + 2j + 2k + 2l + m

+ 2n + 2o + 2p + 2q + r ≥ 0.123432146

and all variables a, b, c, . . . , r constrained to be nonnegative.

Note: The target function represents the change in Spearman’s rho for a unit
change in each of the variables, determined empirically by changing the respec-
tive variables. The copula was assumed to be symmetric, reducing the number
of variables from 33 to 18. Variables were named alphabetically, as shown in the
table below:

a h n o p q r
b i q
c j p
d k o
e l n
f m l k j i h
g f e d c b a


