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Preface 
 

This study note was written to supplement the “Credibility” chapter of Foundations of 
Casualty Actuarial Science as a reading for the fourth CAS/SOA examination.  It 
presents important topics not covered in the Foundations chapter including the 
Bühlmann-Straub Model and nonparametric and semiparametric estimation of credibility 
formula parameters.   
 
The author would like to thank Clive Keatinge, a member of both the CAS Examination 
and Syllabus Committees, for his suggestion to write the study note.  Clive provided 
oversight during the writing and editing process, and made helpful suggestions about the 
content and clarity of exposition.  He also chaired the committee that reviewed the study 
note.  I would also like to thank the reviewers on the committee for their many valuable 
contributions including Joseph Boor, Russell Greig, Nasser Hadidi, Leigh Halliwell, 
Stuart Klugman, Walter Lowrie, Marjorie Rosenberg, and Gary Venter.  Gary Venter is 
responsible for much of the material included in the section “An Intuitive Model for 
Credibility.” 
 
Ball State University students also provided valuable comments and should be 
recognized:  Heather Adams, Chuket Ounjitti, Doug Pirtle, Lori Thompson, and Melany 
Tower.    
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1.  Credibility Models 
 

This study note supplements the “Credibility” chapter of Foundations of Casualty 
Actuarial Science as a reading for the fourth CAS/SOA examination.  Several important 
topics not covered in the Foundations text are presented here, including the Bühlmann-
Straub credibility model and estimation of credibility formula parameters.  It is assumed 
that the student already has some familiarity with the material covered in the 
“Credibility” chapter before reading this study note. 
 

The credibility models that will be discussed are often referred to as greatest 
accuracy credibility or least squares credibility.  As will be explained later, these methods 
attempt to produce linear estimates that will minimize the expected value of the square of 
the difference between the estimate and the quantity being estimated.   

 
Bühlmann credibility will be reviewed paying particular attention to the 

simplifying assumptions that distinguish it from the more general Bühlmann-Straub 
model that follows.  The second half of the study note covers estimation of credibility 
formula parameters when underlying distributions are unknown. 

 
Before beginning a more rigorous study, an intuitive derivation of the useful 

Bühlmann credibility model will be presented. 
 

An Intuitive Model for Credibility 
 

The actuary uses observations of events that happened in the past to forecast future 
events or costs.  For example, data that was collected over several years about the 
average cost to insure a selected risk, sometimes referred to as a policyholder or insured, 
may be used to estimate the expected cost to insure the same risk in future years.  
Because insured losses arise from random occurrences, however, the actual costs of 
paying insurance losses in past years may be a poor estimator of future costs.   
 

Consider a risk that is a member of a particular class of risks.  Classes are groupings 
of risks with similar risk characteristics, and though similar, each risk is still unique and 
not quite the same as other risks in the class.  In class rating, the insurance premium 
charged to each risk in a class is derived from a rate common to the class.  Class rating is 
often supplemented with experience rating so that the insurance premium for an 
individual risk is based on both the class rate and actual past loss experience for the risk.  
The important question in this case is:  How much should the class rate be modified by 
experience rating?  That is, how much credibility should be given to the actual experience 
of the individual risk? 
 

Intuition says that two factors appear important in finding the right balance between 
class rating and individual risk experience rating: 
 

(1)  How homogeneous are the classes?  If all of the risks in a class are identical and 
have the same expected value for losses, then why bother with individual 
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experience rating?  Just use the class rate.  On the other hand, if there is 
significant variation in the expected outcomes for risks in the class, then relatively 
more weight should be given to individual risk loss experience.  

  
Each risk in the class has its own individual risk mean called its hypothetical 
mean.  The Variance of the Hypothetical Means (VHM) across risks in the class is 
a statistical measure for the homogeneity or vice versa, heterogeneity, within the 
class.   A smaller VHM indicates more class homogeneity and, consequently, 
argues for more weight going to the class rate.   A larger VHM indicates more 
class heterogeneity and, consequently, argues for less weight going to the class 
rate. 

 
(2) How much variation is there in an individual risk’s loss experience?  If there 

is a large amount of variation expected in the actual loss experience for an 
individual risk, then the actual experience observed may be far from its expected 
value and not very useful for estimating the expected value.  In this case, less 
weight, i.e., less credibility, should be assigned to individual experience.  The 
process variance, which is the variance of the risk’s random experience about its 
expected value, is a measure of the variability in an individual risk’s loss 
experience.  The Expected Value of the Process Variance (EPV) is the average 
value of the process variance over the entire class of risks. 

 
Let iX  represent the sample mean of n observations for a randomly selected risk i.  

Because there are n observations, the variance in the sample mean iX  is the variance in 
one observation for the risk divided by n.  Given risk i, this variance is PVi / n  where PVi 
is the process variance of one observation.  Because risk i was selected at random from 
the class of risks,  an estimator for its variance  is E[ PVi / n  ] =  E[ PVi ] / n = EPV / n.  
This is the Expected Value of the Process Variance for risks in the class divided by the 
number of observations made about the selected risk.1  It measures the variability 
expected in an individual risk’s loss experience.   

 
  Letting µ represent the overall class mean, a risk selected at random from the class 

will have an expected value equal to the class mean µ.  The variance of the individual risk 
means about µ is the VHM, the Variance of the Hypothetical Means.  

 
There are two estimators for the expected value of the ith risk:  (1) the risk’s sample 

mean iX , and (2) the class mean  µ.  How should these two estimators be weighted 
together?   A linear estimate with the weights summing to 1.00 would be 

 
µ)1( wXwEstimate i −+=  . 

 
An optimal method for weighting two estimators is to choose weights proportional to 

the reciprocals of their respective variances.  This results in giving more weight to the 

                                                 
1 The expectation is taken over all risks in the class. 
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estimator with smaller variance and less weight to the estimator with larger variance.  In 
many situations this will result in a minimum variance estimator.  (Please see the first 
problem in the exercises at the end of the study note.)   

 
The resulting weights are 

VHMnEPV

nEPVw
1

/
1

/
1

+
=        and        

VHMnEPV

VHMw
1

/
1

1

)1(
+

=−    . 

 
Note that a denominator was chosen so that the weights add to one.  A little algebra 
produces 
 

VHM
EPVn

nw
+

=        and       

VHM
EPVn

nw
+

−=− 1)1(   . 

 
 

Setting K = EPV / VHM , the weight assigned to the risk’s observed mean is 
 

Kn
nw
+

=  . 

 
This is the familiar Bühlmann credibility formula with credibility Z = n / (n + K ).2 
 

In this section, a risk selected from a rating class was used to illustrate the concept 
of credibility.  In general, an individual risk or a group of risks comes from a larger 
population and the goal is to find the right balance between using the data for the smaller 
group and the larger population.  Many other examples are possible. 

 
Example  An actuary calculated indicated rate changes by territory for automobile 
insurance.  The rate change indication for the ith territory was Ri.  Combined data for the 
entire state indicated that a rate change of +2.0% was required.  From these values, 
credibility weighted rate change indications were calculated: 
 

Credibility weighted rate change   =    Zi x Ri  +  (1 − Zi ) x (+2.0 %) . 
                         indication for territory  i 

 
The credibility weights Zi were calculated from the formula Zi = ni / (ni + K ) where 

ni was the number of insured vehicles in the territory during the three-year data collection 
period.  ▐▐ 

 
 
 
                                                 
2 A rigorous derivation of the Bühlmann credibility formula is provided in Appendix A. 
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Preliminaries and Notation 
 
The actuary uses observations for a risk or group of risks to estimate future 

outcomes for that same risk or group.  In this study note, although the term “a risk” is 
often used, the same comments can generally be applied to a group of risks where the 
group is a collection of risks with some common characteristics.  The actual observation 
during time t for that particular risk or group will be denoted by xt, which will be the 
observation of corresponding random variable Xt, where t is an integer.  For example, Xt 
may represent the following: 

 
• Number of claims in period t 
• Loss ratio in year t 
• Loss per exposure in year t 
• Outcome of the tth roll of a die. 
 

An individual risk is a member of a larger population and the risk has an associated 
risk parameter θ that distinguishes the individual’s risk characteristics.  It is assumed that 
the risk parameter is distributed randomly through the population and Θ will denote the 
random variable.  The distribution of the random variable Xt depends upon the value of θ:   
fX |Θ (xt│θ).  For example, θ may be a parameter in the distribution function of Xt.  In the 
case of a Poisson claims process, θ might be the expected number of claims.  Although 
the examples in this study note will use θ’s that are scalars, one can also build models 
with θ as a multidimensional vector with each component of the vector describing some 
aspect of the individual’s risk characteristics. 

 
If Xt is a continuous random variable, the mean for Xt given Θ = θ, is the conditional 

expectation, 
 

EX | Θ [Xt│Θ = θ] = ∫ ttXt dxxfx )( θΘ = µ(θ) , 

where the integration is over the support of  f X | Θ (xt│θ).  If Xt is a discrete random 
variable, then a summation should be used: 
 

E X | Θ [Xt│Θ = θ] = ∑
txall

tXt xfx )|( θΘ . 

The integral notation will be used in general cases, but the reader should be aware that a 
summation is called for with discrete random variables.  It will be assumed that µ(θ) =    
E X | Θ [Xt│Θ = θ] is constant through time for the models considered in this study note.3   
 

The risk parameter represented by the random variable Θ  has its own probability 
density function (p.d.f.):  fΘ (θ).  The p.d.f. for Θ describes how the risk characteristics are 

                                                 
3 This is a major assumption that is easily violated in practice.   Risk characteristics can change for a variety 
of reasons:  a young driver becomes a better driver with experience; a business may institute risk control 
procedures that reduce losses; traffic densities may increase in an area leading to increased probabilities of 
auto accidents; and inflation will increase the costs of loss payments. 
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distributed within the population.  If two risks have the same parameter θ, then they are 
assumed to have the same risk characteristics including the same mean µ(θ). 

 
The unconditional expectation of Xt is 
 

∫∫ ∫∫== θθθθθ ΘΘΘ ddxfxfxddxxfxXE ttXtttXtt )()|(),(][ ,    4  

 
∫ ∫ ==== µθµΘθθθ ΘΘΘΘΘ )]([]]|[[)(])|([ EXEEdfdxxfx tXttXt . 

 
The conditional variance of Xt given Θ = θ is  

 
]))([(][ 2 θΘθµθΘ ΘΘ =−== tXtX XEXVar  = ttXt dxxfX )|())(( 2 θθµ Θ−∫∫  =  σ2(θ) .  

 
This variance is often called the process variance for the selected risk.  The unconditional 
variance of Xt, also referred to as the total variance, is given by the Total Variance 
formula: 
 

]][[]][[][ ΘΘ ΘΘΘΘ tXtXt XVarEXEVarXVar += , or  

 
   

Total Variance = Variance of the 
Hypothetical Means + Expected Value of the 

Process Variance 
 

A proof of this formula is shown in Appendix B.  These concepts are best demonstrated 
with an example. 
 
Example  The number of claims Xt during the tth  period for a risk has a Poisson 

distribution with parameter θ:  P[Xt = x]  = 
!x

ex θθ −
 .  The risk was selected at random 

from a population for which Θ is uniformly distributed over the interval [0,1].  (This 
simple distribution for Θ was chosen to make the integration easy.)  It will be assumed 
that θ is constant through time for each risk.   
 
  (1)   Hypothetical mean for risk with parameter θ is  µ(θ) = θθΘΘ == ][ tX XE  

because the mean of the Poisson random variable is the parameter θ.   
  (2)   Process variance for risk with parameter θ is σ2(θ)= θθΘΘ == ][ tX XVar  

because the variance equals the parameter θ for the Poisson.   
  (3)  Variance of the Hypothetical Means (VHM) is 

                                                 
4 Note that a substitution for the joint density function ),(, θΘ tX xf was made using the relationship 

 )()(),(, θθθ ΘΘΘ fxfxf tXtX =  . 
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12/1)1()1(])[(][][]][[
1

0
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⎝

⎛
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(4)  Expected Value of the Process Variance (EPV) is   

∫ ===
1

0
2/1)1(][]][[ θθΘΘ ΘΘΘ dEXVarE tX  . 

   (5)  Unconditional Variance (or total variance) is 
 

12/72/112/1][ =+=+= EPVVHMXVar t  .            ▐▐ 
 

1.1  Bühlmann Model 
 

The Bühlmann model assumes that for any selected risk, the random variables { X1, 
X2, ..., XN, XN+1, …} are independently and identically distributed.  For the selected 
risk, each Xt  has the same probability distribution for any time period t, both for the X1, 
X2, ..., XN  random variables in the experience period, and future outcomes XN+1, XN+2, …. 
As Hans Bühlmann described it, “homogeneity in time” is assumed.   
 

The characteristics that determine the risk’s exposure to loss are assumed to be 
unchanging and the risk parameter θ associated with the risk is constant through time for 
the risk.   The means and variances of the random variables for the different time periods 
are equal and are labeled µ(θ) and σ2(θ), respectively, as shown in the table below:  

 
Assumptions of Bühlmann Credibility 

Hypothetical Mean:  µ(θ) = EX |Θ[X1| θ] = … = EX |Θ [XN│θ] = EX |Θ [XN+1│θ] = … 

Process Variance:  σ2(θ) = VarX |Θ [X1│θ] = … = VarX | Θ [XN│θ] = VarX | Θ [XN+1│θ] = … 

 
Of course the hypothetical means and process variances will vary among risks, but they 
are assumed to be unchanging for any individual risk in the Bühlmann model.  
 

To apply Bühlmann credibility, the average values of these quantities over the 
whole population of risks are needed, along with the variance of the hypothetical means 
for the population: 
 

(1)  Population mean:   µ = EΘ[µ(Θ)] = EΘ [EX | Θ [Xt | Θ]] 
 

(2)  Expected Value of Process Variance:   EPV = E Θ [σ2(Θ)] = EΘ[VarX | Θ [Xt | Θ]] 
 
(3)  Variance of Hypothetical Means:   VHM = Var Θ [µ(Θ)] = E Θ [(µ(Θ) − µ)2] . 

 
The population mean µ = E Θ [E X | Θ [Xt│ Θ]]  provides an estimate for the expected value 
of  Xt in the absence of any prior information about the risk.  The EPV indicates the 
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variability to be expected from observations made about individual risks.  The VHM is a 
measure of the differences in the means among risks in the population. 

Because µ(θ) is unknown for the selected risk, the mean ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

N

t
tX

N
X

1

1  is used in 

the estimation process.  It is an unbiased estimator for µ(θ), 
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The conditional variance of X , assuming independence of the Xt given θ, is 
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The unconditional variance of X is 
 

N
EPVVHM

N
E

VarXVarEXEVarXVar XX +=+=+=
)]([

)]([]][[]][[][
2 Θσ

ΘµΘΘ Θ
ΘΘΘΘΘ . 

 
Bühlmann credibility assigned to estimator X is given by the well-known formula 

  

Z = 
KN

N
+

 , 

 
where N is the number of observations for the risk and K = EPV / VHM.    Multiplying the 
numerator and denominator by  (VHM / N) gives an alternative form: 
 

Z = 

N
EPVVHM

VHM

+
 . 

Note that the denominator is just ][XVar as derived a few lines earlier.  Therefore  
Z = N / (N+K) can be written as 
 

Z = 
][

)]([
XVar

Var
XEstimatortheofVarianceTotal

MeansalHypothetictheofVariance ΘµΘ=  . 

 
The numerator is a measure of how far apart the means of the risks in the population are, 
while the denominator is a measure of the total variance of the estimator.  
 

The credibility weighted estimate for  µ(θ) = EX | Θ [Xt│θ],  for t =1, 2, ..., N, N+1, ... 
is 
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               µθµ ⋅−+⋅= )1()(ˆ ZXZ   . 
 
The estimator )(ˆ θµ  is a linear least squares estimator for µ(θ).  This means that 
 

])}(])1([{[ 2Θµµ −⋅−+⋅ ZXZE  
 

is minimized when Z = N / (N+K).  Appendix A proves this.5   
  
 
1.2  Bühlmann-Straub Model 
 

The requirement that the random variables X1, X2, ..., XN, XN+1, … for a risk be 
identically distributed is easily violated in the real world.  For example: 

 
• The work force of a workers compensation policyholder may change in 

size from one year to the next.  
• The number of vehicles owned by a commercial automobile policyholder 

may change through time.   
• The amount of earned premium for a rating class varies from year to year.  
 

In all of these cases, one should not assume that X1, X2, ..., XN, XN+1, … are identically 
distributed, although an assumption of independence may be warranted. 

 
A risk’s exposure to loss may vary and it is assumed that this exposure can be 

measured.  Some measures of exposure to loss are: 
 

• Amount of insurance premium 
• Number of employees 
• Payroll 
• Number of insured vehicles 
• Number of claims 
 

In fact, a fundamental premise of insurance rating is that exposure bases can be identified 
that are directly related to the potential for loss. 
 

The Bühlmann-Straub model assumes that the means of the random variables are 
equal for the selected risk, but that the process variances are inversely proportional to the 
size (i.e., exposure) of the risk during each observation period.  For example, when the 
risk is twice as large, the process variance is halved.  These assumptions are summarized 
in the following table: 

 
                                                 
5 The expected squared error is minimized only if the true values of the EPV and VHM are used to calculate 
K.  If estimated values of the EPV and VHM (or K) are used, which is commonly done in practice, the 
linear estimator as given above is no longer optimal.  This is an advanced topic beyond the scope of this 
study note. 
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Assumptions of Bühlmann-Straub Credibility 

 Period 1 ·  ·  · Period N ·  ·  · 

Exposure m1 ·  ·  · mN ·  ·  · 

Hypothetical Mean for Risk θ 
per Unit of Exposure µ(θ) = E X | Θ [X1│θ] = … = E X | Θ [XN│θ]  = … 

Process Variance for Risk θ 

Var X | Θ [X1│θ] 

1

2 )(
m

θσ
=  ·  ·  · 

Var X | Θ [XN│θ] 

Nm
)(2 θσ

=  

·  ·  · 

 
The random variables Xt  represent number of claims, monetary losses, or some other 
quantity of interest per unit of exposure, and mt is the measure of exposure.  For example, 
Xt  could be number of claims per house-year6, or Xt might be a loss ratio.7  Note that the 
process variance for the random variable decreases as the exposure increases. 

 
Example  The annual numbers of claims for truck drivers in a homogeneous population 
are independently and identically distributed.  [The population might represent the work 
force of a large trucking company with strict hiring standards and good safety training for 
each driver.]  For each driver the number of claims per year has a mean of µ(θ) and a 
variance of σ2(θ).  (The θ parameter applies to every driver in the group.)   
 
A group of 10 drivers is selected from the larger population.  (1) What is the expected 
annual claims frequency for the group of 10 drivers?  (2)  What is the variance of the 
annual claims frequency for the group? 
 
Solution  Let X1t, X2t, …, X10t be random variables representing the number of claims in 

year t for each of the ten selected drivers.  Then, ∑
=

⎟
⎠
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⎜
⎝
⎛=

10

110
1

i
itt XX is the annual claims 

frequency for the group; that is, it is the annual number of claims per driver.  The 
exposure is mt = 10 and the unit of exposure is one driver.  The expected value and 
variance for the annual claims frequency for the group are  
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6 A house-year means one house insured for one full year.  It also represents two houses each insured for 
one-half year, or n houses each insured for (1/n) years.  
7 Loss ratio equals losses divided by premium.  In this case premium is the measure of exposure.  A loss 
ratio of 60% means that there are .60 in losses for each 1.00 of premium. 
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In this example, the exposure is the number of drivers in the group, which is 10.  The 
expected claims frequency is the same whether there is one driver, 10 drivers, or 100 
drivers in the group; however, the variance in the group’s claims frequency is inversely 
proportional to the number of drivers in the group.▐▐ 
 

How should random variables X1, X2, ..., XN associated with a selected risk (or 
group of risks) be combined to estimate the hypothetical mean µ(θ)?  A weighted average 
using the exposures mt will give a linear estimator for µ(θ) with minimum variance.  First 
define 

 

   m = ∑
=

N

t
tm

1
 . 

 
Then, define the weighted average  
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Recall that the variance of each Xt  given θ is  σ2(θ) / mt . For a weighted average 

∑
=

=
N

t
tt XwX

1
, the variance of X  will be minimized by choosing the weights wt to be 

inversely proportional to the variances of the individual Xt’s; that is, random variables 
with smaller variances should be given more weight.  So, weights wt = mt /m are called 
for under the current assumptions.  The proof is included as an exercise. 
 
The conditional expected value and variance of  X  given risk parameter θ are  
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Example  Continuing the prior example, assume that the number of drivers in the group 
was six in the first year, seven in the second year and nine in the third year.  Xt represents 
the number of claims per driver and mt is the number of drivers in the group in years t = 
1, 2, and 3. 
 
  (1)  m = 6 + 7 + 9 = 22 
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⎠
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⎜
⎜
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=      ▐▐ 

 
Example   A class for workers compensation insurance produced the following: 
 

Year Payroll in 100 Units Losses 
Loss per 
Exposure 

1 100,000 = m1 300,000 3.00 = x1 
2 110,000 = m2 200,000 1.82 = x2 
3 120,000 = m3 320,000 2.67 = x3 

Total 330,000 = m           820,000 2.48 = x  
 
The exposure unit is 100 of payroll.  Note that x can be calculated two equivalent ways: 

(1)  )67.2(
000,330
000,120)82.1(

000,330
000,110)00.3(

000,330
000,1003

1
⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛= ∑
=

t
t

t x
m
m

x    8 

 
(2)   x = (300,000 + 200,000 + 320,000) / 330,000 .       ▐▐ 
 

 The EPV and VHM are defined to be  
 

EPV = EΘ[σ2(Θ)]     and     VHM = VarΘ[µ(Θ)] , 
 

where the expected value is over all risk parameters θ in the population.  Remember, the 
loss per unit of exposure is used because the exposure can vary through time and from 
risk to risk. 
 

The unconditional mean and variance of X are 
 

                                                 
8 Note that this method produces 2.49, which differs from 2.48 in the table because of rounding error. 
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µΘµΘ ΘΘΘ === )]([]][[][ EXEEXE X , and 

m
EPVVHM

m
E

VarXVarEXEVarXVar XX +=+=+=
)]([

)]([]][[]][[][
2 Θσ

ΘµΘΘ Θ
ΘΘΘΘΘ . 

 
As in the simpler Bühlmann case, the credibility assigned to the estimator X of 

µ(θ) is 
 

XEstimatortheofVarianceTotal

MeansalHypothetictheofVariance
Z =   

 

=  

m
EPVVHM

VHM

+
  . 

                          
Multiplying the numerator and denominator by  (m/VHM) yields a familiar looking 
formula 
     

Z = 
Km

m
+

 . 

 
The total exposure m replaces N in the Bühlmann formula and the parameter K is defined 
as usual 
 

     K =  
)]([
)]([ 2

Θµ
Θσ

Θ

Θ

Var
E

VHM
EPV

=  . 

 
Note that the Bühlmann model is actually a special case of the more general Bühlmann-
Straub model with  mt =1 for all t.   
 
 The credibility weighted estimate is 
 
                  µθµ ⋅−+⋅= )1()(ˆ ZXZ  . 
 
Example  The actuaries at the Good Health Insurance Company calculate prospective 
premiums for group insurance policies using a Bühlmann-Straub credibility model.  
Analysis of Good Health’s data led to the following assumptions for its business: 

• For all policies together, the prospective average annual expected pure premium 
per insured person is 2,400. 

• The variance of the hypothetical mean pure premiums across group plans is 
500,000. 

• The expected value of the process variance in annual costs per insured person is 
250,000,000. 
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One of Good Health’s clients had the following experience during a one-year period with  
costs adjusted to reflect prospective costs. 
 

Group Policy Insured Persons Cost per Insured Person 
1 240 3,000 

 
Calculate a credibility weighted pure premium for group policy 1. 
 
Solution K = (250,000,000/500,000) = 500,   µ = 2,400,   m = 240  
 

 3243.
500240

240,000,3 =
+

== ZX  

 
 Estimated Pure Premium = .3243(3,000) + (1 − .3243)(2,400) = 2,594.58 ▐▐ 
 
 
2.  Estimation of Credibility Formula Parameters 
 

Both the Bühlmann and Bühlmann-Straub models require a determination of the 
parameter K.  In practice there are several ways this is done: 

 
(1)  Judgmentally select K.  A larger K gives less credibility to the individual 

sample mean X and more credibility to the population mean.  A smaller K 
gives more credibility to the individual sample mean X , but  the sample 
mean X may change significantly from one measurement period to another 
producing a fluctuating estimate.  For example, the latest three years of data 
may be used to calculate  X .  As an old year rolls off to be replaced by a 
more recent year of data, the value of  X can drastically change. 

 
(2) Select a K value that would have worked best in prior applications of the 

model.  If one is trying to estimate  E[XN+1│X1, ..., XN] from Z µZX )1( −+  , 

one approach would be to minimize ∑ −+−+
2

1 )])1(([ µZxZxN where the 

actual outcomes for year N+1 are compared with the credibility weighted 
forecasts for all risks in the population.  One could also use some other 
function of the difference between outcomes and forecasts such as the sum of  
absolute errors or the sum of absolute values of the percentage errors.  

 
(3)  Attempt to determine the EPV and VHM components of K. 
 

For the remainder of this study note, (3) will be discussed.   
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To calculate the Expected Value of the Process Variance (EPV) and the Variance 
of the Hypothetical Means (VHM) the following are needed: 

 
   (1)  Process variances σ2(θ) for each risk in the population 

    (2)  Hypothetical means µ(θ) for each risk in the population 
               (3)  Distribution function for θ to calculate the EPV  = EΘ[σ2(Θ)]  and  
                      VHM = VarΘ[µ(Θ)] 
 
Either all of the above must be estimated from the data, or else simplifying assumptions 
must be made.   
 

Suppose that there are R independent risks to be observed for N separate time 
periods as represented by the random variables in the table below: 
 

Time Period 
Risk _1_ _2_ . . . _N_ 

Risk 
Parameter 

1 X11 X12 . . . X1N θ1 

2 X21 X22 . . . X2N θ2 

: : : . . . : : 

R XR1 XR2 . . . XRN θR 
 
Note that another subscript has been added to the random variables because the 
discussion now concerns multiple risks.  The Xit’s are random variables representing the 
losses or number of claims for risk i during time period t and, for now, each risk i has N 
independent outcomes.  Associated with each θi is a mean µ(θi) such that 
 

EX | Θ [ Xit │θi ] = µ(θi)  .  
 

The expected values of each of the N outcomes for any selected risk i are assumed to be 
equal.   
 

The following additional assumptions are also made: 
 

(1) For any selected risk i, the Xit’s are independent given Θi = θi . 
 
(2) The outcomes for any risk are independent of any other risk. 
 
(3) The random variables Θ1, Θ2, ..., ΘR are independent and identically distributed 

from a common distribution fΘ(θ). 
 
 For a random variable Xit selected at random from the table the expected value is 
 

E[Xit] = EΘ[EX | Θ [ Xit │Θi ] ] = EΘ[µ(Θi)] = µ .   
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To calculate the unconditional variance of a randomly selected Xit, the total variance 
formula must be used: 
 

Var[Xit] = VarΘ[EX | Θ [ Xit│Θi ] ] + EΘ[VarX | Θ [ Xit |Θi ] ] .    
 

2.1 Nonparametric Estimation  
 

In the nonparametric case, no assumptions are made about the form or parameters 
of the distributions of Xit, nor are any assumptions made about the distribution of the risk 
parameters Θi.  Of course, for the Bühlmann model it is assumed that for any given risk i, 
the random variables { Xi1, Xi2, ..., XiN}, representing the outcomes for N different 
observations, are independently and identically distributed with identical means and 
variances.  The outcomes for different risks are also independent.  In the Bühlmann-
Straub model, the Ni outcomes for risk i have the same means but the process variances 
are inversely related to the exposure.  Note that the number of observations Ni has a 
subscript indicating that the number of observations can vary by risk in the Bühlmann-
Straub model. 

 
To apply the models in Sections 1.1 and 1.2, some information about the probability 

distributions fX | Θ (x│Θ = θ) and fΘ(θ) is required.  Although the exact distribution 
functions are not needed, the EPV and VHM must be obtained in order to calculate K and 
then the credibility Z.  In practice the EPV and VHM are often unknown.  The EPV and 
VHM can be estimated from the data for the Bühlmann model or the more complicated 
Bühlmann-Straub model.  The estimation procedures are sometimes referred to as 
empirical Bayesian procedures or, equivalently, empirical Bayes estimation. 

 
Bühlmann Model 

 
Estimates of the EPV and VHM can be made from empirical observations about a 

sample from the population of risks.  Assume that there are R risks in the sample and N 
separate observations will be made for each risk.  The R·N random variables in the left-
hand section of the following table represent the outcomes: 

 
 Time Period 

Risk _1_ _2_ . . .  _N_ 
Risk’s Sample Mean 

iX  
Risk’s Sample 

Process Variance 

1 X11 X12 . . . X1N ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

N

t
tXN

X
1

11
1  ∑

=
−⎟

⎠
⎞

⎜
⎝
⎛

−
=

N

t
t XX

N 1

2
11

2
1 )(

1
1σ̂  

2 X21 X22 . . . X2N ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

N

t
tXN

X
1

22
1  ∑

=
−⎟

⎠
⎞

⎜
⎝
⎛

−
=

N

t
t XX

N 1

2
22

2
2 )(

1
1σ̂  

: : : . . . : : : 

R XR1 XR2 . . . XRN   ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

N

t
X

NRX Rt
1

1  ∑
=

−⎟
⎠
⎞

⎜
⎝
⎛

−
=

N

t
RRtR XX

N 1

22 )(
1

1σ̂
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The iX ’s are unbiased estimators for each risk’s mean µ(θi), and the 2ˆ iσ ’s are unbiased 
estimators for each risk’s process variance σ2(θi).  Note that the divisor is (N −1) rather 
than N for the sample variances because sample means iX  rather than true means µ(θi) 
are used to compute them. 
 
 
Expected Value of the Process Variance – EPV 
 
The individual sample process variances 2ˆ iσ can be combined to produce an unbiased 
estimate for the expected value of the process variance of the population.  To estimate 
this, the average of the individual sample process variances is computed:  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟

⎠
⎞

⎜
⎝
⎛= ∑∑∑

===

2

111

2 )(
)1(

1ˆ1ˆ i
N

t
it

R

i

R

i
i XX

NRR
VPE σ  . 

 
 
Variance of the Hypothetical Means – VHM 
 
In the prior table the iX ’s are estimators for the unknown hypothetical means µ(θi) and 
these values can be used to estimate the variance of the hypothetical means.  Because the 
R risks are all independent, the iX ’s are independent random variables.  An unbiased 
estimator for the variance of iX is 

 
2

1
)(

1
1][ˆ XX

R
XraV

R

i
ii −⎟

⎠
⎞

⎜
⎝
⎛

−
= ∑

=
   where    ∑=

=

R

i
iX

R
X

1
)1(  . 

 
However, this is NOT the estimate for the VHM.   
 

The total variance formula gives  
 

Var[ iX ] = VarΘ [EX | Θ [ iX │Θi]] + EΘ [VarX | Θ [ iX │Θi ]] . 
 

The first term on the right can be simplified by noting that EX | Θ ( iX │Θi = θi ) = µ(θi).  
The following relationship can simplify the second term on the right: 
 

[ ] NXVar
N

X
N

VarXVar ii
N

t
itXi

N

t
itXiiX /)(][11 2

1

2

1
θσθθθ ΘΘΘ =⎟

⎠
⎞

⎜
⎝
⎛=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= ∑∑

==
. 

Substituting into the formula 
 

Var[ iX ] = VarΘ[µ(Θi) ] + EΘ[σ2(Θi)] / N . 
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The first term on the right is just the VHM and the second term is the EPV / N.  
Rearranging terms yields 
 

VHM  = Var[ iX ] – EPV / N . 
 

Substituting in the unbiased estimators for the quantities on the right produces an 
unbiased estimator for the VHM, 
 

∑ ∑ ∑
= = = ⎭

⎬
⎫

⎩
⎨
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−⎟⎟
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To estimate VHM = VarΘ[µ(Θi)], the quantity ][ˆ iXraV needs to be adjusted downward by  

NVPE /ˆ because the process variance increases the variability of the estimates iX  for 
µ(θi).  The larger the average process variance, the larger the necessary correction to 

][ˆ iXraV to estimate VHM = VarΘ[µ(Θi)].  Because of this subtraction, it is also possible 

that the estimator MHV ˆ may be negative.   
 

What does it mean for a VHM  to be negative?  Because variances must be 
nonnegative, one usually concludes that zero is a reasonable estimate for the VHM and 
that the means of the individual risks are all the same.  There is no empirical evidence 
that the risk means are different from one another.  
 
Example  Two risks were selected at random from a population.  Risk 1 had 0 claims in 
year one, 3 claims in year two, and 0 claims in year three:  (0,3,0).  The claims by year 
for Risk 2 were (2,1,2).  In this case,  R = 2 and N = 3. 
 

13/)030(1 =++=x ,  3/53/)212(2 =++=x , and 3/42/)]3/5(1[ =+=x  

3)13/(])10()13()10[(ˆ 2222
1 =−−+−+−=σ  

3/1)13/(])3/52()3/51()3/52[(ˆ 2222
2 =−−+−+−=σ  

 
3/52/)]3/1(3[2/)ˆˆ(ˆ 2

2
2
1 =+=+= σσVPE  

 

{ } 3/13/)3/5()]3/4()3/5[()]3/4(1[
12

1ˆ 22 −=−−+−⎟
⎠
⎞

⎜
⎝
⎛

−
=MHV   

 
The sample means for the two risks are close relative to the sizes of the sample process 
variances.  The calculated MHV ˆ is negative, so a value of zero will be assumed.  The 
hypothetical means are indistinguishable.  This implies a credibility factor 0ˆ =Z .  ▐▐ 
 

Credibility weighted estimators for the risk means can be derived using the 
formulas 
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XZXZ
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MHV
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ˆ,ˆ
ˆˆ θµ . 

 
Although the estimators VPE ˆ  and MHV ˆ are unbiased estimators for the Expected Value 
of the Process Variance and the Variance of the Hypothetical Means, the estimated value 
Ẑ  for the credibility Z is not unbiased.  In practice, the above Ẑ  is generally accepted as 
a reasonable estimate for the credibility weight.   

 
Example  Two risks were selected at random from a population.  Over a four-year period, 
Risk 1 had the following claims by year:  (0,0,1,0).  The claims by year for Risk 2 were:  
(2,1,0,2) .  Calculate credibility weighted estimates for the expected number of claims per 
year for each risk. 
 
Solution  4/14/)0100(1 =+++=x , 4/54/)2012(2 =+++=x , and 

4/32/)]4/5()4/1[( =+=x  
 

4/1)14/(]))4/1(0())4/1(1())4/1(0())4/1(0[(ˆ 22222
1 =−−+−+−+−=σ  

12/11)14/(]))4/5(2())4/5(0())4/5(1())4/5(2[(ˆ 22222
2 =−−+−+−+−=σ  
 

12/72/)]12/11()4/1[(2/)ˆˆ(ˆ 2
1

2
1 =+=+= σσVPE  

 

{ } 48/174/)12/7()]4/3()4/5[()]4/3()4/1[(
12

1ˆ 22 =−−+−⎟
⎠
⎞

⎜
⎝
⎛

−
=MHV   

 

 17/28
48/17

12/7
ˆ
ˆˆ ===
MHV
VPEK  

  

 24/17
)17/28(4

4
ˆ

ˆ =
+

=
+

=
KN

NZ  

 
 3958.48/19)4/3()24/7()4/1()24/17()ˆ1(ˆ)(ˆ 11 ==⋅+⋅=⋅−+⋅= XZXZθµ  
 

1042.148/53)4/3()24/7()4/5()24/17()ˆ1(ˆ)(ˆ 22 ==⋅+⋅=⋅−+⋅= XZXZθµ ▐▐ 
.   
 
Bühlmann-Straub Model 
 
The Bühlmann-Straub Model is more complicated because a risk’s exposure to loss can 
vary from year to year, and the number of years of observations can change from risk to 
risk.  The reason that Bühlmann-Straub can handle varying numbers of years is because 
the number of years of data for a risk is reflected in the total exposure for the risk.   
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The table below shows Xit − representing claim frequency, loss ratio, or average cost per 
exposure − in the top half of the cell, and the corresponding number of exposures for the 
risk during the same time period in the bottom half: 
 

Risk Periods of Experience 
X11 X12 . . . 

11NX    
1 

m11 m12 . . . 
11Nm    

X21 X22 . . . . . . . . . 
22NX  

2 
m21 m22 . . . . . . . . . 

22Nm  

: : : . . . . . . . . . : 

 XR1 XR2 . . . . . . 
RRNX  

R 
 mR1 mR2 . . . . . . 

RRNm  
 
The number of periods of experience can vary by risk; for example, for Risk 2 there are 
N2 periods of experience compared with N1 periods for Risk 1.  The experience periods 
do not have to start at the same time either. For example, the first experience period for 
Risk 1 might be in Year Y whereas the first experience period for Risk R may be Year 
Y+1. 
 
Example  ABC Insurance, Inc. sells dental insurance plans to companies with fewer than 
one hundred employees.  An actuary is analyzing the number of claims per employee.  
Looking at the first company in her file, she sees that the company has three full years of 
plan coverage.  In the first year there were 40 employee-years with 84 claims, in the 
second year there were 44 employee-years with 88 claims, and in the third year there 
were 42 employee-years with 105 claims. 
 
Designating this selected company as Risk 1, then: 
 
 X11 = 84 claims / 40 employee-years =  2.1 claims/employee-year 
 X12 = 88 claims / 44 employee-years =  2.0 claims/employee-year 
 X13 = 105 claims / 42 employee-years =  2.5 claims/employee-year 
 
The exposures are m11 = 40 employee-years, m12 = 44 employee-years, and m13 = 42 
employee-years.  ▐▐ 
 
 The next table shows estimators for risk means and variances: 
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In the Bühlmann-Straub model, the mean is assumed to be constant through time 

for each risk i: 
 

µ(θi) = EX | Θ [Xi1│ θi] = EX | Θ [Xi2│ θi] = … = EX | Θ [ iiNX │θi]  . 
 

iX  is an unbiased estimator for the mean of risk i:  
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Recall from Section 1.2 that the process variance of Xit is inversely proportional to the 

exposure:  Var X | Θ [Xit │θi] = σ2(θi) / mit  .  This means that for risk i, 
 

σ2(θi) = mitVar X | Θ [Xit│θi] , for t =1 to Ni .  
 

To provide some motivation for the process variance estimates in the last column of the 
table above, it is helpful to write out the definition of variance as 
 

]))([()( 22
iiitXiti XEm θθµθσ Θ −= , for t =1 to Ni  . 

 
Summing both sides over t and dividing by the number of terms Ni yields 
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The quantity µ(θi) is unknown, so iX  is used instead in the estimation process.  This 
reduces the degrees of freedom by one so Ni is replaced by (Ni −1) in the denominator:   
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Thus, an unbiased9 estimator for σ2(θi) is 
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If mit ≡ 1 and each risk has the same number of years of data, then the estimators iX and 

2ˆ iσ  match those from the Bühlmann model. 
 

Expected Value of the Process Variance 
 

The EPV can be estimated by combining process variance estimates 2ˆ iσ  of the R 

risks.  If they are combined with weights ⎟⎟
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This is an unbiased estimator for the EPV as shown in Appendix C.  A way to “guess” the 

denominator is to observe that there are ∑
=

R

i
iN

1
terms added together in the numerator, an 

indication of degrees of freedom.  However, there are R estimators iX for the individual 

                                                 
9 A proof is not very difficult and can be modeled after the standard proof that the sample variance with 
divisor (N−1) is an unbiased estimator for the variance. 
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means, and that reduces the degrees of freedom by R.  So, the divisor is  ∑
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Variance of the Hypothetical Means 
 

The hypothetical mean for risk i is µ(θi).   The variance of the hypothetical means can 
be written as 

VHM = EΘ[(µ(Θi) – µ)2]    where      µ = EΘ[µ(Θi)] . 
 

Because outcomes of the random variables iX  and X  are estimators for µ(θi) and µ, 
respectively,  a good starting point for developing an estimator for the variance of the 

hypothetical means is:  2

1
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.  Note that each term is weighted by its 

total exposure over the experience period.   However, this is not unbiased.  An unbiased 
estimator is   
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Showing that this estimator is unbiased takes several steps and the details are included in 
Appendix C. 
 

With the Bühlmann-Straub model, the measure to use in the credibility formula is 
the total exposure for risk i over the whole experience period.  (Note that the inputs in 
the VPE ˆ and MHV ˆ formulas are measured per unit of exposure.)  The formulas to 
compute credibility weighted estimates are 
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Example  Carpentry contractors A and B had insurance policies covering pickup trucks.  
Over a four-year period the following was observed: 
 
  Year 

Insured  _Y_ _Y+1_ _Y+2_ _Y+3_ 
A Number of Claims 3 2 2 0 
 Insured Vehicles 2 2 2 1 
      

B Number of Claims 2 1 0  
 Insured Vehicles 4 3 2  
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Estimate the expected annual claim frequency for each insured using the Bühlmann-Straub 
model. 
 
Solution   The random variables Xit representing claim frequency and the corresponding 
exposures mit are as follows: 
 
  Year 

Insured  _Y_ _Y+1_ _Y+2_ _Y+3_ 
A Claims per Exposure X11 = 3/2 X12 = 1 X13 = 1 X14 = 0 
 Exposure = Number of

       Vehicles m11 = 2 m12 =2 m13 = 2 m14 = 1 

      
B Claims per Exposure X21 = 1/2 X22 = 1/3 X23 = 0  

 Exposure = Number of
      Vehicles m21 = 4 m22 = 3 m23 = 2  

  
The claim frequency itX  is (Number of Claims)/(Insured Vehicles).  The first table shows 
number of claims that are the values for (mitXit). 
 
mA = 2 + 2 + 2 + 1 = 7,  mB = 4 + 3 + 2  = 9,   and   m = 7 + 9 =16 . 
 

17/)0223(A =+++=x ,    3/19/)012(B =++=x ,   and 
8/516/)]3/1)(9()1)(7[( =+=x  

 
2/1)14/(])10(1)11(2)11(2)1)2/3((2[ˆ 22222

A =−−+−+−+−=σ  
 

6/1)13/(]))3/1(0(2))3/1()3/1((3))3/1()2/1((4[ˆ 2222
B =−−+−+−=σ  

 

30/11
)13()14(

)6/1)(13()2/1)(14(ˆ =
−+−
−+−

=VPE =.3667 

 
Note:  You can sum the seven terms inside the brackets in the expressions for 2

B
2
A ˆandˆ σσ   

and then divide the total  by [(4−1)+(3−1)].  This saves the step of dividing by the 
individual degrees of freedom and then undoing it when calculating the EPV estimate. 
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ˆˆ = = .3667 / .1757 = 2.0871 
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Balancing the estimators 
 

It is desirable in many cases for the estimators XZXZ iiii )ˆ1(ˆ)(ˆ −+=θµ , when 

weighted together, to equal the overall sample mean ∑
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=
R

i
i

i X
m
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X
1

.  An example is an 

experience rating plan.  The amount of premium charged to pay for losses per unit of 
exposure for the ith  risk is )(ˆ iθµ .  The average loss per exposure for all risks is X .  To 
make the experience rating plan balanced, i.e., for the sum of the pieces to add up to the 
total, the goal is 
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In general this might not happen.    Putting µ̂ in for the complement of credibility yields  
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The left-hand side can be simplified by noting that 
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The weighted average of the credibility estimates for the R risks will equal X if 
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Balance can be achieved by using a credibility weighted µ̂ as the complement of 
credibility. 
  
 
Example  The prior example produced:   
 

Weights Credibilities Sample Means Credibility 
Estimates 

16
7A =

m
m  7703.ˆA =Z  1A =X  9139.ˆA =µ  

16
9B =

m
m  8118.ˆB =Z  

3
1

B =X  3882.ˆB =µ  

 
 6250.

8
5

==X  Weighted 
Average = .6182 

 
The overall sample mean is .6250 but the weighted average of the credibility estimates is 
.6182, which is 1.1% below the overall sample mean. 
 
The credibility weighted average is   
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Recalculating the credibility estimates: 9214.)6579)(.7703.1()1(7703.ˆA =−+=µ  
and 3944.)6579)(.8118.1()3/1(8118.ˆB =−+=µ . 
 
The weighted average is  (7/16)(.9214) + (9/16)(.3944) = .6250, which equals X . ▐▐   
 
 
2.2 Semiparametric Estimation 
 

Assuming that the random variables Xit have a particular distributional form can 
simplify the calculations.  For example, the probability distribution for Xit might be Poisson 
or binomial.   
 

If Xit is the number of claims per exposure and mit is the number of exposures for 
risk i, then the product mitXit is the number of claims for risk i in time period t.  
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Furthermore, assume that the number of claims is Poisson distributed.  If the risk 
parameter θi is the mean number of claims per exposure, then mitθi is both the mean and 
variance of the number of claims for exposure mit,   
 

mitθi = E X | Θ [mitXit│ θi]  = Var X | Θ [mitXit│ θi] = mit
2 Var X | Θ [Xit│ θi] . 

 
Dividing through by mit yields 

 
E X | Θ[Xit│ θi] = mitVar X | Θ [Xit│ θi] = θi .  

 
By definition, E X | Θ [Xit│ θi] = µ(θi) and mitVar X | Θ [Xit│ θi] = σ2(θi).  The result is 

that with the Poisson assumption, it follows that µ(θi) = σ2(θi).  Because the mean and 
process variance are equal for each risk, the same is true for the expected values with 
 

EΘ[µ(Θi)] = EΘ[σ2(Θi)] = EPV . 
 

The estimator for the mean µ = EΘ[µ(Θi)] is X=µ̂ , and the prior formula means that this 
same estimator can be used for the EPV under the Poisson assumption. 

 
 
Example  The information in the prior example will be used along with the additional 
assumption that the number of claims for each risk is Poisson distributed. 
 
As calculated previously, 8/516/)]3/1)(9()1)(7[( =+=x .  This is the estimate for the 
overall mean, so under the Poisson assumption it follows that 
 

8/5ˆ == xVPE  = .625 . 
 

Without the Poisson assumption, the EPV estimate was .3667 .   Continuing on with the 
calculations, 
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Of course, one could use the balancing procedure if balanced estimates were appropriate. 
▐▐ 
 

In the example above, one can compute the VPE ˆ either from the sample process 
variances of the data or with a Poisson assumption. Unlike the prior example, the next 
example requires an assumption about the claims process to estimate the VPE ˆ .   
 
Example  During a three-year period, a group of 1,000 auto policies generated the 
following claims profile: 
 

Total Number of Claims  
in Three Years Number of Policies 

0 533 
1 320 
2 105 
3 22 
4 12 
5 8 

 
Each policy was in the group for the entire three years and insured exactly one automobile.  
The expected number of claims per year for each insured is assumed to be constant from 
year to year and the actual number of claims per year follows a Poisson distribution. 
 
Determine a credibility estimator for the expected annual claims frequency for a policy that 
had no claims over the entire three-year period.  Do the same for a policy that had five 
claims. 
 
Solution  Without the Poisson assumption, additional information would be needed to solve 
this problem.  To estimate the EPV, it would be necessary to know the number of claims 
during each of the three years for each of the 1,000 policies.  This would allow the 
calculation of a sample process variance for each insured, and then an overall average 
process variance could be computed. 
 
If each insured has a Poisson distribution, then as stated previously 
 

EΘ[µ(Θi)] = EΘ[σ2(Θi)] = EPV ,  
 
and X=µ̂ can be used as an estimator for the EPV which produces  
 

2280.
)3)(000,1(
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== XVPE  . 

 
The 3 in the denominator is required because X is the average annual claims frequency. 
 



 31

The simpler Bühlmann model can be used because all of the exposures are identically one 
so that mit ≡ 1, and  
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Note that R = 1,000 and that there are 533 terms in the summation with ,0=iX  320 terms 
with ,3/1=iX  105 terms with ,3/2=iX  etc.  The threes in the denominators are required 
because the annual frequency is the number of claims over the three-year period divided by 
three. 
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1807.)2280)(.2075.1()0(2075.ˆ claims0 =−+=µ     

5265.)2280)(.2075.1()3/5(2075.ˆ claims5 =−+=µ ▐▐ 
 
3. Conclusion 
 

The “Credibility” chapter of Foundations of Casualty Actuarial Science along with 
this study note provides a basic education in credibility theory.  As with most academic 
presentations, many of the examples are idealized and do not address some “messy” 
realities that make it difficult to estimate credibility model parameters.  In practice, using 
the most precise credibility parameter estimate, versus a reasonable estimate, should not 
affect final results that much.  Mahler discusses this in [5]. 

 
Credibility theory produces a linear least-squares estimator and this can sometimes 

be a major source of error.10  For example, suppose that for some line of insurance, class 
rates vary from a low of  0.10 per exposure to as much as 100.00 per exposure.  An error 
of 2.00 in the class rate would not be so bad for the 100.00 rate but it would be a huge 
error for a class that deserved a 0.10 rate.  In the Bühlmann and Bühlmann-Straub 
models, it is the size of the error that matters so that a 2.00 error in the 0.10 rate gets the 
same weight as a 2.00 error in the 100.00 rate.  Rather than minimizing the squared errors 
as Bühlmann and Bühlmann-Straub credibility do, it may be preferable to minimize the 
squared relative errors, i.e. percentage errors.  One way to accomplish this is to take 
logarithms of values and then minimize squared errors.  Errors in logs are relative errors 
in the original scale.  Another alternative is to use class loss ratios instead of pure 
premiums.     
 

                                                 
10 Gary Venter provided this example. 
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It can be difficult to identify a good complement of credibility,11the quantity that 
gets multiplied by (1 – Z).  In the basic Bühlmann and Bühlmann-Straub models, this 
quantity is the population or class mean to which the risk belongs.  What are the 
consequences if this population or class mean is also highly variable and indicated 
insurance rates fluctuate significantly?  The selection of a good complement of credibility 
is sometimes part art and part science.  Boor identifies criteria to consider when choosing 
a complement of credibility in [6].  
 

The models covered in this study note assume that a random variable, representing 
an important quantity for a risk, has a constant mean µ(θ) through time and that the 
variance σ2(θ) is also constant.  In reality, a risk’s characteristics may shift through time.  
This situation is addressed by Mahler in [7], [8], and [9].  
 

Risk heterogeneity is another practical issue that must be considered.  A big risk is 
not necessarily the sum of smaller independent risks.  For example, a risk with 100,000 in 
annual premium may not behave like the sum of ten independent 10,000 premium risks, 
even though the risks come from the same rating classification.  Suppose the actuary is 
looking at loss ratios.  Often, the variance in the loss ratio for the 100,000 risk will be 
greater than the variance in the loss ratio for the sum of ten independent 10,000 risks. A 
larger risk can have different risk characteristics.  The larger risk should receive less 
credibility than implied by the simple )/( Kmm +  formula.  Mahler addresses this in [9]. 
 
 
 
 

                                                 
11 Also called “complement for credibility.” 
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Appendix A: Bühlmann and Bühlmann-Straub Credibility Estimators are Linear 
Least Squares Estimators  
 

A risk is selected at random from a population and N observations are to be made.  
These N outcomes are represented by the random variables {X1, X2, …, XN}.  Each outcome 
has the same mean E X | Θ [Xt│θ] = µ(θ) where θ is the risk parameter associated with the 
selected risk.  

 
In the Bühlmann model the random variables are independently and identically 

distributed and the sample mean is given by   
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In the Bühlmann-Straub model, the random variables all have the same mean µ(θ), but the 
conditional variances (conditional on risk parameter θ) are inversely proportional to the 
exposure mt, which can vary from observation to observation.  In this case the sample mean 
is defined to be 
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It follows that E X | Θ [ X | θ ] = µ(θ) for both models.  If the expectation is calculated over 
the entire population with possibly different risk parameters, then 

 
µΘµΘ ΘΘΘ === )]([]][[][ EXEEXE X  , 

where µ is the population mean. 
 

The outcome of the random variable X will be used to estimate µ(θ).  In particular, 
the goal is to find a linear estimator Xba + with the two constants selected to 
 

Minimize ]))([( 2Θµ−+ XbaE  . 
 
The expectation is over X and Θ.  If X were the linear least squares estimator for µ(Θ), 
then 0=a  and 1=b  would minimize the above expected value. 
 

Minimizing the expectation will start with a rearrangement of terms: 
 
       ]))([( 2Θµ−+ XbaE   =  ]))()()([( 2ΘµΘµΘµ −+−+ bbXbaE  

 
       = ( ) ])()1())(([ 2ΘµΘµ baXbE −−+−  
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                        =  ]))()1(())()1())(((2))(([ 222 ΘµΘµΘµΘµ babaXbXbE −−+−−−+−  
 
          =  ])}()1([{)}]()1()}{({[2]))(([ 222 ΘµΘµΘµΘµ baEbaXbEXbE −−+−−−+−  . 
 
The middle term is zero because 
 

]])}()}{()1({[[)}]()1()}{({[ ΘΘµΘµΘµΘµ ΘΘ −−−=−−− XbabEEbaXbE X  

 
         ]])}([{)}()1({[ ΘΘµΘµ ΘΘ −−−= XEbabE X = 0 . 

 
Although the above looks ugly, the point is that ]})([{ ΘΘµΘ −XEX  = 0 because the 

expected value of X conditional on Θ is µ(Θ). 
 

So far the result is 
]))([( 2Θµ−+ XbaE  =  ])}()1([{])}([{ 222 ΘµΘµ baEXEb −−+−  . 

 
Only the second term on the right involves  a .   What value of  a  will minimize it? 
 

)]()1()()1(2[])}()1([{ 2222 ΘµΘµΘµ bbaaEbaE −+−−=−−  
 

            = )]([)1()]([)1(2 222 ΘµΘµ EbEbaa −+−−  
 

Taking the partial derivative with respect to a of the right-hand side and setting it equal to 
zero, and replacing )]([ ΘµE  by the population mean µ, yields  

 
µ)1( ba −= . 

 
Substituting this expression in for a : 
 

]))([( 2Θµ−+ XbaE  = ]})([{)1(])}([{ 2222 µΘµΘµ −−+− EbXEb . 
 

The first term following 2b  is EPV / N for the Bühlmann model or EPV / m  for the 
Bühlmann-Straub model.  The following relationships show this for the Bühlmann model: 
 

NXVarEXVarEXEEXE tXXX /]][[]][[]])}({[[])}([{ 22 ΘΘΘΘµΘµ ΘΘΘΘΘΘ ==−=− .   

 
The term following 2)1( b− is the VHM, so for the Bühlmann model it follows that 
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VHMbNEPVbXbaE 222 )1()/(]))([( −+=−+ Θµ . 
 

Minimizing the expected value on the left is equivalent to minimizing the right-hand side.  
The derivative of the right-hand side with respect to b is 
 

0)1(2)/(2 =−− VHMbNEPVb ,  
which yields 
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This can be rewritten as 
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If the expressions calculated above for the two constants are substituted into the 

estimator Xba + , then 
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This is Bühlmann’s form.  For the Bühlmann-Straub model, the N is replaced by the total 
exposure m. 
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Appendix B:  Proof of Unconditional (Total) Variance Formula 
 
 
(1) Total Variance Formula:      
 

Let W represent ]|[ ΘΘ XEX ; then the formula  22 ])[(][][ WEWEWVar ΘΘΘ −=  

leads immediately to 
 

    22 ]]}|[[{]]}|[[{]]|[[ ΘΘΘ ΘΘΘΘΘΘ XEEXEEXEVar XXX −= .         (1) 

 
 Similarly, 22 ]}|[{]|[]|[ ΘΘΘ ΘΘΘ XEXEXVar XXX −=  yields 

 
    ]]}|[[{]]|[[]]|[[ 22 ΘΘΘ ΘΘΘΘΘΘ XEEXEEXVarE XXX −=  .        (2) 

 
 Note that in equations (1) and (2) there is a common term on the right-hand sides, 

though of opposite signs,  ]]}|[[{ 2ΘΘΘ XEE X . 

 
 Adding (1) and (2) together yields 
 

22 ]]}|[[{]]|[[]]|[[]]|[[ ΘΘΘΘ ΘΘΘΘΘΘΘΘ XEEXEEXVarEXEVar XXXX −=+ . 

 
 The expectations on the right-hand side can be rewritten as 
  

][]}[{][]]}|[[{]]|[[ 2222 XVarXEXEXEEXEE XX =−=− ΘΘ ΘΘΘΘ , 

 
proving that  
 

]]|[[]]|[[][ ΘΘ ΘΘΘΘ XVarEXEVarXVar XX +=  . 
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Appendix C:   Nonparametric Estimators for the Expected Value of the Process 
Variance and the Variance of the Hypothetical Means in the 
Bühlmann-Straub Model are Unbiased 

 
Assumptions: 
 

(1)  Each of R independent risks has an associated risk parameter θi . 
(2)  For the ith risk there are Ni observation periods and the random variable Xit 

represents the observation for risk i in time period t. 
(3)  The number of exposures for the ith risk in time period t is mit and the sum for Ni 

periods is ∑
=

=
iN

t
iti mm

1
.  The average of the Xit over Ni observation periods is 

defined to be it
iN

t i

it
i X

m
m

X ∑
=

=
1

 .  The mean for all risks is i
i

i X
m
m

X
R
∑
=

=
1

 with 

∑
=

=
R

i
imm

1
.   

(4)  The expected value of Xit is constant through time for a given risk with risk 
parameter θi :   

 
EX | Θ [Xit | θi] = µ(θi) for t =1 to Ni . 

 
      (5)  The variance of Xit for a given risk with risk parameter θi is inversely proportional 

to the amount of exposure:   
 

Var X | Θ [Xit | θi] = σ2(θi) / mit  for t =1 to Ni . 
 

Expected Value of the Process Variance 
 

The expected value of the estimator for the Expected Value of the Process 
Variance12 is  
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The innermost sum in the numerator can be rewritten as  
 

                                                 
12 See Section 2.1 . 
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The middle and last terms can be combined using ∑
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The conditional expectation of the first term on the right is    
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Combining the results gives  
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Substituting this back into the equation at the beginning of the section:   
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This last equation shows that the estimator for the EPV is unbiased. 
 
 
Variance of the Hypothetical Means 
 

The expected value of the estimator for the Variance of the Hypothetical Means is  
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The summation in the numerator on the right-hand side can be rewritten as 
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Taking the expectation of both sides yields 
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The first variance on the right can be expanded as  
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Because )(]|[ iiiX XE θµθΘ = , the first term is the Variance of the Hypothetical Means,  

)]([ iVar ΘµΘ .  Writing out the variance inside the second term yields 
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This result is also useful in calculating ][XVar  as follows: 
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Putting the pieces together yields 
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Simplifying and combining terms gives  
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Putting this result into the equation for the expected value of the estimator for the 
Variance of the Hypothetical Means yields 
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The first section of this appendix showed EPVVPEE =]ˆ[ , leaving 
 

VHMMHVE =]ˆ[ . 
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Exercises 
 
1. Credibility Models 
 
1. Random variables X and Y are independent and both have the same mean value:   

E[X] = E[Y] = µ .  The variances of X and Y are, respectively, 2][ XXVar σ=  and 
2][ YYVar σ= .  Define the random variable Z to be a linear combination of X and Y 

with  Z = w1X + w2Y .  Given that E[Z] = µ, prove that Var[Z] will be minimized if 

weights are selected such that 
)/1()/1(

)/1(
22

2

1
YX

Xw
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σ
+

=  and 
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22

2
2

YX
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σσ

σ
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= ; 

that is, choose weights inversely proportional to the variances of each random 
variable.   
 

2. Two urns contain a large number of balls with each ball marked with one number 
from the set {0,2,4}.  The proportion of each type of ball in each urn is displayed in 
the table below: 

 
Number on Ball Urn  

(denoted by Θ) _0_ _2_ _4_ 
A 60% 30% 10% 
B 10% 30% 60% 

    
An urn is randomly selected and then a ball is drawn at random from the urn.  The 
number on the ball is represented by the random variable X. 
 
(a) Calculate the hypothetical means (or conditional means) E X | Θ [X | Θ = A] and   

E X | Θ [X | Θ = B] .  
(b) Calculate the variance of the hypothetical means:  VarΘ[E X | Θ [X | Θ]] . 
(c)  Calculate the process variances (or conditional variances) Var X | Θ [X | Θ = A] and  

Var X | Θ [X | Θ = B] . 
(d) Calculate the expected value of the process variance:  EΘ[Var X | Θ [X | Θ]] . 
(e)  Calculate the total variance (or unconditional variance) Var[X] and show that it 

equals the sum of the quantities calculated in (b) and (d) . 
 

1.1 Bühlmann Model 
 
Many exercises are included in [4], the Mahler and Dean “Credibility” chapter of 
Foundations of Casualty Actuarial Science.  
 
3. You are given: 

(i) Two risks have the following severity distributions: 
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Amount of Claim 
Probability of Claim 
Amount for Risk 1 

Probability of Claim 
Amount for Risk 2 

250 0.5 0.7 
2,500 0.3 0.2 
60,000 0.2 0.1 

 
(ii) Risk 1 is twice as likely to be observed as Risk 2. 
 
A claim of 250 is observed. 
 
Determine the Bühlmann credibility estimate of the second claim amount from the 
same risk.  [Course 4 − Fall 2003 − #23] 
 

 
1.2 Bühlmann-Straub Model 
 
Use the following information for exercises 4-6. 
 
Two urns contain a large number of balls with each ball marked with one number from 
the set {0,2,4}.  Balls are drawn from the urns with replacement.  The proportion of each 
type of ball in each urn is displayed in the table below: 
 

Number on Ball Urn _0_ _2_ _4_ 
A 60% 30% 10% 
B 10% 30% 60% 

    
 
4.   Suppose that urn A is selected and n balls are drawn from the urn.   
 (a)  What is the expected average value of the n balls? 
 (b)  What is the variance of the average value of the balls? 
 
5.  An urn is selected at random, two balls are drawn from the urn and the average value 

X of the two balls is recorded. 
 (a)  What is the expected value of the process variance (EPV) of X  ? 
 (b)  What is the variance of the hypothetical means (VHM) of X ? 
 
6. An urn is selected at random.  During the first round, two balls were drawn and the 

average value of the two balls was 2.0.  During the second round, four balls were 
drawn from the same urn as in the first round and the average of the four balls was 
1.5. 

 
Another ball will be drawn from the same selected urn.  Using the Bühlmann-Straub 
credibility model, what is the estmated value of the ball? 
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7. Bogus Advertising, Inc. has a small fleet of company cars that varies in size from 
year to year.  All of the company drivers receive the same training and it is assumed 
that each car in the fleet has the same expected annual accident frequency that 
remains constant through time.  This expected accident frequency per car is unknown 
but has a uniform distribution on the interval [0,1]. The number of claims for a car is 
Poisson distributed.  

 
During the last three years Bogus had the following claims experience: 
 

Year Cars in Fleet Total Number of Claims 
Y 4 1 

Y+1 5 2 
Y+2 2 0 

 
If Bogus expects to have three cars in the fleet next year, use Bühlmann-Straub 
credibility to estimate the total number of claims next year. 
 

8. You are given four classes of insureds, each of whom may have zero or one claim, 
with the following probabilities: 

 
Number of Claims Class _0_ _1_ 

I 0.9 0.1 
II 0.8 0.2 
III 0.5 0.5 
IV 0.1 0.9 

 
A class is selected at random (with probability ¼), and four insureds are selected at 
random from the class. The total number of claims is two. 

 
If five insureds are selected at random from the same class, estimate the total number 
of claims using Bühlmann-Straub credibility.  [Course 4 − Fall 2002 − #32] 

  
9.  You are given the following information on large business policyholders: 
 

i. Losses for each employee of a given policyholder are independent and have a 
common mean and variance. 

ii. The overall average loss per employee for all policyholders is 20. 
iii. The variance of the hypothetical means is 40. 
iv. The expected value of the process variance is 8,000. 
v. The following experience is observed for a randomly selected policyholder: 
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Year Average Loss per 
Employee 

Number of 
Employees 

1 15 800 
2 10 600 
3 5 400 

 
Determine the Bühlmann-Straub credibility premium per employee for this 
policyholder.  [Course 4 – Fall 2001 −  #26] 

 
10.  For each of the n independent random variables X1, X2, ..., Xn the following are true: 
 
  E[Xi] = µ  and    Var[Xi] = σ2 / mi . 
 

The weighted mean is defined to be  ∑
=

=
n

i
ii XwX

1
  with  ∑

=
=

n

i
iw

1
1 . 

 
(a)  Prove that µ=][XE . 
(b)  Prove that ][XVar  is minimized by choosing weights wi = mi / m where 

∑
=

=
n

i
imm

1
. 

 
11. You are given: 

(i) The number of claims incurred in a month by any insured has a Poisson 
distribution with mean λ. 

(ii) The claim frequencies of different insureds are independent. 
(iii) The prior distribution is gamma with probability density function: 
 

λ
λλ

λ

120
)100()(

1006 −
=

ef   . 

(iv) 
Month Number of Insureds Number of Claims 

1 100 6 
2 150 8 
3 200 11 
4 300 ? 

 
Determine the Bühlmann-Straub credibility estimate of the number of claims in 
Month 4.  [Course 4 − Fall 2003 − #27] 
 
 

2.1 Nonparametric Estimation 
 
12. Two vehicles were selected at random from a population and the following claim 

counts were observed: 
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Number of Claims during Year Vehicle Year 1 Year 2 Year 3 Year 4 

1 1 0 1 0 
2 2 3 3 1 

  
You are interested in the annual claims frequency of each vehicle.  Use empirical 
Bayesian estimation procedures to do the following: 
 
(a)    Estimate the expected value of the process variance VPE ˆ for the number of 

claims in one year. 
(b)    Estimate the variance of the hypothetical means .ˆMHV   
(c)    Calculate the credibility weighted estimate of the annual claims frequency for 

each vehicle. 
 

13. Two medium-sized insurance policies produced the following losses over a three-year 
period: 

 
Annual Losses Insured Year 1 Year 2 Year 3 

1 5 4 3 
2 5 6 7 

 
You are trying to estimate the expected annual losses for each insured.  Assuming 
that the total exposures for each policy are equal and remain constant through time, 
use empirical Bayesian estimation procedures to do the following: 
 
(a)    Estimate the expected value of the process variance VPE ˆ for one year of losses. 
(b)    Estimate the variance of the hypothetical means MHV ˆ  . 
(c)    Calculate the credibility weighted estimate of the annual losses for each insured. 
 

14. An insurer has data on losses for four policyholders for 7 years. The loss from the ith 
policyholder for year j is Xij . 

 
You are given that 

60.33)(
4

1

7

1

2 =∑ ∑ −
= =i j

iij XX  

 

30.3)(
4

1

2 =∑ −
=i

i XX  . 

 
Using nonparametric empirical Bayes estimation, calculate the Bühlmann credibility 
factor for an individual policyholder. [Course 4 − Spring 2000 − #15 and Fall 2002 − 
#11] 
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15. XYZ Insurance Company offers a janitorial services policy that is rated on a per 

employee basis.  The two insureds shown in the table below were randomly selected 
from XYZ’s policyholder database.  Over a four-year period the following was 
observed: 

 
  Year 
Insured  _Y_ _Y+1_ _Y+2_ _Y+3_ 

A Number of Claims 3 2 3 1 
 No. of Employees 2 2 2 1 
      

B Number of Claims 0 1 1  
 No. of Employees 4 4 4  

 
Estimate the expected annual claim frequency per employee for each insured using the 
empirical Bayes Bühlmann-Straub estimation model. 

 
16. You are given the following information on towing losses for two classes of insureds 

- adults and youths: 
 
 Exposures 

Year Adult Youth Total 
Y 2,000 450 2,450 

Y+1 1,000 250 1,250 
Y+2 1,000 175 1,175 
Y+3 1,000 125 1,125 
Total 5,000 1,000 6,000 

 
 

Pure Premium 
Year Adult Youth Total 

Y 0 15 2.755 
Y+1 5 2 4.400 
Y+2 6 15 7.340 
Y+3 4 1 3.667 
Total 3 10 4.167 

 
You are also given that the estimated variance of the hypothetical means is 17.125 . 
 
(a)  Determine the nonparametric empirical Bayes credibility pure premium for the 

youth class, using X=µ̂ as the complement of credibility. 
(b)  Determine the nonparametric empirical Bayes credibility pure premium for the 

youth class, using the method that preserves total losses. [Course 4 − Fall 2000 − 
#27] 

 
17. You are given the following experience for two insured groups: 
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Year Group  

Y Y+1 Y+2 Total 
1 Number of members 

Average loss per member 
8 
96 

12 
91 

5 
113 

25 
97 

2 Number of members 
Average loss per member 

25 
113 

30 
111 

20 
116 

75 
113 

Total Number of members 
Average loss per member 

   100 
109 
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(a)  Determine the nonparametric empirical Bayes premium for Group 1, 

using X=µ̂ as the complement of credibility. 
 
(b)  Determine the nonparametric empirical Bayes premium for Group 1, using the 

method that preserves total losses.  [Course 4 − Spring 2001 − #32] 
 
 

18.You are making credibility estimates for regional rating factors. You observe that the 
Bühlmann-Straub nonparametric empirical Bayes method can be applied, with rating 
factor playing the role of pure premium. 

 
Xit denotes the rating factor for Region i and Year t, where i = 1, 2, 3  and t = 1, 2, 3, 
4. Corresponding to each rating factor is the number of reported claims, mit , 
measuring exposure. 
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1 50 1.406 0.536 0.887 
2 300 1.298 0.125 0.191 
3 150 1.178 0.172 1.348 

 
(a)  Determine the credibility estimate of the rating factor for Region 1 using 

X=µ̂ as the complement of credibility. 
 
(b)  Determine the credibility estimate of the rating factor for Region 1 using the 

method that preserves ∑
=

3

1i
ii Xm .  [Course 4 – Fall 2001 − #30] 

19. You are given total claims for two policyholders: 
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 Year 

Policyholder 1 2 3 4 
X 730 800 650 700 
Y 655 650 625 750 

 
Using the nonparametric empirical Bayes Method, determine the Bühlmann 
credibility premium for Policyholder Y.  [Course 4 − Fall 2003 − #15] 
 

 
2.2 Semiparametric Estimation 
 
20.  Two insurance policies produced the following claims during a four-year period: 
 

  Year 
Insured  _Y_ _Y+1_ _Y+2_ _Y+3_ 

A Number of Claims 3 1 0 2 
 Insured Vehicles 3 2 2 2 
      

B Number of Claims  0 1 1 
 Insured Vehicles  3 3 4 

 
Assume that the number of claims for each vehicle each year has a Poisson distribution and 
that each vehicle on a policy has the same expected claim frequency.  
 
Estimate the expected annual number of claims per vehicle for each insured using 
semiparametric empirical Bayes estimation. 
 
21. Assume that the number of claims a driver has during the year is Poisson distributed 

with an unknown mean that varies by driver.  The experience for 100 drivers for one 
year is as follows: 

 
Number of Claims 

during the Year Number of Drivers 
0 54 
1 33 
2 10 
3 2 
4 1 

 
Determine the credibility of one year’s experience for a single driver using 
semiparametric empirical Bayes estimation.  [Course 4 − Spring 2000 − #33] 
 

22.  The following information comes from a study of robberies of convenience stores 
over the course of a year: 
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(i)    Xi is the number of robberies of the ith store, with i = 1, 2, …, 500. 
 

(ii)   ∑ =
=

500

1
50

i
iX  

 

(iii)   220
500

1

2 =∑
=i

iX  

(iv)   The number of robberies of a given store during the year is assumed to be 
Poisson distributed with an unknown mean that varies by store. 

 
Determine the semiparametric empirical Bayes estimate of the expected number of 
robberies next year of a store that reported no robberies during the studied year. 
[Course 4 − Fall 2000 − #7] 
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Solutions to Exercises 
 
1. Credibility Models 
 
1. µ = E[Z] = E[w1X + w2Y] =  w1E[X] + w2E[Y] = w1µ + w2µ →  w1 + w2 = 1 
 
 Var[Z] = Var[w1X + w2Y ] = 22

1
22

1
22

2
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2. (a) E X | Θ [X | Θ = A ] = .6(0) + .3(2) + .1(4) = 1.0 , E X | Θ [X | Θ = B ] = .1(0) + .3(2) + 

.6(4) = 3.0 
 (b)  E[X] = EΘ[E X |Θ [X | Θ]] = (1/2)(1.0) + (1/2)(3.0) = 2.0,   

VarΘ[E X | Θ [X | Θ]] = (1/2)(1.0 – 2.0)2 + (1/2)(3.0 − 2.0)2 =  1.0 
(c) Var X | Θ [X | Θ = A ] = .6(0 – 1.0)2 + .3(2 – 1.0)2 + .1(4 – 1.0)2 = 1.8 

  Var X | Θ [X | Θ = B ] = .1(0 – 3.0)2 + .3(2 – 3.0)2 + .6(4 – 3.0)2 = 1.8 
 (d) EΘ[Var X | Θ [X | Θ]] = (1/2)(1.8) + (1/2)(1.8) = 1.8 
 (e) Var[X] = (1/2)[.6( 0 – 2.0)2 + .3(2 – 2.0)2 + .1(4 – 2.0)2] 

     + (1/2) [.1( 0 – 2.0)2 + .3(2 – 2.0)2 + .6(4 – 2.0)2] = 2.8 = 1.0 + 1.8 
 
1.1 Bühlmann Model 
 
3. Variance of the hypothetical means  X = amount of claim 
 E [X | Risk 1 ] = .5(250) + .3(2,500) + .2(60,000) = 12,875 
 E [X | Risk 2 ] = .7(250) + .2(2,500) + .1(60,000) = 6,675 
 E[X ] = (2/3)(12,875) + (1/3)(6,675) = 10,808.33 
 VHM  = (2/3)(12,875 – 10,808.33)2 + (1/3)(6,675 – 10,808.33)2 = 8,542,222.2 
 
 Expected value of the process variance 

Var[X | Risk 1 ] = .5(250 −12,875)2+.3(2,500 −12,875)2+.2(60,000 −12,875)2 =  
556,140,625.0  

Var[X | Risk 2 ] = .7(250 − 6,675)2+.2(2,500 − 6,675)2+.1(60,000 − 6,675)2 = 
316,738,125.0 

EPV = (2/3)(556,140,625.0) + (1/3)(316,738,125.0) = 476,339,791.7 
 
K = EPV / VHM = 476,339,791.7 / 8,542,222.2 = 55.76 
Z = N / (N + K) = 1 / (1 + 55.76) = 1 / 56.76 
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Bühlmann credibility estimate =  (1 / 56.76)(250) + (55.76 / 56.76)(10,808.33) = 10,622 
 

1.2 Bühlmann-Straub Model   
 

4. (a) ∑
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 [.6(0)2 +.3(2)2+.1(4)2 − (1.0)2] / n   =   1.8 / n 
 
5. 

_________Variance__________ Urn Mean One Ball Two Balls 
A 1.0 1.8 1.8 / 2 = .9 
B 3.0 1.8 1.8 / 2 = .9 

Average 2.0 1.8 .9 
 

 (a)   EPV = .9 
 (b)   VHM = (1/2)(1.0)2 + (1/2)(3.0)2 − (2.0)2   =  1.0 
 
6.  The EPV for drawing one ball is 1.8 and the VHM (not dependent on the number of 

balls) is 1.0. x = [2(2) + 4(1.5)] / 6 = 5/3 ,   µ = 2.0 , and  
Z = 6 / (6 + (1.8/1.0)) = .7692  →   Estimate  = .7692(5/3) + (1 − .7692)(2.0) = 1.7436 
 

7. Let θ be the Poisson parameter. 
   EPV = EΘ[Var(annual number of claims for one car)] = EΘ[Θ] = 1/2 
   VHM = VarΘ[E(annual number of claims for one car)] =  VarΘ[Θ] = EΘ[Θ2] – 

(EΘ[Θ])2 = 1/3 – 1/4 = 1/12  
    K = (1/2)/(1/12) = 6,   m = 4 + 5 + 2 = 11,   and   Z = 11 / (11 + 6) = 11/17 
    x = 3 /11 ,   µ = 1/2   
        Estimated claims per car = (11/17)(3/11)+(6/17)(1/2) = 6 /17 
    →  Estimated claims for three cars = 3(6/17) = 18/17 = 1.0588 
 
8. 

Class Probability Mean Variance 
I ¼ .1 .09 
II ¼ .2 .16 
III ¼ .5 .25 
IV ¼ .9 .09 

  µ = .4250 EPV = .1475 
  
 VHM = (1/4)[.12 + .22 + .52 + .92] − .42502 = .096875 
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 Z = 4 / [4 + (.1475)/(.096875)] = .7243,  x =  2/4 = 1/2 
 Estimate for five insureds  = 5{.7243(1/2) + (1−.7243)(.4250)} = 2.3966    
 

9. K = 8000/40 = 200 , 9.
2001800

1800,
9

100
1800

)5(400)10(600)15(800
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= Zx  

 
 µ = 20     →      Estimate = .9(100/9) + .1(20) = 12 
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 Minimizing ][XVar  is equivalent to minimizing ∑
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1
1.  Lagrange multipliers are a convenient tool to use here, though not the 

only way to find the minimum. 
 

0
2

00
11

2

1 1

2

=+→=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

→=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∇ ∑∑∑ ∑

=== =
λλλ

k

k
n

i
i

n

i i

i

k

n

i

n

i
i

i

i

m
w

w
m
w

w
w

m
w

 

 

2
k

k
m

w
λ

−=→  .    Because ∑
=

=
n

i
iw

1
1, then ∑

=
=⎟

⎠

⎞
⎜
⎝

⎛−
n

i

im

1
1

2
λ

 , or ∑
=

=−
n

i
im

1
1

2
λ . 

 

Recall that mm
n

i
i =∑

=1
 which leads to  m/2−=λ .   The result is: 

 

m
mmmm

w kkk
k =

−
−=−=

2
)/2(

2
λ

 

 
11. Variance of the hypothetical means:  λ is the mean number of claims for any insured.  

The prior distribution for λ is gamma:   
E[λ] = (1/100)Γ(6+1) / Γ(6) = 6/100 , E[λ2] = (1/100)2 Γ(6+2) / Γ(6) = 42 / (100)2, and 
Var[λ] = E[λ2] – (E[λ])2 = 42 / (100)2 – (6/100)2 = 6 / (100)2 = VHM. 
 
Expected value of the process variance:  Because the distribution is Poisson, the 
variance of the number of claims equals the mean λ, so λ is the process variance of the 
number of claims for an insured and  E[λ] = (1/100)Γ(6+1) / Γ(6) = 6/100 = EPV. 
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K = EPV / VHM = (6/100) / (6/1002) = 100  
m = 100 + 150 + 200 = 450  
Z = 450 / (450 + 100) = 9 / 11 

18/1450/)1186( =++=x  
µ = E[λ] = 6/100 
Bühlmann-Straub credibility estimate for 300 insureds  
                   = 300 [(9/11)(1/18) + (1 – 9/11)(6/100)] = 16.91  
 

2.1 Nonparametric Estimation 
 
12. N = 4 and R = 2 

      
8

112/
4
9

2
1,

4
9

4
1332,

2
1

4
0101

21 =⎟
⎠
⎞

⎜
⎝
⎛ +==

+++
==

+++
= xxx  

 
3
1

2
10

2
11

2
10

2
11

3
1ˆ

2222
2
1 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=σ  

 

12
11

4
91

4
93

4
93

4
92

3
1ˆ

2222
2
2 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=σ  

(a)      
8
5

12
11

3
1

2
1ˆ =⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛=VPE  

 

(b)     
8
11

4

ˆ

8
11

4
9

8
11

2
1

1
1ˆ

22
=−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=

VPEMHV  

 

(c)      =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛==

+
=

8
11

49
5

2
1

49
441Estimate,

49
44

8/11
8/54
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 =+= )5(
6
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6
52Estimate 35/6 = 5.8333 
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15. mA = 2 + 2 + 2 + 1 = 7 ,   mB = 4 + 4 + 4 = 12 ,   m = 7 + 12 = 19 
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Note that one does not have to calculate the separate process variances as above.  The 
two numerators above can be calculated and added and then the total divided by (7 − 
2). 
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AA µZ  1.2666 
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= )19/11)(9841.1()6/1(9841.ˆ9841.
1944.12

12ˆ
BB µZ  .1732 

 
Comment:  Note that the indications do not balance to the overall mean: 
{7(1.2666)+12(.1732)}/19  ≠ 11/19 though it is close.  As explained in the reading, 
these can be brought into balance if the credibilities are used as weights to compute a 
weighted overall mean to use for the complement of credibility. 
 

16. +−+−+−+−+−= 22222 )1015(450)34(000,1)36(000,1)35(000,1)30(000,2[ˆVPE  
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  ]244[/])101(125)1015(175)102(250 222 −+−+−+−  =  12,291.67 
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 Youth Class estimate = .5822(10) + .4178(4.1667) = 7.5628   
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 Youth Class estimate = .5822(10) + .4178(5.7977) = 8.2443  
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(a)  Estimate for Group 1 = .8501(97) + .1499(109) = 98.7988 
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 Estimate for Group 1 = .8501(97) + .1499(105.4208) = 98.2623 
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 (a) Estimate for Region 1 = .5551(1.406) + .4449(1.273) = 1.347 
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 Estimate for Region 1 = .5551(1.406) + .4449(1.2824) = 1.351 
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Bühlmann credibility estimate for Y = .3050(670) + (1−.3050)(695) = 687.375 
 
2.2 Semiparametric Estimation 
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 With the Poisson assumption:  
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 Estimate for A = .5794(2/3) + .4206(8/19) = .5634 
 
 Estimate for B = .6048(1/5) + .3952(8/19) = .2874 
 
 Comment:  Of course, answers that balance to the total can be derived by calculating 

a complement of credibility using the credibility weights. 
 
 
21. Note R = 100 and N = 1.  Since the claims process is Poisson: 
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 Note that R = 500 and N = 1:  10.
500
50,

500

500

1 ===
∑
= x

X
X i

i
.  Since the distribution is 

Poisson, 
 
 10.ˆ == xVPE  
 

 7679.

3309.
10.1

1ˆ,3309.10.))10(.500220(
499
1ˆ 2 =

+
==−−⎟

⎠
⎞

⎜
⎝
⎛= ZMHV  

 
 Estimate = .7679(0) + .2321(.10) = .0232 
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