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CHAPTER 3 SUPPLEMENT (MARCH 5, 2018 UPDATE) 
 
The methods presented in this chapter demonstrate how ultimate losses and 
reserves are calculated in practice from historical data.  This section will 
focus on the statistical methods that underlie the methods presented in section 
3.6. 
 
We can restate Table 3.2 using the notation where Li,k denotes the cumulative 
loss payments for accident year i and development year k. 
 

Table 3.19 

      Cumulative Loss Payments through Development Years 
 Development Year (k) 
Accident 
Year (i) 0 1 2 3 4 5 6 7 

1 L1,0 L1,1 L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 
2 L2,0 L2,1 L2,2 L2,3 L2,4 L2,5 L2,6 L2,7 
3 L3,0 L3,1 L3,2 L3,3 L3,4 L3,5 L3,6 L3,7 
4 L4,0 L4,1 L4,2 L4,3 L4,4 L4,5 L4,6 L4,7 
5 L5,0 L5,1 L5,2 L5,3 L5,4 L5,5 L5,6 L5,7 
6 L6,0 L6,1 L6,2 L6,3 L6,4 L6,5 L6,6 L6,7 
7 L7,0 L7,1 L7,2 L7,3 L7,4 L7,5 L7,6 L7,7 
8 L8,0 L8,1 L8,2 L8,3 L8,4 L8,5 L8,6 L8,7 

 
The values of Li,k for i+k ≤ K+1 are known, where K is the highest 
development year, or 7 in this example.  The values of Li,k for i+k > K+1 are 
unknown and represent the quantities that we want to estimate.  These values 
are the run-off triangle, or future cumulative paid losses (the shaded values).  
The ultimate losses for each accident year are the values of Li,K, or the last 
column of Table 3.19. 
 
Table 3.19 uses loss payments, so the loss reserve (unpaid losses) for each 
accident year is represented by the following formula: 
 
 Ri =   Li,K – Li,K-i+1 (3.9) 
 
Formula 3.7a provided a formula for estimating ultimate losses, as  
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 Estimated Ultimate Losses =  (Losses Paid-to-Date) j
j

f⋅∏  (3.7a) 

where jf  is the loss-development factor from a paid-loss-development 
triangle at duration j (i.e., from development year j – 1 to j).  We can restate 
formula 3.7a using the notation of this section, as: 
 

 Li,K =   (Li,K-i+1)
2

K

j
j K i

f
= − +

⋅ ∏  (3.10) 

 
The age-to-age development factors can be calculated by several different 
formulas.  Using the mean, or volume-weighted average, one such formula 
for fj is: 
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This formula can be obtained by making certain assumptions and then 
employing a statistical estimation technique.  One such approach was 
developed by Mack (Mack, T., “Measuring the Variability of Chain Ladder 
Reserve Estimates,” Casualty Actuarial Society Forum, Spring 1994, 101-
182).  Mack treats the L values as random variables with the following three 
properties: 
 

1. , ,0 ,1 , 1 , 1( | , , , )i k i i i k i k kE L L L L L f− −=   

2. 2
, ,0 ,1 , 1 , 1( | , , , )i k i i i k i k kVar L L L L L α− −=  

3. ,0 ,1 ,( , , , )i i i KL L L  and ,0 ,1 ,( , , , )j j j KL L L  are independent for all 
i j≠ . 

 
Here 2

kα  is a parameter that relates the variance to previous values in the 
same way kf  relates the mean to previous values.  Properties 1 and 2 have 
two consequences.  One is that the same factor applies regardless of the 
accident year (but does depend on the development year).  The second is that 
a given value depends only on the previous development year and not on any 
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prior years.  For example, if unusually low development is observed between 
L6,1 and L6,2, the same development factor of f3 is used regardless, thereby 
potentially understating the ultimate losses and consequently the loss reserve 
for accident year 6. 
 
Mack does not make an assumption regarding the distribution of the L values. 
Hence maximum likelihood estimation cannot be used.  Instead, he notes that 
given observations through development year j – 1, Property 1 implies that 

, , 1/i j i jL L −  is an unbiased estimator of jf .  Then, for any set of weights, 

1, 1,, ,j K j jw w − +  with 1, 1, 1j K j jw w − ++ + = , 
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is also unbiased.  The variance of a weighted average of independent 
estimators (implied by Property 3) is minimized when the weights are 
inversely proportional to the variance of each term.  (See Example 3.5 at 
the end of this section for a proof when there are two estimators.)  Using 
Property 2, given observations through development year j – 1,  
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The sum of these weights is 
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To ensure the weights add to one, divide by this sum to obtain 

 

, 1
2

, 1
, 11

, 1
, 12

11

.

i j

j i j
i j K jK j

i j
i j

ii j

L
L

w L
L

α

α

−

−
− +− +

−
−

==

= =

∑∑
  



4   Chapter 3 Supplement 
 

Finally, 
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Mack shows that changing Property 2 regarding the variance leads to 
alternative formulas. 
 
This stochastic form of determining the values of Li,k for i+k > K+1, or future 
cumulative paid losses in the run-off triangle, can be used to determine 
variances and therefore confidence intervals around the estimates of ultimate 
losses and consequently reserves. 
 
We can also view the fj values a different way to help formulate an alternative 
statistical representation of estimating ultimate losses.  From formula 3.10, 
we can define: 
 

 ,
1

, 0, , 1
K

j ult h
h j

f f j K
= +

= = −∏   (3.12) 

 
Formula 3.12 gives us the age-to-ultimate development factors for each 
accident year.  We know from the Bornhuetter Ferguson method that 

,

11
j ultf

 − 
 

gives us the ratio of ultimate losses yet to be paid after 

development period j to ultimate losses, therefore the ratio of ultimate losses 
paid by each development year j to ultimate losses is represented by: 
 

 
,

1 , 0, , 1j
j ult

r j Kf= = −  (3.13) 

 
We can then represent any value in the loss development triangle with the 
following relationship: 
 
 , , , , 0, , 1i j j i K i jL r L e j K= ⋅ + = −  (3.14) 
 
where ei,j is an error term.  This formulation has the advantage that future 
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values are not based solely on the most recent observed paid losses for each 
accident year.  In addition, an error term can be incorporated directly into the 
formula.  Formula 3.14 can then be used to model the future losses in the run-
off triangle and also determine variances and therefore confidence intervals 
around the estimates of ultimate losses and consequently reserves.  
 
The example in this section uses historical cumulative paid losses to develop 
future cumulative paid losses, including the ultimate losses.  The same 
approach can be used with incurred losses. 
 
Example 3.5  
 
Let X and Y be two independent random variables with variances 2

Xσ  and 
2
Yσ , respectively.  Let Z = wX + (1 – w)Y be a weighted average of the two 

variables.  Show that the variance of Z is minimized when 2/ Xw c σ=  and 
21 / Yw c σ− =  and determine the value of c. 

 
 Solution:   
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