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Introduction 

An economic scenario generator (ESG) is a software tool that simulates future paths of economies and financial 

markets, and illuminates the nature of risk elements within the economy that drive financial variability. The analysis 

of a stochastic distribution of possible economic futures, which includes unexpected but plausible outcomes, is critical 

for testing a business model under a wide variety of economic conditions. 

Applications of an ESG can range from limited tasks to broad analyses. For example, a small task might be the 

simulation of interest rates in order to understand the impact of interest rate changes on an investment portfolio. A 

broader role for an ESG could be supporting an enterprise risk management approach in order to identify and manage 

internal and external risks that might affect a company’s financial stability and success. Some elements of regulatory 

regimes require firms to take into account the assumptions of internal business models in making business decisions. 

ESGs can provide greater transparency and specificity in satisfying such regulatory requirements. 

An ESG can operate in the context of a “real-world” environment that captures market dynamics and risks in a way 

that a company will experience them. Or the context can be a “risk-neutral” environment that enables the pricing of 

cash flows that depend upon stochastic financial variability, such as would be found with investment guarantees in 

variable annuities. 

This publication is intended to serve as an in-depth primer on economic scenario generators. The first half of the 

publication provides more general information on the nature of economic scenario generators—what they are, how 

they evolved and how they address regulatory and business needs in the insurance and pension industries. It also 

addresses essential features of a good economic scenario generator and provides some detailed guidance on 

important aspects of financial market model specification, model calibration and model validation considerations to 

assure that the ESG will produce simulation results that are relevant and sufficiently robust and that realistically 

reflect market dynamics. 

The second half of the publication provides technical discussion of some of the essential financial markets aspects of a 

comprehensive ESG. Description of arbitrage-free considerations, the role of risk-neutral scenarios, and default-free 

interest rate models are explored with some of the underlying mathematics necessary to understand these 

considerations. Final chapters provide some important considerations relating to corporate bond models and equity 

index models, and how these considerations may extend to international and global interactions. 

Each chapter begins by summarizing the specific sections of the chapter and ends with key takeaway points and 

additional references for further exploration. The publication closes with an annotated bibliography and a glossary of 

key terms used throughout the publication. 

Acknowledgments 
The authors would like to thank the following members of the Project Oversight Group for their participation and 

contribution to the development of this publication: 

Dennis Radliff (Chair), David Cantor, Stephanie Ching, Russell Gao and Robert R. Reitano. 
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Executive Summary 

1. WHAT IS AN ECONOMIC SCENARIO GENERATOR? 

An economic scenario generator (ESG) is a computer-based model of an economic environment that is used to 

produce simulations of the joint behavior of financial market values and economic variables. Two common 

applications are driving the increased utilization of ESGs: 

1. Market-consistent (risk-neutral) valuation work for pricing complex financial derivatives and insurance 

contracts with embedded options. These applications are mostly concerned with mathematical 

relationships within and among financial instruments and less concerned with forward–looking expectations 

of economic variables. 

2. Risk management work for calculating business risk, regulatory capital and rating agency requirements. 

These applications apply real-world models that are concerned with forward-looking potential paths of 

economic variables and their potential influence on capital and solvency. 

At its foundation, an ESG is concerned with simulating future interest rate paths, including yield curves. Financial 

markets operate within the context of the growth and volatility of economic markets. An ESG typically builds off core 

default-free interest rate modeling, then considers implications of corporate bond yields and returns that include 

default, transition behavior and stochastic spreads. Finally, other components, including equity markets, foreign-

exchange considerations and economic components, such as inflation and GDP, may be considered.  

An ESG model creates correlations through direct relationships with other simulated variables. Often, these variables 

and their interrelationships are modeled through a cascade structure to maintain model integrity. A cascade structure 

is a framework whereby each subsequent variable depends only on prior values of the variable and the values of 

variables that lie above them in the cascade structure. 

2. WHY HAVE ECONOMIC SCENARIO GENERATORS EMERGED AS AN IMPORTANT TOOL TO SOLVE RISK 

MANANAGEMENT PROBLEMS? 

Historically, analytical solutions have been the standard methodology for the evaluation of risk metrics. An analytical 

process will result in a mathematically consistent and extendable solution, and statistical calculations can be 

performed quickly and accurately. However, analytical methods are most readily applicable to problems associated 

with variables where known or estimated underlying distributions exist. Much information about the economy is 

derived from empirical data. Analytical approaches are also less effective when dealing with complex actuarial 

analysis such as that required for asset liability management or financial risk management applications. 

Simulation overcomes many of the restrictions that are imposed by the use of an analytical process and allows for the 

evaluation of complex dynamic financial systems such as those used for asset liability management and financial risk 

management. 

With increasing sophistication of simulation modeling and advances in computing power, various economic and 

capital market models had evolved to be used for liability, investment and financial planning. The most familiar of 

these models was the mean-variance model. A mean-variance model has parameters that are identical to the 

assumptions that drive these models—namely, mean, standard deviation and correlations. This makes the calibration 

of these models relatively straightforward. Mean-variance models produced reasonable return projections, have nice 

mathematical properties and are easy to use and understand. However, mean-variance models used for sophisticated 

simulation modeling present problems when dealing with business applications that require analysis over multiperiod 

time horizons and when the analysis requires direct access to economic variables such as interest rates and inflation. 

In the late 1980s, a new type of economic and capital market model utilized stochastic regression techniques within a 

cascade model structure to generate simulations of both economic variables (interest and inflation rates) and capital 

market returns (stocks and bonds). Over the years, the use of stochastic regression techniques has been overtaken by 

stochastic differential equation models, informed by the research within the field of option-pricing theory. Option-
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pricing models proved to be more theoretically precise than regression-based models and allowed for both real-world 

projections and the pricing of contingent cash flows, both of which are critically important for a large subset of 

financial modeling applications. These new stochastic economic models were referred to by different names over the 

years, but the financial community eventually came to know them as “economic scenario generators.” 

ESGs, while similar in form to other types of economic generation models such as pricing, forecasting and 

econometric models, differ from these models in that their primary goal is to generate a set of future economic 

scenarios that spans the range of possible future outcomes for use in risk management applications. Although 

economic scenario generators are extremely useful in gaining insight into future financial risk and rewards, like any 

model, they have limitations. Modeling the future dynamics of the economy and financial markets present many 

challenges, such as accounting for extreme events and regime changes. It is imperative that users of these models 

understand the strengths and weaknesses of any particular ESG so they can make sure that the ESG being used is 

appropriate for the analysis being performed. 

3. HOW DO ESGS HELP SATISFY REGULATORY REQUIREMENTS? 

In most frameworks, the use of ESGs is included or considered in possible responses to evolving regulatory rules and 

principles, but the development of strict definitions or requirements for ESG applications is still emerging. Regulatory 

applications are used to test a company’s solvency and liquidity position (value of the available surplus assets at the 

valuation date) as well as in support of individual product line pricing and reserving (required surplus assets and 

liability reserves ) by quantifying the variations due to the realization of a company’s risk exposures. The first use 

establishes a time zero valuation, which can be compared with a benchmark for required surplus assets to absorb 

future realization of the entity’s risk exposures. 

The most advanced regulatory frameworks where ESGs may be included or considered are seen in the emerging 

principles of ComFrame (a common framework for international insurance supervision established by the 

International Association of Insurance Supervisors) and in developing rules in EIOPA (the European body representing 

the regulatory authorities of the European Union and its developing solvency rules embodied under Solvency II). In 

the references to risk management frameworks associated with these regulatory regimes, allowance is made for 

stochastic analysis that achieves a sufficiently wide range of outcomes, reflects the scale and complexity of risks, and 

provides the ability to determine a statistical distribution of results. ESGs are shown throughout this publication to be 

more effective in achieving these goals, but for now, the guidelines permit but do not require this level of analysis. In 

emerging Solvency II regulations and prescriptions, standard and internal models used for quantifying risk and 

establishing minimum capital requirements may make use of ESGs. 

In the United States under the guidelines of the National Association of Insurance Commissioners, ESGs are only 

beginning to emerge as an interesting, potentially preferred solution to solvency and product issues. ESGs have made 

the most headway in life insurance reserving regulations at the product level, and they are beginning to be recognized 

as an alternative in emerging ORSA (Own Risk Solvency Assessment) requirements. The NAIC has its own ESGs that 

are primarily applicable to regulatory considerations for interest and variable market-sensitive products in life and 

annuities (see the American Academy of Actuaries generator hosted at the Society of Actuaries website, 

https://www.soa.org/research/software-tools/research-scenario.aspx). These ESGs develop only a few economic 

factors: U.S. government yield curves and a handful of equity indices. 

Considerations relating to the application of ESGs for regulatory purposes may be considered across all jurisdictions. 

These include time horizon and risk standards, governance, calibration, consistency across unrelated entities, conflicts 

with internal models, principles-based capital calculations, and expertise. ESG output used for regulatory purposes 

may not be appropriate to use for managing the business, as ESG model type and calibration may differ widely due to 

differing goals between regulators and insurers. 
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4. WHAT ARE THE SPECIFIC BUSINESS APPLICATIONS OF ESGS IN THE INSURANCE AND PENSIONS 

INDUSTRIES? 

ESG model requirements differ for different business uses. 

Applications of ESGs for life insurance liabilities are primarily focused on the interaction of interest rate changes and 

policyholder behavior regarding lapses and other optionality. Life insurance enterprise and product results are 

determined by the interaction of investment performance on assets built up from the collection of premiums, and the 

payout of liabilities based on events of mortality, morbidity (in health or disability) or policy surrender or annuity 

payout. Because of the complexity of the interaction of these factors over an extended time horizon, an ESG provides 

the type of comprehensive tool that is necessary to understand both the range of potential outcomes and the 

likelihood of scenarios. Representative applications in life insurance best understood through the use of an ESG 

include life liability valuation, effective duration analysis, stress testing, economic capital (EC) and strategic asset 

allocation (SAA). 

In addition to similar applications discussed in the life insurance section, several specific applications in the pension 

industry are best understood through the use of an ESG. These applications include liability-driven investments, 

pension-funding sensitivities and pension risk transfer considerations. Liability-driven investment (LDI) is an 

investment strategy that defined benefit pension plans use to better match their assets with their liabilities and has 

become a popular technique over the past decade. Testing the effectiveness of this strategy and other pension 

investment strategies can be done with the use of an ESG. Pension plan sponsors are also using ESGs to project 

statutory funding requirements and to evaluate different funding strategies (e.g., the impact of a one-time large 

upfront contribution relative to more level or flat contributions). Real-world scenarios are needed to determine 

“likely” paths that the sponsor may have to navigate, and also to model the financial health of the sponsor. In risk 

transfer considerations, ESGs can be useful to sponsors looking to compare their options: choosing to freeze the plan 

and/or implementing LDI (whether plan is open or frozen) against options that involve transferring the risks to third 

parties. 

Applications of ESGs in property and casualty insurance are more focused on the impact of inflation on liabilities and 

assets, and on economic cyclicality characteristics affecting both exposures and policy pricing. Property and casualty 

products have different characteristics of liability development, with many casualty products involving significant time 

lags in settlement or even discovery. Property products are often volatile based on factors such as weather events, 

crime trends and economic supply-and-demand characteristics that may require greater liquidity reserves on the 

asset side. Because of the complexity of the interaction of these factors over an extended time horizon, an ESG 

provides a much more comprehensive tool for understanding the range of potential outcomes. Today an ESG is 

considered a necessary component of enterprise risk modeling for a P&C insurer. 

5. WHAT ARE THE ESSENTIAL FEATURES OF A COMPREHENSIVE ESG? 

It is generally expected that minimum requirements of an ESG would include the production of simulation results that 

reflect a relevant view of the economy and certain financial variables, the inclusion of some extreme but plausible 

results, and the generation of scenarios that embed realistic market dynamics. A comprehensive ESG has a sound 

foundation for the way the models are built and the way the variables are interrelated; it balances practicality and 

completeness. 

The scope of an ESG application can vary widely. An ESG should be able to accommodate a broad range of 

applications involving both real-world and market-consistent scenarios, and use consistent models across both 

modes. Market-consistent scenarios are concerned with mathematical relationships within and among financial 

instruments. Real-world scenarios are concerned with forward-looking potential paths of economic variables and 

their potential influences. The simulation of interest rates and the portfolio investment strategy testing are examples 

of real-world simulation. The valuation of guarantees is an example of market-consistent simulation. The 

measurement of the effectiveness of a hedging program will often involve the application of both real-world and 

market-consistent simulations. 

A comprehensive ESG strikes a balance between practicality and the ability to capture the critical features of the 

historical record. It also provides a suite of models that is sufficient to capture the asset classes and economic 
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variables that are of the greatest importance to the risk profile of a given firm, and provides additional modeling 

capabilities so that the available asset classes and economic variables can be expanded in a consistent manner to 

meet more specialized user requirements. It must meet the requirements of regulators and auditing firms and 

provide sufficient simulation detail for extensive validation. A comprehensive ESG is capable of accommodating many 

types of calibration views across a wide range of benchmarks while producing simulation results that reflect a view 

relevant to historical facts and that embed realistic market dynamics. It must produce extreme but plausible 

outcomes and also permit recalibration to different attributes to provide alternate sets of extreme but plausible 

events. Finally, a comprehensive ESG is computationally efficient and numerically stable. 

6. CONSIDERATIONS OF MODEL SPECIFICATION AND STYLIZED FACTS 

Stylized facts refer to generalized interpretations of empirical findings that provide a basis for consistent 

understanding of markets or economic drivers across a wide range of instruments, markets and time periods. Analysis 

of historical data is commonly used as the basis for determining stylized facts and setting calibration targets; 

however, stylized facts can also be based on expert judgement. Stylized facts are important in guiding the design of 

an ESG in that they help establish and prioritize the properties that the ESG model must have to be useful for a given 

application. The historical record of economic and financial markets is an indispensable guide to the dynamics that 

govern ESG model simulations. Detailed knowledge of these dynamics is essential for setting ESG model calibration 

targets and understanding strengths and weaknesses of various ESG model frameworks. 

It is natural to summarize financial market variables in terms of their averages, standard deviations and correlations 

such as in a mean-variance framework. These summary statistics tell a good bit of the story, but they do not inform 

the subtle but important aspects of how markets are experienced through time. More advanced applications such as 

those used for pricing and risk management typically require additional specifications that may include information 

related to distributional shapes (fat tails), pathwise behavior (how variables move over time) and the ways 

characteristics of modeled variables change under different economic environments.  

Stylized facts might include the following examples: 

 Yields for longer-maturity bonds tend to be greater than yields for shorter-maturity bonds. 

 Monthly fluctuations in short-maturity yields tend to be larger than monthly fluctuations in longer-maturity 

yields. 

 When short-maturity yields are low, longer-maturity yields are normally higher than the shorter-maturity 

yields (a standard shaped yield curve). When short-maturity yields are high, longer-maturity yields are often 

lower than shorter-maturity yields (an inverted yield curve). 

 Interest rates can be negative. 

 Corporate credit spreads are wider for lower-credit-quality instruments. However, credit costs represent 

only a fraction of the spread on corporate bonds, which suggests that some portion of corporate bond 

spreads is due to factors other than credit costs (e.g., liquidity). 

 There is a tendency for corporate credit spreads to fluctuate more during recessionary periods. 

 The probabilities of default will fluctuate with general economic conditions and firm- or industry-specific 

conditions. 

 Equity returns exhibit both higher expected returns and higher volatility than fixed-income returns. 

 The volatility of equity returns fluctuates significantly over time. 

 Correlations between modeled economic and financial market variables are not stable over time and can 

depend on whether monthly, quarterly or annual observations are being used. 

If an ESG is part of an ongoing risk management program, the program usually requires that the data source be 

accurate, regularly updated and capable of automated download. The reason is that, in this use context, the ESG is 

likely to be recalibrated, validated and initialized to market conditions at regular intervals such as year-end or quarter-

end. ESG practitioners are well served by having a wide range of data sources at their disposal. Historical data is the 

standard for setting stylized facts and targets that can be used for ESG model calibration and validation. 
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7. MODEL CALIBRATION AND PARAMETERIZATION 

Users of ESG models need to incorporate a view of future market dynamics into their risk-modeling environment. The 

process of reflecting these views into an ESG is referred to as model calibration. More specifically, calibration is the 

process of setting the parameters of the equations within an ESG model to produce the distributions and dynamics 

(e.g., volatility, correlations, tail characteristics) of economic and financial variables required by the application for 

which they are being used. 

As the model equations increase in complexity to account for more robust dynamics, the number of model 

parameters increases, and the linkage between the input parameters and the desired output statistics becomes less 

intuitive. The calibration process thus becomes increasingly challenging as additional variables are incorporated into 

the model. To make the calibration process practical, many ESG models use what is referred to as a cascade structure. 

Different model calibrations may be required for different applications. Market-consistent valuation applications 

require ESGs to be capable of generating scenarios that can reproduce the observable prices of traded derivative 

instruments. ESGs used for these purposes need to adhere to strict mathematical properties that are designed to 

satisfy risk-neutral and arbitrage-free conditions. Because the model calibration process is designed to reproduce the 

prices of traded derivatives, the ultimate calibration depends on both the pricing date and the set of traded 

derivatives used to calibrate the model. 

Calibration (also referred to as parameterization) of real-world ESG models requires users to make choices about the 

future economic environment they want to reflect in their risk analysis. Most risk management applications, for 

example, require ESGs to be capable of producing dynamics (e.g., volatility, correlations) that are representative of 

the possible future paths of economic variables. Because real-world parameterizations are forward looking, they 

require explicit views as to how the economy will develop in the future and thus require a significant amount of 

expert judgment to determine the veracity of the scenarios that result from the parameterization process. Some of 

the key decision points when parameterizing a real-world model include (a) selecting the appropriate steady-state 

levels, (b) determining the appropriate values for the initial conditions, (c) identifying the key parameterization 

targets or “stylized facts” that are necessary for the application, (d) controlling the expected reversionary paths of 

economic variables, and (e) identifying  general assumptions. 

Real-world model parameterization is an iterative process. Given the sheer number of parameters involved, a simple 

brute-force search is often impractical. Even many of the more traditional actuarial techniques, such as simple 

regression, are not effective, because the historical data for many economic variables violates one of the prime 

assumptions of these techniques: independent observations. 

As a result, most parameterizations turn to more robust tools in this step. The first such tool is maximum-likelihood 

estimation (MLE), which involves calculating a likelihood function based on a possible set of model parameters and 

the observed data. Once the resulting probability function is determined, the set of parameters that maximize the 

likelihood function can be determined. The second key tool that can assist with parameterization is Kalman filtering, 

which involves consecutive cycles of predicting the state of an observed variable based on a model, comparing that 

prediction with the realized outcome in the historical observed data, and updating the parameters to achieve optimal 

predictive power. 

8. VALIDATION 

Validation ensures that the estimation of an ESG’s parameters results in simulated behavior that is a good 

representation of the variable or market under consideration. Effective validation of an ESG requires comparing 

simulated output data with some predefined benchmark of acceptance criteria. 

For a typical insurance or pension undertaking, the list of financial and economic variables that may be of interest is 

typically quite large. For this reason, the validation system and validation environment require careful design at 

inception, in order to organize the various data elements in an ordered fashion. 

An automated validation system is preferable to manual validation. Validation should be repeatable and consistent 

through time. Before any data are analyzed or validation performed, it is helpful to form the acceptance criteria upon 

which the model output will be judged. This type of approach to validation, whereby the particular desirable features 
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of an ESG are based on analysis of a firm’s risk exposures, is preferable to what might be called a “problem discovery” 

approach. In a problem discovery approach, a user first runs the ESG, creating a large output data set, and then tries 

to discover problems with the output. 

Usually validation entails comparing the output of the ESG first with market data and finally with the acceptance 

criteria, which may be based on market data or a combination of market data and expert judgment. Considerations 

regarding the data to be used include the accuracy or degree of confidence that can be placed in the data, 

completeness (whether the data set is comprehensive), bias (data should be appropriately unbiased) and relevance. 

Effective validation will almost invariably need a human to visually review and make informed observations about the 

results. Using a validator with experience of the structure, limitations and usage of the model, who is able to combine 

both quantitative and qualitative judgments, is likely to be far more effective than relying on a particular set of rigid 

criteria or goodness of fit statistics to determine the robustness of the model. 

Validation of real-world ESGs against market data falls into three distinct categories: point-in-time, ex-post or in-

sample validation, and ex-ante or out-of-sample validation. Point-in-time validation involves checking that the time 

zero characteristics or initial conditions of the model adequately match those of the market. In-sample validation 

involves taking historical data and determining the extent to which the stylized facts of the data are captured by the 

ESG. Out-of-sample validation or back-testing involves looking at the output of a model from a point in time T and 

seeing how it performs at future time periods T + t. Out-of-sample validation helps to monitor the ongoing 

appropriateness of the model in light of what actually happens. 

Validation should take account of a broad set of simulated variables with particular focus on the areas of greatest 

materiality. Validators should not restrict themselves to validating only the primary simulation variable (e.g., yield), 

but also derived quantities (e.g., returns and excess returns) in order to get a fuller picture of the quality of the ESG. 

Correlation and interdependency between variables is another important area to validate. 

Unlike the validation of real-world scenarios, where there are many quantitative and qualitative possibilities for 

determining the quality of a scenario set, the validation techniques for market-consistent scenarios are fairly well 

defined: The model must only be validated for market consistency and risk neutrality. Validating market consistency 

involves first computing the prices implied by the model parameters and comparing the value of these prices to the 

current market prices. Validation and acceptance should concentrate on the areas of the fit where the highest risk 

exposure exists. The second important task is validating that the scenarios produced are in fact risk neutral. This 

means the expected return on a particular asset class is the same as the expected return on the risk-free asset. A 

standard test known as a martingale or 1 = 1 test (i.e., a stochastic process in which the conditional expectation of the 

next value, given the current and preceding values, is the current value) is used to assess the extent to which this is 

true. 

9. ARBITRAGE-FREE MODELING CONSIDERATIONS 

Arbitrage is the ability to buy and sell securities in such a manner that the investor is able to generate a riskless profit. 

While arbitrage opportunities occasionally present themselves within the financial markets, they tend to be 

temporary discontinuities that are quickly traded away. Within ESG model applications, such as pricing and risk 

management, the existence of arbitrage is considered undesirable. 

The importance of the theory of arbitrage-free financial models for ESG work is that it provides a mathematical 

framework that can be used to verify an ESG’s consistency. The mechanism through which consistency is assured 

depends on the relationship between the cash flows of securities that are modeled and traded, and the prices of 

these securities. 

An arbitrage is defined as an explicit trading strategy involving the simultaneous buying and selling of securities, 

possibly quite complicated, for which either the trader would receive a positive cash flow today with no further 

payment obligations during the remainder of the trade horizon, or the trader would enter into a trade at zero net cost 

and receive only nonnegative cash flows during the remainder of the trade horizon, with a positive cash flow 

occurring with probability greater than zero. The model is said to be arbitrage free if there do not exist any self-

financing trading strategies that produce an arbitrage. 
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In an arbitrage-free model, securities producing identical cash flow streams are interchangeable from a pricing 

standpoint. Thus, derivative securities can be priced by first identifying a trading strategy that generates the same 

cash flows that are generated by the derivative security, and then using known prices of traded securities with the 

same cash flows to infer the price of the derivative security. The cash flow stream is hedged if it can be exactly 

replicated by dynamically trading in the securities market. 

In an arbitrage-free model, prices of assets are discounted expectations across all future events, and arbitrage-free 

asset prices therefore embed all possible future behavior in today’s prices. 

Arbitrage-free models are a necessary requirement when applying an ESG to risk-neutral pricing problems. If the 

scenarios are not arbitrage free, then derivatives cannot be consistently priced. However, the dynamics that can be 

used to drive risk are constrained in an arbitrage-free model; those dynamics that can be applied may not lead to a 

reasonable pricing formula in today’s experience. 

Martingale tests are used to confirm that the scenarios generated by an ESG simulation are arbitrage free. The 

application of a martingale test is predicated on the assumption that risk-neutral output is available for the model to 

be tested. The simplest application of the martingale test is for assets that do not generate cash flows. If the scenarios 

are risk neutral, the time zero price of the asset should equal the average of the present value of the ratios of the risk-

neutral prices and the values of the asset. When the risk-neutral output for a dividend-paying asset is to be tested, 

the martingale test can be based on the expected value of the discounted dividend stream over the horizon plus the 

discounted value of the asset at the horizon. 

10. RISK-NEUTRAL SCENARIOS 

Risk neutral means that an investor is indifferent to risk, or rather there is no explicit compensation for taking risk. 

Thus, in a risk-neutral world, an investor would be indifferent between two investment choices that have the same 

expected payoff but different risk profiles. In such a world, all investment alternatives, regardless of their risk profiles, 

would have the same expected return. It is typically agreed upon that in the real world, investors are not risk neutral 

but rather are risk averse. Thus, they require a higher expected return in order to be incented to incur additional risk 

to their invested capital. Nevertheless, the concept of risk neutrality is instrumental in the construction of a 

mathematically tractable environment that facilitates the pricing of liabilities, assets and derivative securities. 

Understanding why the concept of risk neutrality is useful depends on the arbitrage-free pricing theory.  

Risk-neutral theory provides a mathematical framework to find the price of an asset in an arbitrage-free context. The 

parameters of the stochastic process used to model the asset are calibrated so that the expected return from this 

asset over a short period of time is equal to the risk-free interest rate, and the expected discounted gains process for 

that variable is the same for all time horizons. In real-world risk management, calibration is done to obtain qualitative 

behavior that matches historical statistics or forward-looking views, whereas risk-neutral scenarios are not intended 

to conform to historical distributions but instead fit to today’s market prices. That is, the dynamics of risk-neutral 

scenarios cannot be benchmarked against historical data. 

The idea of risk neutrality is useful because it is intimately related to the pricing of assets and more generally cash 

flow streams, and provides a practical framework for computing prices for assets that are not generally traded in the 

market or subject to closed-form solution. It is also useful to be able to parameterize a model to exhibit qualitative 

behavior that is consistent with market norms. 

Martingale tests are important to the application of risk-neutral theory in ESGs because technical results from 

martingale theory are needed to understand how to set the parameters to give risk-neutral behavior. Martingale tests 

arise in ESG practice because they are often required by regulators. The relationship between the price of a cash flow 

stream and the expectation of its discounted future cash flows for a risk-neutral scenario set provides a framework 

for the direct auditing of model output. 

When an ESG is utilized for risk-neutral simulation, the focus of the calibration will be on the reproduction of 

derivative market prices. The idea is that the ESG should be calibrated to market price data as tightly as possible so 

that the pricing of insurance liabilities and other contingent claims that are not priced in the market will have prices 

that reflect liquid market prices as accurately as possible. 
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The general distinction is that risk-neutral scenarios are used for pricing and real-world scenarios are used to assess 

risk. But in real-world applications, risk-neutral scenarios will enter the picture when the real-world risk measurement 

exercise requires prices for liabilities or assets that do not have closed-form formulas. For example, in managing 

portfolios of mortgage-backed securities, the model needs to reflect complicated path-dependent cash flows that do 

not have a convenient closed formula to compute prices. Another example is the risk management and hedging of 

variable annuities that reflects policyholder behavior and the availability of many alternative investment products. An 

application such as this typically involves nested stochastic simulation, where the state of the economy is simulated 

under real-world measures to assess overall risk and to measure the effectiveness of a hedging strategy, and cash 

flows are priced using risk-neutral scenarios projected forward from each current node of the simulation. 

11. DEFAULT-FREE INTEREST RATE MODELS 

The default-free interest rate model is a key component of most ESG models. Its primary purpose is to generate the 

prices of risk-free bonds and for use in discounting liability cash flows. The collection of risk-free rates at various 

maturities makes up what is called the term structure of interest rates; this in turn allows for the construction of yield 

curves and the pricing of all default-free interest-rate-contingent cash flows.  

Binomial interest rate models are based on a discrete time series and have been applied since the earliest days of 

interest rate modeling. Binomial models offer a computationally flexible approach for pricing a wide variety of cash 

flow structures. Multiperiod dynamics for the binomial model are described as a multiplicative binomial model. 

Many processes can be used to generate default-free interest rate projections. Some of the most utilized models 

include the following: 

1. Continuous-time single-factor models of the term structure of interest rates. These models are based 

on a stochastic differential equation process for the short rate (the instantaneous risk-free rate). This 

process incorporates an instantaneous drift of the short rate, an instantaneous standard deviation and a 

“noise” factor representing random shocks to the level of the short rate. The ratio of the expected return 

and the standard deviation leads to the market price of risk. This permits the pricing of discount bonds 

and valuation of interest-rate-contingent claims. Two formulations of short-rate processes that lead to 

discount bond prices are the Vasicek model and the Cox-Ingersoll-Ross model. Both involve mean-

reversion and constant short-rate volatility, and in both, the market price of risk is assumed constant. 

2. Two-factor models of the term structure. These models tend to provide more realistic models of interest 

rates. The two factors combine additively to produce the short rate. The market price of risk is constant 

but different for each of the two factors. The simulation of the term structure for the two-factor model 

then depends on the simulated two-dimensional trajectory of a two-dimensional process. 

3. Affine models. These models assume that the dynamics of the term structure are driven by factors that 

are described by stochastic processes and represent the source of uncertainty of the models. Model 

parameters are commonly estimated using maximum-likelihood estimation. The affine class of models 

can be used under both risk-neutral and real-world measures because it has realistic behavior and 

accurate pricing. It allows well-defined estimation and calibration procedures, and the parameters can be 

efficiently estimated. Realistic correlations between yields within and across economies can be sustained. 

However, the models are linear, and in real data, nonlinearities can be important. 

4. Quadratic models. These are classes of models where the short rate is a quadratic function of state 

variables. Quadratic models are more flexible in modeling nonconstant volatility and negative correlation 

among factors and can capture nonlinearity in the data. However, they are more difficult to fit targets of 

yields and returns, and the estimation procedure is heavy and time-consuming. 

5. The Nelson-Siegel model. This model has some desirable properties and may perform better in linking 

the term structure to macroeconomic factors. It is widely applied for forecasting interest rates. In its most 

general form, it is not arbitrage free, but it is possible to restrict it to an arbitrage-free class. The model 

incorporates a level, a slope and a curvature to the term structure in a stochastic process that generates a 

range of plausible yield curves. The dynamics of the stochastic process need to be understood in the 
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context of the application, including the ability to capture historical yield curve behavior and extreme but 

plausible behavior. 

12. CORPORATE BOND (YIELD) MODELS 

A corporate bond is a security with a fixed schedule of payments (including coupons and a redemption amount), 

where the receipt of the scheduled payments is contingent on the issuing name being willing and able to pay both the 

coupons and principal components of the bond as scheduled. Pricing of a corporate bond will contemplate not only 

changes in the general level of interest rates, but also changes in the belief (ratings) in the potential for default and 

potential for recovery from default (migration risk and credit spread dynamics). Corporate bond models address the 

additional complications from migration risk and credit spread dynamics that will result in bond price fluctuations. 

Corporate bond model approaches can be described in four general classes: structural models (or Merton models), 

reduced-form models (which are linked to survival distribution theory), ratings-based models, and hybrid credit 

models (which may be focused on specific credit applications). 

Structural models are based on a model for the value of the firm that issued the debt to be priced. Simplifying 

assumptions are needed to get the theory into a tractable form, but the intuitions the model provides are valuable. 

Merton’s original paper, “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, (Journal of Finance, 

1974)” remains a very readable presentation and an important source from which to understand this model. 

Reduced-form models are based on point process models (or Poisson process mechanisms) that are focused on time 

of default and intensity of default (analogous to time of death and force of mortality in life insurance). These models 

offer no explicit mechanism for rating changes or ratings migration, so the class of models is used for rating certain 

classes of municipal bonds or sovereign bonds where rating changes are infrequent. Considerations in reduced-form 

models include the risk-free term structure, credit risk as an intensity process, loss given default, arbitrage-free 

pricing with a dividend, zero-recovery bonds and the role of risk premium. 

Ratings-based models allow the user to prescribe a transition matrix and to model the changes in the spread of a 

corporate bond in response to changes in the underlying ratings. However, the trade-off for this feature is that 

idiosyncratic bond price behavior cannot be introduced, since any two bonds with the same rating, maturity and 

coupon will evolve to have the same price. To obtain a closed-form formula for these models requires several 

simplifying assumptions: It must be possible to evaluate the structure and factor processes, including interaction with 

factors that are driving the treasury model. 

13. EQUITY INDEX MODELS 

Equity index models are different from bond models. The value of a bond is known on its maturity date, but the price 

of an equity index is random in perpetuity. Equity indexes also are more volatile than most bond prices, and equity 

prices can exhibit sudden large changes over short periods that can be interpreted as jumps in the equity index price. 

This is not typical for bonds. 

Realistic equity models are available that feature jump behavior, stochastic volatility and accurate return behavior. 

However, more robust models may have the disadvantage that they interfere with the concept of market 

completeness. An incomplete market means that sources of risk cannot all be hedged away by trading in the universe 

of available assets, and as a result, it is impossible to determine a unique price for cash flows that may be contingent 

on the equity index by arbitrage-free pricing considerations alone. Thus, additional assumptions may be needed to 

price certain derivatives or to model hedging of a variable annuity. 

An equity index model produces total returns for the equity index, consisting of the combined effect of price returns 

and dividends. Models typically specify the ex-dividend price as one model component and the dividend yield as the 

other. Modeling dividend yield as a percentage of price, instead of cash dollar dividend, has the advantage of 

conforming to arbitrage-free restrictions, but dividend yield models do not reflect real-world market dividend payout 

behavior as well as a cash dividend model would. It is common that more than one equity index may be needed—for 

example, large-cap, midcap and small-cap returns. This requires modeling appropriate co-movements among the 

models, consisting of correlations and possibly even simultaneous jump movements across the indices. In applications 
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such as modeling for variable annuities and complex guarantees, the model must be capable of generating risk-

neutral scenarios for the pricing of contingent cash flows. 

The inclusion of observable economic variables does not significantly improve the explanatory power of an equity 

model, so most ESGs do not attempt to directly relate equity returns to macroeconomic effects.  

The Black-Scholes model has been the traditional workhorse model for equity returns and associated derivatives 

pricing. The model assumes that the stock index price has a lognormal distribution with a constant price volatility 

parameter and a constant dividend yield. 

The Heston model generalizes the Black-Scholes model by introducing stochastic volatility process in place of the 

constant volatility parameter. This has the advantage of generating more realistic equity return behavior and permits 

more accurate pricing of derivatives. 

The stochastic volatility with jumps (SVJ) model generalizes the Heston model by introducing a jump component to 

the price level. The jump process can be taken to be of the compound Poisson type and usually incorporates a 

feedback where the volatility process affects the likelihood of a jump occurring. The model can produce very accurate 

equity return distributions but is mathematically complex and difficult to apply. 

The regime-switching model builds on the Black-Scholes lognormal model with a random change in parameter 

dynamics. This can be interpreted as ongoing unobservable shocks to the economy. The simulation of the stock price 

is based on simulation of a (two-state) Markov chain with monthly transition probabilities together with normal 

random draw. The stochastic dividend yield process requires some approximation adjustments to maintain a tractable 

structure. The model is capable of significantly fattening the tails of stock price returns and can increase downside risk 

with no upside improvement, but there is no asset available to hedge the risk in a regime switch. 

14. INTERNATIONAL CONSIDERATIONS 

International considerations can enter into the application of an ESG for many reasons, such as inclusion of 

businesses that are multinational and achievement of a better model of today’s international investment 

environment. Broadly speaking, moving to a multi-economy ESG imposes cross-economy calibration and validation 

requirements that are not a consideration in a single-economy context. The need for foreign-exchange rates is 

another distinction between single-economy and multi-economy ESGs. Finally, a multi-economy framework differs 

from single-economy modeling in the need for global correlation matrices and foreign-exchange processes that serve 

to link the constituent economies together into a global model.  

Financial variables that appear on the surface to be similar can behave very differently in different economies. Since 

the objective of an ESG is to capture market behavior, the financial variables that an ESG simulates for a given 

economy depends on the actual market structures associated with that economy. ESG variables that appear in several 

economies may have materially different payment or risk characteristics despite sharing similar names. 

A multi-economy ESG will likely encounter data issues in modeling global economies and associated challenges in 

setting calibration targets. One of the primary challenges in building multi-economy ESGs is that the availability of 

historical data varies greatly across economies. Some economies have long time series of data across a wide range of 

asset classes. Other economies may have short data histories for a small number of asset classes. Economies that are 

in transition may have available data series that need to be carefully interpreted in light of structural changes 

occurring in those economies. 

Another challenge in developing a multi-economy ESGs is in the understanding of the co-movements among financial 

variables across economies and the limitations of what can be inferred from history. The simultaneous modeling of 

multiple economies requires that the components of each economy react sensibly as a global entity. There is no 

universally accepted way to measure co-movements of financial variables, but statistical correlation is one standard 

approach. Some of this can be achieved through correlation parameters, but some of this is structural and should be a 

part of the design of the dynamics of the global model. Two aspects of this general concept are the need to have a 

realistic proxy for global risk and a distribution of global scenarios that are suitable for understanding the 

diversification effects of various business strategies. 
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Exchange rate movements are another important consideration in multi-economy models. Foreign-exchange rates 

are the variables that complete the linkage between the component economies in a multi-economy ESG. Exchange 

rates are needed to understand the historical risk-return relationships between global asset classes, and exchange 

rates are needed to link the simulation results so that insurance risks and investment outcomes can be aggregated 

across economies. 

The construction of an arbitrage-free multi-economy ESG requires that all models for traded assets fit together 

according to the restrictions that the arbitrage-free condition imposes. It turns out that it is possible to construct 

individual economies and then assemble these economies into a global arbitrage-free model, provided certain 

restrictions are imposed on the dynamics across economies. If the stochastic process that changes ESG variables 

within each economy (innovation terms) is not shared across other economies and if the innovation terms in the 

foreign-exchange processes are not shared across economies, then a global risk-neutral measure cannot be 

constructed.  
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Chapter 1: What Is an Economic Scenario Generator? 
An economic scenario generator (ESG) is a computer-based model of an economic environment that is used to 

produce simulations of the joint behavior of financial market values and economic variables. The design and content 

of an ESG model can vary based on the needs of the specific application, but a general-purpose ESG could involve 

joint simulation of future bond prices, stock prices, mortgage-backed security prices, inflation, gross domestic product 

and foreign-exchange rates. The joint simulation includes not only simulated series of future values of each 

component, but their interactions as well. While an ESG does not include the direct modeling of liabilities that 

financial institutions would typically require in the management of their business, it would provide the fundamental 

economic output (interest rates, inflation, etc.) that may be necessary to project out these liability simulations. 

This chapter presents a brief introduction of many concepts that will be further explored.  

Section 1.1 gives an overview of ESG models. At its foundation, an ESG is concerned with simulating future interest 

rate paths, including yield curves. The section will explore how general-purpose ESG models consider economic and 

financial market returns associated with interest rate paths. An ESG is important in applications including enterprise 

risk management, where understanding external risks to an organization is critical. Finally, an introduction to the 

applications of market-consistent models and real-world models is presented. Implications relating to calibration and 

parameterization of these different applications are briefly discussed. 

Section 1.2 describes common components that might be found within an ESG model. Financial markets operate 

within the context of the growth and volatility of economic markets. An ESG typically builds off core default-free 

interest rate modeling and then considers implications of corporate bond yields and returns. Finally, other financial 

markets, including equity markets and foreign-exchange considerations, as well as other economic components such 

as inflation and GDP, may be considered. 

Section 1.3 discusses relationships between component models. Model calibration is introduced as a process for 

recognizing the interaction among financial and economic variables that would reasonably represent the future 

characteristics of those markets. This should produce a range of total return correlations that are consistent with 

historical data. 

Section 1.4 outlines ESG model structural considerations, including examples of cascade structures. A cascade 

structure is a framework whereby each subsequent variable depends only on prior values of the variable and the 

values of variables that lie above them in the cascade structure. 

1.1 OVERVIEW OF ESG MODELS 

The heart of the ESG is its ability to generate future interest rate paths that can be used both in the discounting of 

future liability cash flows and in the projection of bond returns. In practice, it is rare that an ESG would be limited to 

the simulation of a single interest rate variable. More likely, most ESG models would project full yield curves for 

multiple term structures that often would include sovereign yields and corporate yield curves associated with 

multiple credit qualities. The number of yield curves and the underlying models for generating these future term 

structures would vary based on the requirements of the application for the ESG. 

General-purpose ESG models tend to contain a broad set of modeled economic variables, which could include 

economic variables such as inflation, GDP and unemployment. Many ESG models also include the ability to model 

financial market returns. Common examples would include bond returns, stock returns, real estate returns and 

alternative-asset returns. The most sophisticated ESG models will even allow for the projection of derivative 

instruments. The need to service global institutions requires that some ESG models be able to extend the projection 

of economic and financial market models across multiple economies. These multi-economy ESGs will thus include 

currency exchange rates as part of their simulation capabilities. 

Financial applications that require the use of an ESG are commonplace within the insurance, defined benefit pension, 

and banking industries. An economic scenario generator is integral to an enterprise risk management (ERM) approach 
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and is a critical component of the suite of models that analyze the external risks to an organization. An ESG feeds into 

the broader ERM framework and informs risk-based decision making. Essentially, an ESG is the basis for projecting 

economic and capital market scenarios for use in financial risk management applications. 

Two common applications are driving the increased utilization of ESGs: 

1. Market-consistent valuation work for pricing complex financial derivatives and insurance contracts with 

embedded options (“market-consistent” models). This application is mostly concerned with mathematical 

relationships within and among financial instruments and less concerned with forward-looking expectations 

of economic variables. 

2. Real-world models for risk management work in calculating regulatory capital and rating agency 

requirements. These applications are concerned with forward-looking potential paths of economic variables 

and their potential influence on capital and solvency. 

Market-consistent valuation applications require ESGs to be capable of reproducing the observable prices of traded 

derivative instruments in order to determine comparable prices for derivative instruments and insurance contracts 

with embedded options that are not traded but that require market valuation. ESGs used for these purposes need to 

adhere to strict mathematical properties such as risk-neutral and arbitrage-free conditions. 

Because the market-consistent model calibration process is designed to reproduce the prices of traded derivatives, 

the ultimate calibration is dependent on both the pricing date and the set of traded derivatives used to calibrate the 

model. The validation associated with the model calibration is based on how well the model reproduces the market 

values of the universe of traded derivatives used to calibrate the model. 

Risk management applications, in contrast, require that ESGs be capable of producing dynamics that are 

representative of the possible future paths of economic variables. Commonly referred to as “real-world” calibrations, 

they enable managers to ask what-if questions as they try to gauge the likelihood of future events and their impact on 

its business. 

Because real-world parameterizations are forward looking, they require explicit views as to how the economy will 

develop in the future. Therefore, they require a significant amount of expert judgment to determine the veracity of 

the scenarios that result from the parameterization process. In practice, real-world calibrations are often 

parameterized to be consistent with historical dynamics of economic variables, although the long-term steady-state 

levels (expected means) associated with these parameterizations can differ from long-term historical averages in 

favor of current consensus expectations or specific user views. An example would be applying expert judgment to 

reflect a prolonged low-interest-rate environment as a result of central bank activities during the post-2008 

environment. 

Parameterizations of real-world ESG models require users to think about the future economic environment they want 

to reflect in their risk analysis. Some of the key steps involved in parameterizing a real world model include the 

following: 

 Selecting the appropriate steady-state levels 

 Determining the appropriate values for the initial conditions 

 Identifying key parameterization targets for the application (stylized facts) 

 Controlling the expected mean reversion path 

The valuation of financial options embedded in life insurance and annuities, for example, would require a risk-neutral 

environment. In contrast, a property and casualty insurer might use an ESG with a real-world calibration to assess 

economic and regulatory risks. 
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A good set of simulated economic scenarios requires both a good set of model equations and an appropriate 

calibration. Carefully constructed model equations won’t produce useful scenarios if the model is not well calibrated 

to reflect realistic behavior. Conversely, careful calibration will not produce a useful range of outcomes if the 

underlying model equations are not sufficiently robust to be able to reflect rare but possible occurrences. Ultimately, 

the quality of the ESG will generally be assessed by examining the simulated economic scenarios and validating them 

against the primary calibration targets. 

1.2 ESG MODEL COMPONENTS  

An ESG provides simulations of principal financial market and economic variables that in aggregate represent a 

necessary and sufficient picture of the behavior of these markets that are necessary to provide insight into the 

specific risk management questions being asked. Financial markets operate within the context of the economy (or 

global economy in many cases). Elements of growth, scale and volatility of economic components are essential to 

understanding characteristics of economic and financial market dynamics. 

This section provides a brief description of some of the important economic and financial market components that 

are typically found within a general-purpose ESG model. Many of these economic and financial components are 

described and developed with some technical detail in later chapters of this paper. 

A good ESG provides a suite of models that are sufficient to capture the asset classes and economic variables of 

greatest importance to the risk profile of a given firm. Many risk management applications will require modeling the 

following variables: 

 Sovereign interest rates and returns 

 Corporate bond yields and returns 

 Equity returns 

 Foreign-exchange rates 

Some applications may require additional variables such as these: 

 Inflation 

 GDP 

 Unemployment 

 Mortgage-backed securities 

 Covered bonds 

 Municipal bonds (important in U.S. models) 

 Derivatives 

1.2.1 SOVEREIGN INTEREST RATES AND RETURNS 

Interest rate modeling is at the core of an ESG. This is true because of the importance that interest rates play in 

discounting liability cash flows and in determining returns on fixed-income investments. Early financial models such as 

Wilkie (1986) developed approaches based on regression methods to project financial markets, securities or 

economic drivers. The need to produce more insight into interest rate dynamics has led to the use of more 

academically rigorous models, which now defines the current state of interest rate modeling within economic 

scenario generators. 

Modeling interest rates can be further refined to consider yield curve modeling and the modeling of the dynamics 

associated with the yield curve. Considerations incorporating inflation would be necessary to reflect real interest 

rates in addition to nominal rates. Depending on the application, bond and coupon considerations may be important 

to gain the necessary insight into the risk brought on by interest rate dynamics. 

Bond returns are a particularly important ESG component in the context of insurance and other financial institutions. 

Bond prices are a function of changes in sovereign interest rates. Typically the bond component of an ESG will include 
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sovereign zero-coupon bonds, sovereign coupon bonds, corporate and municipal bonds with varying degree of 

default risk, and mortgage-backed securities (MBS). 

Financial institutions invest heavily in bonds. The U.S. life insurance industry, for example, invests the majority of its 

admitted assets in bonds. The preponderance of these bond holdings consists of corporate and structured securities. 

1.2.2 CORPORATE BOND YIELDS AND RETURNS 

The market for corporate bonds exhibits some interesting and diverse features. Pricing of a corporate bond 

contemplates not only changes in the general level of interest rates, but also changes in the probability of the 

potential for default (ratings) as well as the potential for recovery from default (migration risk and credit spread 

dynamics.) Corporate bond models consequently need to address the additional complications from migration risk 

and credit spread dynamics that will result in greater volatility in bond price fluctuations. 

Corporate bond model approaches can be described in four general classes: structural models (or Merton models), 

reduced-form models (which are linked to survival distribution theory), ratings-based models and hybrid credit 

models (which may be focused on specific credit applications). Credit modeling is, however, in its relative infancy, and 

new research continues to produce more complete models of credit yields and corporate bond returns. 

1.2.3 EQUITY MARKETS  

Although insurers invest heavily in bonds, equities are also important to model within an ESG, because insurers often 

include an equity allocation as part of their investment strategy. In some cases, equities are crucial. For example, a life 

insurer may offer variable annuities or universal life insurance, which credit policyholders with an equity portfolio 

return subject to a minimum guaranteed return. In such cases, an ESG provides scenarios that include equity returns 

for use in managing these guarantees. 

Pension plan sponsors also would have significant interest in the equity markets, as equity exposure has traditionally 

been a major investment choice underlying the assets backing their long-term retirement liabilities. 

The Black-Scholes model was one of the first stochastic equity models. This model is widely used in pricing 

applications. There are many more general equity models that are designed to more appropriately model long-term 

behavior. These advanced equity models are more often used to model equity markets within ESG modeling systems. 

1.2.4 FOREIGN-EXCHANGE RATES  

An ESG component for foreign-exchange rates is important for financial institutions with international operations. An 

insurance company doing business in more than one country will likely require an ESG with foreign-exchange 

components. A large pension plan may invest globally, even though all plan participants are in its home country and 

paid in its domestic currency. Foreign-exchange rates would also come into play when a company wants to manage 

its global pension plans in a holistic or coordinated manner. 

1.2.5 OTHER ECONOMIC AND FINANCIAL MARKET COMPONENTS 

While interest rates are an essential component of an ESG, other economic variables, such as Inflation, GDP and 

unemployment, also may have a direct role in determining the dynamics of liability cash flows. Therefore, these 

additional economic components are often available within a general-purpose ESG. 

Other financial market components may also be important or useful, depending on the application, and would be 

prioritized within the limits of the practicality of producing a workable model. A specific application may require 

financial market components in addition to sovereign and corporate bond returns such as mortgage-backed security 

returns, covered bonds and derivatives. In the United States, municipal bonds may be an important component. 

These may in turn depend on other financial market components. 
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1.3 RELATIONSHIPS BETWEEN MODEL COMPONENTS 

Each economic variable and financial market return modeled within an ESG needs to be projected through time and 

across multiple scenarios in a manner that, when the components are taken together, results in projections that 

reasonably represent the future characteristics and dynamics of the underlying variables being modeled. In addition 

they need to be projected in a manner that represents how these variables will move in relation to the movements of 

all of the other variables within the model. The process for meeting these conditions is called model calibration. 

An ESG produces a range of total return correlations. Large changes in correlations can result from systemic effects 

such as the flight to quality during a financial crisis or the effects of Federal Reserve policies. An ESG embeds 

dynamics that affect correlations in order to adequately capture changes in investment opportunity sets. Correlations 

are important for capturing the risks associated with multi-asset class investing and for understanding the effects of 

diversification and concentration. 

1.4 STRUCTURAL ESG MODEL COMPONENTS  

An ESG model creates correlations through direct relationships with other simulated variables. The calibration process 

itself becomes increasingly challenging as additional variables are incorporated into the model. To make the 

calibration process practical, ESG models make use of what is referred to as a cascade structure. A cascade structure 

is a model framework design whereby each subsequent variable in the cascade structure depends only on prior values 

of the variable and the values of variables that lie above them on the cascade structure. This prevents changes to 

variables in the lower levels of the cascade from adversely affecting the dynamics associated with variables higher up 

in the cascade structure. Under a cascade structure, once a variable is appropriately calibrated, the calibration of 

subsequent variables lower on the cascade structure will have no impact on the previously calibrated variables. Figure 

1.1 shows a cascade structure that might be used within an economic scenario generator. 

Figure 1.1 

CASCADE STRUCTURE OF A HYPOTHETHICAL ECONOMIC SCENARIO GENERATOR 

1.5 CHAPTER SUMMARY  

1. An economic scenario generator is a computer-based model of an economic environment that is used to produce 

simulations of the joint behavior of financial market values and economic variables. 

2. Interest rate modeling is at the core of an ESG because of the importance of interest rates in discounting liability 

cash flows and in determining returns on fixed-income investments. 
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3. Interest rates are closely associated with default-free bonds and may be further refined to consider dynamics of 

the yield curve and interaction with inflation. 

4. Other financial components likely considered in a robust ESG may include gross domestic product, inflation, 

unemployment rates and foreign-exchange rates. 

5. Key financial market and economic variables are modeled in simulated series, and importantly the interaction 

among the variables also is modeled. Modeling in an economic scenario generator can be performed on a market-

consistent basis or real-world basis. Each has application to the insurance and pension worlds and to understanding 

financial markets. 

6. Some key financial market variables particularly important to insurance and pensions are bonds (and related 

interest rates), including corporate and asset-backed bonds, and equities. 
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Chapter 2: The Need for Economic Scenario Generators 
Having described economic scenario generators (ESGs) and their likely components in the first chapter, we will now 

discuss why and how ESGs emerged, with particular emphasis on the insurance industry environment. 

The increased emphasis on risk and capital management within the financial services industry has created the need 

for large-scale risk management models that consider risk exposures that affect both sides of the balance sheet. 

While risk modeling is not new, the use of ESGs to facilitate large-scale financial risk management simulation is a fairly 

recent phenomenon.  

This chapter will discuss the role that ESGs play in financial risk management and why these systems have gained 

increasing importance. 

Section 2.1 will describe the application of simulation modeling to address problems that do not lend themselves to 

analytical solutions. Analytical solutions best apply when the underlying distributions are known or can be estimated. 

Much information on the economy is derived from empirical data that often does not fit to a closed-form distribution. 

Other problems arise in complex joint distributions, discontinuities and mapping to other variables. With 

improvements in technology and computing power, simulation approaches emerged as a computational alternative. 

Section 2.2 provides an illustration contrasting the use of analytical and simulation approaches in calculating insights 

into complex problems. In an insurance environment, there is often a need to measure risk exposure resulting from 

the combination of a number of variables, including frequency and severity of claims and the total amount of claims. 

The analytical effort to model the compound distribution of these variables is far from trivial. Simulation provides a 

more accurate estimation for such complex modeling. 

Section 2.3 will examine the genesis of ESGs as an extension of simulation modeling. The genesis of what is now 

referred to as economic scenario generators can be traced to the confluence of three developments: advances in 

computing power; financial volatility following the collapse of the Bretton-Woods system of fixed international 

exchange rates and the subsequent 1973–74 stock market crash, which put pressure on the banking and insurance 

industry to come up with better financial markets modeling approaches; and the introduction of option-pricing 

models that proved to be more precise than regression-based models. 

Section 2.4 will give some examples of how ESGs are being used to drive financial risk management applications. 

Important examples (among others) include asset liability management, investment strategy, regulatory compliance, 

hedging and reinsurance pricing. 

Section 2.5 will distinguish ESGs from other types of economic models such as pricing, forecast and econometric 

models. The key difference is that economic scenario generators focus on economic risk rather than attempting to 

give insight into how the economy works or to predict the future level of an economic variable. 

Section 2.6 provides a discussion of some of the challenges and limitations of using ESGs as part of a simulation 

framework. Key among these limitations are the issue of sample error, extended processing time, and the need for 

substantial amounts of data and advanced technical expertise. 

2.1 SIMULATION VERSUS ANALYTICAL SOLUTIONS  

Historically, analytical solutions have been the standard methodology for the evaluation of risk metrics. An analytical 

solution, from a mathematical perspective, is the process of finding a solution using a methodology involving algebra 

and calculus to produce an expression for the solution in a closed-form equation. There are many reasons why the 

use of an analytical solution is desirable. Foremost among them is that an analytical process will result in a 

mathematically tractable solution. Expressing a solution as a closed-form equation makes it possible to perform many 

statistical calculations quickly and accurately. 
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2.1.1 IMPEDIMENTS TO ANALYTICAL SOLUTIONS 

While an analytical solution is preferable to a simulation approach, it often imposes substantial restrictions on the 

analysis being performed. Examples include situations with the following conditions: 

 The underlying distribution of data is unknown or unknowable. 

 The problem involves the use of complex joint distributions. 

 Discontinuities must be incorporated into the analysis. 

 Results require translation or mapping to the desired output. 

 Multiperiod projections are required. 

2.1.2 LIMITATIONS OF ANALYTICAL SOLUTIONS 

Analytical methods are most readily applicable to problems associated with variables where known or estimated 

underlying distributions exist. However, much information about the economy is derived from empirical data. Serious 

difficulties are often encountered when attempting to fit this data to a known underlying distribution. Since the 

analytical process requires that the solution be ascertained from a problem that can be stated in closed form, 

empirical distributions cannot be used directly. Thus, analytical methods are not feasible when dealing with variables 

whose distributions cannot be expressed in closed form or can only be expressed approximately. 

Analytical solutions are also less effective when dealing with complex actuarial analysis such as that required for asset 

liability management or financial risk management applications. This is true even when the variables used in these 

applications are assumed to follow well-defined distributions. This is due to the mathematical complexity that arises 

when working with joint distributions of stochastic dynamic processes, and aggregation, where the aggregated 

variables follow different distributional forms. 

Discontinuities, a problem that often arises when dealing with economic and capital market variables, present yet 

another major stumbling block to those attempting to find an analytical solution. Discontinuities also arise within 

institutional liabilities as a result of retentions and limits associated with insurance policies and with data clustering. 

These types of discontinuities often make specifying and solving the problem in closed form difficult or impossible. 

Finally, especially in the cases of asset liability management and financial risk management, the results of the analysis 

are often expressed in terms that are different from the terms used to describe the underlying variables. This requires 

the use of mapping functions that do not always follow equations that can be readily specified in closed form. For 

example, a particular investment might be stated in units of total return and assumed to follow a lognormal 

distribution. The resulting output, however, might need to be assessed in terms of financial statement line items, 

such as income or surplus. Thus, a transformation that takes into account a complex set of accounting and regulatory 

rules would need to be applied to the investment returns. This is not typically feasible using an analytical approach. 

2.1.3 ANALYTICS SUPERSEDED BY APPROXIMATION TECHNIQUES 

As financial modeling applications increased in complexity, pure closed-form solutions gave way to approximation 

techniques. Approximation techniques were heavily relied on before the invention of computers, as they balanced 

the competing interests of accuracy and computational convenience. The advent of the computer and the subsequent 

major advancements in computing accessibility, power and speed has made the use of simulation methodologies a 

much more practical and powerful alternative for the evaluation of problems involving institutional assets and 

liabilities. 

2.1.4 SIMULATION EMERGES AS A COMPUTATIONAL ALTERNATIVE 

Simulation is the representation of the operations or features of one process (or system) through the use of another. 

It is a standard process used in the field of engineering, where it reduces the time and cost associated with the 

production of real prototypes and experimental testing. Simulation conforms nicely to the needs of computational 

programming. Simulation also overcomes many of the restrictions imposed by the use of an analytical process and 

allows for the evaluation of complex dynamic financial systems such as those used for asset liability management and 

financial risk management. 
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Simulation requires the use of random samples to find a solution to a mathematical problem. This statistical sampling 

technique is often referred to as a Monte Carlo process. Since simulation involves random sampling from a set of 

uncertain possibilities, the simulation process requires (1) the specification of the set of uncertain possibilities, (2) the 

assigned probability estimates relating to the set of possibilities and (3) a random-number generator.  

2.2 ANALYTICS AND SIMULATION: AN ILLUSTRATION 

To show how quickly an analytical process can grow in complexity, we will examine an evaluation that might be done 

within an insurance institution. 

Claim payments associated with natural catastrophes are often calculated as a joint distribution of frequency and 

severity, where frequency measures the number of claims or events (e.g., hurricanes and earthquakes) and severity 

measures the magnitude of loss of an individual claim or event. 

As an example, consider the need to measure the potential risk exposure arising from a particular line of business. A 

company will be concerned not only with the expected or average amount of claims, but also what the total probable 

amount of what the claims might be.  

2.2.1 ANALYZING THE CHARACTERISTICS OF A SINGLE DISTRIBUTION 

Assume that for a given event, the size of loss distribution (severity) for the line is best described by a gamma 

distribution. The gamma distribution ( as a scalar) with parameters shape =  λ and scale = α has density 

f(x) = /()x( – 1)e–(x) 

Further, assume the parameters of the gamma distribution to be  = 7 and  = 0.0025. Figure 2.1 graphs this 

distribution. 

Figure 2.1  

GAMMA DISTRIBUTION FOR α = 7, λ = .0025 

 

Given this information, closed-form equations can be used to calculate some basic statistical measures, such as the 

mean and standard deviation: 

Mean =  = / = 2,800.0 

 Standard Deviation = 2 = /2 = 1,058.3 

Further, using a Taylor series expansion makes it possible to calculate a numerical estimate for the percentile 

distributions that gives the results shown in Table 2.1. 
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Table 2.1 

ANALYTICALLY DERIVED PERCENTILES FROM A GAMMA DISTIBUTION WITH  = 7, λ = 0.0025 

 

Percentile 

Exceedance 

Probability 

 

Loss Severity ($, 000s) 

 

90th 

 

1 in 10 

 

4,213 

 

95th 

 

1 in 20 

 

4,737 

 

99th 

 

1 in 100 

 

5,828 

 

99.6th 

 

1 in 250 

 

6,401 

 

99.8th 

 

1 in 500 

 

6,818 

  

Table 2.1 shows the loss severity associated with a single event at various percentile levels. The 90th percentile loss 

from a single event would generate $4,213,000 in claims, assuming the severity of loss followed a gamma distribution 

with the stated assumptions. Thus, there would be a 1 in 10 chance of losses exceeding $4,213,000 (90th percentile) 

and a 1 in 500 chance of losses exceeding $6,818,000 (99.8th percentile). 

Alternatively, simulation could have been used to come up with estimates for each of these same statistical measures 

of probability of losses. Using 10,000 Monte Carlo simulations generated the results for each of five separate trials 

(each comprising 10,000 simulations) shown in Table 2.2. 

Table 2.2 

ANALYTICAL VERSUS SIMULATED LOSS STATISTICS FROM A SINGLE OCCURRENCE 

 Loss ($, 000s) 

 

 

Analytic 

Result 

 

Trial 1 

 

Trial 2 

 

Trial 3 

 

Trial 4 

 

Trial 5 

 

Mean 

 

2,800 

 

2,784 

 

2,810 

 

2,797 

 

2,793 

 

2,798 

 

Standard 

deviation 

 

1,058 

 

1,048 

 

1,049 

 

1,055 

 

1,054 

 

1064 

 

90th 

 

4,213 

 

4,174 

 

4,200 

 

4,208 

 

4,195 

 

4,246 

 

95th 

 

4,737 

 

4,747 

 

4,711 

 

4,704 

 

4,703 

 

4,783 

 

99th 

 

5,828 

 

5,785 

 

5,803 

 

5,833 

 

5,855 

 

5,874 

 

99.6th 

 

6,401 

 

6,415 

 

6,324 

 

6,433 

 

6,288 

 

6,433 

 

99.8th 

 

6,818 

 

6,722 

 

6,757 

 

6,841 

 

6,735 

 

6,782 

 

Table 2.2 shows that the analytical solution for the mean loss from a single event is $2,800,000, while the five 

simulation trials generated estimates ranging from a low of $2,784,000 to a high of $2,810,000. The analytical result 

at the 1 in 500 level suggests losses would not exceed $6,818,000, while the simulation trials suggest at this level that 

losses would not exceed a range from $6,722,000 to $6,841,000. Note that the trials and simulations illustrated here 



   28 

 

                                                                              © 2016 Society of Actuaries 

are all based on the same underlying distribution and parameters. The different trial estimates are the result of error 

or noise in the simulation process, reinforcing the fact that samples from a known distribution never exactly match 

the theoretical outcome. 

Nevertheless, the differences in the simulation outcomes are relatively small, assuming that the parameters and 

distribution equation, as selected, accurately represent the underlying process. If this were the extent of the analysis, 

then the analytical approach would be preferable, due to considerations of tractability, speed and accuracy. 

2.2.2 THE PROBLEM OF INCREASED COMPLEXITY FROM JOINT DISTRIBUTIONS 

However, this analysis only deals with loss information related to a single event. What if calendar year loss 

information were required for use in budgeting and strategic planning? In addition to the event severity, the 

frequency of events would need to be considered. 

Assuming that each event is independent and identically distributed, it is easy to calculate the relevant statistics for 

any discrete number of events. However, the frequency of events is not typically certain and often is assumed to 

follow a separate stochastic process. 

Continuing with our example, assume that a Poisson distribution best describes the frequency of events over a given 

calendar year. The Poisson distribution with parameter μ has density 

f(x) = (xe–)/x!, where x = 0, 1, 2, . . .  

Here, x represents the number of events occurring over a given interval of time, and μ represents the expected 

number of such events occurring. 

Figure 2.2  

POISSON DISTRIBUTION FOR μ = 2 

  

 

If an average of two events are expected per annum (around a distribution that could include no events or a large 

number of events), we would need to evaluate the compound distribution made up of the product of a Poisson 

distribution (frequency) and a gamma distribution (severity), as described before. While the mean and standard 

deviation of this compound distribution can still be solved analytically, it is by no means trivial to solve this 

distribution for the various percentile loss levels. 

The complexity of this compound distribution suggests the use of numerical approximations or simulation to get this 

information. Table 2.3 shows the results for each of five separate trials using a sample set of 10,000 simulations. 
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Table 2.3 

ANALYTICAL VERSUS SIMULATED CALENDARD YEAR LOSS STATISTICS 

 Loss ($, 000s) 

 Analytical 

Result 

 

Trial 1 

 

Trial 2 

 

Trial 3 

 

Trial 4 

 

Trial 5 

 

Mean 

 

5,600 

 

5,610 

 

5,649 

 

5,656 

 

5,569 

 

5,542 

 

Standard deviation 

 

4,233 

 

4,241 

 

4,230 

 

4,247 

 

4,227 

 

4,236 

 

90th 

 

* 

 

11,425 

 

11,287 

 

11,334 

 

11,331 

 

11,315 

 

95th 

 

* 

 

13,508 

 

13,480 

 

13,502 

 

13,410 

 

13,402 

 

99th 

 

* 

 

17,906 

 

17,896 

 

17,996 

 

17,798 

 

17,817 

 

99.6th 

 

* 

 

20,202 

 

20,242 

 

20,259 

 

19,901 

 

19,945 

 

99.8th 

 

* 

 

21,925 

 

21,644 

 

22,226 

 

21,781 

 

21,635 

*Actual closed-form analytical solution not practical for tail percentile calculations. 

Table 2.3 shows that the analytical solution for the mean calendar year loss is $5,600,000, while the five simulation 

trials generated estimates ranging from $5,542,000 to $5,656,000. But an actual closed-form analytical solution for 

the various percentile levels is not practical, whereas the simulation approach provides management with estimates 

that the 2 in 1,000 calendar year loss can range from $21,635,000 to $22,226,000. Thus, simulation is a superior 

approach for providing these percentile estimates. 

2.2.3 FURTHER COMPLEXITY AS ADDITIONAL DISTRIBUTIONS ARE INTRODUCED 

The impact of changes in economic variables such as uncertainty in inflation on a company’s loss exposure also may 

be relevant. Since inflation can follow yet another, different, stochastic process, the analysis becomes even more 

complicated. Simulation techniques thus become the only feasible method for performing the necessary analysis. 

2.3 HISTORICAL CONTEXT: THE BIG BANG AND EMERGENCE OF ESGS  

Economic scenario generators go beyond analytical and simulation modeling, responding to additional problems of 

data and complexity as financial modeling requirements became more sophisticated. The genesis of what is now 

referred to as economic scenario generators can be traced to the confluence of three major and largely independent 

global developments: 

1. Advances in computing power, which facilitated the increased use of simulation modeling 

2. The collapse of the Bretton-Woods system and the subsequent 1973–74 stock market crash 

3. The introduction of option-pricing theory 

2.4.1 ADVANCES IN COMPUTING POWER FACILITATES THE USE OF SIMULATION MODELING 

Through the 1970s, with increasing sophistication of simulation modeling and advances in computing power, various 

economic and capital market models had evolved to be used for liability, investment and financial planning. The most 

familiar of these models was the mean-variance model popularized by Harry Markowitz in his seminal work, Portfolio 

Selection: Efficient Diversification of Investments. Mean-variance models produced reasonable return projections, had 

nice mathematical properties and were easy to use and understand. However, mean-variance models, even used 

within sophisticated simulation modeling, presented problems when dealing with business applications that required 
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analysis over multiperiod time horizons and when the analysis required direct access to economic variables such as 

interest rates and inflation. The technical problem of handling multiperiod extensions was addressed within the 

mean-variance model by making the simplifying assumption that capital market returns were independent from 

period to period. However, the need to generate economic information in addition to capital market returns 

presented a much tougher challenge. 

It is a relatively straightforward exercise to calculate Treasury bond returns using a mean-variance model and then to 

solve for the implied yields that would be required to generate the projected returns. When this is done, it can be 

shown that the underlying implied yields are nonstationary. That is, the minimum and maximum implied yields 

underlying the projected bond returns become progressively larger and smaller over time, ultimately moving toward 

positive and negative infinity (see Figure 2.3). This result clearly pointed out a major flaw within the mean-variance 

model. 

Figure 2.3 

IMPLIED 10-YEAR TREASURY YIELD 

  

Prepared by Conning, Inc.  Source: Conning’s GEMS® Economic Scenario Generator scenario. 

The need to generate reasonable yield projections and the shortfall of using traditional mean-variance models to 

perform the required simulations revealed the need for a new type of model. More advanced models would be 

required to directly model realistic economic variables and then use these economic variable projections to generate 

capital market returns that were both reasonable and consistent with historical return characteristics. 

2.3.2 FINANCIAL TURMOIL IN THE 1970s DRIVES THE IMPERATIVE FOR FURTHER INNOVATION 

The collapse of the Bretton-Woods system of fixed international exchange rates in the early 1970s led to a period of 

financial turmoil, as the U.S. dollar became the basis for international exchange and other currencies were allowed to 

float against the dollar. This engendered a period of financial turmoil, including stock market volatility, as the world 

adapted to new international rules. 

The 1973–1974 stock market crash was the catalyst for the Report of the Maturity Guarantees Working Party (1980), 

a joint initiative of the Institute of Actuaries and the Faculty of Actuaries. The report focused on devising a reserving 

method related to maturity guarantees that would inspire a reasonable degree of confidence that insolvency would 

not result from the granting of maturity guarantees. This issue came into focus as a result of the policy value losses 

following the significant U.K. stock market declines that occurred during the 1970s. 

A. D. Wilkie was the first to tackle this challenge as part of the modeling that was used to inform the Report of the 

Maturity Guarantees Working Party, and in 1986 he officially introduced a new type of economic and capital market 
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model that became known as the Wilkie model. This new model utilized stochastic regression techniques within a 

cascade model structure to generate simulations of both economic variables (interest and inflation rates) and capital 

market returns (stocks and bonds). 

Over the years, the use of stochastic regression techniques that was the basis of the model Wilkie initially popularized 

has been overtaken by stochastic differential equation models informed by the research work within the field of 

option-pricing theory. Option-pricing models proved to be more theoretically precise than regression-based models 

and allowed for both real-world projections and the pricing of contingent cash flows, both of which are critically 

important for a large subset of financial modeling applications. 

These new stochastic economic models were referred to by different names over the years, but the financial 

community eventually came to know them as economic scenario generators. 

2.4 ESG MODEL APPLICATIONS 

Later chapters will go into more detail about applications that are driven by economic scenario generators. However, 

it is useful to touch on the breadth and depth of these applications to get an appropriate appreciation of the growing 

importance of ESG models within the financial community. 

Simulation modeling has become the standard for the planning, valuation and assessment of risk-taking activities 

within the insurance, pension and banking industries. Regulatory and rating agencies have embraced these models as 

valuable supplemental informational frameworks in the determination of the solvency and financial strength of 

financial institutions. Companies are using ESGs to drive financial modeling applications used to assist with the 

following work:   

 Asset liability management (ALM). The evaluation and structuring of matching and strategic mismatch 

strategies, together with the determination of value-at-risk ( VaR) metrics to measure and monitor ALM risk 

exposures. 

 Financial planning. Evaluation of the risks and rewards associated with strategic business plans and 

alternative strategic initiatives. This includes merger and acquisition analysis, business growth strategies 

and capital management. 

 Regulatory compliance. Use of internal risk management models in the satisfaction of global regulatory 

capital and solvency requirements. 

 Investment strategy. Evaluation of the financial risk and reward opportunities associated with alternative 

asset allocation strategies involving fixed income, equity and alternative investments in light of internal 

liability obligations and the external economic and capital market environment. 

 Pricing. Determination of the price of a set of contingent liability cash flows and evaluation of the 

consequences of alternative product pricing strategies under variable and uncertain economic and capital 

market conditions. 

 Reserving. Setting appropriate reserve levels, given the complex distributions of uncertainty in the liabilities 

cash flows and economic environment. 

 Hedging. Evaluation of the cost versus risk reduction benefits of hedging liability and capital market 

exposures. 

 Reinsurance structuring. Evaluation of the benefits of alternative reinsurance structures. 

 Risk attribution. Setting enterprise-wide risk budgets and monitoring the cumulative exposure to individual 

risk factors such as credit, equity and currency. 

These are just a few of the myriad of business applications facilitated by ESG models. The number of business 

applications continues to grow as companies become more familiar with the capabilities of these systems and are 

able to successfully implement them in their day-to-day operations. 

2.5 HOW ESGS DIFFER FROM OTHER ECONOMIC MODELS  

Many different types of economic models are used within the financial services industry. Some are designed to give 

insight into how the economy works. These can be considered structural models that attempt to reflect cause-and-

effect relationships. An example is price elasticity, which suggests that the price of a good or service has a direct 
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impact on the demand for that same good or service. Thus, increasing the price (cause) will reduce the demand 

(effect). These models are classified under the general category of econometric models. 

Other types of economic models attempt to predict the future level of some key economic variable. These models 

seek to identify relationships between the movements of one set of economic variables (independent variables) and 

those of an economic variable of interest (dependent variable) for use in tactical decision making. For instance, an 

economist may attempt to predict the impact on inflation given information about changing GDP and unemployment 

levels. These models are classified under the general category of forecasting models. 

Still other economic models, such as stochastic variable term structure models, are built specifically to determine the 

price of complex financial derivatives and insurance contracts with embedded options. These economic pricing 

models follow strict mathematical properties that are designed to satisfy risk-neutral and arbitrage-free conditions. 

Term structure models have been developing rapidly since the introduction of option-pricing theory in the early part 

of the 1970s. 

Economic scenario generators are different from these other types of economic models, although they often utilize 

similar mathematical concepts and model equations. Economic scenario generators are designed to project economic 

and capital market variables over some specified future time period, for use in financial risk management 

applications. The purpose of an ESG is thus to provide a reasonable representation of the full range of future 

dynamics and distributions of economic and capital market variables, so that risk can be appropriately assessed and 

risk mitigation strategies can be evaluated. Therefore, ESG models are not intended to be predictive, and there is no 

requirement that the models provide any insight about why the economy works the way it does. The primary 

objective of an ESG is to produce a set of scenarios that represent the type of economic conditions that may occur in 

the future. 

Economic scenario generators are often parameterized to reflect “real-world behavior.” That is, the scenario sets 

produced by an ESG are intended to best reflect what might actually happen in the future. To the extent that the 

analysis being performed requires the determination of prices of complex financial derivatives and insurance 

contracts with embedded options, the ESG needs to be able to produce scenario sets that can be used to calculate 

such prices. As noted previously, models used by the financial services industry to estimate prices follow strict 

mathematical properties designed to satisfy risk-neutral and arbitrage-free conditions. Thus, ESG models used to 

drive financial risk management applications that require pricing need to have market-consistent modeling 

capabilities. 

Typical pricing problems are concerned with determining the price of a set of contingent cash flows as of the current 

date. Pricing becomes much more complicated when prices of contingent cash flows also need to be calculated at 

future points in time. The complication arises because future economic conditions are unknown, so the pricing needs 

to be done under multiple future uncertain states. Whereas the current price requires the development of one risk-

neutral economic projection, the calculation of prices at future time periods requires thousands of different risk-

neutral economic projections. This process is referred to as nested stochastic analysis and is computationally 

intensive. 

2.6 LIMITATIONS OF ESG APPROACHES 

Despite their advantages, ESG models continue to have some limitations. These involve model risk, sample error, 

processing time, challenges of reaching convergence, the amount of data and degree of expertise required, and 

difficulty in explaining the models to the people applying the data. 

2.6.1 MODEL RISK 

One of the biggest concerns with simulation modeling is model risk. Raw historical data and quantitative techniques 

alone cannot be relied on to generate a robust economic scenario generator. First, financial data has inherent 

limitations, such as inconsistent data series, differences in measurement and collection methods, and bad data. 

Second, financial history is filled with instances of unique and mitigating circumstances on which it would be 

unreasonable to project future trends. Third, there is a wide array of modeling techniques and analytical tools with 

different attributes, capabilities and precision levels. Finally, it is not practical to model every variable and every 



   33 

 

                                                                              © 2016 Society of Actuaries 

outcome precisely, so the model developer must determine which attributes are the most important to capture. 

Consequently, vastly different simulation results are possible, depending on the ultimate choice of models and 

calibrations. Thus, the model user must take care to perform appropriate model validation and to understand the 

limitations as well as the strengths of the models being used for a particular application. 

2.6.2 SAMPLE ERROR, REQUIRING EXTENSIVE SENSITIVITY ANALYSIS 

The use of a simulation approach for modeling institutional liabilities is subject to its own set of problems. Since 

simulation only approximates the underlying distribution, it introduces the problem of sample error into the analysis. 

Thus, the model user is faced with the question of how close the simulated results come to the theoretically correct 

answer. Typically, this question cannot be answered through mathematical formulas, leaving the modeler to perform 

sensitivity analysis where multiple sample sets are run using a fixed number of simulations (refer to Tables 2.2 and 

2.3). The variation around the statistic of interest is calculated to see if the results fall within an acceptable tolerance 

level. If the variation is too large, additional simulations must be added to the sample set. This process is repeated 

until enough simulations are included in the sample set to assure convergence within an acceptable tolerance level. 

2.6.3 COMPLEXITY, DEMANDING UNACCEPTABLE PROCESSING TIME 

Depending on the complexity of the model, the statistic of interest and the tolerance level, the number of simulations 

required for convergence could be extremely large. To reduce the number of required simulations and speed up the 

processing time, the model developer often builds variance reduction techniques into the simulation model. Variance 

reduction techniques are designed to reduce the number of simulations necessary for convergence. Examples of 

variance reduction techniques include the use stratified sampling, antithetic variates and importance sampling. These 

techniques may not be effective if the problem involves a function of several random variables or when information 

related to the entire distribution or individual percentiles is desired. 

2.6.4 CHALLENGES OF REACHING CONVERGENCE 

The use of low-discrepancy sequences also has shown promising results in reducing the number of scenarios required 

for convergence. Low-discrepancy sequences, or quasi-random sequences, use mathematically generated 

deterministic samples instead of random samples to speed up the rate of convergence. These samples are generated 

to more evenly cover the area of the distribution being sampled. While low-discrepancy sequences allow for faster 

convergence to the mean and variance than Monte Carlo sampling, they have been generally limited to low-

dimension problem spaces. 

2.6.5 NEED FOR SUBSTANTIAL AMOUNTS OF DATA AND TECHNICAL EXPERTISE  

Simulation models require advanced information systems and technical expertise. They are computationally 

intensive, often not user-friendly and may require more data and expertise than other liability analysis systems. While 

the advancement of computing technology has lowered the barriers associated with the computational intensity of 

simulation models, the knowledge and technical expertise of the audience for whom these models are designed has 

not necessarily kept pace.    

2.6.6 POTENTIAL TO BE SEEN AS A BLACK-BOX SOLUTION 

In addition to the mechanical difficulties of simulation, the results of simulation models often are perceived by the 

recipient to be mysterious. The term black box is often used in conjunction with such models. A black box refers to a 

model whose mathematical underpinnings are not disclosed. Unfortunately, the use of this term has often been 

extended to models that are sufficiently complex and poorly understood. Since simulation is typically used in cases 

where straightforward analytical approaches are not feasible, these uses will tend to lend themselves to complex 

modeling and thus to such criticism. It is imperative that the model developer communicate the model structure and 

present the model results in a way that the recipient of the analysis clearly understands. 
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2.7 CHAPTER SUMMARY 

1. Recent advances in technology and simulation modeling now allow for more rigorous analysis where the 

intricacies of analytical methods would otherwise have restricted the depth and breadth of the analysis.  

2. With proper care, simulation models can be the basis of an effective tool enabling institutional managers to 

gain a better understanding of the risk they are facing and thereby improve their strategic decisions. 

3. Stochastic simulations are used to obtain numerical results in applications where closed-form analytical 

solutions are not readily available. 

4. Stochastic simulation is used extensively in the area of financial risk management where both economic and 

capital market return projections are required. 

5. ESG models are used to drive these stochastic simulation applications, with one of the earliest applications 

being introduced by A. D. Wilkie in 1986 as a result of modeling done in support of the Report of the 

Maturity Guarantees Working Party. 

6. Applications that utilize ESG technology can be found within the insurance, banking and pension industries. 

These applications include generation of pro forma financial statement simulations for use in financial risk 

management, regulatory compliance, investment strategy, reinsurance structuring, pricing and hedging. 

7. ESGs, while similar in form to other types of economic generation models such as pricing, forecasting and 

econometric models, differ from these models in that their primary goal is to generate a set of future 

economic scenarios that spans the range of possible future outcomes for use in risk management 

applications. 

8. While economic scenario generators are extremely useful for gaining insight into future financial risk and 

rewards, like any model, they have limitations. Modeling the future dynamics of the economy and financial 

markets presents many challenges, such as accounting for extreme events and regime changes. It is 

imperative that users of these models understand the strengths and weaknesses of any particular ESG, so 

they can make sure that the ESG being used is appropriate for the analysis being performed. 
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Chapter 3: The Role of ESGs in Satisfying Regulatory Requirements 
Regulatory concerns in insurance have intensified in recent years, fueled by the financial markets turmoil brought 

about by the financial crisis of 2008, but also as a result of greater product complexity that has evolved in many parts 

of the insurance industry. In many cases, these regulatory concerns require a response that demands a stochastic 

view of future developments in both financial markets and the economy. Regulation requires consistency across 

entities such that regulators can both understand an entity’s approach to risk and adequately benchmark solvency 

concerns against those risks. This need for a regulator to have comparability across entities can lead to conflicts with 

the desires and uses of a company’s own internal risk models. 

This chapter will focus on the role that ESGs play in responding to needs of the regulatory environment. Depending on 

the regulatory jurisdiction, regulatory requirements may be prescriptive (rules based) or may outline specific or 

general principles (principles based). 

Section 3.1 will describe how the use of ESG models are increasingly satisfying evolving regulatory requirements in 

areas of solvency, as well as areas of pricing, reserving and capitalization. In most frameworks, the use of ESGs is 

included or considered in possible responses to evolving regulatory rules and principles, but the development of strict 

definitions or requirements for ESG applications is still emerging. In the United States under the National Association 

of Insurance Commissioners guidelines, ESGs are only beginning to emerge as an interesting, potentially preferred 

solution to solvency and product issues. ESGs have made the most headway in life insurance reserving regulations at 

the product level. In emerging Solvency II regulations and prescriptions, standard and internal models used for 

quantifying risk and establishing minimum capital requirements may make use of ESGs.  

Section 3.2 addresses specific regulatory requirements with respect to ESGs in terms of calibration, validation and 

documentation. The NAIC has its own ESGs applicable for interest-sensitive and variable market-sensitive products in 

life and annuities. These ESGs develop only a few economic factors. Insurers may have other significant economic 

factors, such as currency exchange rates, that would need to be consistent with the regulatory-specified ESG. 

Solvency II outlines considerations that affect the selection and use of an ESG. These include extrapolation beyond 

last liquid tenor progressing to an ultimate forward rate; matching adjustment; symmetric adjustment; and volatility 

adjustment. 

Section 3.3 discusses general ESG considerations that need to be taken into account when using ESGs for regulatory 

reporting purposes. These include time horizon and risk standards, governance, calibration standards, consistency 

with unrelated entities, potential conflicts with internal models, principles-based capital calculations, and the level of 

expertise required to reconcile internal practices with regulatory requirements. 

3.1 APPLICATIONS OF ESGS IN RESPONDING TO EVOLVING REGULATORY REQUIREMENTS  

ESGs are used in regulatory applications in two distinct ways. First, they are used to establish a time-zero value for a 

regulated entity’s assets, liabilities and surplus, according to the valuation principles required by the corresponding 

regulator. Second, they are used to simulate the real-world evolution over time of the entity’s assets, liabilities and 

surplus. These regulatory applications are used to test a company’s solvency and liquidity position as well as in 

support of individual product line pricing and reserving. The first use establishes a value of the available surplus assets 

at the valuation date (time zero), which can be compared with a benchmark for required surplus assets to absorb 

future realization of the entity’s risk exposures. The second is used to develop the standard(s) for required surplus 

assets (including liability reserves) by quantifying the variations due to the realization of a company’s risk exposures. 

ESGs are being used in multiple regulatory frameworks across the globe. In most frameworks, the use of ESGs is 

included or considered in a possible response to evolving regulatory rules and principles, but the development of 

strict definitions or requirements for ESG applications is still emerging. The most advanced frameworks are seen in 

the emerging principles of ComFrame (a common framework for international insurance supervision established by 

the International Association of Insurance Supervisors) and in developing rules in EIOPA (the European body 

representing the regulatory authorities of the European Union and its developing solvency rules embodied in 

Solvency II. 
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3.1.1 INTERNATIONAL ASSOCIATION OF INSURANCE SUPERVISORS (IAIS): COMFRAME AND INSURANCE 

CORE PRINCIPLES (ICPs) 

The International Association of Insurance Supervisors is an organization that has no regulatory power itself but 

brings together insurance regulators with such power (as well as interested parties) to try to coordinate on 

international insurance regulatory issues. 

In the aftermath of the global financial crisis of 2008, regulators in the financial sphere became acutely aware of the 

danger of systemic risk. As a result, the IAIS developed a Common Framework (ComFrame): 

The Common Framework for the Supervision of Internationally Active Insurance Groups (ComFrame) is a set 

of international supervisory requirements focusing on the effective group-wide supervision of 

internationally active insurance groups (IAIGs). ComFrame is built and expands upon the high level 

requirements and guidance currently set out in the IAIS Insurance Core Principles (ICPs), which generally 

apply on both a legal entity and group-wide level.1  

The ICPs on which the ComFrame is built include implicit references on the use of ESGs (emphasis in bold is ours): 

16.1 The supervisor requires the insurer’s enterprise risk management framework to provide for the 

identification and quantification of risk under a sufficiently wide range of outcomes using techniques 

which are appropriate to the nature, scale and complexity of the risks the insurer bears and adequate for 

risk and capital management and for solvency purposes. 

16.1.14 Stress testing measures the financial impact of stressing one or relatively few factors affecting the 

insurer. Scenario analysis considers the impact of a combination of circumstances which may reflect 

extreme historical scenarios which are analyzed in the light of current conditions. Scenario analysis may be 

conducted deterministically using a range of specified scenarios or stochastically, using models to simulate 

many possible scenarios, to derive statistical distributions of the results.2 

In these references, allowance is made for stochastic analysis that achieves a sufficiently wide range of outcomes, 

reflects the scale and complexity of risks, and provides the ability to determine a statistical distribution of results. 

ESGs are well equipped to achieve these objectives, but for now the guidelines permit, but do not require, this level of 

analysis. 

Developing a range of scenarios, including economic scenarios, is described in 16.1, which deals with risk 

identification and measurement. ICP 16 as a whole deals with an enterprise risk management framework, as 

illustrated in Figure 3.1. 

  

                                                                        
 

1 International Association of Insurance Supervisors (IAIS), “Common Framework,” http://iaisweb.org/index.cfm?event=getPage&nodeId=25229, 
accessed January 11, 2016. 
2 IAIS, “Insurance Core Principles,” updated November 2015, http://iaisweb.org/index.cfm?event=getPage&nodeId=25224. 
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Figure 3.1  

THE IAIS STANDARD ENTERPRISE RISK MANAGEMENT FRAMEWORK 

 

Source: IAIS, Insurance Core Principles, updated November 2015, p. 168. 

ESGs can be used in multiple parts of this ERM framework, specifically in the calculation of economic and regulatory 

capital, continuity analysis and the ORSA. ICP 16 addresses multiple areas on modeling the level of risk and identifying 

relationships between risks. The ICPs are high-level principles and do not specify quantitative requirements that the 

actual insurance supervisors require insurers to follow. These elements are embodied in specific regulatory systems  

inasmuch as they pertain to ESGs. 

3.1.2 USE OF ESGS IN U.S. REGULATORY CAPITAL AND RESERVING REQUIREMENTS 

In the United States under the National Association of Insurance Commissioners guidelines, ESGs are only beginning 

to emerge as an interesting, potentially preferred solution to solvency and product issues. ESGs have made the most 

headway in life insurance reserving regulations at the product level, and they are beginning to be recognized as an 

alternative in emerging requirements for own risk solvency assessment (ORSA). NAIC guidance states that individual 

state insurance commissioners may provide input on the level of the measurement metric to use in the stressed 

condition or specify particular parameters used in the economic scenario generator. 
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The following time line in Table 3.1 shows the history and evolution of capital requirements in the United States. 

Table 3.1 

TIME LINE FOR CAPITAL REQUIREMENTS, NAIC 

1970s 
Concept of risk-based capital (RBC) formulas developed 
by Society of Actuaries 

1990 NAIC begins investigation of RBC 

1993 RBC for life in effect 

1994 RBC for property and casualty in effect 

2000 
C3 Phase I: scenario testing for single-premium life and 
fixed annuities 

2005 
C3 Phase II: principles-based RBC for variable annuities 
with guarantees 

2008 SMI announced 

2009 
AG VACARVM: principles-based reserving for variable 
annuities 

2012–2015 Review of bond default factors (C1/R1); will recalibrate 

 

The core of capital requirements in the U.S. system is risk-based capital (RBC). First implemented in the 1990s, RBC 

was intended as a tool for regulators to determine which companies were weakly capitalized in order to better focus 

their supervisory activities. The current risk-based approach has incremental capital positions for regulatory 

intervention: two as “action” levels and two as “control” levels. 

RBC has had fairly simple core equations, one for life companies and another for nonlife. On the nonlife side, there 

has not been any significant use of ESGs in calculating RBC. 

On the life and annuity side, there has been an increasing regulatory requirement for the use of ESGs, but currently 

they apply at a product level with respect to variable products with embedded financial guarantees, as opposed to 

overall balance sheet considerations. There, a simple factor approach had been seen as possibly underestimating the 

risks in some products. The first project to update the risk charge for this, primarily affecting fixed annuities and 

single-premium life products, was called C3 Phase I. C3 Phase I developed the asset-liability mismatch risk charge by 

having asset-liability models for the covered lines of business through a relatively small set of scenarios (12 or 50) 

generated from a standard interest rate ESG model. This interest rate ESG model was calibrated to produce real-

world scenarios, and the subsets were chosen based on testing conducted by the American Academy of Actuaries. 

The model used for this purpose was a two-factor model, which was double mean-reverting.3 

The next such project, C3 Phase II, covered variable annuities and their guarantees. It was much more complicated 

than C3 Phase I. C3 Phase II involved the use of 10,000 ESG-generated scenarios and added equity market models in 

addition to the C3 Phase I interest rate model. The equity market model was a stochastic log volatility model,4 with 

correlations between certain major equity indices. In addition to stochastic modeling, there was a Standard Scenario 

intended to provide a minimum deterministic capital requirement. This was followed by a related project, AG 

Commissioners Annuity Reserve Valuation Method for Variable Annuities (VACARVM), which used the same economic 

models to develop principle-based reserves for variable annuities. 

There was an update to the interest rate model in 2010 that moved from a fixed mean reversion point (MRP) to an 

annually changing one. The new model has the same structural form of a double-mean-reverting, real-world interest 

rate model for the United States, with a new parameterization. As of January 2016, this updated model has not been 

approved for use for life RBC but has been approved for use in the new valuation manual with principles-based 

reserving for life insurance: VM-20. 

                                                                        
 

3 A double mean-reverting model is a model in which two of its stochastic factors have a mean-reversion component, and the two factors generally 
interact. 
4 A stochastic log volatility model is an equity model in which the stock index price has the standard lognormal stochastic equation but the natural 
logarithm of the volatility also is driven by a stochastic process (as opposed to being a constant). 
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3.1.3 UNITED STATES: NAIC ORSA 

While RBC has made limited use of ESGs, ORSA, as part of an ERM framework seen in the ICPs and ComFrame, has no 

explicit ESG restrictions. Ultimately this is under the control of the individual state regulators, because insurance 

regulation is primarily established on a state basis, though there is coordination with the NAIC.  

The NAIC ORSA Guidance Manual states (as of July 2014), “The commissioner may provide input to an insurer’s 

management on the assumptions and scenarios to be used in its assessment techniques. For assumptions that are 

stochastically modeled, the commissioner may provide input on the level of the measurement metric to use in the 

stressed condition or specify particular parameters used in the economic scenario generator.”5  

As the first required ORSA reports were submitted in 2015, we do not yet have information as to whether specific 

state commissioners have provided any guidance on the ESG choice and parameterization. The ORSA manual itself is a 

high-level document with few prescriptions, but the amount of prescription is likely to come out in actual practice. 

3.1.4 EUROPEAN UNION: SOLVENCY II 

In emerging Solvency II regulations and prescriptions, standard and internal models used for quantifying risk and 

establishing minimum capital requirements may make use of ESGs. ORSA requirements are also specified in Solvency 

II, which may be performed using a model that includes an ESG. There is an internal model approval process 

prescribing governance procedures and a use test. However, the application of the model, in particular the ESG, to 

other management decisions does not have to be based on the same calibration as that used for the regulatory 

capital application. 

The European Insurance and Occupational Pensions Authority (EIOPA), is the body representing the national 

regulators of the EU member states. It has an advisory role to the EU bodies legally charged with developing EU 

solvency rules (the European Commission, the European Parliament, and the Council of Ministers). It also has some 

delegated powers to implement the regulations in a consistent manner across all EU member states. 

EIOPA is not a regulator itself. Rather, it is a body that represents and coordinates the perspectives and activities of 

EU member states’ regulators. A regulated entity therefore has direct dealings not with EIOPA itself but with the 

regulator of the entity’s home country. In line with the variations in size and market traditions among the various EU 

member states, there is a corresponding variation in the size and experience of the staff of the member states’ 

regulators. This can lead to variations in practice to a somewhat greater extent than would be expected in the case of 

a market with a single regulatory body. 

Solvency II is the regulatory regime being introduced across the EU with effect from January 1, 2016. Solvency II 

consists of three “pillars”: quantification of required capital, regulatory supervision process, and disclosure. 

ESGs are affected by all of these three pillars. They play a role in the quantification of risk and required capital 

through their use in full or partial internal models. Their use is subject to the governance and process framework in 

pillar 2. And they, as well as their use, are subject to the disclosure requirements of pillar 3. 

The solvency capital requirement (SCR) and minimum capital requirement (MCR) are different thresholds of 

regulatory required capital and trigger different levels of regulatory and/or company action. These may be assessed 

using an entity’s full or partial internal model, which may include the use of an ESG. 

The ORSA is an own risk and solvency assessment that entities are required to perform periodically. This may also be 

performed using a model that includes an ESG. However, since this is an own risk and solvency assessment, the ESG 

does not need to be calibrated to the ESG used within the internal model for the SCR or MCR. 

For companies that do not use an internal model, a standard formula is available. Entities that use the standard 

formula may be subject to a capital add-on if the regulator judges that the assumptions underlying the standard 

                                                                        
 

5 National Association of Insurance Commissioners, NAIC Own Risk and Solvency Assessment (ORSA) Guidance Manual, as of July 2014, pp. 7–8, accessed 
at http://www.naic.org/store/free/ORSA_manual.pdf. 
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formula are not reflected in the entity’s business or operations. Entities must therefore be able to demonstrate 

whether the standard formula is applicable. The standard formula may be modified by using specific parameters. 

For companies that use an internal model, there is an internal model approval process (IMAP). Internal models 

require the approval of the regulator before they can be used for regulatory capital assessment. The IMAP requires, 

among other things, the existence of a governance process including a model change policy and the demonstration of 

the management’s confidence in the internal model through a “use test.” The model must be used for management 

decisions other than solely regulatory capital. However, the application of the model—in particular, the ESG—to 

other management decisions does not have to be based on the same calibration as that used for the regulatory 

capital application. 

Entities are free to use any ESG they wish as part of their internal model or ORSA, subject to the IMAP requirements. 

In practice, the IMAP scrutiny of the ESG will usually include a comparison with the assumptions in the market risk 

component of the standard formula. 

3.1.5 SWITZERLAND (FINMA): SWISS SOLVENCY TEST (SST) 

FINMA is the regulatory authority for financial services firms in Switzerland. Swiss insurers are subject to the Swiss 

Solvency Test (SST) rather than the EU Solvency II. SST has been in place for several years and shares many of the 

same principles as Solvency II. There are differences in the detailed requirements and in the approval process. 

Switzerland has received recognition by the EU that its solvency regime provides protection for policyholders 

comparable to that of Solvency II. This is called “equivalence” and means, among other things, that EU entities can 

rely on the SST of their Swiss subsidiaries and reinsurers without needing them to be Solvency II compliant 

themselves. Like Solvency II, SST has a standard formula for entities that are not required to use an internal model. 

With regard to ESGs, the SST includes the requirement for entities to report on the impact of a set of extreme 

economic scenarios and sensitivities of market risk factors that are specified by FINMA. 

3.2 SPECIFIC REGULATORY REQUIREMENTS WITH RESPECT TO ESGS 

The NAIC, Solvency II and the Swiss Solvency Test each have specific regulatory requirements that apply to use of 

ESGs. 

3.2.1 UNITED STATES: NAIC 

The NAIC has its own ESGs that are primarily applicable to regulatory considerations for interest-sensitive and 

variable market-sensitive products in life and annuities. These ESGs develop only a few economic factors: U.S. 

government yield curves and a handful of equity indices. Insurers may have other significant economic factors, such 

as currency exchange rates, that would need to be developed consistent with the regulatory-specified ESG. If missing 

economic factors are correlated with those generated by the NAIC ESG, then this can create difficulties in producing 

full scenario sets.6 

3.2.2 EUROPEAN UNION: SOLVENCY II 

Solvency II outlines several considerations that affect the selection and use of an ESG. These include the following 

four: 

1. Extrapolation beyond last liquid tenor, progressing to an ultimate forward rate 

2. Matching adjustment 

3. Symmetric adjustment 

4. Volatility adjustment 

                                                                        
 

6 American Academy of Actuaries generator hosted at Society of Actuaries website, https://www.soa.org/research/software-tools/research-
scenario.aspx, accessed January 11, 2016. 
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The Solvency II requirements for the yield curves from an ESG include the need to extrapolate from the last liquid 

tenor. The proposed methodology involves an extrapolation curve that smoothly progresses to an “ultimate forward 

rate” set by the regulator, which may vary from country to country. 

The matching adjustment is the adjustment of the discount rate for the liabilities to reflect, to the extent permitted, 

the entity’s investment in illiquid matching assets. 

The symmetric adjustment is an adjustment mechanism to the equity index level in the market risk module of the 

standard formula for the solvency capital requirement. The stated purpose is to “mitigate undue potential pro-cyclical 

effects of the financial system and avoid a situation in which insurance and reinsurance undertakings are unduly 

forced to raise additional capital or sell their investments as a result of unsustainable adverse movements in financial 

markets.” 

The volatility adjustment is another mechanism intended to prevent pro-cyclical investment behavior. With the 

volatility adjustment, “insurance and reinsurance undertakings may be allowed to adjust the relevant risk-free 

interest rate term structure for the calculation of the best estimate of technical provisions to mitigate the effect of 

exaggerations of bond spreads.” The volatility adjustment is “based on reference portfolios for the relevant 

currencies of those undertakings and, where necessary to ensure representativeness, on reference portfolios for 

national insurance markets.” To ensure adequate transparency, companies are required to publicly disclose the 

impact of the volatility adjustment on their financial position. 

A useful reference summarizing additional details for the so-called Long Term Guarantee Package, which includes the 

matching and volatility adjustments, can be found in McHugh and Schiffel (2014), a paper titled “Omnibus II 

Agreement on Long-Term Guarantee Package and Transitional Measures.” 

3.2.3 SWITZERLAND: SWISS SOLVENCY TEST  

The Swiss Solvency Test (SST) requires that the output of an entity’s internal model be supplemented by the impact of 

a set of extreme economic scenarios and sensitivities of market risk factors specified by the regulator.7 

3.3 GENERAL REGULATORY ESG CONSIDERATIONS 

Considerations relating to the application of ESGs for regulatory purposes may be considered across all jurisdictions. 

This section discusses seven such factors: 

1. Time horizon and risk standards 

2. Governance 

3. Calibration 

4. Consistency across unrelated entities 

5. Conflicts with internal models  

6. Principles-based capital calculations 

7. Expertise 

3.3.1 TIME HORIZON AND RISK STANDARDS 

The time horizon and risk standards for regulatory purposes are set by the regulator. While the regulated entity may 

use other horizons and/or risk standards for its own strategic and risk management purposes, it will need to conform 

to the regulator’s parameters for regulatory purposes. A typical regulatory time horizon is one year, while the entity’s 

time horizon could be longer, depending on the nature of its business and markets and on its internal planning and 

reporting processes. Risk standards vary by entity, as they need to be responsive not only to the regulators but also to 

other stakeholders such as policyholders, rating agencies and shareholders. 

                                                                        
 

7 FINMA “Swiss Solvency Test (SST),” https://www.finma.ch/en/supervision/insurers/cross-sectoral-tools/swiss-solvency-test-sst/, accessed January 15, 
2016. 
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3.3.2 GOVERNANCE 

For regulatory applications, ESGs are subject to an approval process by the regulators. The approval process requires 

that management have an acceptable governance process in place, including a model change policy, and that senior 

management and board members have an adequate level of understanding and appreciation of the ESG—in 

particular, its relevance and limitations. 

The documentation and disclosure of ESGs, whether internally developed or purchased from a specialist vendor, must 

include a description of the underlying models, the reasons for choosing these models, the source data from which 

the models are calibrated, the methodology for fitting model parameters to the data, any expert judgments applied, 

and the validation of the resulting calibrated models. This disclosure is not public disclosure, but rather refers to the 

disclosure to the regulatory body. 

There are increasing regulatory requirements related to each of the following: 

 Appropriate qualifications and experience to be met by holders of key functions, as well as fit and proper 

requirements. 

 Understanding by senior executives and board members of the models used by entities in their regulatory 

solvency assessments. This especially applies to an understanding of the limitations of the models.  

 Openness and transparency of the internal part of the regulatory solvency assessment. 

ESGs used within the regulatory capital assessment process therefore not only have to be technically sound; they also 

need to conform to the management/regulatory process in which the ESG is embedded and the governance 

framework around that. This means that ESGs are subject to increasing requirements for documentation and 

disclosure. 

3.3.3 CALIBRATION 

One key issue in model governance is that of controls regarding the calibration and validation of the internal models. 

When internal models are created and used, it is expected that the parameterization of the model will vary over time. 

Regulatory requirements may be less flexible to the extent that they are prescriptive, and differences will need to be 

reconciled and disclosed. 

3.3.4 CONSISTENCY ACROSS UNRELATED ENTITIES    

Consistency across entities and across time is important to regulators. This includes consistency across owned but 

unrelated entities, so regulators can adequately compare results. Consistency with other, unrelated entities is 

perhaps less important from the perspective of a particular entity conducting its own internal risk management or 

shareholder reporting activities. Therefore in regulatory applications, ESGs will be subject to consistency 

requirements. As well, regulated entities will often find they need to use different choices in ESGs, at least with 

respect to calibration, to perform nonregulatory business activities. 

Regulators may impose constraints on the ESG in order to achieve consistency with their particular objectives. 

Sometimes these constraints may seem arbitrary or at odds with economic principles of asset and liability valuation 

but are put in place to satisfy a regulatory goal. These regulatory constraints may be set up to provide easier 

comparability of regulated entities or to prevent these entities from “gaming” the results. 

3.3.5 CONFLICTS WITH INTERNAL MODELS 

On occasion, regulatory applications may result in unintended incentives to companies—that is, incentives for 

companies to operate in a manner that goes against sound risk management principles. Regulatory requirements, 

which apply to the entire market, therefore have to be set with care to avoid generating systemic risks. For example, 

certain asset-liability regulatory valuation structures might inadvertently lead companies to invest pro-cyclically—that 

is, to buy when prices are high and sell when prices are low. 

For example, a market risk-free (government) yield curve is a typical starting point for valuation of projected cash 

flows. However, the market may be relatively illiquid at longer maturities, although there may be significant liability 
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cash flows expected at these long maturities. Different ESGs may extrapolate yields differently beyond the last liquid 

point, which could have a significant effect on valuations if an entity switched from one ESG to another. Therefore, 

regulators may impose extrapolation criteria and/or specific methodologies and parameters for carrying out the 

extrapolation process. 

These regulatory restrictions can be somewhat controversial, since they are to some extent subjective and (therefore) 

not universally agreed upon. These controversies can occur not only between regulators and the regulated entities 

but also between differing regulators themselves. 

A further divergence, or at least point of controversy, between regulatory and internal usage of an ESG results from 

the illiquidity of liabilities. Entities may exploit in their investment strategy the fact that many of their liabilities are 

illiquid and will not need to be realized at an arbitrary date. This allows them to benefit from investing in relatively 

illiquid assets that provide a spread to liquid asset alternatives. A point of contention is about whether such an entity 

may or may not decrease the value of its liabilities in line with the higher yields being generated by the illiquid assets 

it is holding to match the liabilities. While the entities themselves may wish to recognize such an “illiquidity 

premium,” regulators may not allow them to do so, in order to provide more protection to policyholders. 

3.3.6 PRINCIPLES-BASED CAPITAL CALCULATIONS 

The regulatory trend has been toward market-consistent valuation principles. A second trend has been toward a 

custom approach to risk and capital assessment and away from a standard, one-size-fits-all approach. A third trend, 

driven by the first two trends, has been toward a principles-based approach rather than a prescriptive rules-based 

approach. 

However, rules-based approaches still apply to some key aspects for which there may be wide deviations possible in 

the face of limited objective evidence. These rules-based approaches ensure consistency and avoid entities selecting 

unduly favorable assumptions. 

3.3.7 EXPERTISE ISSUES 

As a result of the mathematics of ESGs being relatively sophisticated, there is a shortage of skills and experience 

globally. Since regulators’ budgets tend to be constrained to a greater extent than those of regulated entities, it is not 

surprising that regulators struggle to attract and retain individuals with appropriate ESG skills. Anecdotal evidence 

suggests that this has been a factor in insurers’ different experiences in working with regulators to achieve internal 

model approval with respect to their ESG, which may be unrelated to the ESG itself. This situation will certainly 

evolve, but it is hard to predict whether any change will be positive or negative for regulated entities. 

3.4 CHAPTER SUMMARY 

1. ESGs are being used more frequently and in a more widespread manner in satisfying regulatory activities in 

the areas of pricing, reserving, capitalization and solvency. 

2. Significant validation and documentation requirements govern the use of ESGs for regulatory reporting. 

3. Different regulatory regimes provide differing levels of scrutiny and freedom with respect to ESG model 

choice and calibration. 

4. There is a balancing of regulatory need for comparability across companies versus a company’s own need to 

reflect specific risks in its own asset-and-liability portfolio. 

5. ESG output used for regulatory purposes may not be appropriate to use to manage the business, because 

ESG model type and calibration may differ widely, reflecting differences in the goals and viewpoints of 

regulators and insurers. 
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Chapter 4: Business Applications of ESGs in the Insurance and Pension 

Industries 
This chapter will address practical applications and business uses of ESGs across life and P&C insurance companies, as 

well as for pension analysis. Economic scenario generators are often integrated into key planning and decision-making 

activities. The examples in this chapter are not meant to be exhaustive, but rather to highlight key uses of ESGs in a 

business setting. Some applications, such as strategic asset allocation, are relevant in all three areas. However, there 

are important aspects of ESGs that will differ among the three fields, or even within a field or product, due to 

different fundamental questions being addressed or different behavior of the associated liabilities. 

Section 4.1 will describe the application of ESGs to address specific problems in life insurance. Applications in life 

insurance focus primarily on interest rate changes and ways policyholder behavior may dynamically affect liabilities. 

Some of the considerations explored in life insurance applications may also apply to pensions and property and 

casualty applications. 

Section 4.2 describes the similarity of specific applications in pensions, focusing primarily on defined benefit pension 

approaches. In addition, considerations of the interaction of economic factors applying to pension sponsors and 

pension assets and liabilities, including dynamics of payroll and retirement decisions, also may be better understood 

through ESG modeling. 

Section 4.3 describes applications in property and casualty insurance, which by the nature of its liabilities is quite 

different from life insurance and pensions. The impact of inflation, subject to ESG modeling, plays a greater role in 

understanding liabilities (loss reserves), and other economic factors such as GDP growth and employment play a 

greater role in pricing cycle analysis and enterprise risk management analysis. 

4.1 LIFE INSURANCE APPLICATIONS 

Applications of ESGs in life insurance are focused on the interaction of interest rate changes and policyholder 

behavior often connected to interest rate changes. Life insurance results at both product level and enterprise level 

are determined by the interaction of investment performance on assets (built up from the collection of premiums) 

and the payout of liabilities (based on events of mortality, morbidity (in health or disability), policy surrender 

influenced by crediting strategies, or annuity payout.) Because of the complexity of the interaction of these factors 

over an extended time horizon, an ESG provides a comprehensive tool to understand the range of potential 

outcomes. 

An ESG can also produce a large number of scenarios, which can be conflated to a probability distribution, so the 

likelihood of certain events can be anticipated. This insight is critical to making informed judgments about the 

potential costs and rewards of the risks involved, allowing companies to progress from strict risk elimination to risk 

mitigation within the context of the cost of risk. 

Several applications in life insurance are best understood through the use of an ESG. Considerations regarding the 

choice of market-consistent versus real-world scenarios, number of scenarios and forecast horizon, specific economic 

factors to model, and other features such as specific calibration approaches to apply may depend on the specific 

application being considered. 

The following applications in life insurance are representative of those best understood through the use of an ESG: 

 Life liability valuation 

 Effective duration analysis 

 Stress testing 

 Economic capital 

 Strategic asset allocation  
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4.1.1 LIFE LIABILITY VALUATION 

Life insurance liability valuations require a focus on the interaction of interest-sensitive cash flows and policyholder 

behavior regarding lapses and other optionality. ESGs are necessary to properly respond to the challenges 

represented by this interaction. Both the potential range of scenarios, reflecting possible extreme events, and the 

likelihood of scenarios are important in developing a consistent valuation. In selecting appropriate ESG models for 

this application, market-consistent scenarios are required to properly understand the cash flows associated with the 

volatility of implied forward yield curves, and a large number of scenarios may be needed to properly represent value 

changes under extreme conditions. 

A single scenario projection will not divulge the full spectrum of potential results that may occur when a life insurance 

company creates a long-term contract that allows policyholders the opportunity to act in their best interest to the 

potential detriment of the insurer. When interest rates move lower, minimum rate guarantees may be set by a 

crediting rate floor, which can become very expensive to an insurer, as the yield earned on their investment portfolio 

may not support the credited rate. Conversely, rates may move higher, which may allow for competing insurance 

products to appear more attractive to policyholders. This could lead to higher lapse rates at a time when fixed-income 

assets have fallen in value, leading to untimely asset liquidation of the insurer’s portfolio. With many life insurance 

contracts, the insurer has essentially sold interest rate options on both sides of the balance sheet, which causes the 

insurer to lose value during times of large interest rate changes. 

Therefore, a variety of scenarios are needed to cover the possible outcomes of the insurance contract, not simply a 

single scenario. An ESG is required in this case, and the scenarios produced must adequately account for the range 

and likelihood of plausible outcomes. 

In addition to gaining insight into the full spectrum of potential results, understanding the distribution of these results 

over the range and likelihood of interest rate movements and policyholder responses is important in order to get a 

consistent valuation of the liabilities. The number of scenarios required to get a consistent valuation depends on the 

sophistication of the implied options sold and the extent to which the options change in value. If large value changes 

are expected during extreme scenario events, more scenarios are likely needed in order to populate enough of these 

wide-changing events for proper representation. Thousands or even hundreds of thousands of scenarios may be 

needed to fully represent the most extreme events that may occur. 

As a practical matter, however, long model run times may prohibit the use of a very large number of scenarios, so a 

balance must be struck between accuracy and reasonable run times. Certain methods, such as scenario reduction 

techniques that would oversample or reweight the tail events, or model reduction techniques including liability proxy 

modeling, may increase model speed to enable the use of more scenarios. 

The use of stochastic simulations for valuing liabilities in life insurance applications requires an ESG that produces 

market-consistent scenario sets. This means that the implied forward curves, on average across all scenarios, and the 

volatility of those curves are informed by actual prices of traded bonds and options in the market. Market-consistent 

scenarios are used for properly valuing financial instruments so that fixed or contingent projected cash flows can be 

consistently valued. Current capital market valuation sets the price of these cash flows, and market-consistent 

scenarios assure that  all cash flow valuations and asset or liability flows have a consistent relative value. Market-

consistent scenarios produce different dynamics than real-world scenarios, particularly for interest-sensitive cash 

flows, so it is important to use these appropriately. 

4.1.2 EFFECTIVE ASSET AND LIABILITY DURATION ANALYSIS 

The ability to better value asset or liability financial instruments through the use of an ESG allows for more precise 

effective-duration calculations. Effective duration measures the interest sensitivity of financial instruments by 

measuring the price change of a set of asset or liability cash flows for a given level of interest rate change. Liabilities 

that do not have interest-sensitive cash flows (that is, they do not have embedded interest rate options) may be 

valued using a single market-consistent interest rate projection that follows the forward curve. However, for liabilities 

(and assets) with interest-sensitive cash flows, a single scenario is not sufficient for valuation, so a set of market-

consistent scenarios is needed. This set of scenarios can then be shocked up or down to produce the new liability 

values for use in the duration calculation: 
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  , 

where Δy is the change in interest rates and V is the resulting value of the liability given the interest rate change. 

Typically this constant rate shock is applied to the implied spot curve, which has the effect of changing the forward 

curves for each set of shocked scenarios. Therefore, simply applying the shocks to all rates at all time periods is 

inconsistent, as they will not be risk neutral; a new set of market-consistent scenarios is needed for each changed set 

of scenarios. 

Liability effective durations have traditionally been a useful metric for communicating the interest rate sensitivity of 

liabilities to investment departments. 

4.1.3 STRESS TESTING AND CASH FLOW TESTING 

ESGs are an essential companion to traditional actuarial software in performing deterministic stress testing and 

regulatory cash flow testing. 

Life insurance companies are heavy users of actuarial software, through which it is possible and even routine to 

project company results into the future across a variety of potential economic and capital market states. Insurance 

product performance is affected by external economic and capital market events, including through secondary effects 

that are difficult to directly calculate. For example, policyholder behavior such as lapses can be influenced by whether 

interest rates are rising or falling, especially if the change is extreme. To anticipate the impacts of changing product 

performance on an insurer’s financials, stochastic models of policyholder behavior are used to reflect these changes, 

as well as changes in asset and liability value. This is a key component of deterministic stress testing and a primary 

feature of regulatory cash flow testing that has been in use for decades to evaluate the adequacy of life insurance 

reserves. 

In traditional deterministic stress testing, somewhat arbitrary adjustments are added or subtracted from the current 

rate levels to produce new interest rate scenarios that can be run through company models. Adding 3% to the current 

level of interest rates or subtracting 30% from the current level of equities is a deterministic approach that can 

provide insight into how sensitive a company may be to certain events. This process, however, lacks any insight into 

the probability of these shocks and therefore may leave practitioners with little guidance as to when or whether they 

should take risk mitigation actions. 

Stress testing that includes probability distributions developed through the use of an ESG provides more actionable 

results. Using a set of scenarios produced by an ESG makes it possible to identify certain percentile changes and take 

appropriate mitigating measures that are commensurate with the likelihood of the event. A costly hedge to protect 

against a 1-in-1,000 event may be much less economical than the same hedge protecting against a more likely 1-in-20 

event. Attention should be given to secondary factors in any particular scenario. There may be anomalies with the 

other factors that are specific to that one scenario, and any effects on the results of the model may mistakenly be 

attributed to the primary factor. 

ESGs also allow for producing reverse stress tests, where the stress scenario is not selected before running the 

company model but is instead selected after producing the company results. Predetermining the scenario stress may 

prove not to be a meaningful stress test at all. More information may be gleaned from focusing on the scenarios that 

actually produce the poor company results. What is most impairing to an insurer may not be simply the worst interest 

rate shock, but instead a modest rate increase accompanied by a significant equity market drop and credit spread 

widening. Reverse stress testing helps identify problem scenarios and illuminates the most important risk drivers. 

4.1.4 ECONOMIC CAPITAL 

ESGs are an important tool for economic capital calculations. Economic capital focuses on the extreme tail events that 

can adversely impact the value or solvency of an insurer. ESGs provide a tool for quantifying the probability and scope 

of extreme events that may result from external economic and market volatility. Both market-consistent and real-

world representations are important in developing economic capital calculations. 
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Economic capital is defined by a downside risk metric that quantifies adverse impacts on a company’s capital, at a 

given probability level, over a specific time horizon. These adverse impacts are derived using company models that 

consider economic scenarios that produce extreme value changes. As with stress testing, a deeper appreciation of the 

risk factors that materially impact a company’s financials is developed through understanding the combination of 

economic events such as inflation rates, unemployment and other factors, along with capital market events that 

affect interest rates and equity markets.   

The specifications of the interrelationships of these risk factors are particularly important as companies seek ways of 

diversifying their risks for improved performance during adverse conditions. If the correlations among modeled 

factors are not reasonably represented, the diversification attributes will not be properly reflected. 

Certain economic capital definitions require the calculation of market values at a future point in time, Tx. The 

scenarios used for traveling to Tx may be real-world representations that are not market consistent. However, within 

this path, the scenarios used to determine the market values at Tx may be market consistent. 

Economic capital analysis focuses on extreme tail events that are often the result of broad economic crisis. Fixed-

income investments may be considered to have low correlations with equities, but during periods of crisis, certain 

corporate bonds may become highly correlated with a falling equity market as spreads between corporate yields and 

government yields widen in sympathy with credit default concerns. Alternatively, government bond prices may spike 

during crises due to an investor flight to quality. When considering the tail events implied by these periods of crisis, 

particular consideration should be given to the number of scenarios used. If the concern is with the 99.5 percentile 

worst result, testing 200 scenarios would not provide sufficient confidence that the result is representative of the true 

risk. As the focus extends further into the extreme regions, even more scenarios would be needed. The number of 

scenarios needed to achieve a stable result will depend on the volatility of the results in the tail regions, and the use 

of 100,000 scenarios or more is not uncommon. 

4.1.5 STRATEGIC ASSET ALLOCATION  

ESGs using real-world scenario representations can support analysis for more efficient risk-adjusted investment 

allocations that consider the effect of liability correlations against a broad range of economic and financial market 

changes. The strategic asset allocation (SAA) process has evolved to a point where it relies heavily on the use of 

stochastic scenarios to test and validate new investment allocations relative to liability characteristics. The objective 

of this exercise is to find the most efficient allocation of invested assets for a given return objective and risk tolerance. 

However, economic scenarios that affect asset values may also affect liability values. Because of this, asset-only 

analysis will often produce efficient investment allocations that are significantly different from results that would be 

generated when liabilities are included. 

An SAA may require the full capabilities of an ESG to produce a robust set of not only projected interest rate changes, 

but also projections of credit defaults and spreads, bond rating migrations, equity returns, inflation and other factors 

that may affect the way assets and liabilities behave. An SAA process evaluates the relative value of potential asset 

classes for investment along with the volatility and correlation of performance across all classes relative to the 

behavior of the liabilities. 

Within asset classes, the performance of short-duration versus long-duration fixed-income securities is highly 

dependent on the yield curve’s movement and shape, so the results of an SAA will depend on the robustness of the 

modeling of this projected movement, which would include the frequency of yield curve inversions and the volatility 

and skew representative of future movements. 

Across asset classes, fixed-income credit spread movements should be related to, and consistent with, other assets 

classes such as equity performance. The behavior of credit spread changes should also represent realistic volatility 

and correlations, particularly in the extreme tail events, as any expected diversification value may be muted just when 

a company is relying on it the most. 

The SAA economic scenarios should be applied consistently to assets and liabilities, regardless of whether different 

modeling software is used for evaluating these components. SAA analysis is performed using real-world scenarios as 

cash flow pricing is not the primary consideration. Mean reversion targets for the real-world scenarios need to be 

explicitly determined, as mean reversion dynamics are not implied as with market-consistent scenarios.   
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Mean reversion within an ESG model controls the movement of a variable to its assumed long-term steady-state 

level. The range of the simulations will then vary around the reversionary path from initial levels to the assumed 

steady-state level. There are several options for mean reversion targeting, such as reversions to long-term historical 

norms and remaining at current levels. Reversion levels could also target current long tenor rates with reversions 

toward historically normal yield curve shapes. For example, should the current yield curve be inverted or excessively 

steep, the yield curve projection may pivot at the 10-year yield to a longer-term normal upward-sloping shape. Equity 

returns may not revert to long-term historic levels, but the historic equity risk premium may be maintained, which 

would produce low returns relative to history but consistent returns relative to other asset classes in a low-interest-

rate environment. SAA analysis often is designed to minimize the bias for or against any particular asset class. 

However, certain tactical insights can be gained by testing new reversion targets to reflect particular investor 

viewpoints. 

4.2 PENSION AND RETIREMENT APPLICATIONS 

In addition to similar applications previously discussed in the life insurance section, several specific applications in 

pensions are best understood through the use of an ESG. 

Considerations regarding the number of scenarios, choice of market-consistent versus real-world scenarios, and 

specific calibration approaches may depend on the specific application being considered. 

Pension industry applications include the following: 

 Pension funding sensitivities 

 Strategic asset allocation and liability-driven investments 

 Pension risk transfer considerations 

There are three major kinds of pension or retirement plans: 

 Defined benefit (DB) plans, which guarantee a specific formula for retirement income, based on years of 

service and income record. 

 Defined contribution (DC) plans, in which the sponsor and/or employee contribute a set amount of money 

to accumulate. At retirement, this accumulated value is transformed into retirement income but is not 

guaranteed in amount. 

 Hybrid plans, which include a mixture of DC and DB plan features, often with a certain small portion of the 

retirement income stream guaranteed. 

With respect to applications of ESGs, this section will primarily deal with DB plans and by extension will address some 

aspects of hybrid plans. It should be noted, however, that DC plans also can make use of ESGs specifically with respect 

to evaluation and design of target date funds. ESGs can be great tools for evaluating whether those designs can 

produce the required retirement income. 

4.2.1 PENSION-FUNDING SENSITIVITIES FOR DB PENSIONS 

In the case of a DB plan or even a hybrid plan, the funding amounts tend to be level percentages of payroll costs. In 

that case, the concern is that funding may be insufficient over time to support the benefits that have been promised. 

An ESG is essential for producing scenarios under which varying funding requirements are projected, especially when 

there are several interacting factors on both the asset and liability sides. While many actuarial pension-funding 

methods for DB pensions are geared toward having a predictable funding pattern, this works only if all pension 

valuation assumptions regarding payroll, investment performance and retirement elections or payouts are fulfilled. 

Sometimes actual experience of a pension plan varies from the valuation assumption, and these gains or losses must 

be made up over time with variances in funding. 

Considering appropriate ESG model construction for pension analysis requires a full range of scenarios to understand 

performance in more extreme conditions, and a sufficient number of scenarios are required to produce and 

understand the likelihood of different levels of performance and to provide a basis for response. In projecting funding 



   50 

 

                                                                              © 2016 Society of Actuaries 

requirements, pension sponsors are looking to see how supportable future funding requirements may be. Real-world 

scenarios are needed to determine likely paths that the sponsor may have to navigate. 

The appropriate forecast horizon for pension scenario projections is a major consideration in pension ESG 

applications. The liabilities for life and annuity insurers can be very long, but pension liabilities can be even longer. 

Many life insurers may project their liabilities for a few decades in performing SAA or shorter time periods for 

economic capital modeling, but pensions last through working years and until either payout (or purchase of an 

annuity) or the death of the pensioner (and/or beneficiary, such as a spouse). One of the key aspects of pension-

funding management is amortization of losses or gains from experience that varies from expected performance over 

a certain period of time. Many public pensions amortize over very long periods of time, extending beyond the 

retirement of the people being covered. Thus, an ESG that can project scenarios for decades may be required for 

pension fund modeling. 

Even though pension payments can be paid out over several decades, plan sponsors are also focused on short-term 

financial implications. This requires balancing the need to model these long dated obligations with short-term issues 

like funding requirements. 

The kinds of economic factors modeled for assets backing life and annuity liabilities also hold for pensions, but many 

pension funds have a greater diversity of asset classes than is typical for life insurance companies, because of less 

regulation limiting investment choices in the pension environment. On the liability side, broader economic factors 

such as wage inflation, consumer price inflation (for annuities with cost-of-living adjustments in retirement), and 

economic factors tied to employment, retirement and disability rates (if the pensions have disability-related options) 

should be considered. These will likely be correlated with factors affecting asset cash flows. 

Finally, the financial health of the sponsor may need to be modeled. Whether the pension sponsor is a private 

company or a governmental body, an important consideration is whether it can make future funding requirements, or 

how the funding requirement will compare with modeled revenues. The sponsor’s financial health, as well as the 

funding requirements of the plan, will need to be on a consistent basis for comparison. 

To give a concrete example, many public pension plans found their asset values dropped as a result of the 2008 

market crisis. Some pension plans that had been very well funded found themselves to be greatly underfunded—at 

the same time as tax revenues dropped in the ensuing recession. Many public plan sponsors could not make full 

pension contributions, because the sponsors were under great financial strain at the same time as their funds were. 

Some public plan sponsors issued pension obligation bonds (POB) to try to bolster funding, but many stressed 

sponsors found their own credit ratings affected, so their borrowing costs increased, diminishing the benefit of POBs. 

For private sponsors, financial health may be correlated with ESG-modeled economic factors such as broad market 

performance (if it is a publicly traded company) or specific sectors. 

4.2.2 SAA AND LIABILITY-DRIVEN INVESTMENT (LDI) 

ESGs need to consider a broad range of asset classes in developing effective asset allocation strategies for pension 

plans. Investment strategy is vitally important to pension plan sponsors. Most pension plans use ESGs when 

evaluating different investment strategies. Each alternative strategy can be evaluated by examining the distribution of 

outcomes for key pension metrics (contributions, expense, funded status, value at risk on funded status, etc.). The 

investment mix that generates most favorable outcomes to the sponsor based on the sponsor’s objectives and risk 

tolerance becomes the optimal strategy. 

Liability-driven investment (LDI) is a particular type of investment strategy that defined benefit pension plans use in 

order to better match their assets with their liabilities. It has become a popular technique over the past decade. The 

main difference between pension-related LDI and insurer-related SAA is that the objective tends to be stability of 

contributions and expenses required under FASB and GASB guidelines, as opposed to maximizing enterprise value. 

Pension plans have traditionally held a great deal more in equities and other volatile asset classes than do insurance 

companies, because they are not as constrained as to what kinds of assets they can hold. One particular twist, 

however, is that some private pension plans hold stock of the sponsoring company. There are regulatory limits to this, 

but one important aspect to note is that the performance of any such stock held will be completely correlated with 

the sponsor’s financial health (and thus ability to fund). 
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For open plans, investment strategy tends to favor growth assets like stocks as a way to provide for ongoing benefit 

accruals. In contrast, plans that are closed to new entrants and benefit accruals are generally looking to eventually 

terminate and are therefore more concerned with better matching their assets to their liabilities and minimizing the 

chance of asset/liability shortfalls. 

4.2.3 ESGS SUPPORTING PENSION RISK TRANSFER CONSIDERATIONS 

Many DB pension sponsors have come under stress in the past decade, partly due to asset-side underperformance 

and partly due to unexpected liability-side increases, such as increased longevity. As a result, sponsors have been 

looking at their options to reduce their economic exposure to the variability of results of their pension plans. Some of 

the choices can be seen in Figure 4.1. 

 

Figure 4.1 

 

ESGs can be useful to sponsors looking to compare their options, especially with options where they are still 

completely in control of the pension plan: choosing to freeze the plan, implementing LDI (whether plan is open or 

frozen) against options that involve transferring the risks to third parties. 

Some of the risk transfer options, such as cash buyouts (lump sum settlements) and buyout annuities, completely 

remove the pension obligation from the sponsor’s balance sheet. Cash buyouts are subject to minimum interest rate 

and mortality assumptions to calculate lump sum cash-out amounts in conformance with government regulations. 

Buyout annuities are priced by insurers with risk premiums reflecting the size and nature of the risk being transferred. 

The other two options—longevity swaps and buy-in annuities—leave the pension obligation on the sponsor’s balance 

sheet but provide assets that are supposed to be somewhat correlated to the pension liability. In the case of longevity 

swaps, specific non-economic risks may be removed, but the risks from economic factors remain, so using ESGs to 

model future funding requirements would be important in evaluating this choice. 

4.3 PROPERTY AND CASUALTY (P&C) APPLICATIONS  

Applications of ESGs in property and casualty insurance are often focused on the impact of inflation on liabilities and 

assets, and on economic cyclicality characteristics affecting both exposures and policy pricing. 
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Property and casualty modeling tools and methodologies have evolved along somewhat different paths compared 

with life, driven by differences in the fundamental risk factors and time horizons involved. There is, however, 

significant common ground between P&C and life insurance companies in terms of the need for economic scenarios 

in risk analysis. Foremost is the fact that both types of companies carry substantial portfolios of invested assets, which 

are exposed to variability in the financial markets due to movements in interest rates, credit spreads, equity prices, 

etc., as well as the risk of outright default. The kinds of activities for which real-world scenarios would be desired 

would be the same in both life and P&C, and similarly for market-consistent models. 

However, there are material differences that have implications for the design and calibration of an ESG. Several 

specific applications in property and casualty insurance are best understood through the use of an ESG. 

Considerations regarding the number of scenarios, choice of market-consistent versus real-world scenarios, and 

specific calibration approaches may depend on the specific application being considered. 

Property and casualty products have different characteristics with respect to liability development, with many 

casualty products involving significant time lags in settlement or even discovery. Property products are often volatile 

based on factors such as weather events, crime trends and economic supply-and-demand characteristics that may 

require greater liquidity reserves on the asset side. Because of the complexity of the interaction of these factors over 

an extended time horizon, an ESG provides a much more comprehensive tool to understand the range of potential 

outcomes. Today an ESG is considered a necessary component of enterprise risk modeling for a P&C insurer. 

ESG-driven applications in property and casualty insurance include the following: 

 Liability valuation 

 Economic capital and stress testing 

 Pricing cycle and policy management 

 Strategic asset allocation and liquidity 

4.3.1 LIABILTY VALUATION ISSUES 

Liability valuation issues are related to inflation and the time horizon. 

Inflation. P&C insurance claim costs are generally sensitive to price inflation, either in the economy overall or in 

specific subsectors of the economy such as health care, the housing market or construction. P&C actuaries provide for 

the expected rate of claim cost inflation in the rate estimation process, but there can be significant uncertainty in 

these estimates. Even for products with short claim payment tails, there can be over two years’ difference between 

the historical experience period that is used as a basis for the rates and the future time at which the claims will 

actually be paid. For longer-tailed products, this difference can be five, 10 or more years. 

Further, there is often a delay in recognition of adverse inflationary impacts even after they have occurred, which 

means that years can pass before rates will be corrected for those impacts. Thus, several years of underpriced 

business can accrue before the financial damage can be mitigated. Similar to inflation, risk arises due to the time lag 

between the time premiums are estimated and the time the insurance claims are paid. For example, in some 

occurrence-based liability lines, the benefits (claims payment) may be subject to cumulative inflationary effects and 

may lag the time that rates are estimated by years or even decades. Pricing and other underwriting decisions may 

exhibit considerable volatility as a result of needing to respond to these lagging signals. 

The implication for an ESG is that the models of future inflation scenarios must be robust in their ability to create tail 

scenarios with very high inflation rates and with a realistic mix of inflationary patterns over time. 

Time horizon. Life insurance projection models typically need to cover future time horizons of several decades, due to 

the nature of the benefits provided. While some P&C insurance products (notably workers’ compensation) can have 

comparably long liability horizons, for most products, the bulk of the claim payments occur within a few years of the 

policy period. Loss reserves may be set and reset on an annual basis or even more frequently. Therefore, in many 

cases, the calibration of an ESG for a P&C insurer can focus more on stability and robustness in the first few years of 

the projection period, perhaps at the expense of longer time horizons. 
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4.3.2 ECONOMIC AND CAPITAL ANALYSIS AND STRESS TESTING 

An ESG is essential for performing a robust analysis of economic capital requirements for property and casualty 

companies. All of the comments in the earlier section on economic capital analysis for life insurers (4.1.4) apply to 

P&C insurers as well. As we stated in that section, economic capital considerations generally refer to tail events, 

usually in terms of an economic or financial markets crisis. For economic capital analysis, at least in the context of 

solvency assessment, risk metrics typically focus heavily on relatively extreme downside percentiles of the 

distribution of outcomes. 

Risk factors and stress considerations differ from life insurance considerations. Inflationary factors can compound 

over time, and while they may correlate with interest rate discount factors that would affect both asset and liability 

cash streams, loss cost inflation may differ materially from interest rates in magnitude in many scenarios. 

While financial stresses are the most salient factors stressed in life-annuity stress testing, some P&C insurers are 

subject to the risk of major natural and human-made catastrophic loss events, such as hurricanes, earthquakes or 

terrorist attacks. In addition to implications on the need for liquidity to cover such events, they could have follow-on 

effects on prices in the financial markets, and on inflation in areas that affect P&C insurance claim costs (notably 

construction costs). 

Studies have found that such effects have been very minor and transient, at least in big economies; however, they 

could be more material in smaller economies or in the event of a catastrophe worse than those seen in the past. 

While there is debate as to the likelihood of such effects occurring, the possibility should be contemplated at least in 

the definition of stress tests. 

A more important concern related to catastrophes (and possible reinsurance credit issues) relates to liquidity issues. 

Liquidity concerns may be a function of the potential for extreme liquidity correlations across financial markets, 

capital markets and reinsurance markets in the event of extreme catastrophes. 

4.3.3 PRICING CYCLE AND POLICY MANAGEMENT ISSUES 

ESG models can be used to inform product pricing by helping to establish the profit margins needed for each product 

to compensate the insurer for the need to carry capital on the balance sheet to support them. ESG models can 

support the complexity of the demands on risk capital from multiple product lines and business lines in recognizing 

opportunities that these areas produce to diversify risk. 

Policy time horizons are generally annual, as opposed to the longer-term policies that are typical in life products. 

Repricing of exposures is usually performed annually, though loss reserves may build up over a long period before 

they are paid. Loss reserves may be set and reset on an annual basis or even more frequently. Management may 

respond to significantly changing conditions (including economic conditions) with pricing, loss reserving or other 

adjustments that may change the medium-term outlook for the business, and some model applications may 

contemplate these possibilities. 

The ESG is just as important in this area as in economic capital analysis, but there can be some distinctions, depending 

on how risk is defined for performance measurement purposes. For economic capital analysis, at least in the context 

of solvency assessment, risk metrics typically focus heavily on relatively extreme downside percentiles of the 

distribution of outcomes. 

However, for performance measurement purposes, a company’s management may also be concerned with other 

parts of the distribution. For example, risk may be measured in terms of the overall volatility of results as measured 

by standard deviation, or based on percentiles closer to the center of the distribution. 

While there can be variations in how these metrics are constructed, a common characteristic is that business 

segments with greater risk will need to have a higher level of expected profitability in order to be financially 

attractive. This may have implications for how an ESG is calibrated and validated. 
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4.3.4 STRATEGIC ASSET ALLOCATION INCLUDING LIQUIDITY CONSIDERATIONS 

As P&C liabilities are not directly linked to invested assets, unlike with life-annuity products that have financial 

guarantees, and P&C insurer balance sheets are less leveraged in general, the liabilities held by P&C insurers are a 

diversifier, as opposed to amplifier, of risk for the insurers. This enables P&C insurers to take on riskier assets without 

an unacceptable risk to capital. An ESG application may provide for a more efficient asset allocation approach that can 

increase income or lower overall risk capital requirements. 

That said, due to catastrophic risk exposure, P&C insurers can have a liability volatility of such high magnitude that 

this creates potential liquidity events. In an SAA exercise, the modeler may have to impose certain liquidity 

requirements or consider liquidity stress testing after an SAA portfolio is chosen. 

On the asset side, modelers may consider including assets classes such as municipal bonds and inflation-linked bonds. 

The first provides a tax advantage for P&C insurers, and the second provides some hedging to the inflation-linked risk 

of the liabilities. 

However, the credit risk dynamics for municipal bonds are notably different from those for the corporate credit 

markets. General obligation bonds are usually backed by the full faith and credit of the municipal entity, and the 

funding for some come from dedicated taxes that may be less affected by the credit cycle. In recent years, there have 

been some high-profile municipal bankruptcies, even though the corporate bond default rate has been very low. As a 

result, specialized credit models can be important in properly quantifying the risk exposure of a P&C company with 

material amounts of these bonds in its portfolio. 

4.4 CHAPTER SUMMARY 

1. ESGs are important in a wide variety of business decision-making applications within the financial services 

industry beyond those applications that are required for regulatory compliance. 

2. Key application-specific considerations must be addressed when using ESGs. These include the use of real-

world or market-consistent scenarios, steady-state behavior, the number of scenarios (or scenario subset 

selection) and the model projection period and time horizon. 

3. ESG model requirements differ for different business uses across life, P&C and pension businesses.  

4.  Comprehensive ESG modeling capabilities are often required; these include credit, inflation and other 

economic and capital market variables, in addition to interest rates. 
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Chapter 5: What Are the Essential Features of a Good ESG? 
This chapter discusses the essential features of economic scenario generators and then distinguishes between real-

world and risk-neutral applications. Several examples are used to illustrate the depth and rigor required. 

As was described in Chapter 1, an economic scenario generator (ESG) is a software tool that generates a collection of 

simulated economic scenarios that represents a distribution of possible economic futures. The role of an ESG is to 

provide forward projections of economic and capital market variables in support of risk management and pricing 

activities. Real-world scenarios are concerned with forward-looking potential paths of economic variables and their 

potential influences. Market-consistent, or risk-neutral, scenarios are concerned with mathematical relationships 

within and among financial instruments. 

The actual design, operation and maintenance of an ESG are highly technical topics. The specialized topics and 

associated criteria essential for having a good ESG are not easily distilled to a few sentences. Nonetheless, it is 

generally expected that an ESG should meet the following minimum requirements: 

 Production of simulation results that reflect a relevant view 

 Inclusion of some extreme but plausible results 

 Scenario generation that embeds realistic market dynamics 

As this chapter will illustrate, obtaining sufficient dispersion by way of a collection of future economic possibilities is 

an essential requirement for capturing market risk. However, an ESG is not a predictive tool used to forecast future 

values of economic variables. It is thus important to distinguish an ESG from (a) econometric models that specify 

direct algebraic relationships between various economic quantities and that are intended for statistical analysis and 

forecasting, and (b) general equilibrium models that attempt to predict the effect of changes in key economic 

variables and are often used in economic policy analysis. 

Section 5.1 of this chapter gives an overview of ESG applications with concentration on real world versus market 

consistent. Real-world simulation captures market dynamics and risks, and applications would include simulating 

interest rates and testing portfolio investment strategies. Market-consistent simulation focuses on valuing cash flows, 

and applications would include pricing of guarantees or derivatives. 

Section 5.2 represents the bulk of this chapter. It outlines the essential features of a good ESG model. A few of the 

key features outlined in this section include reflecting a sufficient range of financial markets and economic factors to 

meet the purpose for which the simulations are being applied (including regulatory requirements). An ESG should 

balance practical limitations of being computationally efficient and numerically stable, while still reflecting the 

possibility of extreme events. It should provide sufficient output detail for extensive validation and accommodate 

many types of calibration views. And it should have an underlying structure that maintains sound and consistent logic 

across models (including both real-world and market-consistent simulations) based on an understanding of the way 

financial markets realistically interrelate. 

Section 5.3 briefly deals with advanced ESG model attributes by way of examples of how an ESG needs to reflect 

some more extreme aspects of the financial markets. These would involve advanced technical considerations to 

capture more specific market risks that may be important for some applications. Two examples of advanced 

attributes are capturing corporate bond spreads that reflect a liquidity component even in high-grade corporate 

bonds, and allowance for negative nominal yields in Treasury yield dynamics. 

Section 5.4 ends with the question of how good is any ESG, really. It addresses the question of whether extreme but 

plausible events, which a good ESG should cover, can be expected to cover all possible events. A good ESG should 

permit sufficient recalibration capabilities to extend simulation to alternate sets of extreme, but still plausible, events. 

5.1 REAL WORLD VERSUS MARKET CONSISTENT 

The application of an ESG can range from smaller tasks, such as the simulation of interest rates in order to understand 

the impact of interest rate changes on an investment portfolio, to a broader role such as testing a range of portfolio 
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investment strategies across a wide range of asset classes. ESG technology is also used in the risk management of 

investment guarantees such as those that are commonly bundled with life insurance products. Such a risk 

management application might involve both pricing the guarantees and measuring the effectiveness of a hedging 

program for the contingent obligations associated with the guarantees. 

The scope of an ESG application thus can vary widely. The examples in the preceding paragraph include both real-

world and market-consistent applications. The simulation of interest rates and the portfolio investment strategy 

testing are examples of real-world simulation. The pricing of guarantees is an example of market-consistent 

simulation. The measurement of the effectiveness of a hedging program will often involve the application of both 

real-world and market-consistent simulations. 

Real-world simulation is a concept that can be intuitively understood. The purpose of a real-world simulation is to 

capture market dynamics, risks and returns in a way that an insurance company or other financial institution might 

experience them. Real-world simulations enable the exploration of the what-if questions asked by management as it 

tries to gauge the likelihood of future events and their business impact. 

Market-consistent simulation is less intuitive and has been a source of confusion from the very beginning of the 

application of financial risk management. Market-consistent scenarios provide a tool for valuing cash flows. Generally, 

the situations where market-consistent scenarios are needed are those in which one is pricing cash flows that depend 

upon stochastic financial variables. A classic example is the need to determine the economic cost of an investment 

guarantee such as a guaranteed minimum rate of return on an equity or fixed-income portfolio. 

As this chapter will discuss in more detail, an ESG should be able to accommodate a broad range of applications 

involving both real-world and market-consistent scenarios. Users of an ESG will need to have a good understanding of 

the specific applications they need to address and to be able to determine whether these applications require real-

world scenarios, market-consistent scenarios or both. 

5.2 ESSENTIAL FEATURES OF A GOOD ESG 

There are many essential features of an ESG. In the list that follows, we identify the main features that we believe 

make the difference between a basic ESG and one that is truly powerful in its ability to uncover possible risk 

scenarios. 

To clarify some terminology in advance, the discussion that follows references parameterization and calibration. In 

the context of an ESG, the parameters are the part of the ESG that can be changed and that governs the dynamics of 

an economy. A particular choice for the parameters is referred to as a parameterization. An ESG can have several 

hundred parameters—mean, standard deviation, correlations, mean reversion speed, "jump" behavior, to name just 

a few—that make it possible to produce future paths that have features and qualities consistent with the desired 

targets. Poor parameterization will result in a model that does not exhibit behavior consistent with the desired 

targets. 

Calibration is the process of setting the parameters of the ESG. A calibration may be done with the primary objective 

of fitting historical targets, or it may be focused on expressing a particular view on the economy. The methods of 

calibration vary depending on the primary objective and, in practice, will include statistical techniques such as 

maximum-likelihood estimation and the fitting of the model to market data such as yield curves. In some instances, 

the user of an ESG may choose to calibrate a model in a manner that is not consistent with the behavior of the 

historical record. This could result from a user looking to voice a view on the economy and assess the risks associated 

with that view. A good ESG has sufficient parameters to control the key dynamics that the user wants to control, and 

a good ESG will have sufficiently rich dynamics to capture the aspects of the data that the user wishes to mimic. 

A good ESG is thus a function of both its model dynamics and its parameterization. While a good set of simulated 

economic scenarios requires both a good ESG and an appropriate parameterization, a good ESG can have a bad 

parameterization, and a bad ESG can have a good parameterization. One will generally assess the quality of the 

simulated economic scenarios by validating them against the primary calibration targets. 
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5.2.1 A SOUND FOUNDATION, BALANCING PRACTICALITY AND COMPLETENESS 

A good ESG has a sound foundation for the way the models are built and the way the variables are interrelated; it 

balances practicality and completeness. One might consider an ESG to be a collection of mathematical models that fit 

the data. However, a good ESG will construct these models with some economic logic based on an understanding of 

the way key features of the financial markets relate to one another. For example, a good ESG will capture leverage 

effects in equity markets, which might require modeling how the dynamics of volatility affects drawdown risk. In 

contrast, a highly overparameterized vector autoregressive (VAR) model1 might fit the data but lack any well-thought-

out dynamics that can be trusted to produce the extreme but plausible scenarios that are so critical in risk 

management. 

A good ESG strikes a balance between practicality and the ability to capture the critical features of the historical 

record. It is not practical to model every variable and every outcome precisely, so one must determine which 

attributes are the most important to capture. Models that are too simple, however, can miss the true risks that affect 

a business. Simple models do not capture the likelihood and extent of extreme events that could result in expensive 

or ruinous mistakes. At the other extreme, a good ESG does not “overfit” the data.2 Overfitting reduces a model's 

ability to explain or robustly simulate market behavior. 

5.2.2 A SUITE OF MODELS SUFFICIENT TO CAPTURE IMPORTANT ASSET CLASSES AND ECONOMIC 

VARIABLES 

A good ESG provides a suite of models that is sufficient to capture the asset classes and economic variables of 

greatest importance to the risk profile of a given firm. Most ESG applications will make use of the following 

components for each economy where there is exposure: 

 Sovereign interest rates and returns 

 Equity returns  

 Inflation  

 GDP  

 

Some economies will include additional components such as these: 

 Unemployment  

 Corporate bond yields and returns  

 Mortgage-backed securities  

 Covered bonds (German Jumbo Pfandbriefe) 

 Municipal bonds (important in U.S. models) 

 Derivatives 

A multi-economy ESG simulates all of the single-economy variables and will also take into account realistic 

interactions between economies. Among many others, these interactions include considerations of foreign exchange, 

correlations between the stock indices of two economies, and dynamics of correlations that tend to increase during 

bear markets. 

A good ESG also provides additional modeling capabilities so that the available asset classes and economic variables 

can be expanded in a consistent manner to meet more specialized user requirements. For example, a user may 

require a total return index for an asset class that is not standardly included in the ESG; additional modeling 

capabilities permit the user to construct such a total return index using available ESG variables. 

                                                                        
 

1 VAR models are econometric tools that are used extensively in economics. A strong case for the use of VAR model in econometrics was made in Sims 
(1980) on the grounds that they do not require a detailed theory to estimate relationships between economic variables. Campbell and Viceira (2002) 
provide many examples of the application of VAR techniques in an investing context. 
2 When models are built, whether an ESG model or not, a key consideration is that the model should be able to accommodate important features of the 
historical data used to estimate the model. Another critical consideration is that the model should be able to produce realistic simulated output or 
forecasts beyond the historical data. If one forces the model to tightly fit the historical data, then the robustness of the model output outside of the 
historical data is likely to be restricted. This is the notion of overfitting. When a lot of parameters or intricate relationships are imposed on a model to 
achieve a tight fit to the historical data, then the model is at risk of becoming overfitted. Leinweber (2007) and Bailey et al. (2014) provide examples of 
overfitting in financial contexts. 
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5.2.3 ABILITY TO ACCOMMODATE MANY TYPES OF CALIBRATION VIEWS ACROSS A WIDE RANGE OF 

BENCHMARKS 

A good ESG is capable of accommodating many types of calibration views across a wide range of benchmarks. There 

are many different views of the global economy that an ESG might be called on to reflect. For instance, an ESG might 

be calibrated to a view that embeds historical benchmarks for the past 50 years. Such a view would accept the 

statistical features of a 50-year data window as the calibration benchmark. 

Another calibration view might consider short-term and long-term targets, and these targets would recognize 

historical norms but would be set with some measure of expert judgment. Such a calibration view typically would 

consist of statements such as this: 

One year into the simulation, the average 10-year Treasury yield should be 2.6%, and the long-run average 

10-year Treasury yield should be 4.75%. 

Another example might involve a calibration to reflect historical dynamics but to adjust mean expectations to be 

consistent with current consensus opinions. Other calibration views might embed externally mandated calibration 

views that require minimum tail behavior on equity or fixed-income returns. This sort of calibration view is routinely 

required by the American Academy of Actuaries, the Canadian Institute of Actuaries, and regulatory authorities such 

as the Office of the Superintendent of Financial Institutions (OSFI) Canada. 

Yet another example of a calibration view would be to impose a range of interest rate behavior over the near term. 

For example, one might require that interest rates remain at low levels for the first two years of the simulation before 

gradually reverting to a higher longer-term level. In such a calibration view, one stops short of defining a known 

interest rate scenario but seeks to impose a strong requirement in order to test a specific business objective. 

5.2.4 SIMULATION RESULTS THAT REFLECT A RELEVANT VIEW   

While being capable of accommodating many types of calibration views, a good ESG produces simulation results that 

reflect a relevant view. When calibrated to reflect a certain view, a good ESG will produce simulation results that are 

relevant to historical facts. A common tendency is to overweight the nature of the recent past. Indeed, there is an 

important difference between, on the one hand, setting a view and then permitting realistic model dynamics to take 

over and, on the other, setting a view that overwhelms any realistic market dynamic. One must recognize that the 

headline problems of the day have a strong tendency to dominate the modeling and thus the calibration process. This 

is understandable because users of an ESG are intensely focused on their business risks, and these are generally 

aligned with the headline problems of the day. The danger in placing too much focus on headline risk is that one can 

forget that, over moderate time periods, the economy can migrate to new and different worrisome places. For a risk 

manager and risk management application with a longer-term horizon, one must avoid the temptation to over-

impose a view. 

5.2.5 SOME EXTREME BUT PLAUSIBLE OUTCOMES 

A good ESG produces some extreme but plausible outcomes. A careful study of historical data teaches us that the 

financial markets have experienced a great many interesting and extreme events. The notion that a good ESG should 

produce some extreme but plausible scenarios is intuitive and reasonable, but it is a broad concept rather than a 

blueprint for building an ESG. By “extreme scenario,” we mean a scenario that reaches or surpasses the limits of 

experience. By “plausible scenario,” we mean a scenario that conforms to economic principles and can be rationalized 

in an economic context. A scenario for which long-term government bonds return more than equities or corporate 

bonds is plausible. A scenario for which inflation averages 20% and long-term Treasury yields average 10% is not 

plausible. 

The inflation and interest rate examples in the previous section illustrate the requirement for an ESG to produce 

some extreme but plausible scenarios. Recent experience with protracted periods of low interest rates has now 

established that the short end of the Treasury yield curve can remain low for extended periods of time. This has been 

evident in Japan for many years and has also been a feature of the U.S. and European markets for the past several 

years. A good ESG should be able to produce scenarios that exhibit this feature while still allowing for scenarios with 

higher interest rates. 
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One measure of the ability of an ESG to meet or exceed historical norms is to compare simulated returns with 

historical returns and observe whether the simulated returns have heavier tails than history. A good ESG generally 

will have this property. However, other concepts of extreme outcomes should be considered. 

For example, a good ESG not only produces realistic distributions for key economic variables but it also represents the 

correct “pathwise” behavior, that is, how the simulation moves through time to produce a particular outcome. The 

pathwise behavior reflects the course of the variable in periods of higher or lower volatility as well as “jump” behavior 

(large changes in price movements from time to time) and volatility clustering (tendency for large or small changes in 

prices to cluster together). 

Returning to the topic of interest rates, Figure 5.1 shows the annual percentage change in U.S. 10-year Treasury yields 

for the period 1926 through 2012. Until the financial crisis, these relative changes tended to range between –30% and 

40%. The behavior of 2008, 2009, and 2011 represents extreme outcomes relative to the historical record. A good 

ESG is capable of producing annual percentage changes in Treasury rates that capture historical norms. It should also 

be capable of producing drawdowns and run-ups that exceed these same historical norms. 

Figure 5.1 

ANNUAL PERCENTAGE CHANGE, U.S. 10-YEAR TREASURY YIELDS, 1926–2012 

  

 Sources: Ibbotson; Bloomberg; Conning, Inc. 

5.2.6 REALISTIC MARKET DYNAMICS EMBEDDED IN THE MODEL 

A good ESG embeds realistic market dynamics. Market dynamics are not merely statistical targets but attributes that 

reflect volatility or the way a variable changes and relates to other financial variables. The idea that a good ESG 

should embed realistic market dynamics is a guiding principle rather than a specific modeling feature. Indeed, market 

dynamics vary greatly across time, and no model can capture them all. When one talks about market dynamics, one is 

really asking about how markets work. A vast amount of research is done in this vein every year, and the conclusions 

often change over time. However, experience has shown that there are certain market dynamics that figure 

prominently in risk management and are essential for a good ESG. These include yield curve movements, changing 

relationships between asset class returns, return correlations, corporate bond migration and default, and corporate 

bond spread dynamics. As illustrative examples of market dynamics, consider the following: 

 Yield curves can shift and twist in many directions, and a wide range of movements is possible. 

 Over the longer term, there will be periods when one asset class outperforms, followed by periods when 

that asset class lags. 

 Over extended periods of time, the strength of the correlation of returns between asset classes changes. 
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 Corporate bonds may exhibit periods of fairly predictable migration patterns and then suddenly become 

unstable. 

 Corporate bond spreads are subject to periods of extreme spread contraction and widening. 

Before turning to the examples of market dynamics, we first address the concept of a “path.” A single simulated 

scenario consists of the outcomes for each economic variable, starting from its initial value and running from the first 

simulated value to the last simulated value. For instance, a simulated scenario will specify what happens to interest 

rates after one simulation period, two simulation periods, and at the last simulation period that occurs at the end of 

the simulation time horizon. We follow the standard practice of referring to such a single simulated scenario of all 

financial variables as a path. The significance of the simulated path is that it represents one possible future evolution 

of the economy and therefore represents one possible future complete economic experience. 

Taken together, a collection of simulated paths represents the simulation output from the ESG. When one looks at 

statistics such as average interest rates five years into the simulation, these are statistics that aggregate behavior 

across all paths. Equally important are measures that relate to the attributes associated with a specific path, with 

fluctuations in correlation and volatility being classic examples. 

A good ESG should produce pathwise behavior that reflects market realities, because it is along a path that an 

insurance company experiences the evolution of the economy and responds with management decisions. Many 

return series have periods of both elevated and subdued volatility—a pathwise effect. If one considers only the 

distribution of returns, then one could be using a model that has an acceptable return distribution but fails to 

recognize the volatility characteristics that may or may not be reasonable. A good ESG should incorporate dynamics 

that produce pathwise fluctuations in realized volatility, because pathwise fluctuations in realized volatility affect 

investment allocations, hedging costs and mark-to-market positions. 

5.2.7 COMPUTATIONAL EFFICIENCY AND NUMERICAL STABILITY 

A good ESG is computationally efficient and numerically stable. An ESG is a complex system of models, underlying 

variables and parameters. Choice of models should take into consideration those with properties that make them 

efficient to implement computationally—i.e., faster run times and greater accuracy. Choice of models should also be 

robust enough to maintain stable parameter estimates. 

A good ESG is calibrated over a broad enough range of history to reflect actual market dynamics. Parameter estimates 

for the models should exhibit some measure of robustness to the data window on which they were based. They 

should faithfully capture changing initial conditions while, at the same time, having underlying parameters that 

typically evolve at a moderate pace. 

Although there is an ongoing need to refine parameter estimates in light of evolving market risks, one generally seeks 

to maintain a degree of stability in the parameter estimates. First, robust ESG models naturally tend to have stable 

parameter estimates as new data are added to a large historical data window. Second, making significant parameter 

changes from estimation period to estimation period is disruptive to the broad ERM process, because it would induce 

notable changes in the risk profile of various asset classes. 

To be computationally efficient, a good ESG will take advantage of closed-form or semi-closed-form pricing algorithms 

that reasonably reproduce market prices. ESGs without such features are cumbersome to estimate from market data, 

slow to simulate and difficult to recalibrate to a user’s views. A good ESG must make full use of efficient 

computational algorithms for pricing to ensure both good run time performance and numerical accuracy. 

5.2.8 CAPABILITIES AND CONSISTENT MODELS FOR REAL-WORLD AND MARKET-CONSISTENT 

SIMULATIONS 

A good ESG has capabilities for real-world and market-consistent simulations and uses consistent models across both 

modes. Our discussion has primarily focused on the essential attributes for a real-world ESG. Comprehensive risk 

management, however, also requires the pricing capabilities of a market-consistent ESG. For example, if one is 

interested in real-world simulations that require derivatives prices or embedded value calculations, then the same 

suite of models should be used to maintain consistency, with appropriate parameter adjustments for the risk-neutral 
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and market-consistent modes. To apply “nested stochastics,”3 one applies a risk-neutral version of the ESG within a 

real-world simulation. For this nested stochastic process to make sense, the ESG must have real-world and risk-

neutral versions available. Some ESG models are limited to real-world simulations, while others are limited to risk-

neutral simulations. Consequently, if it is known that a nested stochastic process is required, then ESG models with 

real-world and risk-neutral versions must be available.  

Some models are useful for trader-style pricing but do not have real-world dynamics. This is a significant limitation on 

holistic risk management, which is the goal of an ERM approach. Indeed, pricing models that do not have real-world 

dynamics might generate useful pricing, but one is then faced with the challenge of moving these prices into a real-

world context to generate realistic risk assessment, and this must typically be done in an ad hoc fashion. Further, the 

use of a core set of models for both real-world and risk-neutral applications facilitates the greater satisfaction of 

regulatory requirements that management validate the use and effectiveness of internal models used for economic 

capital and ERM (the “use test”).4 

5.2.9 COMPLIANCE WITH THE REQUIREMENTS OF REGULATORS AND AUDITING FIRMS  

A good ESG meets the requirements of regulators and auditing firms. Given the heightened emphasis on risk and 

capital management within the insurance industry, a good ESG meets the growing demands of regulators and 

auditing firms. ESG methodologies should be transparent to support regulatory requirements. This entails 

documentation of the maintenance processes (e.g., parameter and software updates) and other supporting materials 

that enable a comprehensive understanding of the theoretical and empirical integrity of the simulated scenarios. 

5.2.10 SUFFICIENT SIMULATION DETAIL FOR EXTENSIVE VALIDATION 

A good ESG produces sufficient simulation detail for extensive validation. Strictly speaking, the process of validating 

an ESG is not part of an ESG. While it is self-evident that a good ESG validates to its calibration benchmarks, the 

process of performing the validation can require extensive inputs. A good ESG is capable of providing very detailed 

simulation output that is needed to validate its performance. While one expects a good ESG to provide a range of 

total return and yield output, one should also expect that a good ESG provides detailed output on default behavior, 

rating transitions, and the discount factors needed to perform regulatory risk-neutral testing. 

5.3 ADVANCED ESG ATTRIBUTES 

The previous section gave some relatively general characteristics that form a foundation for a sound ESG. An ESG is a 

complex system. If one is prepared to entertain a higher level of technical discussion, additional detail can be 

provided on other specific model attributes that are essential for capturing market risks. This greater depth focuses 

on very specific attributes of the asset classes being modeled. We mention two just briefly. 

First, the corporate bond liquidity premium is an important practical modeling issue. Much has been written about 

the fact that a significant percentage of the spread on a high-grade corporate bond is due to something other than 

default risk. A good ESG is capable of capturing spreads that are wide enough to be realistic but that do not imply 

unrealistic default rates. This requirement means that a liquidity component should be included in high-grade 

corporate bond spreads.  

Second, the finer aspects of Treasury yield dynamics include the allowance of negative nominal yields. It is now well 

established that negative nominal yields are possible, given both the recent experience in the U.S. and Germany and 

the negative nominal yields experienced in the United States during the 1930s and 1940s. A good ESG is able to 

produce negative nominal yields. 

                                                                        
 

3 Nested stochastics or inner loops is a simulation approach where variables are projected using a real-world calibration (outer loop) and pricing is 
performed at each future real-world node, using a second stochastic simulation (inner loop) that is based on a market-consistent calibration. This 
simulation technique is used when pricing of contingent cash flows is required as part of a risk management application. 
4 The “use test” is the requirement that an insurer demonstrate that its risk management models are an integral part of its management process. More 
detailed descriptions of the concept may be found in Solvency II documents such as CEIOPS’ Advice for Level 2 Implementing Measures on Solvency II: 
Articles 120 to 126 - Tests and Standards for Internal Model Approval. 
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5.4 HOW GOOD IS AN ESG, REALLY? 

One of the nagging dilemmas faced by senior management relying on ESG technology is this fundamental question: 

How good is it, really? The preceding sections have laid out elements of the foundation for answering such a 

question. These include the ability of an ESG to perform the following tasks: 

 Produce simulations that reflect a relevant calibration view 

 Produce extreme but plausible results 

 Generate scenarios that embed realistic market dynamics 

However, what considerations might these foundations have overlooked? A relevant and practical testing ground for 

this question is the financial distress that markets periodically endure. While we have gone through periods of 

relative calm and relative panic since the financial crisis began with the meltdown of bank structured investment 

vehicles (SIVs) in the summer of 2007, it is reasonable to suppose that we have not witnessed the most extreme 

events that might be possible or even plausible. The stark reality is that no ESG can model all possible events, but a 

good ESG should produce a rich set of extreme but plausible events. A good ESG will also permit recalibration to 

different attributes in order to provide alternate sets of extreme but plausible events. 

5.5 CHAPTER SUMMARY 

This chapter has provided a high-level discussion of the essential features of a good economic scenario generator. An 

ESG is a complex system that is generally evolving in response to changes in market fundamentals and regulatory 

requirements. A good ESG has general characteristics that include the following: 

1. It provides a sound foundation for the way the models are built and the way the variables are interrelated; 

it balances practicality and completeness. 

2. It provides a suite of models sufficient to capture the asset classes and economic variables of greatest 

importance to the risk profile of a given firm. 

3. It is capable of accommodating many types of calibration views across a wide range of benchmarks. 

4. While being capable of accommodating many types of calibration views, it produces simulation results that 

reflect a relevant view.  

5. It produces some extreme but plausible outcomes. 

6. It embeds realistic market dynamics. 

7. It is computationally efficient and numerically stable. 

8. It has capabilities for real-world and market-consistent simulations and uses consistent models across both 

modes. 

9. It meets the requirements of regulators and auditing firms. 

10. It produces sufficient simulation detail for extensive validation. 
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Chapter 6: Considerations of Model Specification and Stylized Facts 
Building models of financial markets is critical to all aspects of an ESG. Financial data informs the design of the 

models, provides benchmarks for calibration and serves as the ultimate frame of reference for model validation. The 

historical record of economic and financial markets is an indispensable guide to the dynamics that govern ESG model 

simulations. Detailed knowledge of these dynamics is essential for setting ESG model calibration targets and 

understanding strengths and weaknesses of various ESG model frameworks. 

The chapter will familiarize the reader with the kinds of fundamental qualitative and quantitative features of 

economic and financial market variables that are common within ESGs. These important qualitative and quantitative 

features are commonly referred to as stylized facts. 

Section 6.1 will begin with a definition of stylized facts and a discussion of the role that stylized facts play in 

understanding the strengths and weaknesses of various model frameworks and in setting calibration targets. Stylized 

facts refer to generalized interpretations of empirical findings that provide a basis for consistent understanding of 

markets or economic drivers across a wide range of instruments, markets and time periods. Analysis of historical data 

is commonly used as the basis for determining stylized facts and setting calibration targets; however, stylized facts 

can also be based on expert judgement. 

Section 6.2 will run through some of the important considerations in determining the set of stylized facts that drive 

the calibration and validation of ESG models. Some of these considerations include the data window or span of time 

of the data being analyzed, and the usefulness of rolling averages and standard deviations. The stability of return 

statistics and correlations among asset classes also are important considerations. 

Section 6.3 will provide an overview of historical characteristics of key economic and financial market variables that 

are commonly modeled within an ESG and will provide examples of stylized facts that practitioners may consider in 

their selection, calibration and validation of an ESG. In this, the role of expert judgement also will be briefly discussed. 

The section begins with a set of examples of typical stylized facts of financial market instruments and then addresses 

important considerations of interest rates, yield curves and various bond market characteristics as a way of further 

illustrating the development of stylized facts. 

Section 6.4 provides additional examples using the equity markets, including the historical characteristics of return 

and volatility in these markets as contrasted with the bond markets. The section continues with a discussion of the 

leverage effect of market volatility on equity returns, leading to what is called fat-tailed behavior in the distribution of 

returns. 

Section 6.6, an appendix to this chapter, reviews some sources of economic and financial market data. 

6.1 STYLIZED FACTS 

As practitioners seek a more in-depth understanding of market data, it is sometimes unsatisfying to discover that 

many apparently “intuitive” or “obvious” features about financial markets turn out to be anything but. Natural 

questions such as “What is the relationship between inflation and interest rates?” or “What is the relationship 

between the yield curve and future economic growth?” require detailed and nuanced answers. In fact, these sorts of 

questions are part of a large and active area of financial research and one for which the conclusions often shift. 

While such questions are relevant for ESG practitioners, the answers to these questions are beyond the scope of this 

introductory chapter. The purpose of this chapter is to provide a context for setting stylized facts. It is up to the users 

of ESG models to determine the exact set of stylized facts that are appropriate for their specific application. Several 

references are provided in the annotated bibliography to guide the reader in pursuing more advanced considerations. 

Stylized facts refer to generalized interpretations of empirical findings that provide a basis for consistent 

understanding of markets or economic drivers across a wide range of instruments, markets and time periods. Due to 

their generality, they are often qualitative. For example, one might employ as a stylized fact that the correlation 

between corporate bond returns and equity returns becomes larger (more positive) as the credit quality of the bonds 
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declines. This is a qualitative assumption that would have implications for the way in which the dynamics of corporate 

bonds and equities were modeled in the ESG. The specific setting of numerical values or targets for these correlations 

is also a stylized fact that would be of direct use in the calibration of the ESG. 

Stylized facts are important in guiding the design of an ESG in that they help establish and prioritize the properties 

that the ESG model must have to be useful for a given application. They provide a basis for understanding the 

strengths and weaknesses of ESG model frameworks and the applicability of the underlying model equations to 

specific risk management applications. For example, ESG models for strategic asset allocation tend to be focused on 

means and volatilities, while economic capital models are more focused on tail events. The determination of stylized 

facts is an important part of the process of selecting an appropriate ESG model for a specific application. 

Analysis of historical data is commonly used as the basis for determining stylized facts and setting calibration targets. 

Several sources can be used for economic and financial data. These include the Federal Reserve, Bloomberg, 

Ibbotson/Morningstar and Global Financial Data. However, stylized facts can also be based on expert judgment, as 

can the associated calibration targets. Expert judgment is the use of subjective and informed judgment by 

experienced professionals in the construction, calibration and parameterization of an ESG. For example, the current 

global interest rate environment has no clear historical parallel. Thus, one might adopt as a stylized fact that interest 

rates will remain low for an extended period of time. To fulfill this vision, an explicit calibration target would have to 

be based on expert judgment rather than on information that can be substantiated by the analysis of historical data. 

6.2 CONSIDERATIONS IN THE DETERMINATION OF STYLIZED FACTS 

It is natural to summarize financial market variables in terms of their averages, standard deviations and correlations. 

These summary statistics tell a good bit of the story but do not inform the subtle but important aspects of how 

markets are experienced through time. More advanced applications such as those used for pricing and risk 

management typically require additional specifications that may include information related to distributional shapes 

(fat tails), pathwise behavior (how variables move over time) and the ways that characteristics of modeled variables 

change in different economic environments. 

The model complexity and the number of parameters that make up the model equations will tend to increase as the 

need to incorporate more advanced stylized facts increases. Thus, the practitioner will need to evaluate the trade-offs 

between model complexity and the required dynamics of the modeled variables, to ensure that the ESG model is fit 

for the specific application. 

6.2.1 DATA WINDOW CONSIDERATIONS 

As an example of the need for more advanced stylized facts, it is illustrative to note how sensitive historical statistics 

can be to the data window for which they are calculated, and to get a sense of the possible range of parameter values 

for the variables being modeled. Rolling averages and standard deviations are often used for this purpose. Rolling 

statistics are computed at each observation time by looking back for a specific number of periods—for example, five 

years—and rolling this window forward as one advances through the observation times. Figures 6.1 and 6.2 show the 

rolling 10-year averages and standard deviations for the U.S. one-year and U.S. 10-year Treasury yields. 
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Figure 6.1 

ROLLING 10-YEAR AVERAGES FOR U.S. 1-YEAR AND 10-YEAR TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 
 

Sources: Ibbotson; Bloomberg; Conning, Inc. 

 

Figure 6.2 

ROLLING 10-YEAR STANDARD DEVIATIONS FOR U.S. 1-YEAR AND 10-YEAR TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 
Sources: Ibbotson; Bloomberg; Conning, Inc. 

Cumulative backward averages and cumulative backward standard deviations are another technique that is 

frequently used to observe changing mean and volatility levels over time. This technique computes statistics that 

show the change from the current observation time to the beginning observation time. As the beginning observation 

time advances, the variable statistics are computed over smaller and smaller data windows. Figures 6.3 and 6.4 show 

cumulative backward averages and cumulative backward standard deviations for one- and 10-year U.S. Treasury 

yields. 
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Figure 6.3 

CUMULATIVE BACKWARD AVERAGES FOR U.S. 1-YEAR AND 10-YEAR TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 

 

Sources: Ibbotson; Bloomberg; Conning, Inc. 

 

Figure 6.4 

CUMULATIVE BACKWARD STANDARD DEVIATIONS FOR U.S. 1-YEAR AND 10-YEAR TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 

 

Sources: Ibbotson; Bloomberg; Conning, Inc. 

As can be seen from these charts, even simple statistics such as means and standard deviations can vary substantially 

over time and over different historical time periods. Further, Figure 6.4 shows that over the most recent period, the 

10-year yield has been substantially more volatile than the one-year yield. This is a rare occurrence and would likely 

place added tension on the ESG interest rate models that were designed and calibrated to reflect a more traditional 

relationship between long- and short-term bond yields. 

6.2.2 STABILITY OF RETURN STATISTICS AND CORRELATIONS 

The relationship between different asset class returns changes over time, and these changes can occur for reasons 

that are difficult to predict. Figure 6.5 shows the relationships between risk and return for major fixed-income asset 

classes over the past eight decades. Each dot in the graph refers to an asset class, beginning with the square dot 
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Figure 6.5 

RELATIONSHIP BETWEEN RISK AND RETURN FOR MAJOR FIXED-INCOME ASSET CLASSES, 1940–2010 

  

Sources: Ibbotson; Bloomberg; Conning, Inc. 

The correlation between the returns on various asset classes also is highly variable. Figure 6.6 shows how correlations 

between corporate bonds and Treasury bonds have fluctuated over time. 

Figure 6.6 

CORRELATIONS BETWEEN CORPORATE BONDS AND TREASURY BONDS OVER TIME 

 

Sources: Bloomberg; Conning, Inc. 
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Correlations can also vary depending on the frequency at which they are computed. For example, monthly return 

correlations can be quite different from quarterly return correlations, and there may be no clear explanation for the 

difference. 

These changes to the characteristics and relationships between and among variables over time may be important to 

capture for some financial applications. For example, the pathwise nature of interest rates and equity market returns 

are important considerations in hedging risks associated with underwriting investment guarantees. An ESG that is 

being used for the management of variable-annuity risk would need to include model dynamics that capture the 

pathwise features of these variables. This consideration would guide the selection of the interest rate and equity 

components of an ESG that would be used for such an application. 

6.3 OVERVIEW OF COMMONLY MODELED ECONOMIC AND FINANCIAL VARIABLES 

Stylized facts are generalized interpretations of empirical findings that provide a basis for consistent understanding of 

markets or economic drivers across a wide range of instruments, markets and time periods. Due to their generality, 

they are often qualitative. Some examples of stylized facts might include the following: 

 Yields for longer-maturity bonds tend to be greater than yields for shorter-maturity bonds. 

 Monthly fluctuations in short-maturity yields tend to be larger than monthly fluctuations in longer-maturity 

yields. 

 When short-maturity yields are low, longer-maturity yields are normally higher than the shorter-maturity 

yields (a normal shaped yield curve). 

 When short-maturity yields are high, longer-maturity yields are often lower than shorter-maturity yields (an 

inverted yield curve). 

 Interest rates can be negative. 

 Corporate credit spreads are wider for lower-credit-quality instruments. 

 Corporate credit spreads tend to fluctuate more during recessionary periods. 

 The probabilities of default will fluctuate with general economic conditions and firm- or industry-specific 

conditions. 

 Equity returns exhibit both higher expected returns and higher volatility than fixed-income returns. 

 The volatility of equity returns fluctuates significantly. 

Stylized facts typically come from an analysis of historical data and reflect the relevant considerations for the 

calculations that underlie a particular application. Thus, it is important for the practitioner to have a working 

knowledge of the economic and financial market variables being simulated by an ESG model. The following sections 

review general characteristics of some key economic and financial variables and demonstrate the types of analysis 

that might be used to develop a set of appropriate stylized facts. 

6.3.1 INTEREST RATES AND YIELD CURVES 

Interest rates are an important component of most ESG models, because they affect both the price of investments 

and the cost of liabilities on a company’s balance sheet. In a simple sense, interest rates reflect the annualized cost of 

a specific financial obligation, generally expressed as a percentage of the principal of a loan and usually expressed on 

an annual basis. For an investor, the cost may translate to a yield or rate of return, based on the amount of principal 

(initial investment or price of the instrument) and the cash flow associated with interest payments and eventual 

return of principal of the bond as it matures. Interest rates may refer in a general sense to a “risk-free” loan such as 

reflected by a U.S. Treasury bond, or may refer to a specific loan where other factors (such as probability of default or 

lack of liquidity) may affect the interest rate. 

Interest rates may vary in terms of time span of the obligation, over days, months or years. The relative differences in 

interest rates over a span of time, at any given point in time, for a specific bond market, are described in a construct 

known as a yield curve. 

In a given bond market, there may be bonds with similar maturities but different yields to maturity. Information 

associated with individual bond securities must be compressed into a yield curve in a systematic fashion. In the end, 

yield curves are constructed objects based on traded prices of individual bonds or estimates of those prices. The 
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consolidation of yield information into yield curves is a convenient and concise way to summarize the status of a bond 

market. 

6.3.2 Treasury Bonds  

Bonds hold a relatively high position in the hierarchy of financial instruments in an ESG, because yields and returns on 

bonds are closely connected to interest rates. Risk-free bonds such as U.S. Treasuries embody a relatively pure 

representation of interest rates, because they are not complicated by significant concerns of liquidity or default. In 

the United States, Treasury bonds are issued with maturities up to 30 years. All bonds with original issue maturity in 

excess of one year pay semiannual coupons. All bonds with original issue maturity one year or less pay no coupon. 

The behavior of yields for shorter-maturity Treasury bonds is different from the behavior of yields for longer-maturity 

bonds. Figure 6.7 shows some actual U.S. Treasury yield curves from 2004 through 2014. 

Figure 6.7 

U.S. TREASURY YIELD CURVES, 2004–2014 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sources: Bloomberg; Conning, Inc. 

A casual review of this chart suggests that yields for longer maturities tend to be greater than yields for shorter 

maturities. The chart also shows that the very short end of the yield curve has been close to zero since 2008. 

Figures 6.8 and 6.9 provide information about the historical levels of U.S. Treasury yields. Notice that the one-year 

yield was negative for a time during the 1930s and 1940s and has been very near zero but not negative since 2010. 

The 10-year yield in recent years has hit lows not seen since 1945. 
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Figure 6.8 

HISTORICAL LEVELS OF 1-YEAR U.S. TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 
 

Sources: Ibbotson; Bloomberg; Conning, Inc. 

Figure 6.9 

HISTORICAL LEVELS OF 10-YEAR U.S. TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 

Sources: Ibbotson; Bloomberg; Conning, Inc. 

Monthly changes in yields are shown in Figures 6.10 and 6.11. We see that monthly fluctuations in the one-year yield 

tend to be larger than monthly fluctuations in the 10-year yield. We also observe that in recent years, the 10-year 

yield has fluctuated more than the one-year yield. Lastly, we note that the monthly fluctuations in the10-year yield 

are larger from the late 1960s to present than they were prior to the late 1960s. 
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Figure 6.10 

HISTORICAL MONTHLY CHANGES IN 1-YEAR U.S. TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 

Sources: Ibbotson; Bloomberg; Conning, Inc. 

Figure 6.11 

HISTORICAL MONTHLY CHANGES IN 10-YEAR U.S. TREASURY YIELDS 

 

 

 

 

 

 

 

 

 

 

Sources: Ibbotson; Bloomberg; Conning, Inc. 

Figure 6.12 shows that short- and long-term Treasury yields are highly correlated but there is some possibility for the 

relative positions of the one-year and 10-year yields to vary. The red line shown on the chart is a 45-degree line 

passing through the origin, which is useful for visually determining whether the one-year yield is less than or larger 

than its 10-year yield counterpart. When the one-year yield is low, the 10-year yield is normally larger than the one-

year yield—a normal shaped yield curve. When the one-year yield is high, the 10-year yield is often smaller than the 

one-year yield—an inverted yield curve. On occasion, inverted yield curves have occurred when the one-year yield is 

at a relatively low level, as we saw for the December 2006 yield curve in Figure 6.7. 
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Figure 6.12 

HISTORICAL CORRELATION BETWEEN 1-YEAR AND 10-YEAR U.S. TREASURY YIELDS 

  

Sources: Ibbotson; Bloomberg; Conning, Inc. 

The question of negative interest rates has recently become relevant. Some central banks in Europe have set negative 

funds rates, thereby pushing short-term yields negative. At the same time, aggressive quantitative easing programs 

have driven up the price of longer-term bonds to such an extent that their yields are close to zero or even negative. 

Figure 6.13 shows the recent term structure of interest rates as computed and provided by the Swiss National Bank. It 

is interesting to note that long-term discount factors out as far as 10 years have been negative. And in Figure 6.14, the 

recent trajectory for the German one-year interest rate shows a rapid collapse in yields, with the one-year yield 

ultimately settling at a negative value. 

Figure 6.13 

HISTORICAL TERM STRUCTURE OF SWISS INTEREST RATES  

 

Source: Swiss National Bank,  

 

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17

1
0

 Y
e

ar
 Y

ie
ld

1 Year Yield

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30

Selected Swiss Zero-Coupon Yield Curves (in percent)

Dec-14

Jan-15

Feb-15

Apr-15

Jun-15

Jul-15



   73 

 

                                                                              © 2016 Society of Actuaries 

Figure 6.14 

HISTORICAL 1-YEAR YIELD IN GERMANY  

  

Source: Bundesbank, 

http://www.bundesbank.de/Navigation/EN/Statistics/Time_series_databases/Macro_economic_time_series/macro_economic_time

_series_node.html 

There is also evidence of very small negative interest rates at the short end of the yield curve occurring in the United 

States after the financial crisis. Recent economic data suggests that negative interest rates do occur, and this is 

something the ESG user needs to consider in assessing and validating ESG interest rate projections. 

6.3.3 CORPORATE BOND MARKET 

For capturing the risk dynamics inherent in the corporate credit markets, three elements are important to consider. 

These include (1) default, along with the resultant recovery rates; (2) changing credit spreads; and (3) credit 

migration. This section will discuss each of these components in the context of historical observation. 

6.3.4 DEFAULT AND RECOVERY 

A corporate bond is a security with a fixed schedule of payments, generally consisting of a scheduled maturity date 

and associated coupons and a redemption amount. The receipt of the scheduled payments by the bondholder is 

contingent upon the issuing corporation being able and willing to pay them as scheduled. In contrast to Treasury 

bonds, corporate bonds involve a significant possibility that payments may not be made as scheduled. If the payment 

schedule is broken, default is said to have occurred. 

The probabilities of default will fluctuate with general economic conditions and firm- or industry-specific conditions. A 

wide range of outcomes are possible once a bond enters default, ranging from a total loss of all remaining scheduled 

payments to relatively small losses or an extension of the payment schedule. The amount that the owners of a 

defaulted bond receive is called the recovery amount. A given bond either will survive to its maturity date without 

migrating to default or will migrate to default prior to its scheduled maturity date. 

6.3.5 RATINGS 

Most corporate bonds will be rated during their lives. These ratings are provided by an independent rating agency, 

and the purpose of the rating is to capture the likelihood that the bond will make its scheduled payments. The rating 

for an individual bond will tend to fluctuate over time. The manner in which the rating fluctuates is called rating 
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migration. Investment-grade bonds are those bonds with an S&P rating of BBB or higher. Non-investment-grade or 

“high-yield” bonds are those with an S&P rating below BBB. 

6.3.6 YIELDS AND CREDIT SPREADS 

Using a method similar to that for Treasury bonds, a yield to maturity for corporate bonds can be readily computed. 

Subject to the issues that were discussed for Treasury bonds, one can also produce a yield curve for the various rating 

classes in the corporate bond market. Since corporate bonds have risk that a comparable Treasury bond does not 

have, the yield on a corporate bond has been historically higher than the yield on a comparable Treasury. For a given 

maturity, the amount by which the corporate bond yield exceeds the Treasury bond yield is called the spread. 

Spreads are a convenient way to summarize the current state of the corporate bond market. Figure 6.15 shows 

spreads for investment-grade U.S. industrial zero-coupon bonds at one-year and 10-year maturities. 

Figure 6.15 

SPREADS FOR INVESTMENT-GRADE U.S. INDUSTRIAL ZERO-COUPON BONDS

 

 

 

Sources: Bloomberg; Conning, Inc. 

One of the most striking features of the data is the extraordinary widening of spreads at the peak of the 2008 

financial crisis. Generally, we see that spreads are wider for lower credit quality. Spreads are also wider for longer-

term bonds of the same credit quality. 

Figure 6.16 shows monthly changes in U.S. spreads. Recession dating from the National Bureau of Economic Research 

(NBER) has been superimposed. 

  

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

AAA 1y AAA 10y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

AA 1y AA 10y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

BBB 1y BBB 10y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

A 1y A 10y



   75 

 

                                                                              © 2016 Society of Actuaries 

Figure 6.16 

MONTHLY CHANGES IN U.S. SPREADS, 1989–2012 

 

 

Sources: Bloomberg; Conning, Inc. 

There is a tendency for spreads to fluctuate more during recessionary periods, but the relationship is not definitive. 

The relationship is more pronounced with a longer data series, as Figure 6.17 shows. This spread series clearly 

exhibits different behavior in and out of recession. Historical data indicates that credit costs represent only a fraction 

of the spread on corporate bonds, and this suggests that some portion of corporate bond spreads is due to factors 

other than credit costs (such as liquidity.)  More on this will be presented in Chapter 12. 

Figure 6.17 

MONTHLY CHANGES IN U.S. SPREADS, JANUARY 1925–DECEMBER 2011 
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Sources: Moody’s; Bloomberg; Conning, Inc. 

6.3.7 CREDIT TRANSITION AND MIGRATION 

A credit transition matrix specifies the probability of a bond remaining at its current credit rating (the elements on the 

main diagonal) and the probabilities of moving to another credit rating, including default. Figure 6.18 shows an 

illustrative credit transition matrix. The illustrative matrix is for a one-year transition, which is the typical frequency 

used in benchmarking an ESG. The numbers in this transition matrix clearly indicate that, on average, there is a 

stronger tendency for a bond in each rating class to downgrade than to upgrade. This is typical of real-market data. 

Figure 6.18 

ILLUSTRATIVE CREDIT TRANSITION MATRIX 

Final Aaa Aa A Baa <Baa Default 

Aaa 0.8951 0.0850 0.0116 0.0049 0.0036 0.0000 

Aa 0.0152 0.8848 0.0796 0.0125 0.0073 0.0007 

A 0.0008 0.0318 0.8869 0.0586 0.0148 0.0072 

Baa 0.0004 0.0028 0.0477 0.8683 0.0683 0.0126 

<Baa 0.0001 0.0005 0.0015 0.0120 0.9307 0.0553 
 

Sources: Moody’s; Bloomberg; Conning, Inc. 

To the extent that a corporate bond enters into default, the bondholder is normally able to get a recovery settlement. 

This settlement, referred to as the recovery rate, is typically quoted as a percentage of the initial par value of the 

bond. Figure 6.19 shows the probability of default and the average recovery rate on those defaulted bonds over the 

period 1982–2006. 

Figure 6.19 

DEFAULT AND RECOVERY RATES, 1982–2006 

  

Source: Moody’s; Conning Analysis 
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6.4 OVERVIEW OF THE EQUITY MARKETS 

The characteristics of equity investments differ significantly from those of fixed-income investments. The most 

obvious differences are that equities have historically exhibited both higher expected returns and higher volatility 

than fixed-income returns. These can be considered important stylized facts of the equity markets. 

On an annual return basis, for the period 1926 through 2014, U.S. large-cap equities experienced an average return of 

12% with a 20% standard deviation. By comparison, for the same period, also on an annual basis, U.S. long-term high-

grade corporate bonds experienced an average return of 6.4% with an 8.4% standard deviation. 

At a higher observation frequency—for example, monthly data—a more detailed examination of equity return data 

shows that the volatility of equity returns fluctuates significantly. The technical term for this phenomenon is 

heteroscedasticity. In an ESG context, one can capture this effect by using models that include stochastic volatility 

processes, and ESG modelers will often refer to equity returns as exhibiting stochastic volatility. 

A frequently considered stylized fact about equity returns is that they exhibit a leverage effect, which means that 

when markets become more volatile, the risk of a large sudden decline in equity prices becomes elevated. This can be 

described in the context of fat-tailed behavior of the distribution of returns. There are significant implications for the 

ESG concerning the manner in which equity returns are experienced on a path-by-path basis if such a stylized fact is 

adopted. Indeed, an ESG that is calibrated to such a stylized fact would produce some simulated paths with 

pronounced market crashes, which would increase the left tail of the return distribution and make it more expensive 

to hedge equity return risk. 

6.5 CHAPTER SUMMARY 

1. Stylized facts refer to generalized interpretations of empirical findings that provide a basis for consistent 

understanding of markets or economic drivers (across a wide range of instruments, markets and time 

periods). Due to their generality, they are often qualitative. 

2. Stylized facts help with assessing the strengths and weaknesses of ESG model frameworks and the 

applicability of the underlying model equations to specific risk management applications. 

3. Stylized facts are also used in setting of calibration targets that drive the model calibration and validation 

processes. 

4. Historical data is often used as the basis for determining stylized facts and setting calibration targets. 

5. Several sources can be used for economic and financial data. These include the Federal Reserve, Bloomberg, 

Ibbotson/Morningstar and Global Financial Data. 

6. Stylized facts and related calibration targets typically reflect facts such as these: 

a. Means and standard deviations can vary considerably over different historical periods. 

b. The dynamics of interest rates at very low, average and high levels differ in terms of simple 

measures such as the volatility of changes. 

c. Negative interest rates can occur. 

d. Real interest rates fluctuate significantly over time. 

e. The risk and return attributes of the major asset classes can change over time. 

f. Corporate bond spreads fluctuate significantly over time. 

g. Widening corporate spreads do not always track realized default rates. 

h. Credit costs represent only a fraction of the spread on corporate bonds, and this suggests that 

some portion of corporate bond spreads is due to factors other than credit costs (e.g., liquidity). 

i. There is a correspondence between the movement of corporate bond spreads, bond migrations 

and defaults with recessions, but this relationship is not precise. 

j. Equity return distributions exhibit fat-tailed behavior. 

k. Volatility fluctuations and default clustering occur across time; one does not experience average 

behavior. 

l. Correlations between modeled economic and financial market variables are not stable over time 

and can depend on whether one is using monthly, quarterly or annual observations. 

7. Recent economic conditions are causing a reassessment of where a natural level for interest rates might be 

and what history can tell us about what lies in the near future. Historical benchmarks can be distorted by 
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recent events, and a significant amount of expert judgment may be needed in arriving at a set of stylized 

facts for financial markets. 

6.6 APPENDIX: DATA SOURCES 

ESG practitioners are well served by having a wide range of data sources at their disposal. Historical data is the 

standard for setting stylized facts and targets that can be used for ESG model calibration and validation. 

Economic and financial market data may be free or require a subscription. All other things being equal, it is desirable 

to use data available at a higher frequency. ESG practitioners typically require data at monthly or quarterly frequency. 

Some applications call for daily frequency, but that is not typical. The frequency at which data is available can vary. 

Financial data such as interest rates or return series are generally available at monthly frequency for recent time 

periods. GDP data is released quarterly. Less current financial data might be available only at annual frequency. 

If an ESG is part of an ongoing risk management program, the usual requirements are that the data source be 

accurate, regularly updated and capable of automated download. This is because in this use context, the ESG is likely 

to be recalibrated, validated and initialized to market conditions at regular intervals such as year-end or quarter-end. 

The following commercial data vendors offer an extensive collection of financial data amenable to electronic 

download across a broad range of financial variables and economies: 

 Bloomberg 

 Thomson-Reuters 

 Global Financial Data 

Morningstar provides a range of popular data, including the Ibbotson SBBI Classic Yearbook and the Dimson, Marsh, 

Staunton Global Returns Data. 

Many central banks and other government organizations provide economic data. Listed here are examples of these 

data sources: 

 St. Louis Fed (Federal Reserve Economic Data) 

 Board of Governors of the Federal Reserve System 

 Bank of Canada 

 Statistics Canada (CANSIM) 

 Bank of England 

 Ministry of Finance (Japan) 

 Swiss National Bank 

 German Bundesbank 

 U.S. Bureau of Labor Statistics 

 U.S. Bureau of Economic Analysis 

There is a considerable amount of useful data scattered in the academic literature. Such data may appear in journal 

articles, in books or on websites. 

Bond-rating services, such as Moody’s, Standard & Poor’s, Fitch and DBRS, provide periodic reports containing data 

useful for corporate bond models. This data includes rating transitions, default probabilities, recovery rates and 

combined credit costs.  
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Chapter 7: Model Calibration and Parameterization 
ESG Users need to incorporate a view of future market dynamics into their risk-modeling environment. Will interest 

rates fall or become negative in the next five years? What is the probability of a global credit crisis in the next 12 

months? What will be the value of the large-cap equity index tomorrow? If these questions were to be independently 

posed to a number of investment and risk professionals, the responses would likely result in a range of answers. Each 

would form a view based on history, current information regarding the state of the economy, and expert judgment. 

The process of reflecting these views into an ESG is referred to as model calibration. Different model calibrations may 

be required for different applications such as the following: 

 Regulatory risk management. Some elements of regulatory regimes, such as Article 226 (Use Test) of the 

European Insurance and Occupational Pensions Authority (EIOPA) Solvency II Directive, require firms to take 

into account the assumptions of their internal model in making business decisions. Having ownership of the 

underlying assumptions of the economic models is a key element in satisfying such regulatory 

requirements. 

 Stress testing. Stress testing is a widely used tool in risk management. Stressing the core assumptions of 

models represents an alternative view that allows for the impact of extreme and unexpected events to be 

studied and quantified. 

 Strategic asset allocation (SAA). SAA is commonly based on analysis of expected returns and risk from an 

ESG. The SAA calibration may embed the shorter-term assumptions of the internal model into a multiyear 

stochastic projection, and/or it may reflect a long-term steady-state view of the economy and financial 

markets. 

To effectively perform any of these (and other) tasks, one must have consistent and justifiable views across different 

parts of the business and have the people and processes in place to implement these views within the company’s ESG 

model. It is this implementation step that often proves to be the most challenging for users of statistical models such 

as those found within an ESG. 

Section 7.1 of this chapter outlines the calibration process and introduces the notion of a cascade structure. 

Calibration is the process of setting the parameters of the equations within an ESG model. It is usually performed as 

part of an iterative process that is repeated with parameter adjustments until a reasonable fit relative to the needs of 

the application is achieved. 

Section 7.2 discusses calibration as it relates to market-consistent ESG models. Model calibration in this context is 

based on how well the model reproduces the market values of the universe of the traded derivatives used to calibrate 

the model. For nontraded securities or instruments, pricing would then be determined from the prices of similar 

traded securities (e.g., minimum crediting rates proxied by a series of very long dated puts). 

Section 7.3 discusses calibration as it relates to real-world ESG models. Parameterizations of real-world ESG models 

require the user to make choices about the future economic environment that he or she wants to reflect in the risk 

analysis work, including appropriate steady-state levels, appropriate values for the initial conditions, the key 

parameterization targets, the expected reversionary paths of economic variables, and so forth. 

Section 7.4 discusses two methods (maximum-likelihood estimation and Kalman filtering) that can be used to help 

with the calibration of more sophisticated real-world ESG model equations. 

7.1 THE CALIBRATION PROCESS 

Calibration is the process of setting the parameters of the equations within an ESG model to produce the distributions 

and dynamics (e.g., volatility, correlations, tail characteristics) of economic and financial variables required by the 

application for which they are being used. The calibration process associated with different models will depend on 

the sophistication of the equations that underlie the models. A mean-variance model has parameters that are 
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identical to the assumptions that drive these models—namely mean, standard deviation and correlations. This makes 

the calibration of these models pretty straightforward. 

As the model equations increase in complexity, the number of model parameters increases, and the linkage between 

the input parameters and the desired output statistics become less intuitive. The calibration process thus becomes 

increasingly challenging as additional variables are incorporated into the model. To make the calibration process 

practical, many ESG models make use of what is referred to as a cascade structure. 

A cascade structure is a model framework design whereby each subsequent variable in the cascade structure depends 

only on prior values of the variable and the values of variables that lie above them on the cascade structure. The 

variables at the top of the cascade are calibrated against an established set of calibration criteria. The variables in the 

lower levels of the cascade structure are subsequently calibrated against their own calibration criteria, factoring in 

the appropriate relationship to higher-level variables. There is no feedback loop mechanism within the cascade 

structure, which means that once the variables that reside in the top levels of the cascade are appropriately 

calibrated, the calibration of lower-level variables will not affect these previously calibrated variables. 

The sequence of the cascade is not intended to reflect any cause-and-effect relationship but rather is designed to 

ease the calibration process while allowing variables to be appropriately correlated. For example, making use of a 

cascade structure where interest rates are at the top of the cascade with inflation below would not imply that interest 

rate changes cause inflation. It would, however, allow the simulation of interest rates and inflation to have an 

appropriate relationship, so that when interest rates are high, inflation will tend to be high, and vice versa. Figure 7.1 

shows a cascade structure that might be used within an economic scenario generator. 

Figure 7.1 

CASCADE STRUCTURE OF A HYPOTHETICAL ECONOMIC SCENARIO GENERATOR  

 

The calibration processes for real-world and market-consistent ESG models are similar but differ significantly in the 

criteria used to determine goodness of fit. Thus, they warrant separate discussions. 

7.2 CALIBRATIONS OF MARKET-CONSISTENT ESG MODELS 

Market-consistent valuation applications require ESGs to be capable of generating scenarios that can reproduce the 

observable prices of traded derivative instruments. ESGs that are used for these purposes need to adhere to strict 
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mathematical properties that are designed to satisfy risk-neutral and arbitrage-free conditions. These same scenarios 

are then used to determine prices for derivative instruments and insurance contracts with embedded options that are 

not traded but require market valuation. The process of parameterizing an ESG to reproduce observable prices of 

traded derivative instruments is referred to as “model calibration.” 

Because the model calibration process is designed to reproduce the prices of traded derivatives, the ultimate 

calibration depends on both the pricing date and the set of traded derivatives used to calibrate the model. The 

validation associated with the model calibration is based on how well the model reproduces the market values of the 

universe of traded derivatives used to calibrate the model. The calibration process associated with a market-

consistent ESG model is shown in Figure 7.2. 

Figure 7.2  

MARKET-CONSISTENT CALIBRATION PROCESS 

 

The idea behind market-consistent model calibration is to generate scenarios whereby the cash flows from a financial 

product or instrument can be appropriately discounted so as to provide an estimate of the current market price of the 

underlying product or instrument. Because market-consistent models are designed to be risk-neutral, all financial 

instruments will have the same expected return, and that expected return will be equal to the risk-free rate. The risk-

free rate can thus be used to discount the cash flows from a product or financial instrument to generate its price.   

To ensure that the prices estimated for nontraded securities are reasonable, the model is first calibrated to reproduce 

prices of traded securities, including options that are in line with actual observable market prices. The first step in this 

calibration process is to select a set of appropriate traded financial instruments for which current prices are readily 

available. Ideally, they would be similar in form to the nontraded products or instruments being priced (e.g., 

minimum crediting rates look like a series of very long dated puts). 

Once the traded instruments have been identified, a source for the pricing information needs to be found. There are 

two common sources, private and public, for obtaining this information. Private data usually comes from broker’s tear 

sheets. There are several key advantages to using this source data. First, since the prices are determined as a group, 

they tend to be internally consistent. This can be particularly important when attempting to calibrate the ESG model 

to these prices. Second, this is the way that companies typically value the options on their balance sheet. Thus, the 

use of these prices can create a tighter link between asset and liability valuations. The one drawback of private data is 

access: tear sheets are usually available only to active option traders. When this type of data isn’t readily available, 

companies typically turn to actual trade data from a source such as Bloomberg. In this case, care must be taken to 

avoid using thinly traded securities, since their prices tend to be less reliable. 

The calibration process shown in Figure 7.2 starts with a set of estimated model parameters. Using these parameters, 

the model is run, and the scenarios generated are used to calculate prices for a set of traded options. The prices 
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generated under the model scenarios are compared with the actual traded values to determine goodness of fit. If the 

calculated option prices replicate the actual traded prices of the options within an acceptable tolerance, the 

parameters are deemed to be acceptable. If not, the model parameters are re-estimated, and the process is repeated 

until an appropriate fit is found. 

7.3 PARAMETERIZATION (CALIBRATION) OF REAL-WORLD ESG MODELS 

To distinguish real-world calibrations from market-consistent calibrations, we will refer to the real-world calibration 

process as “model parameterization.” Most risk management applications, for example, require ESGs to be capable of 

producing dynamics (e.g., volatility, correlations) that are representative of the possible future paths of economic 

variables. Commonly referred to as “real-world” calibrations, they answer managers’ what-if questions as the 

managers try to gauge the likelihood of future events and the impact on their business. 

Because real-world parameterizations are forward looking, they require explicit views as to how the economy will 

develop in the future, so they require a significant amount of expert judgment to determine the veracity of the 

scenarios that result from the parameterization process. In practice, real-world calibrations often are parameterized 

to be consistent with historical dynamics of economic variables, although the long-term steady-state levels associated 

with these parameterizations can differ from long-term historical averages in favor of current consensus expectations 

or even individual viewpoints. 

Parameterizations of real-world ESG models require users to make choices about the future economic environment 

they want to reflect in their risk analysis work. Some of the key decision points when parameterizing a real-world 

model include (a) selecting the appropriate steady-state levels, (b) determining the appropriate values for the initial 

conditions, (c) identifying the key parameterization targets or “stylized facts” that are necessary for the application, 

(d) controlling the expected reversionary paths of economic variables, and (e) considering general assumptions. 

The parameterization process for a single economic or financial variable follows the flow chart depicted in Figure 7.3. 

Figure 7.3 

REAL-WORLD PARAMETERIZATION PROCESS 

 

 

 

 

 

 

 

   

 

 

 7.3.1 SELECTING THE APPROPRIATE STEADY-STATE LEVELS 

Steady-state levels are values that define the long-term expected mean levels of economic or capital market 

variables. One can set these steady-state levels to reflect historical averages over some specified time period, 

consensus long-term economic forecasts, or a particular company or economic viewpoint. Figure 7.4 shows the type 

of information that might be used to help set the assumed steady-state level of 10-year U.S. Treasury yields within a 

company’s ESG model parameterization. The figure shows that 10-year U.S. Treasury yields have ranged between 2% 

and 16% since 1948 and that the average yield over that 40-year period has been 7.0%. In addition, the Philadelphia 
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Federal Reserve’s Survey of Professional Forecasters indicates that the annual average for the 10-year yield in 2016 

was expected to be 3.3%. This variability demonstrates the challenges the model user faces in selecting appropriate 

assumptions for risk management applications. The steady-state level that is ultimately selected will need to involve 

expert judgment and will depend on the specific application for which the model is being built. 

Figure 7.4   

10-YEAR U.S. TREASURY YIELD 
  

 

 

 

 

 

 

 

 

 

 

 

 

Source: Federal Reserve Board, Philadelphia Federal Reserve’s Survey of Professional Forecasters 

7.3.2 DETERMINING THE APPROPRIATE VALUES FOR THE INITIAL CONDITIONS  

Depending on the particular application, it may be appropriate to set the initial conditions consistent with a particular 

historical date (e.g., for financial valuation), a set of hypothetical starting conditions (e.g., for sensitivity testing), or at 

their steady-state levels (e.g., for SAA). The third option is useful to explore risk management strategies that do not 

depend on an assumption of an upward or downward bias in key economic metrics, such as capital losses on bonds 

resulting from rising interest rate projections. 

7.3.3 IDENTIFING THE KEY PARAMETERIZATION TARGETS OR “STYLIZED FACTS” NECESSARY FOR THE 

APPLICATION 

ESGs need to balance complexity and practicality. The historical data can generate an infinite number of statistics. To 

keep the models academically credible yet appropriate for practical application, it is necessary to limit the factors 

used to describe the underlying dynamics of the modeled economic variables. As a result, it is not feasible for these 

models to hit every parameterization target or capture every stylized fact (historically observed relationship). Expert 

judgment thus is used to determine which targets are most important for an intended application. Short-term tail 

events may be deemed more critical for one-year regulatory capital calculations, whereas long-term mean and 

standard deviation measures may be of greater importance for strategic investment analysis. The importance placed 

on these different parameterization targets can have a material impact on the final model calibration and its 

applicability for specific risk management applications. 
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7.3.4 CONTROLLING THE EXPECTED REVERSIONARY PATHS OF ECONOMIC VARIABLES 

Given a set of initial conditions and expected long-term steady-state levels, a real-world ESG model will generate a set 

of scenarios that move from initial levels to their steady-state levels over time. These mean reversion dynamics are 

often calibrated to be consistent with historical reversionary dynamics. While this default reversionary movement is 

appropriate for many risk management applications, some users of ESG models may want to reflect expected 

movements that differ from those implied by the modeled mean reversion parameterization. As an example, users 

may want the expected movement of economic variables to follow some specific internal or external economic 

forecast. To the extent that such a specific economic forecast is desired, the model will need to be capable of 

overriding the default pathwise behavior with some user-specified path. This is typically accomplished by shifting the 

default scenarios in such a way as to appropriately conform to a user-specified path. Alternatively, one could attempt 

to change the internal model parameters to change the default pathwise behavior, but given the complexity of the 

underlying ESG model equations, this could be a difficult task for many casual ESG users. 

7.3.5 GENERAL ASSUMPTION CONSIDERATIONS  

The considerations of choice for steady-state levels, initial conditions, stylized facts and reversionary paths 

demonstrate that, when one is setting economic and capital market assumptions, the appropriate scenarios to use for 

a particular analysis will depend on what a company is trying to accomplish.  

 Scenarios used for regulatory capital assessments and stress testing require particular attention to extreme 

events; focus thus tends to be on the tails of the distributions.  

 Business planning requires consistency with initial economic and capital market conditions, along with a 

forecast of the expected future path of the economy that is consistent with internal company viewpoints. 

 Strategic risk analysis, which includes strategic asset allocation, more often concentrates on risk as it relates 

to the entire distribution of outcomes and replaces specific individual company viewpoints with a steady-

state view of the economy and financial markets that reflects a neutral or consensus perspective. 

7.4 METHODS OF PARAMETERIZING REAL-WORLD ESGS 

As the parameterization (calibration) process from Figure 7.3 implies, parameterization is an iterative process. Given 

the sheer number of parameters involved, a trial-and-error process would generally be impractical. Even many of the 

standard actuarial techniques, such as simple regression, are not effective, because the historical data for many 

economic variables violates one of the prime assumptions of these techniques: independent observations—as, for 

example, with interest rates and inflation, where tomorrow’s level is highly dependent on today’s observation. As a 

result, most parameterizations turn to more robust tools in this step. 

The first such tool is maximum-likelihood estimation (MLE). The MLE process starts by calculating a likelihood function 

based on a possible set of model parameters {pi} and the observed data {xj}. The result ends up looking like Prob(xj | 

{pi} and x1, …, xn). The inner calculation reflects the probability that the model would produce the xjth observation 

given the selected parameter set and all the prior observations. Once that function is determined, the set of 

parameters that maximize MLE can be determined. The likelihood function is then the product of these values across 

all the historical observations. For computational ease, this process often uses the equivalent approach of maximizing 

the log of this function. 

The second key tool that can assist with parameterization is Kalman filtering. Kalman filtering is designed to deal with 

several problems that crop up in real-world parameterizations. First, historical data has both errors and uncertainties 

in the process. These result from such issues as measurement noise and systems errors (e.g., in financial markets 

from liquidity effects). Second, with the increasing complexity of ESG models, there is an increasing reliance on non-

observable state variables. While this makes these models more powerful, it adds an extra layer of uncertainty to the 

parameterization process that needs to be addressed. In practice, Kalman filtering dynamics result from the 

consecutive cycles of predicting the state of an observed variable based on a model, comparing that prediction with 

the realized outcome in the historical observed data, and updating the parameters to achieve optimal predictive 

power. 
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The Kalman filter works by propagating the conditional probability distribution function (PDF) p(xk | Y1
k, U0

k–1), in 

other words by transitioning from p(xk | Y1
k, U0

k–1) to p(xk+1 | Y1
k+1, U0

k). In practice, this is done in two steps. First is a 

prediction step, in which the PDF at k + 1 is predicted with the information available at k—i.e., the conditional PDF 

p(xk+1 | Y1
k, U0

k) is predicted. In the second step, the filtration, the Kalman filter updates the information on xk+1 to 

optimally improve the state estimate after making the observation Yk+1. The Kalman filter performs successive 

prediction and filtration cycles for all k (see Figure 7.5). 

Figure 7.5 

THE PREDICTION AND FILTERING CYCLE OF THE KALMAN FILTER 

  

7.5 CHAPTER SUMMARY 

1. Calibration is the process of setting the coefficients and parameters of the equations within an ESG model 

to produce the distributions and dynamics required by the application for which they are being used. 

2. The calibration process associated with different models will depend on the sophistication of the equations 

that underlie the models. 

3. A cascade structure is a model framework design whereby each subsequent variable in the cascade 

structure depends only on prior values of the variable and the values of variables that lie above them on the 

cascade structure. 

4. The ESG model calibration is a function of the application for which the resulting ESG scenarios will be used 

to inform. 

5. Similar processes are used for the calibration/parameterization of market-consistent and real-world ESG 

models, but the processes differ significantly in the criteria used to determine goodness of fit. 

6. Market-consistent valuation applications require ESGs to be capable of generating scenarios that can 

reproduce the observable prices of traded derivative instruments. Because the model calibration process is 

designed to reproduce the prices of traded derivatives, the ultimate calibration depends on both the pricing 

date and the set of traded derivatives used to calibrate the model. 

7. Parameterizations of real-world ESG models require that users make choices about the future economic 

environment they want to reflect in their risk analysis work. Some of the key decision points when 

parameterizing a real-world model are (a) selecting the appropriate steady-state levels, (b) determining the 

appropriate values for the initial conditions, (c) identifying the key parameterization targets or “stylized 

facts” that are necessary for the application, (d) controlling the expected reversionary paths of economic 

variables, and (e) considering general assumptions. 

8. While historical data plays a significant role in most real-world ESG model calibrations, many areas require 

the use of expert judgment in the calibration process. 

9. Maximum-likelihood estimation and Kalman filtering are examples of methods that can be used to assist in 

the real-world ESG model calibration process. 
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Chapter 8: Model Validation 
Validation ensures that the estimation of an ESG’s parameters result in simulated behavior that is a good 

representation of the variable or market under consideration. Effective validation of an ESG requires comparing 

simulated output data to some predefined benchmark and acceptance criteria. Benchmarks may be based upon 

historical data, internal views, regulator demands or a combination of these factors. Chapter 6 discussed the model 

specification process and the development of stylized facts that can be derived from historical empirical financial 

data. Chapter 7 went into detail regarding the process of calibrating the model. This chapter will introduce important 

considerations when validating the output of an economic scenario generator (ESG). Validation of real-world and 

market-consistent ESGs is discussed separately. 

Section 8.1 will describe general considerations in developing a validation system, including the importance of 

automated validation approaches, establishment of acceptance criteria and data considerations. Acceptance criteria 

should be based on what the end user expects of the model, and would be defined before any data are analyzed or 

validation performed. This is preferable to validation based on problem discovery, which attempts to discover 

problems with the output after the model is run. Data considerations address issues of accuracy, completeness and 

appropriateness of the data, in terms of what the end user expects out of the model.   

Section 8.2 addresses issues specific to validation of real-world ESGs, beginning with checking that initial conditions of 

the model match those of the market (point-in-time validation). Real world model validation can involve a great many 

quantitative and qualitative possibilities for determining the quality of a scenario set, so considerable expert 

judgement is required. This section also explores principles of in-sample and out-of-sample validation, and explores a 

further description of the types of variable output that should be subject to validation. In-sample refers to using data 

that is consistent with what was used to estimate model parameters. Out-of-sample validation means back-testing 

the model to a historical point in time and seeing how it performs looking forward. Validation should not be restricted 

to the primary variable to be simulated, but should also include derived variables, correlations and interdependencies 

in order to get a fuller picture of the quality of the ESG. 

Section 8.3 will describe issues specific to validation of market-consistent ESGs. Validation of market-consistent ESGs 

is more straightforward than for real-world ESGs: it only needs to be validated for market consistency and risk 

neutrality. Market consistency involves determining the quality of fit of the output against market pricing, using a 

goodness of fit statistic or applying qualitative judgement. Validating risk neutrality confirms that the expected return 

on a particular asset class is the same as the expected return on a risk free asset, which is accomplished through 

application of a martingale test. 

Section 8.4 gives some final thoughts regarding effective validation and introduces a flow chart that shows the main 

steps of an idealized validation process. 

8.1 GENERAL CONSIDERATIONS IN DEVELOPING A VALIDATION SYSTEM 

For a typical insurance or pension undertaking, the list of financial and economic variables that may be of interest is 

typically quite large. For this reason, the validation system and environment requires careful design at inception in 

order to organize the various data elements in an ordered fashion. 

An automated validation system is preferable to manual validation. Validation should be repeatable and consistent 

through time. Automated validation may include the production of goodness of fit statistics, which can aid the 

reviewer in making decisions. However, it should be noted that sole reliance on such statistics may lead to false 

conclusions and missed problems, due to the limitations of the statistical measure itself and the relevance and 

completeness of the available market data. For this reason, effective validation will invariably need a human to 

visually review and make informed observations about the results. The professionals doing this should ideally have 

knowledge of the models, the market being considered, the end use of the model output and the features of the 

model at prior dates in order to most effectively validate the model. 
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8.1.1 ACCEPTANCE CRITERIA 

Before any data are analyzed or validation performed, it is helpful to form the acceptance criteria upon which the 

model output will be judged. These acceptance criteria should be based on what the end user expects the model to 

do. An idealized process for forming acceptance criteria might be as follows: 

1. Select a person or persons to formulate acceptance criteria. Ideally, this would be a group made up of the 

direct users of the system, the end user of the scenarios or derived data, participants in the market to be 

validated and risk model experts, as well as individuals who are independent of the system usage to provide 

oversight. 

2. Decide which economic variables are to be validated, and determine the materiality of these variables. 

3. Formulate concrete acceptance criteria, which should be based on a combination of analysis of market data, 

expert judgment and an understanding of the sensitivities to and materiality of particular risk factors of a 

firm. Acceptance criteria should not be arbitrary but instead justifiable and based on data analysis and 

informed judgment. 

4. Define when a model is accepted and when rejected. This is usually best dealt with by scoring the ESG 

output against particular acceptance criteria and holistically considering the extent to which it matches all 

the acceptance criteria. For all but the most simplistic uses of an ESG, it is likely that some areas will 

perform better than other areas; therefore, it is better to answer the question “How well does the ESG as a 

whole perform?” than to reject a model because a single acceptance criterion is not adequately met. 

This type of approach to validation, whereby the particular desirable features of an ESG are based on analysis of a 

firm’s risk exposures, is preferable to what might be called a “problem discovery” approach. In a problem discovery 

approach, a user first runs the ESG, creating a large output data set, and then tries to discover problems with the 

output. Because all models are to some extent a misspecified simplification of reality, it is highly likely that this 

approach will yield a list of potential issues. The problem with this approach is twofold: 

1. It becomes difficult to objectively and in an unbiased fashion determine if any of the issues are truly 

material or if they would have appeared on a list of acceptance criteria had they been formed prior to 

validating the output. 

2. It focuses only on what is wrong with the model and not on the many other things that may be right with 

the model. Thus, it is insufficient in providing a holistic view of the model quality. 

Therefore, it is recommended that the validation process start with acceptance criteria and then move on to the 

validation stage. Chapter 6 discussed the model specification process and the development of stylized facts that form 

the basis of the acceptance criteria. 

With the acceptance criteria in place, the next stage is to actually validate the ESG and determine its appropriateness 

to the application for which it is intended. Usually, validation entails comparing the output of the ESG with market 

data, and finally with the acceptance criteria, which may be based on market data or a combination of market data 

and expert judgment. In this process, there are several considerations to take into account. 

8.1.2 DATA CONSIDERATIONS 

Adequately validating a model requires that appropriate data be collected, stored and maintained. This requires 

consideration of the data source to be used, the historical window against which to compare the ESG output, the 

frequency of data available to be used, and the quality of the data. In particular, for thinking about the validation 

data, issues of accuracy, completeness and appropriateness are central to the discussion. 

Accuracy. Accurate refers to the degree of confidence that can be placed in the data. To be accurate means the data 

is reliable and appropriately reflects the behavior of the economy or asset class. Data must be sufficiently accurate to 

avoid material distortion of the model output. Accurate data does not contain any material errors or omissions. The 

data should also be recorded and stored both in a timely fashion and consistently over time. 

The assessment of accuracy consists of monitoring in areas such as the initial generation of data, along with how the 

data is stored and processed, to ensure errors are not inadvertently introduced into the data. 
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Completeness. Complete means that databases provide comprehensive information. More specifically the data shall, 

where possible, meet the following conditions: 

 Be available for all material asset classes and all relevant model variables 

 Be of sufficient granularity so that the trends and the full understanding of the behavior of the underlying 

risks can be identified and understood 

 Take account of all information that may be relevant to the understanding and modeling of risk 

Appropriateness. Appropriate means the data does not contain biases that make it unfit for its purpose. The data 

should be relevant to the model. Relevance in this aspect means that the data wherever possible should satisfy these 

requirements: 

 Directly relates to the underlying risk drivers 

 Provides a good guide for the future when it is used to calculate projections 

 Applies to the current risks and time point 

Taking these considerations into account ensures that the data is fit for the purpose for which it will be used. 

In reality, it is not always possible to source data that is accurate, complete and appropriate for every data item that 

one may wish to analyze. It is therefore important at the outset to define what to do in these circumstances. This 

typically involves extrapolation from the available historical data and/or from other economies. 

8.2 SPECIFIC CONSIDERATIONS IN VALIDATION OF REAL-WORLD ESGS 

Validation of real-world ESGs against market data falls into three distinct categories: point-in-time validation, ex-post 

or in-sample validation, and ex-ante or out-of-sample validation. 

8.2.1 VALIDATION CATEGORIES 

Point-in-time validation. Point-in-time validation involves checking that the time zero characteristics or initial 

conditions of the model adequately match those of the market. For instance, one should be sure that the initial yield 

curves of the market and the model are the same before a simulation is run. 

Ex-post or in-sample validation. In-sample validation involves taking historical data and determining the extent to 

which the stylized facts of the data are captured by the ESG. The comparison is typically based on the same data 

period that was used for the estimation of the model parameters; hence it is referred to as in-sample. This type of 

validation may take many forms but is likely to include the following tasks: 

 A visual comparison of the distributions or probability density functions (PDFs) of the market data and ESG 

output, such as that shown in Figure 8.1 

 A comparison of key statistics (e.g. mean, median, skewness and kurtosis) 

 A comparison of correlations or bivariate distributions 

We should, however, be careful when drawing conclusions from these in-sample comparisons. In model building, it is 

not usually the case that the best approach is to blindly fit the model to market data. Such models may pass statistical 

goodness of fit tests; however, they may perform poorly ex ante. 

Figure 8.1 shows a comparison of the probability density function of S&P 500 price returns between 1985 and 2015 

with that of a real-world ESG model calibrated to this data.  
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Figure 8.1 

ACTUAL VERSUS SIMULATED DISTRIBUTIONS OF S&P 500 PRICE RETURNS 

 

Sources: Bloomberg; Conning, Inc. 

Ex-ante or out-of-sample validation. Out-of-sample validation or back testing involves looking at the output of a 

model from a point in time T and seeing how it performs at future time periods T + t. Out-of-sample validation helps 

to monitor the ongoing appropriateness of the model in light of what actually happens. In the case when markets 

experience sudden shocks (e.g., stock market crashes or economic crises), this type of validation may also help give 

confidence that tail calibrations are adequate and that the probability of severe events being within the ESG is 

adequate. 

An example of how out-of-sample validation might look is shown in Figure 8.2. In this diagram, the so-called funnel of 

doubt from a particular model of municipal bonds estimated at month-end June 2012 is shown and compared with 

quarterly returns on BBB-rated municipal bonds post June 2012. The look forward period includes the Detroit default, 

which led to severe drawdowns in municipal bonds, as can be seen from the black line in Figure 8.2. The useful 

information contained in this plot is that the probability of the third-quarter 2013 loss with this particular model 

implies a probability of less than 1:200. In this particular case, it was determined that the deficiency was the result of 

a misspecification of the model, in that it contained no credit component. In other cases, such a “miss” may not be so 

directly attributable, and may be due to misspecification (i.e., the model is incapable of capturing such events), 

misparameterization (i.e., the model is capable of capturing such events but must be reparameterized to do so) or 

attributable to effects within the market or data being considered (e.g., special circumstances such as central bank 

intervention). In any case, the materiality of such results and what action if any is required need to be considered. 

Figure 8.2 shows out-of-sample validation of BBB municipal bond returns between June 2012 and March 2014. The 

model shown uses only the tax rate and Treasury rates as explanatory variables of municipal bond yields, and no 

credit component is used. 
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Figure 8.2 

OUT-OF-SAMPLE VALIDATION OF BBB MUNICIPAL BOND RETURNS 

 

Sources: Bloomberg; Conning, Inc. 

The combination of these validation techniques is used to give a fuller picture of the appropriateness of the model 

output and ultimately the robustness of the ESG as a whole. This and the aforementioned acceptance criteria are 

typically used together to continually monitor the ESG performance. 

8.2.2 WHAT SHOULD BE VALIDATED? 

So the task will be manageable, validation should take account of a broad set of simulated variables with particular 

focus on the areas of greatest materiality. Validators should also not restrict themselves to validating only the primary 

simulated variable (e.g., yield), but also any derived quantities (e.g., returns and excess returns) in order to get a fuller 

picture of the quality of the ESG. Also, it might be important to consider output such as yield curves to validate the 

dynamic properties of the ESG. For instance, does the ESG produce realistic yield curve shapes and inverted yield 

curves? For credit, special consideration needs to be given to the specific features of the credit market, such as 

transition and default probabilities, recovery rates and the adequacy of tail calibrations for spread distributions. 

Correlation and interdependency between variables is another important area to validate. However, meaningful 

validation is not as simple as just measuring correlation from the available history and comparing it with the 

simulated value. Instead, decisions whether to accept a particular ESG calibration should take into account several 

considerations, such as the following: 

 Length and quality of the available historical data 

 Significance of values measured from historical data through comparison with other economies that have 

longer or better-quality data 

 Statistical error or standard error on the measured historical correlation value 

 Comparison of measured values with the average measured value of the ESG 

 Range of correlation values produced by the ESG and comparison of these with the historical values 

 Potential for overestimating the diversification benefits of two asset classes 

 Extent to which it is likely that significant improvements can be made within the modeling framework 

Minimum 
0.5% 

5% 

Market Data 
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This sort of validation requires the validator to analyze the ESG output, compare it with historical data, understand 

the limitations of both the market data and the ESG models being used, and make an informed decision around the 

materiality of any differences. 

8.3 VALIDATION OF MARKET-CONSISTENT ESGS 

Market-consistent scenarios are typically used for the valuation of liabilities with embedded options and guarantees. 

The calibration of a model for these market-consistent embedded value (MCEV) calculations involves fitting the 

model at time zero to the market prices or implied volatilities of traded instruments such as swaps, swaptions, equity 

options and inflation derivatives. Unlike the validation of real-world scenarios, where there are a great many 

quantitative and qualitative possibilities for determining the quality of a scenario set, the validation techniques for 

market-consistent scenarios are fairly well defined. This is because the aims of an MCEV calibration are quite clearly 

defined: 

 To fit the model to the market prices of instruments at time zero 

 To show that the resulting scenarios are risk neutral 

Thus, the model must only be validated for market consistency and risk neutrality. 

The validation of each of these elements will now be discussed in more detail. 

8.3.1 VALIDATING MARKET CONSISTENCY  

Validating market consistency involves first computing the Monte Carlo prices implied by the model parameters. To 

do this, one runs a simulation of N stochastic paths or trials and evaluates: 

𝑃(𝑡 = 0) = 𝐸[𝐷. 𝑋] 

where D is the discount factor and X is the expected payoff of the derivative or instrument in question. Practically this 

involves computing: 

𝑃(𝑡 = 0) =  
∑ 𝐷𝑖 . 𝑋𝑖

𝑁
𝑖=1

𝑁
 

and comparing the value of this Monte Carlo price with the market price. An example of how this looks is shown in 

Figure 8.3, where the Monte Carlo prices of equity put options with different expiry dates and strikes for a particular 

model are compared with the market prices at a particular date. There is no market standard for how one assesses 

the quality of fit; however, suitable validation might include these tasks: 

 Visual inspection and qualitative judgment on the adequacy of the fit 

 Definition of particular acceptance criteria for the fit (e.g., particular instruments should be fit with a 

relative error of less than 10%) 

 Use of a goodness of fit statistic 

It is also important to point out that validation and acceptance should concentrate on the areas of the fit where the 

highest risk exposure exists. There is little to be gained by rejecting a model calibration if the fit is poor for options 

that are unrepresentative of the liabilities held. Hence the use of acceptance criteria and goodness of fit statistics 

should only ever be used as information that may act as a trigger for further investigation. 

Figure 8.3 shows market-consistent calibration of a stochastic volatility model for equities (computed) to the market 

value of traded Eurostoxx 50 put option (market) at year-end 2012. 
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Figure 8.3 

EQUITY OPTION PRICE SURFACE (COMPUTED VERSUS MARKET) 

 

Sources: Bloomberg; Conning, Inc. 

8.3.2 VALIDATING RISK NEUTRALITY: THE MARTINGALE TEST 

Validating that the scenarios produced are in fact risk neutral is the second important task. This means the expected 

return on a particular asset class is the same as the expected return on the risk-free asset. A standard test known as a 

martingale or 1 = 1 test is used to assess the extent to which this is true. In a 1 = 1 test, the market value of a given 

self-financing portfolio (i.e., a portfolio that has no inflows or outflows of cash during the simulation) is simulated 

within the ESG across N stochastic paths. The test statistic at a given time t, mt, is given by the following formula: 

𝑚𝑡 =
∑ 𝐷𝑡,𝑖(1 + 𝑅𝑡,𝑖

cum)𝑁
𝑖=1

𝑁
 

where Dt,i is the discount factor (implied by the risk-free asset) on path i at time t, and 𝑅𝑡,𝑖
cum is the cumulative return 

on the asset or portfolio between t = 0 and t. If the scenarios are risk neutral, and by extension the model arbitrage 

free, mt = 1 for all times t. In reality, however, sampling error exists for the sizes of simulation typically used for this 

purpose, and mt = 1 only as N approaches ∞.1 Therefore, it is important to base the acceptance criteria on a statistical 

measure rather than the absolute value of mt. A common way to approach this is to evaluate the standard error of 

mt:2 

SE𝑚𝑡
=  

𝜎𝑚𝑡
2

√𝑁
 

                                                                        
 

1 Although other sources of error such as discretization error and the pseudo-randomness of the random number generator may cause mt to deviate 
from unity. 
2 Formula is shown in the absence of variance reduction techniques such as antithetic draws. 
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and ensure that the value is consistent with 1 within X standard errors for all times t. X is often chosen to take a value 

of 2—i.e., that (mt + 2 SE𝑚𝑡) ≥ 1 and (mt + 2 SE 𝑚𝑡) ≤ 1—as an approximation to the 95% confidence interval. An 

example of how this might look graphically is shown in Figure 8.4. Neither of the lines representing the two-standard-

error interval crosses the black line representing mt = 1, so the calibration would be said to pass this particular 

validation test. Figure 8.4 shows a 1 = 1 test result on a calibration to a large-cap equity option. The upper and lower 

bounds represent the two-standard-error interval. 

Figure 8.4 

1 = 1 TEST RESULT 

 

Source: Conning Inc.  

8.4 VALIDATION: FINAL THOUGHTS 

Figure 8.5 shows the steps involved in a typical validation process. This validation is vital to ensure that models are 

appropriate to the application under consideration for both real-world and market-consistent ESGs. However, the 

validation of a real-world ESG is different from that of a market-consistent ESG. In the validation of a real-world ESG, a 

great deal of scope exists with regard to the choice of variables to validate, the modes of validation and the forming 

of acceptance criteria, which may include expert judgment. For a market-consistent ESG, the aim of the validation and 

the mode of analysis are much more clearly defined, and market standards exist with respect to this. Nevertheless, 

both real-world and market-consistent validation require, to some extent, the availability and selection of appropriate 

data, and systems in place to maintain and use that data in an efficient and accurate manner. 
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Figure 8.5  

MAIN STEPS IN AN IDEALIZED VALIDATION PROCESS 

 

Source: Conning Inc. 

In practice, the most effective validation is one that combines multiple modes of analysis. For real-world ESGs, point-

in-time, in-sample and out-of-sample validation techniques, combined with well-defined acceptance criteria, should 

be used together to determine not just what is wrong with a model, but also what is right with the model. Such a 

holistic approach gives the validator a global view of the performance and robustness of the ESG. Finally, the 

importance of human intervention in the validation process should not be underestimated. A validator with 

experience of the structure, limitations and usage of the model who is able to combine both quantitative and 

qualitative judgments is likely to be far more effective than reliance on a particular set of rigid criteria or goodness of 

fit statistics to determine the robustness of the model. 

8.5 CHAPTER SUMMARY  

1. Validation is required for both real-world and market-consistent calibrations, and parameterizations and 

validation procedures differ between the two. 

2. An automated validation system is preferable to manual validation. 

3. The validation process should start with acceptance criteria and then move on to the validation stage.  

4. Validation of real-world scenarios requires data and expert judgment. 

5. Validation of real-world ESGs against market data falls into three distinct categories: point-in-time 

validation, ex-post or in-sample validation, and ex-ante or out-of-sample validation. 

6. Market-consistent scenarios need only be validated for market consistency and risk neutrality. 

7. Market consistency involves computing Monte Carlo prices and comparing these prices with market prices. 

8. Risk neutrality is validated using a martingale test. 

9. Observation by a suitably trained and expert user is vital for both real-world and market-consistent 

validation. 

8.6 CHAPTER REFERENCES  
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Chapter 9: Arbitrage-Free Modeling Considerations 
Arbitrage is the opportunity to make a riskless profit by exploiting price differences of identical or similar financial 

instruments, on different markets, or in different forms. The existence of arbitrage is sometimes referred to as a “free 

lunch.” One of the key concepts in modern finance is the notion of the absence of arbitrage. The operational 

manifestation of this concept is an indispensable tool in the classical construction of ESG models. 

The condition of designing an arbitrage-free financial model is both reasonable and desirable so long as we believe 

that markets are efficient. Models that are not arbitrage-free can be useful, but they need to be interpreted carefully. 

For example, Redington’s classical immunization theory remains a useful part of the actuarial tool kit even though one 

can easily construct a free lunch from barbell strategies. 

Section 9.1 of this chapter provides a definition of arbitrage-free financial models, referencing cash flow and trading 

strategy mechanisms to assure that the models are consistent. The theory of an arbitrage-free model requires that all 

assets in the model have well-defined cash flow structures. Pricing can then be determined by first identifying a 

trading strategy that generates the same cash flows as the cash flows that need to be priced. The price of this cash 

flow stream is equal to the known prices of the securities that replicate that cash flow. The model is said to be 

arbitrage-free if there do not exist any self-financing trading strategies that produce a risk-free gain. The section 

presents some basic mathematics to describe the pricing of cash flow streams in the case of a zero-coupon bond and 

a non-dividend-paying stock. 

Section 9.2 describes, in mathematical notation and words, how to define the results of trading strategies and 

account for all cash flows as trading positions change. It introduces the concept of hedging a cash flow stream by a 

trading strategy. The cash flow stream is hedged if it can be exactly replicated by dynamically trading in the securities 

market. In an arbitrage-free model, prices of assets are discounted expectations across all future events. Arbitrage-

free asset prices therefore embed all possible future behavior in today’s prices. This forward-looking aspect of 

arbitrage-free models is one reason that prices cannot be prescribed directly. 

Section 9.3 discusses some of the considerations of whether an arbitrage-free framework is necessary and even still 

relevant. The dynamics that can be used to drive risk are constrained; the dynamics that can be applied may not lead 

to a reasonable pricing formula in today’s experience. One area that is getting a lot of attention is the need for more 

robust interest rate models that accommodate the ultra-low interest rates we are currently experiencing. If ESG 

models are applied in real-world modeling contexts, then these models should be able to capture return behavior and 

market dynamics but do not necessarily have to be technically arbitrage-free. But if the scenarios are not arbitrage-

free, then one cannot consistently price derivatives. 

Section 9.4 expands on the martingale test described in the previous chapter. Martingale tests can be used to confirm 

that the scenarios generated by an ESG simulation are arbitrage-free. The application of a martingale test is 

predicated on the assumption that risk-neutral output is available for the model to be tested. The simplest application 

of the martingale test is for assets that do not generate cash flows. If the scenarios are risk-neutral, the time zero 

price of the asset should equal the average of the present value of the ratios of the risk-neutral prices and the values 

of the asset. When the risk-neutral output for a dividend-paying asset is to be tested, the martingale test can be 

based on the expected value of the discounted dividend stream over the horizon plus the discounted value of the 

asset at the horizon. 

9.1 ARBITRAGE-FREE FINANCIAL MODELS 

The importance of the theory of arbitrage-free financial models for ESG work is that it provides a mathematical 

framework that can be used to verify an ESG’s consistency. The cost that must be paid for this framework is hard 

mathematics. The mechanism through which consistency is assured depends on the relationship between the cash 

flows of securities that are modeled and traded, and the prices of these securities. In practice, it is usually the cash 

flows for a security that are readily described, and the theory focuses on how the price of these cash flows must 

behave. Furthermore, the restrictions that the absence of arbitrage imposes on the price of these cash flows are 

useful in developing models for the prices of securities that populate the ESG. 
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The theory of an arbitrage-free model (such as would be found in an ESG) requires that all assets in the model have 

well-defined cash flow structures. For example, if an equity index is to be included in the model, then its ex-dividend 

price process and dividend cash flow structure must be specified. Two important concepts are then introduced to the 

model: a modeled set of trading strategies, and self-financing trading strategies. The purpose of modeled trading 

strategies within the ESG is to establish a mechanism of buying and selling securities. Self-financing trading strategies 

involve the construction of specific trading strategies that do not require the injection of additional capital during 

their execution and for which all cash flows generated by the trading strategy are accounted for. The difference 

between the initial cost of the trading strategy and its value at a given point in time is referred to as the gains process; 

it represents the gain or loss created by the trading strategy from its inception to that point in time. An arbitrage is 

then defined as an explicit trading strategy involving the simultaneous buying and selling of securities, possibly quite 

complicated, leading to either of the following outcomes: 

 The trader would receive a positive cash flow today and no further liabilities during the rest of the trade 

horizon. 

 The trader could enter into the trade at zero net cost and receive only nonnegative cash flows during the 

rest of the trade horizon, with a positive cash flow occurring with probability greater than zero. 

The model is said to be arbitrage-free if there do not exist any self-financing trading strategies that produce an 

arbitrage. While the financial notions associated with these ideas are clear enough, these concepts are not useful for 

ESG purposes until they are given a mathematical interpretation that can be imposed on the model-building process. 

At this point, the theory becomes very technical. 

If a model is arbitrage-free, then one can assign a price to a cash flow stream according to the principle that the price 

of a cash flow stream is equal to the price of any self-financing trading strategy that generates the same cash flow 

stream. In an arbitrage-free model, securities producing identical cash flow streams are essentially interchangeable 

from a pricing standpoint. The logic is simple; two identical cash flow streams ought to have the same price. If they do 

not have the same price, then one could create an arbitrage by selling the more expensive one and covering the 

position by buying the cheaper one. Implicit in this pricing notion is that there exists a self-financing trading strategy 

that generates the cash flow stream, and that we know the prices of the securities that need to be traded in order to 

generate the cash flow stream. 

The significance of the first point is that we can obtain the cash flow stream we are interested in by trading in the 

available securities. The significance of the second point is that we are able to associate a price to the cash flow 

stream based on knowing the prices of the securities that its cash flows are derived from. In summary, we are able to 

price derivative securities based on determining a trading strategy that generates the cash flows we want to price and 

then using the known prices of the traded securities to infer the price of the cash flow stream. 

Under reasonable mathematical conditions it is shown that a model is arbitrage-free if and only if there exists a 

change of measure under which the discounted gains process for all traded assets, for any trading strategy, is a 

martingale (i.e.. a stochastic process in which the conditional expectation of the next value, given the current and 

preceding values, is the current value). Martingale tests were discussed in Section 8.3.2 and are further discussed 

later in this chapter. This result may be stated using a range of terminology, but the way it is most commonly thought 

of is in the language of “risk-neutral expectation.” 

It is possible to understand the general operational details without getting deeply into mathematical theory. We will 

therefore sidestep some of the theoretical justifications for the results we are discussing. However, the concept of 

arbitrage-free models is a precise and technical one, and we require some mathematical notation in order to proceed. 

Also, the difficulty level of the material must increase accordingly. Chapter 10 gets into more detail about risk-neutral 

scenarios, including a more precise definition of risk neutrality and some of the mathematical framework around 

finding a price and replicating portfolio in an arbitrage-free context. 

Let suppose that there is defined a continuously compounded instantaneous rate of interest, which we will denote by 

rt. Actuaries are very familiar with this idea from their early studies of compound interest theory, where this quantity 

is classically referred to as the “force of interest.” It is usually assumed to be constant and is denoted by the small 

Greek letter δ. If one invests a unit amount (e.g., a dollar) for t time units at a continuously compounded 

instantaneous rate of interest δ, then the value of the investment at time t is exp(δt). If one invests a unit amount for 
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t time units at a stochastically fluctuating continuously compounded instantaneous rate of interest ru, then the value 

of the investment at time t is                      . We may think of this investment as a bank account, and we may define a 

process: 

  

which represents the accumulated value of the initial deposit of one unit into the bank account over a period of t 

years. This bank account process will serve as our means of discounting. 

The central question we are faced with is, How can a cash flow stream be priced in an arbitrage-free manner? The 

general answer is that if the price of the cash flow stream is to be consistent with the absence of arbitrage, then the 

price must be given as the expected discounted future cash flows, where the expectation is taken with respect to a 

risk-neutral measure. The precise formulation of this result has come to be known as the First Fundamental Theorem 

of Asset Pricing. For example, in the case of a zero-coupon bond maturing for a unit at time T, the cash flow stream 

consists of a single lump sum payment at time T, and its price must be of the following form: 

  

where P(0, T) denotes the price at time zero of a unit amount that is paid with certainty at time T. In the case of a 

non-dividend-paying stock with price process {St}, its price must satisfy the following formula: 

  

When the stock pays dividends, the corresponding formula is more complicated and must include the expected value 

of the discounted dividend stream. 

9.2 APPLYING A PRACTICAL APPLICATION 

To put the theory on a firm foundation, we must be able to define the results of trading strategies and have a way to 

account for all cash flows as trading positions change. This requirement naturally leads to integrals of the trading 

positions                       weighted by the change in the value of the position dS or the cash flow paid by the security dD, 

leading to evolving gains from trade of the form 

   

The cash flow stream  is said to be hedged if there exists a trading strategy  satisfying the 

following expression: 

 

for all  and for which 

  

In words, the meaning of this equation is that the cash flow stream is hedged if it can be exactly replicated by 

dynamically trading in the securities market. The secondary condition says that all capital has been used up when the 

cash flow stream expires. 

If a cash flow stream is hedged by the trading strategy , then, in an arbitrage-free market, it is 

natural to define the price of the cash flow stream as follows: 
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which is the cost of the trading strategy that generates the cash flow stream. The way in which the theory assigns a 

price to a cash flow stream is to take the price to be the cost of the trading strategy that generated these cash flows.  

What would make this definition operationally useful is for there to be a convenient way to compute the previous 

expression. Using stochastic calculus, it may be shown that the previous expression can be computed from the 

following formula: 

   

The value of this formula is that the price of the cash flow stream is now expressed in terms of the discounted cash 

flows themselves, rather than in terms of the unknown quantity in the prior formula. We may say that the price of the 

cash flow stream must satisfy this formula if it is to be consistent with the absence of arbitrage.1 

A related formula is often used based on the concept of state price density. The state price density is a positive 

process that may be used to price cash flow streams according to this formula: 

 

The expectation is taken under the real-world measure, which means the probability distributions that define all 

security dynamics are consistent with the way we actually experience them. While the second expression appears 

simpler, because there is no risk-neutral measure, in practice the first formula is usually applied because the risk-

neutral change of measure can be obtained by a change in the model parameters only. 

The equivalence between the change of measure to risk neutral and the appropriate change of model parameters is 

what permits actuaries without extensive knowledge of stochastic calculus to still work effectively with a suite of ESG 

models. 

The other important aspect of the theory relates to the spanning of cash flows. Not all cash flows can be created 

through dynamic trading. For example, one cannot replicate the cash flows from catastrophe risk bonds by 

dynamically trading in equity indices and government bonds, no matter how intricate the trading strategies may be. 

This is because the behavior of the cat risk bond depends on variables not present in the equity and government bond 

market. 

The technical terminology that the reader will encounter in delving further into this theory is market completeness. 

The issue of completeness is relevant to ESG applications that require derivatives pricing and hedging. We will note 

some of the high-level issues that relate to the more sophisticated equity models in Chapter 13. 

The formula for asset prices in terms of discounted expectations we have discussed imposes strong restrictions on 

ESG models. An actuary cannot arbitrarily invent and impose a realistic asset price dynamic and still have an 

arbitrage-free model. In an arbitrage-free model, prices of assets are discounted expectations across all future events, 

and arbitrage-free asset prices therefore embed all possible future behavior in today’s prices. This forward-looking 

aspect of arbitrage-free models is one reason that prices cannot be prescribed directly. Indeed, prices must embed 

the range of outcomes that the model is allowing for in the future, and the price we observe today is an expectation 

of these outcomes. 

9.3 IS THE ARBITRAGE-FREE FRAMEWORK NECESSARY? 

The application of the arbitrage-free modeling approach comes with benefits as well as restrictions. The restrictions 

can be inconvenient: One is constrained in the dynamics that can be used to drive risk, and the dynamics that can be 

                                                                        
 

1 The integral is stochastic and can be developed under different frameworks. The rules for the manipulation of the integrals, “the stochastic calculus,” 
and the conditions under which the integral exist vary with the type of integral used. In all cases, the financial content is the same in that the integral 
serves to aggregate the discounted cash flows and there is no loss of fidelity in thinking of the integral in calculus terms. 
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applied may not lead to tractable pricing formulas. The events of the last decade have placed incredible pressure on 

ESG models, and one area that is getting a lot of attention is the need for more robust interest rate models that 

accommodate the ultra-low interest rates we are currently experiencing. Many interesting dynamics could be useful 

in better capturing ultra-low interest rates, but they are not easily brought into the arbitrage-free framework. This 

type of consideration is one argument for moving away from the arbitrage-free requirement. 

If ESG models are applied in real-world modeling contexts, then these models should be able to capture return 

behavior and market dynamics but do not necessarily have to be technically arbitrage-free. Broadly speaking, one 

could construct a defensible ESG that is not technically arbitrage-free, so long as the model produces returns that 

relate to actual market behavior and respects general relationships between financial variables. 

However, arbitrage-free models are a necessary requirement when one wants to apply an ESG to risk-neutral pricing 

problems. If the scenarios are not arbitrage-free, then one cannot consistently price derivatives. It would be difficult 

to justify the use of models that were not arbitrage-free in risk-neutral pricing and hedging applications. 

9.4 MARTINGALE TESTS 

When risk-neutral ESG simulation output is presented, a standard test that is applied to confirm that the scenarios are 

risk-neutral is the martingale test. The martingale test is based on the fact that in a risk-neutral framework, there is an 

explicit relationship between the price of a cash flow stream and its expected discounted future cash flows. This 

relationship can be exploited in a variety of ways to derive tests in simulated output that constitute a necessary 

condition for the scenarios to be risk-neutral. 

The application of a martingale test is predicated on the assumption that risk-neutral output is available for the model 

to be tested. Under some circumstances, useful econometric models are employed in ESGs for asset returns or other 

variables that may not have a risk-neutral equivalent. The martingale test will not apply to such models. 

The martingale test can be applied to a single asset such as a stock index or a bond. The test can also be applied to the 

returns on an index constructed from a collection of traded assets. The specific mechanics of the test varies 

depending on the type of asset or return index the test is applied to. 

The simplest application of the martingale test is for assets that do not generate cash flows, standard examples being 

non-dividend-paying stocks or zero-coupon bonds. Risk-neutral prices are generated for the assets, and the risk-

neutral short rate of interest also is generated. A time horizon is selected. The risk-neutral short rates are used to 

compute the value of the bank account process for the time horizon, and the risk-neutral price of the asset is divided 

by the bank account value. If the scenarios are risk-neutral, the average of these ratios should be equal to the time 

zero price of the asset.2 

When an asset that generates cash flows is tested, the same general procedure applies, with some refinements 

necessary to deal with the more complicated cash flow structure. When the risk-neutral output for a dividend-paying 

asset is to be tested, the martingale test can be based on the expected value of the discounted dividend stream over 

the horizon plus the discounted value of the asset at the horizon. The average of these values should be equal to the 

time zero price of the asset. Alternatively, the test can be based on the expectation of the discounted value of the 

adjusted asset position at the horizon where the adjusted asset position reflects the dividend payments under the 

assumption that these are reinvested in the asset over the horizon. 

Martingale tests are also frequently applied to total return series. It can be shown, using the ideas from this chapter, 

that if a total return index is based on a portfolio of traded assets, then the expected discounted value of that index at 

a given horizon will also be equal to the time zero value of the index. The index inherits this property from the 

constituent assets that make up the index. The fact that this test is being performed on a total return index means 

that cash flows from assets in the index are being reinvested into the index. 

                                                                        
 

2 Since there is random sampling error, the average will never be exactly equal to the time zero price of the asset, but for a relatively large sample size, 
the average will be close, provided that the scenarios are risk-neutral. If this average is not close to the time zero price of the asset, then the ESG fails the 
martingale test, and this indicates that the scenarios are not risk-neutral. This might indicate a parameterization error, the use of a model that does not 
have a risk-neutral risk version, or some other problem with the ESG. 
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9.5 CHAPTER SUMMARY 

1. The concept of an arbitrage-free financial model is both reasonable and desirable, so long as we believe 

that markets are fairly efficient. Models that are not arbitrage-free—the classical actuarial example being 

Redington’s theory of immunization—can still be very useful but need to be interpreted carefully. 

2. The practitioner view on whether ESG models should be arbitrage-free has evolved over time. Prior to the 

financial crisis, most practitioners would generally agree that ESG models should be arbitrage-free. The 

peculiar economic nature of the past many years has practitioners clamoring for “flexibility” in their interest 

rate models, and one can build all sorts of interesting real-world interest rate dynamics, so long as one is 

unfettered by the need for the absence of arbitrage. Some model discipline needs to be imposed in order to 

avoid unreasonable risk-return trade-offs, but there is room for debate on both sides of the issue. 

3. The technical meaning of arbitrage-free is expressed in terms of trading strategies. The mathematical 

formulation of trading strategies and the handling of the cash flows from traded assets are what gives rise 

to the fundamental theorem of asset pricing. It is at this point that stochastic calculus and martingale theory 

enters ESG theory. 

4. Using stochastic calculus, one can express the price of a cash flow stream in terms of the discounted cash 

flows themselves. This requires a risk-neutral environment. 

5. An alternative approach is based on the concept of state price density, which operates under the real-world 

measure, which means that the probability distributions that define all security dynamics are consistent 

with the way we actually experience them. In practice, the risk-neutral measure is more commonly applied, 

because the formula is simpler to use. 

6. The use of trading strategies and the concept of self-financing lead to the characterization of asset prices as 

discounted expectations (i.e., risk-neutral expectations). The precise nature of the discounted expectation 

depends on the nature of the cash flows associated with the asset to be priced (non-dividend-paying, 

dividend-paying, defaultable, etc.). 

7. Formulas for asset prices in terms of discounted expectations can be very useful for model building. A 

standard example is the expression of zero-coupon bond prices in terms of the expectation of the integral of 

the “short rate.” 

8. The formula for asset prices in terms of discounted expectations also imposes strong restrictions on ESG 

models, so that an actuary cannot arbitrarily invent and impose a realistic asset price dynamic and still have 

an arbitrage-free model. In an arbitrage-free model, prices of assets are discounted expectations across all 

future events, and arbitrage-free asset prices therefore embed all possible future behavior in today’s prices. 

9. The formula for asset prices in terms of discounted expectations leads to a martingale condition for asset 

prices. This martingale condition can be used as a test of ESG scenarios as a necessary condition for the 

scenarios to be risk-neutral. This test is widely applied by regulators and is generally referred to as “the 

martingale test.” 

10. Setting up a martingale test requires care to properly account for the nature of the cash flows for the asset 

being tested. The construction of the test differs for treasury bonds, equity returns and corporate bonds. 
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Chapter 10: The Role of Risk-Neutral Scenarios 
As we saw in Chapter 9, the concept of arbitrage-free models provides a set of useful restrictions on the securities in 

an ESG. An essential result that emerges from this framework is that the price of a traded security at any point in the 

simulation must be equal to the expected value of its future discounted gains process under a risk-neutral measure. 

Risk-neutral theory provides a mathematical framework to find the price and replicating portfolio in an arbitrage-free 

context. For some insurance-pricing applications, the analysis ends here. In other applications, the prices and 

replicating portfolios are then applied in a real-world environment. 

This chapter is laid out as follows: 

Section 10.1 describes what risk-neutral means, including the expansion on the concept of a martingale and a 

martingale test that was introduced in prior chapters. Risk-neutral does not depend on developing qualitative 

behavior of financial variables that conform to historical statistics. Instead, risk-neutral focuses on the ability to fit 

financial variables to today’s market prices. For an asset that pays no dividends, risk-neutral requires calibration of 

parameters so that the expected return (over a short period of time) is equal to the risk-free interest rate. When 

more general assets are considered, risk-neutral means that the parameters are calibrated so that the expected 

discounted gains process for that variable is the same for all time horizons. A risk-neutral scenario set can be 

interpreted as pricing scenarios because it permits a series of cash flows, under varying economic scenarios, to be 

discounted at a risk-free rate to produce prices of the cash flows. The relationship between the price of a cash flow 

stream and the expectation of its discounted future cash flows for a risk-neutral scenario set provides a framework 

for the direct auditing of model output through a martingale test. 

Section 10.2 introduces some examples of applications of a martingale test in practice. Whether a martingale test is 

for a non-dividend-paying asset, a dividend-paying asset or a total return index, the test output appears similar. 

Martingale tests are based on averages of random quantities. Therefore, we expect there to be random fluctuations 

in the test output. This section provides comparative examples of typical results of martingale tests of a moderate-

volatility asset and a high-volatility asset, as well as an example of an inconclusive martingale test of a high-volatility 

asset. 

Section 10.3 develops why we need risk-neutral scenarios and provides some examples of what risk-neutral scenarios 

are used for. ESG models under risk-neutral scenarios permit us to evaluate the current price of an asset as the 

expected discounted value of the future cash flows associated with that asset. Under risk-neutral scenarios, this 

expectation can be evaluated in closed form for a wide range of assets. It is also useful to be able to parameterize a 

model to exhibit qualitative behavior that is consistent with market norms. However, in many important insurance 

applications, the risk-neutral expectation that gives the price of an insurance liability cannot be readily evaluated in 

closed form, but we can compute the expectation for each scenario across all scenarios and average them to get the 

expected value that gives the price. This procedure is commonly referred to as Monte Carlo simulation. It is also 

useful to be able to parameterize a model to exhibit qualitative behavior that is consistent with market norms. 

Section 10.4 discusses considerations of when risk neutral scenarios should be used, and when real-world scenarios 

should be used. The general distinction is that risk-neutral scenarios are used for pricing and real-world scenarios are 

used to assess risk. Banks that trade derivatives are primarily interested in the price of the derivatives they are buying 

and selling, and risk-neutral scenarios are often their primary focus. Risk-neutral scenarios are typically used when 

one must price cash flows for which closed formulas are not available, and the risk-neutral scenarios are applied to 

numerically compute prices by Monte Carlo simulation. Real-world scenarios are applicable for measuring returns, 

volatilities and other risk exposures. Risk-neutral scenarios are applicable for pricing cash flows. Real-world scenarios 

are calibrated to historical benchmarks or clients’ own views. Risk-neutral scenarios are calibrated to pricing data such 

as swaptions and index options. 

Section 10.5 discusses examples of when risk-neutral scenarios and real-world scenarios are used, together with 

some of the practical considerations with inner loops. Risk-neutral scenarios will be used in conjunction with real-

world scenarios when the real-world risk measurement exercise requires prices for liabilities or assets that do not 

have closed-form formulas. Such applications typically involve stochastic on stochastic (i.e., inner loops) where the 
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state of the world or node is simulated under the real-world measure and cash flows are priced in that state of the 

world using risk-neutral scenarios projected forward from the current node of the simulation. One purely financial 

example that occurs in practice is managing portfolios of mortgage-backed securities (MBS). 

10.1 WHAT DOES “RISK-NEUTRAL” MEAN? 

Our primary focus in this section is to discuss the technical meaning of the term risk-neutral and explain how this 

leads to the typical interpretation of risk-neutral scenarios as pricing scenarios. Each of the financial variables that are 

modeled in an ESG will have a specified stochastic process that drives the movement of that variable. The parameters 

of that stochastic process can be chosen or calibrated to produce certain qualitative behavior. In real-world risk 

management, calibration is done to obtain qualitative behavior that matches selected targets. The nature of the 

qualitative behavior in a risk-neutral context is more subtle. Risk-neutral scenarios are more difficult to interpret, 

because they are not intended to conform to historical distributions. Their primary criterion is the ability to fit today’s 

market prices. 

Consider the case of an asset that pays no dividends. Profit or loss from trading this asset will be determined solely by 

changes in the price of the asset. For this type of asset, risk-neutral means that the parameters are calibrated so that 

the expected return from this asset over a short period of time is equal to the risk-free interest rate. 

When more general assets are considered, risk-neutral means the parameters are calibrated so that the expected 

discounted gains process for that variable is the same for all time horizons. It is this last notion that can be more 

precisely expressed in the language of martingales. The use of martingales is not a mere convenience, because 

technical results from martingale theory are needed to understand how to set the parameters to give risk-neutral 

behavior. Furthermore, understanding why the concept of risk-neutral is useful depends on arbitrage-free pricing 

theory, which was discussed in the previous chapter. We now further discuss these issues. 

Using the notation from the previous chapter, if Vt represents the value of a portfolio generated by a self-financing 

trading strategy, then we have the following relationship: 

   

  

The first expression simply says that the discounted value of a portfolio generated by a self-financing trading strategy 

is equal to the initial investment plus gains from trade as captured by the integral term. If there are parameters for 

the process Mt in the second equation, so that 

  

then taking expectations in and canceling the term involving Mt gives: 

  

This relation says we can compute the price of a cash flow stream or security by taking the expectation across all 

future outcomes of its discounted value, providing that risk-neutral parameters are used in evaluating the 

expectation. The martingale concept is related to the condition identified in the first expression. 

A risk-neutral scenario is a collection of simulated values of variables, each of which is parameterized by risk-neutral 

parameters. A risk-neutral scenario set is a collection of many risk-neutral scenarios. Each of the constituent risk-

neutral scenarios in a risk-neutral scenario set is interpreted as a particular simulated outcome for the economy. A 

risk-neutral scenario set is therefore a complete simulation of various outcomes for the whole economy. 
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A risk-neutral scenario set can be interpreted as pricing scenarios, because it permits a series of cash flows, under 

varying economic scenarios, to be discounted at a risk-free rate to produce prices of the cash flows. 

A common application is to the pricing of a zero-coupon bond. If the zero-coupon bond matures for a unit amount at 

time T, then its price at time zero must be given by an expression of the following form: 

  

where we have replaced 1/BT with the exponential term in the expectation and used the fact that VT = 1 for a zero-

coupon bond maturing for a unit at time T. In practice, many models for bonds permit explicit evaluation of this 

equation or efficient numerical processes such as the solution of ordinary differential equations to compute this 

equation. Generally, ESGs seek to exploit closed-form solutions and efficient numerical procedures for pricing 

whenever possible. 

We now briefly turn to the idea of the martingale test. As we have previously noted, financial quants use martingales 

as a fundamental tool, and it is not possible to explain the nuts and bolts of arbitrage-free markets and the martingale 

test without them. It is possible to explain the practical implications of the theory, though, and that remains our 

focus, so we will briefly discuss the idea of a martingale and then move to the practical aspects of martingale tests. 

In discrete time, a martingale is a sequence of random variables for which, at any point in time, the conditional 

expectation of the next value in the sequence is equal to the present observed value, given knowledge of all prior 

observed values (i.e., the history of the sequence). In a sense, the future value is not predictable, and knowledge of all 

prior values adds no information to the conditional expectation of subsequent values. The continuous time version of 

a martingale is a direct generalization of this idea. The observed history of the martingale is referred to as the 

information structure or filtration. 

Martingale tests arise in ESG practice because they are often required by regulators. Regulators cannot check all of 

the fine details of an ESG in order to ascertain its veracity, and they are therefore interested in auditing tests that can 

be conducted directly on model output. The relationship between the price of a cash flow stream and the expectation 

of its discounted future cash flows for a risk-neutral scenario set provides a framework for the direct auditing of 

model output. The implementation of the martingale test requires a careful assembly of the relevant risk-neutral 

output. As we noted in Section 9.4, the risk-neutral output required to perform the martingale test depends on the 

type of asset being tested. 

Constructing a martingale asset test begins with the choice of a horizon T > 0 and the following expression: 

   

which is valid for self-financing trading strategies and for which it is assumed that all traded assets have risk-neutral 

parameterizations so that the expectation is a risk- neutral expectation. A specific self-financing trading strategy is 

now selected, and this selection is made to isolate a particular asset and serves to define the nature of that 

martingale test. For example, if one selects the self-financing strategy of purchasing an asset with ex-dividend price 

process Xt and reinvesting the dividends into that asset, then the martingale test at horizon T takes the following 

form: 

  

where QT denotes the accumulated units of the asset that are held at time T as a result of the reinvestment of 

dividends and the original investment. To apply the martingale test, one must determine QT. In cases of practical 

interest, QT is usually a deterministic function of a dividend rate or payment schedule and the horizon T. To apply the 

martingale test, one must give a risk-neutral scenario set consisting of the values for XT and BT and then compute the 

average: 
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which should be close to X0. We denote the number of scenarios in the risk-neutral scenario set as M. 

The martingale test is often set up as a 1 = 1 test. This is nothing more than normalizing both sides of martingale test 

at horizon T by X0, resulting in this test expression: 

  

A total return index may be constructed from traded assets according to this simple weighted formula: 

 

where Ri (t, t + s) is the total return on asset i over the investment period beginning at time t and ending at time t + s 

(i.e., over the interval [t, t + s]) and ωi is the portfolio weight of asset i. The corresponding total return index is now 

constructed recursively, starting with I(0) = 1 and proceeding as follows: 

 

It can now be shown, using the martingale property of each of the constituent assets, that 

 

at horizon T. This expression is a generic but easy-to-apply martingale test for total return indices. To perform the 

martingale test, one must have available a risk-neutral scenario set of the total return series for the index. This is not 

difficult to compute, but it must be computed correctly, or the premise of the martingale test will be violated, and the 

preceding equation will not hold. 

10.2 APPLICATIONS OF MARTINGALE TESTS IN PRACTICE 

Whether a martingale test is for a non-dividend-paying asset, a dividend-paying asset or a total return index, the test 

output appears similar. In this section, we look at some sample martingale test output to show what one expects 

from the tests in cases where the test is both passed and failed. 

The first thing that needs to be noted is that martingale tests are based on averages of random quantities. Therefore, 

we expect there to be random fluctuations in the test output. For more volatile asset prices or returns, such as equity 

returns, one may get martingale test results that are not perfect passes, even though the scenarios may be legitimate 

risk-neutral scenarios. 

The examples provided are based on a non-dividend-paying asset with a simple price process of the Black-Scholes 

type and a constant interest rate. More sophisticated price processes or interest rate assumptions would have more 

complicated test output, but the overall qualitative nature of the test output would not change much. If the price of 

the asset is denoted by X and the constant risk-free rate is denoted by r, then the martingale test at horizon T is based 

on the following expression: 

   

We assume that X0 = 1 so that we are checking that the test statistic is equal to 1. It is customary to generate the test 

statistic for all time periods to the largest horizon tested, and for our example, we run the test over a 30-year horizon. 

Consequently, the charts we are viewing show the path of martingale test statistics for all periods up to 30 years. If 

the martingale test is passed, each of these charts will tend to be located around 1 for all time points. Systematic 
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deviations from 1 indicate that the discounted asset price process is not a martingale. However, as we will observe, 

volatility makes it harder to diagnose test results. In each of our examples, the size of the risk-neutral scenario set is 

10,000. For each example, we have generated a true risk-neutral series and an accompanying biased series. The 

biased series is based on exactly the same random draws as the true risk-neutral series, so the charts show the way in 

which the bias manifests itself relative to a series that would pass the martingale test. 

The results in Figure 10.1 are typical for a moderate-volatility asset.  

Figure 10.1  

TYPICAL TEST RESULTS FOR MODERATE-VOLATILITY ASSETS, σ = 0.08 

  

Source: Conning Inc.  

The results in Figure 10.2 are typical for a high-volatility asset. The true martingale series may deviate from 1, but it 

should return to near this level over a sufficiently long horizon. 

Figure 10.2  

TYPICAL TEST RESULTS FOR HIGH-VOLATILITY ASSETS, σ = 0.20 

 

Source: Conning Inc. 
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The results in Figure 10.3 illustrate an example that can create doubts when testing a high-volatility asset. The true 

martingale series appears to behave less like a martingale than the biased series. The reason for this is that this 

scenario set happens to have relatively unusual draws and the biased series tends to compensate for this. This shows 

why one should run the martingale test a few different times, even with a fairly large number of scenarios. 

Figure 10.3  

INCONCLUSIVE TEST RESULTS FOR HIGH-VOLATILITY ASSETS

 

Source: Conning Inc. 

10.3 WHAT IS THE PURPOSE OF RISK-NEUTRAL SCENARIOS? 

As we have already noted, risk-neutral scenarios arise in the connection between future cash flows and the current 

price of an asset. Roughly speaking, the connection is that the current price of an asset is the expected discounted 

value of the future cash flows associated with that asset. Ideally, our ESG models permit us to evaluate this 

expectation in closed form for a wide range of assets. However, complicated valuation problems will lack closed 

formulas. 

Indeed, there are many important insurance applications for which the risk-neutral expectation that gives the price of 

an insurance liability cannot be readily evaluated. For example, an insurance company may offer an investment 

guarantee that depends on the performance of an investment based on a portfolio of several equity indices. The 

investment guarantee might depend on the history of the index returns, so that a sampling of the evolving equity 

indices figures in the resulting guarantee liability. 

For illustration, let us suppose that this results in an expression of the following form: 

 

where Stj denotes the values of the equity indices at time tj and tN = T. The price of this uncertain cash flow is equal to 

 

This expression is difficult to evaluate in general, but it does provide a precise formula that represents the price of the 

liability. The accurate evaluation of this equation can be an intricate matter. In theory, if we are able to generate a 

risk-neutral scenario set for the model, then we can compute the expression under the expectation in this equation 

for each scenario and average the results to get the expected value that gives the price. This procedure is commonly 
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referred to as Monte Carlo simulation, and it is through situations like the one we have just described that Monte 

Carlo simulation naturally enters into the discussion. 

We emphasize that this equation is a theoretical consequence of arbitrage-free pricing and is a statement about the 

relationship between risk-neutral scenarios and the price of a cash flow stream. The decision to compute this 

equation by Monte Carlo simulation depends on whether or not one is able to efficiently generate a large risk-neutral 

scenario set and whether alternative methods might be faster or more accurate. It is the application of risk-neutral 

scenarios to general Monte Carlo simulation that is the primary reason for considering risk-neutral scenarios. 

Alternative numerical methods such as Fourier inversion or finite difference methods may also be applied to compute 

this equation. Regardless of the numerical method used, the evaluation of this equation should not be confused with 

the basic notions of risk-neutral scenarios. 

The idea of risk neutral is useful because it is intimately related to the pricing of assets and more general cash flow 

streams, and it provides a practical framework for computing prices. It is also useful to be able to parameterize a 

model to exhibit qualitative behavior that is consistent with market norms. This latter criterion is about getting output 

from the model to line up with real-world values. A natural question to ask is whether one can assess the 

reasonableness of risk-neutral output by comparing it with historical data. The answer is yes and no. One may say yes 

in that reasonable risk-neutral output will give prices for securities that are close to observed market prices. One must 

say no in that the averages of a risk-neutral variable cannot be benchmarked against historical data. Indeed, risk-

neutral risk variables often have means that would be unreasonable in a real-world simulation context. If one obtains 

risk-neutral risk interest rate scenarios where some interest rates are 100%, is that OK? Probably not; it most likely 

reflects a model misspecification. There is a link between real-world and risk-neutral interest rates through the 

market prices of interest rate risk (and thus term premiums), as we observe in Chapter 11, and this link should 

provide a break on extreme divergence between real-world and risk-neutral scenarios. 

When an ESG is utilized for risk-neutral simulation, the focus of the calibration will be on matching equity and 

swaption volatility surfaces and the reproduction of derivative market prices in general. The idea is that the ESG 

should be calibrated to market price data as tightly as possible, so that the pricing of insurance liabilities and other 

contingent claims that are not priced in the market will have prices that reflect liquid market prices as accurately as 

possible. Ensuring the calibration matches the initial yield curve also is an important consideration. 

Risk-neutral scenarios are used to value cash flows. In cases where the cash flows that we seek to value are 

deterministic, risk-neutral scenarios are not needed, since the value of these cash flows can be computed by simple 

discounting. If we were to perform a risk-neutral Monte Carlo simulation to value these deterministic cash flows, the 

value we get back would agree with that obtained by simple discounting. The instances for which risk-neutral 

scenarios are needed are those for which one has complicated cash flows that depend upon stochastic financial 

variables. We then apply a risk-neutral scenario set to capture the covariation in the cash flow dependency with the 

key financial variables, in order to price the cash flow. Interest-sensitive insurance liabilities are a classic example of 

this paradigm. Market-consistent embedded value (MCEV), variable annuity risk management (i.e., exposure 

assessment and hedging) and the pricing of exotic cash flows are all examples in which risk-neutral scenarios are 

applied.

10.4 DECIDING BETWEEN REAL-WORLD AND RISK-NEUTRAL SCENARIOS 

The general distinction is that risk-neutral scenarios are used for pricing and real-world scenarios are used to assess 

risk. Banks that trade derivatives are primarily interested in the price of the derivatives they are buying and selling, 

and risk-neutral scenarios are often their primary focus. Risk-neutral scenarios are typically used when one must price 

cash flows for which closed formulas are not available, and the risk-neutral scenarios are applied to numerically 

compute prices by Monte Carlo simulation. 

Real-world scenarios are applicable for measuring returns, volatilities and other risk exposures. Risk-neutral scenarios 

are applicable for pricing cash flows. Real-world scenarios are calibrated to historical benchmarks or clients’ own 

views. Risk-neutral scenarios are calibrated to pricing data, such as swaptions and index options. 

The difference between risk-neutral scenarios and real-world scenarios is not the individual scenarios themselves; it is 

the probability of those scenarios occurring. Theoretically, all of the scenarios in a risk-neutral scenario set are real 
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world and vice versa. A risk-neutral scenario set weights the bad scenarios more than a real-world scenario set does, 

precisely because investors fear these scenarios. Risk-neutral scenarios weight adverse scenarios more heavily than 

real-world scenarios when pricing a security. Risk-neutral scenarios often look unreasonable if viewed relative to 

historical interest rates or returns. This is largely because risk-neutral scenarios embed the risk premiums necessary 

to get appropriate market prices. 

10.5 WHEN ARE REAL-WORLD AND RISK-NEUTRAL SCENARIOS USED TOGETHER? 

Real-world and risk-neutral scenarios will often be applied together in applications that combine risk management 

metrics with pricing. How does this arise? We have noted that risk-neutral scenarios are used for pricing and real-

world scenarios are used to measure risk. The process of measuring risk almost always involves looking at returns, 

and returns depend on changes in price. One might therefore be tempted to assert that real-world scenarios must 

certainly directly employ risk-neutral scenarios if they are to produce any meaningful measure of risk. Such an 

assertion is not true, because ESGs are typically chosen so that the prices of key assets like treasury bonds, equities 

and corporate bonds are available in closed form. When the prices of key assets are available in closed form, these 

prices can be simulated off of the real-world dynamics for the economy, and risk-neutral scenarios are not required. 

Risk-neutral scenarios will enter the picture when the real-world risk measurement exercise requires prices for 

liabilities or assets that do not have closed-form formulas. One purely financial example that occurs in practice is 

managing portfolios of mortgage-backed securities (MBSs). MBSs have complicated path-dependent cash flows and 

thus do not have convenient closed-form formulas for their prices.1 The risk management and hedging of variable 

annuities is a standard example in which real-world and risk-neutral scenarios are applied together. Policyholder 

behavior and the availability of many investment products make it difficult to price the insurance liabilities associated 

with the product. An application such as this typically involves nested stochastic (i.e., inner loops) where the state of 

the world or node is simulated under the real-world measure, and cash flows are priced in that state of the world 

using risk-neutral scenarios projected forward from the current node of the simulation. In this case, the real-world 

simulation is used to assess the overall risk of the variable annuity book and to measure the effectiveness of the 

hedging strategy. Since the liabilities associated with the variable annuity book are complicated, closed-form formulas 

are not available, and risk-neutral scenarios must be used to price the variable annuity book at each node of the real-

world simulation. 

Inner loops are computationally intensive. If the pricing that the inner loop is being used for depends on a small 

number of financial variables, then it may be possible to precompute the prices and simply feed the relevant real-

world output the precomputed prices. Unfortunately, many practical insurance problems cannot be simplified in this 

way. Therefore, other ways to avoid inner looping have been developed. Two important examples are replicating 

portfolios and least squares Monte Carlo, the details of which are beyond the scope of this publication. 

10.6 CHAPTER SUMMARY 

1. Risk neutral has a very specific meaning, which is inherently technical in nature but has an important 

practical manifestation that is the basis for generating pricing scenarios. 

2. Risk-neutral scenarios are typically used when one must price cash flows for which closed formulas are not 

available and the risk-neutral scenarios are applied to compute prices. This situation is usually thought of in 

the context of Monte Carlo simulation. Although Monte Carlo simulation may be used to generate the risk-

neutral scenarios, there is no other link between Monte Carlo and risk neutral. Market-consistent 

embedded value (MCEV), variable annuity risk management (i.e. exposure assessment and hedging) and the 

pricing of complicated cash flows are all examples in which risk-neutral scenarios are applied. 

3. The martingale test is a check to confirm that a set of scenarios are risk neutral. The martingale test is often 

required by regulators. The implementation of the martingale test requires a careful assembly of the 

relevant risk-neutral variables. Volatile asset returns such as equity returns can produce martingale test 

results that are not perfect passes, even though the scenarios may be legitimate risk-neutral scenarios. 

                                                                        
 

1 Certain simplifying assumptions can be made to promote faster computation times, but sophisticated prepayment functions, such as those used by 
trading institutions, will usually require a risk-neutral approach. 
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4. Real-world scenarios are applicable for measuring returns, volatilities and other risk exposures. Risk-neutral 

scenarios are applicable for pricing cash flows. 

5. Real-world scenarios are parameterized to reflect historical benchmarks or clients’ own views. Risk-neutral 

scenarios are calibrated to pricing data such as swaptions and index options. 

6. Risk-neutral scenarios often look unreasonable if viewed relative to historical interest rates or returns. This 

is largely because risk-neutral scenarios embed the risk premiums necessary to get appropriate market 

prices. 

7. Risk-neutral scenarios have a reputation of being difficult. The addled view that is common among 

newcomers is largely the result of failing to understand the fundamental differences between real-world 

and risk-neutral scenarios. 

8. Real-world and risk-neutral scenarios will often be applied together in applications that combine risk 

management metrics with pricing. Such applications typically involve stochastic on stochastic (i.e., inner 

loops) where the state of the world or node is simulated under the real-world measure and cash flows are 

priced in that state of the world using risk-neutral scenarios projected forward from the current node of the 

simulation. The risk management and hedging of variable annuities is a standard example in which real-

world and risk-neutral scenarios are applied together. In this case, the real-world simulation is used to 

assess the overall risk of the variable annuity book and to measure the effectiveness of the hedging 

strategy. Since the liabilities associated with the variable annuity book are complicated, closed-form 

formulas are not available, and risk-neutral scenarios must be used to price the variable annuity book at 

each node of the real-world simulation. 

10.7 CHAPTER REFERENCES 

The material in Chapter 10 is an application of the ideas of Chapter 9. The references from Chapter 9 may be 

consulted for the material of this chapter. Additional sources include the following. 

Bingham, Nicholas H., and Rüdiger Kiesel. 2004. Risk-Neutral Valuation: Pricing and Hedging of Financial Derivatives. 

2nd ed. New York: Springer. 

Hunt, P. J., and J. E. Kennedy. 2004. Financial Derivatives in Theory and Practice. Revised ed. New York: John Wiley & 

Sons. 
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Chapter 11: Default-Free Interest Rate Models 
As a key component of an ESG, the default-free interest rate model has the primary purpose of generating the prices 

of zero-coupon bonds for the economy. Having knowledge of the prices of zero-coupon bonds allows the construction 

of yield curves and the pricing of all default-free interest-rate contingent cash flows. Practitioners often refer to the 

model as generating the term structure of interest rates, or term structure for short. 

Section 11.1 discusses important properties of robust interest rate models. For example, they should model the 

economy so no arbitrage-trading opportunities are available, which permits utilization of the general mathematical 

framework of arbitrage-free models, discussed in Chapter 9. An ESG should begin the simulation with the initial model 

yield curve in agreement with the market observed yield curve. Another consideration addresses the phenomenon of 

negative interest rates, which has of late become a significant challenge to interest rate models. 

Section 11.2 discusses binomial interest rate models, which are based on a discrete time series and have been applied 

since the earliest days of interest rate modeling. Binomial models offer a computationally flexible approach for pricing 

a wide variety of cash flow structures. Multiperiod dynamics for the binomial model are described as a multiplicative 

binomial model. 

Section 11.3 begins a discussion of a continuous-time single-factor model. Going from discrete periods, such as 

considered in the binomial model, to continuous time requires a more difficult level of mathematics, but this provides 

a better model of interest rate dynamics with greater computational flexibility. The basic building block for these 

factor models is a stochastic differential equation for the short rate. The other input to the model is the market price 

of risk process. Examples of these models are the Gaussian or Vasicek model and the Cox-Ingersoll-Ross (CIR) model. 

Section 11.4 provides some information on more advanced models. The section includes a more generalized 

discussion of affine models, beginning with a more detailed discussion of a two-factor continuous-time (affine) model. 

The section then discusses models that extend beyond affine continuous-time models to classes described as 

quadratic interest rate models, shadow interest rate models, threshold interest rate models, regime-switching models 

and macro finance models (specifically the dynamic Nelson-Siegel model). An advantage of the DNS framework is that 

a wide range of factor dynamics can be introduced. Furthermore, the model is often integrated into a macro-finance 

framework, where the factor dynamics are directly linked to key macro variable dynamics. A drawback of the model is 

that it is not suitable for derivatives pricing and is therefore a tool for real-world applications. 

11.1 IMPORTANT PROPERTIES OF ROBUST INTEREST RATE MODELS 

Realistic models of interest-rates should have many important properties. For example, short rates tend to be more 

volatile than long rates. An ESG should also model the economy so no arbitrage-trading opportunities are available, 

and this perspective permits us to bring the general mathematical framework from Chapter 9 (arbitrage-free models) 

to bear on the problem. This framework may then be used to accommodate some of the stylized facts (as discussed in 

Chapter 6) that we believe a reasonable term structure model ought to possess. 

A robust interest rate model should be capable of producing realistic interest rate scenarios and distributions in real-

world applications and efficient pricing of cash flows in risk-neutral settings. The model should have a tractable 

calibration algorithm that can be used with market data to accurately reflect the relevant features of the risk 

management application. The accuracy of the model should be examined using a careful validation procedure. One 

might think that the key to building a “good” model of the term structure is to model the correct observable 

economic variables. Should not variables such as short rate, long rate and the inflation rate figure in the dynamics of 

interest rates somehow? 

While this is true, it is disappointing to learn that models that attempt to explicitly model these variables tend to 

perform poorly; the models are normally misspecified because the ways in which these variables interact to produce 

interest rates are too complex to be captured in a “simple” model. In practice, latent variable models (models in 

which unobservable factors are used to explain fluctuations in interest rates) tend to perform better in practice than 
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do such explicit economic models. Often one can get better performance from a model that uses latent (i.e., 

unexplained) factors than from trying to model observable factors directly. 

The basis for the construction of arbitrage-free interest rate models is the observation that zero-coupon bonds are 

traded securities. As traded securities, zero-coupon bonds are subject to the technical restrictions imposed by 

arbitrage-free pricing, discussed in Chapter 9. These technical restrictions also serve as a framework for developing 

interest rate models where the starting point is the requirement that the dynamics of the discounted zero-coupon 

bonds behave as martingales under a risk-neutral measure. Therefore, the martingale condition will be a part of any 

arbitrage-free interest rate model. 

In most applications of an ESG, it is important that the ESG begins the simulation with the initial model yield curve in 

agreement with the market observed yield curve.1 Affine models will typically agree with the market observed yield 

curve at a number of points equal to the number of factors employed in the model. One method to adjust the yield 

curve at positions other than these points is to use a deterministic shift, as explained in detail by Dybvig(1997). In 

extreme environments there is a practical issue in that the shift will propagate forward through time and can cause 

unwanted distortions to the simulation at a later time at a shorter maturity on the yield curve. An alternative to a 

deterministic shift is to allow time dependent parameters in the factor processes, as was done in Hull and White 

(1990). The differences between these two methods are material. The use of time-dependent coefficients can also be 

used to induce a temporary change in the dynamics of the underlying state variables. However, the use of time-

dependent coefficients effectively introduces many extra parameters to the model. 

From time to time in the literature, there seems to be considerable confusion about what it means for an interest rate 

model to not match the initial yield curve. Some authors have asserted that not exactly producing the initial yield 

curve violates the condition that the model is arbitrage-free. This is not theoretically true, but it does present some 

practical problems in setting up an initial bond portfolio with a known market value. Models that are constructed in 

the presence of an equivalent martingale measure are arbitrage-free, but they may not be capable of being calibrated 

exactly to a given yield curve. This is a misspecification error rather than an arbitrage. So it is possible for an arbitrage-

free model to have difficulty capturing some initial yield curves. 

11.1.1 NEGATIVE INTEREST RATE 

The recent emergence of significant negative interest rates raises challenges and questions. Some interest rate 

models do not permit negative interest rates. This typically arises because of the implications of the types of 

stochastic processes used to construct the interest rate model, two common examples being that interest rates are 

log normally distributed or non-central chi-square distributed. Negative interest rates can still be allowed for in such 

models if a shift is carefully applied to the model dynamics. The constant shift moves all interest rates relative to their 

positions in the model prior to applying the constant shift. A constant shift also preserves the shape of the 

distribution of interest rates. The method has the advantage that it is easy to apply. The method has the disadvantage 

that the shifted distribution of interest rates may not have a left tail that is consistent with history or the calibration 

view. 

The deeper modeling questions, and ones that are under very active research, focus on the issue of what classes of 

interest rate models are suitable for capturing the interest rate experience of the past decade. Models that are 

specifically geared to the low interest rates seen globally post financial crisis often refer to the zero-lower bound 

(ZLB). We now know that there is no hard zero-lower bound, but the important idea associated with ZLB is that 

interest rates are not likely to take on negative values of large absolute value.2 

                                                                        
 

1 Some models will automatically produce the market yield curve, two examples being LIBOR market models and Heath-Jarrow-
Morton (HJM) models. LIBOR market models were developed for derivative pricing and may not exhibit realistic interest rate 
behavior over long simulation horizons. HJM models are not generally finite-dimensional if a wide range of volatility dynamics is 
required. Therefore, one may not necessarily select models that easily accommodate the initial yield curve, as other performance 
considerations play a role. 
2  An interest rate of –1.0% is already near the extreme of what is expected. An interest rate of –7.0% seems implausible and would 
not be wanted as ESG model output. 
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11.1.2 ARE NEGATIVE INTEREST RATES ARBITRAGE? 

If an interest rate model admits negative interest rates, there is a temptation to immediately conclude that the model 

is not arbitrage-free. After all, why not just hold cash in a mattress or a bank vault instead of purchasing bonds for 

more than the sum of their future cash flows? However, the arbitrage-free framework requires that all tradable 

assets be specified at the outset, and all traded assets are then subject to the no-arbitrage conditions. The asset that 

is specified for holding cash is the money market account, and this “earns” the risk-free interest rate. Market 

participants have no other ways to hold cash. A “cash in the mattress” investment was not part of the specified 

assets.3 These days, one often hears talk from some economist about how the government should abolish cash so 

that it can enforce negative interest rates if the need should arise. The actual economy has market frictions that are 

not included in a theoretical arbitrage-free framework. There are various ways to square the implications of the 

theory with the range of issues that are emerging in the actual economy. 

11.2 BINOMIAL INTEREST RATE MODELS 

Binomial interest rate models have been applied since the earliest days of interest rate modeling. The first 

applications were to valuing contingent cash flows. Binomial models offer a computationally flexible approach for 

pricing a wide variety of cash flow structures. Binomial models may be understood from elementary first principles, in 

contrast to the more technical issues that must be dealt with in continuous-time models. Binomial models can be 

linked to continuous-time models through limiting processes and their connection to finite difference solutions of 

partial differential equations. 

A typical example of a binomial interest rate model is shown in Figure 11.1. The model consists of a lattice (also called 

tree) structure that is used to specify the development of the one-period interest rates, the values of one-period 

interest rates at each node of the lattice, and an assumption about the probability of moving up or down from each 

node. Figure 11.1 is a five-period lattice model. 

Figure 11.1  

AN ILLUSTRATIVE BINOMIAL INTEREST RATE MODEL 

 

Let us develop the basic formulas for binomial interest rate models. We will take the following argument and use it to 

understand the model dynamics at every node of the interest rate tree. In the following, we are at some fixed but 

otherwise generic node in the model. The same set of arguments we are about to make will apply to every node in 

the lattice. A picture for our generic node is as shown in Figure 11.2. 

                                                                        
 

3  If one tries to define a “cash in the mattress” asset, one will find that the no-arbitrage conditions force it back to a money-market-
type instrument. 



   116 

 Page 116  

Figure 11.2 

BINOMIAL BRANCHING AT GENERIC NODE 

 

We use p to denote the conditional probability of the up state occurring at the end of the period. If S is the price of a 

security at the beginning of the period, the security will have a price Su if the up state prevails at the end of the 

period, and a price Sd if the down state prevails at the end of the period, as represented by Figure 11.3. One may think 

of the security as a bond, but it is intended to represent a generic set of cash flows. 

 

Figure 11.3 

GENERIC PRICE DYNAMICS OF A SECURITY 

 

 

Let the one-period rate (also called the short rate) in effect at the beginning of the period be denoted by r. The value 

of r depends on which node we are at in the lattice, but we will suppress this dependence in our notation. We now 

derive the most important implication of the absence of arbitrage. 

We suppose that available for trade is the one-period bond and a risky bond, which we will denote by B. The 

requirement that the bond be risky means simply that Bu ≠ Bd ; i.e., the future value of the bond at the end of the 

period is unknown. The prices of these two assets will evolve as shown in Figure 11.4. 
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Figure 11.4   

GENERIC PRICE DYNAMICS OF A SECURITY 

 

Now consider a third generic security denoted by S, the price of which evolves, as we have already noted, as in Figure 

11.3. We are interested in relating the price of this security to the prices of the traded and priced securities. To this 

end, consider a portfolio of the one-period bond and the risky bond, in which Ø units of the one-period bond and θ 

units of the risky bond are held:  

 

We seek values for Ø and θ such that the payoffs from this portfolio in each of the up and down states is exactly equal 

to the payoff from the generic security S we are considering. Mathematically, we are seeking Ø and θ such that 

 

By simple linear algebra, we find that there is such a portfolio with 

 

The only requirement to make the algebra work is that Bu ≠ Bd. The cost of this portfolio is equal to 

 

This expression may be simplified to 
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Thus, we have determined a portfolio of the one-period and risky bonds that has exactly the same payoffs as our 

generic security S. Therefore, if there is no arbitrage, this portfolio must cost the same as the generic security. 

Indeed, if they sold for different prices, then we could buy one and short the other, making an instant profit. This 

piece of reasoning is the most common application of the principle of no arbitrage. 

The price of the generic security today was denoted S. Since this is equal to the cost of the portfolio, we have shown 

that 

 

It is straightforward to check that if there is no arbitrage; then B(1 + r) must be between Bu and Bd. The argument is 

that if this were not the case, then the one-period bond must dominate the risky bond or vice versa—either of which 

would result in an arbitrage. 

Let us define 

 

Then π is a number such that 0 < π < 1 and is called a risk-neutral (or martingale) probability. 

Since S was assumed to be an arbitrary security, we have shown that all securities satisfy the equation 

(11.1)                   

 

This is a very important result. It says that the price of a security is equal to the discounted expectation of its payoffs, 

where we discount at the short rate and the expectation is taken with respect to the risk-neutral probabilities. This is 

one of the most important ideas in financial economics. Note also that the actual probability p does not figure in the 

pricing of the generic security.4 

In the context of binomial interest rate models, Equation 11.1 means that if we specify the one-period interest rate 

and binomial risk-neutral probability at every node of the lattice, then we have a model that can be used to price 

contingent cash flows. In many models, the binomial probability is assumed to be 1/2. The manner in which the one-

period interest rates are specified is the key distinguishing feature of different binomial interest rate models. 

We give an illustrative example of the specification of a binomial interest rate model and a simple example to 

illustrate the basic application of the model. 

We consider a multiplicative binomial model as defined by the local dynamics for each node shown in Figure 11.5. 

  

                                                                        
 

4 Providing that S is a risky asset (i.e., Su≠ Sd, which is required for the algebra to be defined), we can use this formula to solve for π in 
terms of the asset.  
Performing the simple algebra one finds 

 
and the right side of the expression will be the same for all risky assets. Thus, knowing the payoffs of a risky asset and its price today 
permits us to solve for π. 
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Figure 11.5  

LOCAL DYNAMICS AT EACH NODE OF THE BINOMIAL LATTICE 

 

 

At each node in the lattice, the one-period interest rate can branch up or down to a value that is determined from the 

value of the one-period rate at the start of the period, and a parameter γy.  When the local dynamics are put 

together, we obtain the multiperiod interest rate tree shown in Figure 11.6. 

Figure 11.6  

MULTIPERIOD DYNAMICS FOR THE BINOMIAL MODEL 

 

 

The tree, together with the parameter value p, is called the multiplicative binomial model. In Figure 11.7, we 

construct an illustrative three-period multiplicative binomial interest rate tree for the parameter values p = 0.5; r = 

005; γ = 0.1. 

Figure 11.7  

ILLUSTRATIVE MULTIPERIOD BINOMIAL MODEL 
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To price cash flows in this model, you simply discount them back through the lattice in accordance with the 

relationship noted in Equation 11.1. For example, suppose we want to price a three-period zero-coupon bond 

maturing for a unit amount. A three-period zero-coupon bond has cash flows of 1 at time three, and no cash flows 

elsewhere, as shown in Figure 11.8. 

Figure 11.8  

CASH FLOWS FROM A THREE-PERIOD ZERO-COUPON BOND MATURING FOR A UNIT AMOUNT 

 

 

Figure 11.9  

RECURSIVELY PRICE AT EACH NODE 

 

 

We value the cash flows recursively as follows (see Figures 11.9 through 11.11). First find the prices at period two. 

The following example shows the top node at period two:  

 

The other values of 0.9524 and 0.9603 are computed similarly as the discounted expected payments of the cash flows 

at time 3 that emanate from the node we are computing. When these recursion are completed back to time 0 we find 

that the price of the three period zero-coupon bond maturing for a unit amount is 0.8633. More complicated 

contingent cash flows can be priced, but the procedures remain similar. 

The model may be generalized to different branching structures, such as a trinomial mechanism, and to a multifactor 

context. 
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Figure 11.10  

RECURSIVELY PRICE AT EACH NODE 

 

 

 

 

Figure 11.11  

RECURSIVELY PRICE AT EACH NODE 

 

 

There is a large literature on binomial interest rate models. See van der Hoek and Elliott (2006), Tuckman (2002), Lyuu 

(2004), Ho and Lee (2004), and Black and Karasinski (1991) for additional information. 

11.3 CONTINUOUS-TIME SINGLE-FACTOR MODELS OF THE TERM STRUCTURE 

Continuous-time interest rate models figure prominently in ESGs because they have been extensively researched, and 

they offer a flexible and tractable framework for the simulation of realistic interest rate dynamics and the pricing of 

contingent cash flows. Continuous-time interest rate models were the first class of interest rate models that were 

extensively researched in the late 1970s, with the development of the Cox-Ingersoll-Ross and Vasicek models. 

Continuous-time interest rate models can be based on a single factor or multiple factors. Single-factor models have 

the advantage of simplicity. They are easier to calibrate and simulate than their multifactor cousins. However, single-

factor models have some important deficiencies that can render them inappropriate for some applications. For 

example, since a single-factor model has one source of uncertainty, changes in interest rates of different tenors are 
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perfectly correlated. Also, the yield curves associated with a single-factor model are completely determined by one 

tenor, so there is only one possible yield curve associated with a given level for a specific tenor interest rate. In other 

words, for a single-factor interest rate model, there is one and only one yield curve the model can generate that has a 

three-month interest rate of 1%. A careful examination of historical yield curves shows that there have been many 

different shapes of yield curve associated with a three-month interest rate of 1%, so it is fair to say that a single-factor 

interest rate model cannot produce a wider range of yield curve shapes. Therefore, some applications will be fine 

with the use of a single-factor interest rate model, while others will need the more sophisticated multifactor 

framework. 

Most of the key ideas in continuous-time interest rate modeling can be illustrated in the single-factor context. For this 

reason, we restrict most of our discussion to this class of models. 

11.3.1 Fine Details of One-Factor Continuous-Time Models 

In going from discrete to continuous time, one must accept a more difficult level of mathematics. In return for the 

increased complexity, one is better able to model interest rate dynamics and acquire a model with somewhat greater 

computational flexibility. 

The basic building block for the one-factor continuous-time model is a stochastic differential equation for the short 

rate. It is customary to denote the short-rate process by rt. Historical proxy data for the short rate is exhibited in 

Figure 11.12. This figure is a graph of the three-month U.S. Treasury rate based on the Federal Reserve Bank’s H15 

data set. 

Figure 11.12  

THE U.S. SHORT RATE 

 

Source: St. Louis Federal Reserve, Federal Reserve Economic Data 

 

The stochastic differential equation for the short-rate is assumed to be of the form 

(11.2) 

where W is a Brownian motion process. 

For our purposes, the most significant properties of a Brownian motion process are as follows: 
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1. The process is continuous. 

2. The increments of the process are independent. 

3. Wt – Ws is normally distributed with mean 0 and variance t – s. 

 

We can gain some insight into the dynamics of Equation 11.2 by writing its “discretized” version as follows: 

 

(11.3) 

where  denotes a standard normal random variable (i.e., normally distributed random variable with mean 0 

and variance 1). 

In practice, one seeks to find models for the short rate that reflect the empirical properties of interest rate time 

series. As one would expect, this is a challenging issue. Indeed, not only must we be able to formulate a 

mathematically tractable model, but we must be able to estimate the model parameters. 

The other input to the model is the market price of risk process. This process governs the risk-return relationship for 

all bonds through the following general relationship: 

 

The market price of risk process permits us to distinguish two versions of the interest rate model: “real world” and 

“risk neutral.” The real-world version is the one we use to simulate the empirical behavior of interest rates. The risk-

neutral version is the one we use for pricing general interest rate contingent cash flows, derivatives, investment 

guarantees and so on. 

A specification of the market price of risk (usually denoted λt) is equivalent to a specification of an equivalent 

martingale measure (usually denoted Q). However, we will avoid the more technical mathematical details and simply 

illustrate what effect the market price of risk has and how one computes it for the Vasicek model. 

11.3.2 The Vasicek or Gaussian Model 

One of the best-known models is the Gaussian model. In this model, the short-rate process is assumed to follow the 

following process: 

 

where α, γ and η are constant. This model has mean reversion and constant short-rate volatility. The market price of 

risk process for this model is normally assumed to be a constant, which we will denote by λ. 

The price of a discount bond at time t that matures for a unit at time T when the short rate is equal to rt  at time t is  

denoted by P(rt, t, T).  

With these assumptions, one can compute a closed formula for the price of a discount bond as follows: 

(VAS-PRICE)       

where 
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Using the formulas provided by (VAS-PRICE), we can simulate most of the key aspects of the term structure needed 

for actuarial applications. 

A more general version of this model, usually referred to as the Hull and White model, allows the parameters of the 

short-rate process to be time-dependent: 

(11.4)                                   

The additional flexibility permits calibration to the initial yield curve and to derivatives prices in some risk-neutral 

pricing applications. 

11.3.3 The Cox-Ingersoll-Ross (CIR) Model 

Another popular model of the term structure is the Cox-Ingersoll-Ross (CIR) model. In this model, the short-rate 

process is assumed to follow the following process: 

(11.5)                                    

where ĸ, θ and σ are positive constants. 

The dynamics in Equation 11.5 are assumed to be real world. This model has mean reversion and short-rate volatility 

that is proportional to the level of the short rate. The latter property is somewhat consistent with the volatility of the 

short rate that seems to be present in Figure 11.12, in that the volatility of the short rate appears to increase when 

the short rate is larger. 

A property of this model is that we always have r > 0 for appropriate parameter restrictions. This used to be a 

requirement, but in recent times negative interest rates have become the norm. 

The drift term κ(θ – rt) is called mean reverting because the further r is from θ, the greater the pull this term imparts 

to bring r back to θ. For instance, suppose that θ = 0.06 and r is currently equal to 0.09. The drift term is then equal to 

κ(0.06 – 0.09) = –0.03κ, a negative value, which will tend to make r decrease toward the mean level of 0.06. 

Obviously, the larger the value of κ, the greater the effect of this term. Consequently, κ is referred to as the speed of 

the mean reversion. 

The market price of risk process for this model is normally assumed to be a constant multiple of the square root of 

the short rate. We denote the constant by λ. 

In the CIR model, the short-rate process is time homogeneous, meaning the drift and instantaneous volatility of the 

short rate do not depend on time t. Consequently, all discount bond prices are of the form 

 

In other words, discount bond prices are of the form P(r, ), meaning that bond prices are functions of the short rate 

and the remaining time to maturity. 

With these assumptions, one can compute a closed formula for the price of a discount bond as follows: 

(CIR-PRICE) 

where 



   125 

 Page 125  

 

Using the formulas provided by (CIR-PRICE), we can simulate most of the key aspects of the term structure needed for 

actuarial applications. 

11.3.4 SOME REPRESENTATIVE PARAMETER VALUES 

It is possible to use a variety of statistical techniques to determine the model parameters for both the Vasicek and CIR 

models. Such methods include the following examples: 

• Maximum likelihood 

• Generalized method of moments 

• Bayesian estimation 

Later we will show one method for estimating the parameters for the Vasicek model: the method of maximum 

likelihood. 

For the time being, we will use the following parameter estimates that were based on data from 1988–1993 by Chen 

and Yang (see Chen 1996). Any estimates of model parameters tend to exhibit substantial sensitivity to the period 

from which the data is drawn. In practice, one must be careful to estimate models across time periods for which the 

“economic regime” driving interest rates appear to be stable. The late 1970s and early ’80s are an example of a 

change in regime—the Fed experiment based on money supply. Although regimes are an important part of economic 

data, single-regime models are not equipped to handle such drastic changes. More advanced models with “regime 

switching” are needed to estimate across periods with obvious shifts in regime. 

The initial values of r0 are typically taken from the Treasury T-bill rate at the start of the simulation period.  The 

illustrative parameters from Chen (1996) are as shown below. 

 

We may now use these parameter values to compare the behavior of yield curves for these two models and to 

generate some interest rate scenarios for each model. 
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Figures 11.13 and 11.14 show some representative yield curves from the Vasicek and CIR models for the preceding 

parameter values. In the following two figures, notice that the yield curves are indexed by the level of the short rate. 

This is characteristic of one-factor models. 

Figure 11.13  

SAMPLE YIELD CURVES FROM THE VASICEK MODEL AS r0 VARIES 

 

Figure 11.14 

SAMPLE YIELD CURVES FROM THE CIR MODEL AS r0 VARIES 

 

11.3.5 MONTE CARLO VALUATION OF INTEREST RATE DERIVATIVES FOR THE VASICEK MODEL 

The alternative to valuation by the use of partial differential equations is to use probabilistic techniques. The main 

advantage of the probabilistic viewpoint is the great flexibility and power of the Monte Carlo method. The primary 
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disadvantage of the probabilistic viewpoint is that one must understand the transformation of the short-rate process 

under the equivalent martingale measure. 

We will give a concrete illustration of what is involved in the valuation of interest rate derivatives from the 

probabilistic viewpoint for the Vasicek model. As we know, the short-rate process for the Vasicek model is 

 

Suppose that the market price of risk process is a constant denoted by . Then one can show that under the 

equivalent martingale measure, the short-rate has the dynamics  

 

where  is a Brownian motion. In other words, under the equivalent martingale measure, the dynamics of the short 

rate are very similar to the original short-rate dynamics except that we must adjust the drift of the short rate by a 

term involving the market price of risk. If we know how to make this adjustment for a particular model, then all risk-

neutral expectations for that model can be computed or approximated. 

Consider now an ordinary European call option with expiration date t, written on a discount bond maturing at time s 

(s > t) and with strike price K. The call option will pay the contingent payoff equal to 

 

at time t. 

It can be shown that the price of the call option is given by the risk-neutral expectation 

 

Evaluating this expectation is equivalent to solving the partial differential equations we looked at earlier.  

However, we can transform this expectation into something we can compute directly using the fact (TRANS). Indeed, 

substituting for rt in (EMM-FORMULA) using (TRANS) yields the following formula for the price of the call option: 

 

It is possible to take advantage of properties of the normal distribution to compute a closed-formula solution for the 

price of the call option. However, one can also use approximate numerical methods (Monte Carlo) to obtain the call 

option price. This technique will work for all contingent claims and depends only on knowing the proper form of the 

transformed dynamics (TRANS). 

We begin by dividing the interval [0, t] into N pieces of equal length. Denote the implied discretization interval width 

by 

 

Under the equivalent martingale measure, the short rate has the dynamics 

 

which is discretized as 
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where  is normally distributed with mean 0 and variance 1. The discretized dynamics for the short rate can be 

rearranged as 

 

from which a trajectory of short-rate values can be recursively generated from a starting value   and a series 

of draws from the standard normal distribution. 

We will use the equivalent notation  for simplifying some expressions. This results in a trajectory of the short-

rate process                                                                              

 

Note that Nh = t.  

We then approximate the random variable we want to compute the expectation of, namely 

 

by 

 

Let us call the realization of this quantity R1. We then repeat the computation we have just described several more 

times to obtain the random realization 

 

where M is a relatively large number. 

The Monte Carlo approximation to the option price is then equal to 

 

A key insight here is that performing a risk-neutral simulation amounts to making an appropriate change in the 

parameters of the short rate. 

11.3.6 SIMULATING INTEREST RATES IN ONE-FACTOR MODELS 

Both the Vasicek and CIR models have the nice feature that the transition densities are known in closed form.5 In the 

case of the CIR model, the transition density is complicated, but it is possible to program a computer to take draws 

from this distribution. 

We will discuss two ways to simulate interest-rates in these models: 

                                                                        
 

5 For these models, the transition density determines the dynamics of the stochastic process. Therefore, knowing the transition 
density allows us to understand the role of the model parameters and to construct distributions for the outcomes of the stochastic 
process. 
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 Using exact transition densities 

 Using discretized stochastic differential equations 

 

The second method has the advantage that it can be implemented for a wide variety of interest rate dynamics and 

does not require explicit knowledge of the transition density. The main disadvantage of this method is that it 

generates approximate short-rate dynamics, and the discretization interval must be relatively small to obtain good 

results. 

Simulation based on the use of discretized stochastic differential equations. Suppose we have a stochastic 

differential equation for the dynamics governing the short-rate process and a closed formula for bond prices. Let us 

suppose that the general stochastic differential equation is of the form 

 

This equation may be discretized with discretization interval  as 

 

where  is normally distributed with mean 0 and variance 1. 

We will not spend time on the question of the rate of convergence of this approximation, but we do point out that 

there exist alternative discretization schemes that utilize more terms but have faster rates of convergence. If you 

were to employ such a scheme, the concepts we are discussing would remain the same except for the form of the 

discretization. 

We may rearrange the discretization of the short rate as 

 

If we can program our computer to generate draws from a normal distribution with mean 0 and variance 1, then we 

can use this equation to recursively generate a particular simulated trajectory for the short rate, starting from an 

initial value of r0. 

As noted earlier, we will use the alternate notation to simplify expressions. For each trajectory in the 

simulation, we will thus have a sequence of values for the short-rate process  

 

out to some finite point in time representing the end of the simulation horizon. 

This is exactly what we would obtain using the methodology of the previous section, the main difference being that 

here we do not require a knowledge of the exact transition density. 

We may transform the simulated observations of the short rate into simulated term structures at each time along the 

trajectory, using the bond price function. Specifically, we obtain the simulated term structure 

 

Again, because we have a closed formula for bond prices, it is a simple matter to compute the term structure at each 

point along the trajectory, once we have simulated the short-rate evolution. 

Let us briefly discuss the concrete cases of the Vasicek and the CIR models. 

Implementation for the Vasicek model. The short-rate process for the Vasicek model is 
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This is then discretized as 

 

where  is normally distributed with mean 0 and variance 1. 

As we have described, one now computes a sequence of realizations of the short rate for each trajectory, which 

results in the data 

 

This is then transformed into the sequence of term structures (in other words, yield curves) along the trajectory, using 

the bond price function. The sequence of term structures is 

 

Implementation for the CIR model. As you would anticipate, the implementation of the CIR model proceeds in much 

the same way as what we have just described for the Vasicek model. The one issue that is somewhat beyond the 

scope of our discussion is that the CIR model has a nonnegativity property that requires an additional adjustment 

when performing the discretization. 

The short-rate process for the CIR model is 

 

This is then discretized as 

 

where  is normally distributed with mean 0 and variance 1. 

We now see the potential problem that can arise in implementing this discretization. Indeed,  is normally 

distributed, so it can, in theory, take on a large negative value. If this were to happen, then  could take on a 

negative value. At the next iteration, the formula for  would be 

 

and the algorithm would bomb, because we would be required to take the square root of a negative number.  

There are two popular solutions to this problem. The first is to modify the discretization formula to 

 

The second is to modify the discretization formula to 

 

The first step in simulating a trajectory for the evolution of the term structure is to compute a sequence of 

realizations of the short rate along a trajectory. We thus obtain the data 
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This is then transformed into the sequence of term structures (in other words, yield curves) along the trajectory, using 

the bond price function. The sequence of term structures for the CIR model is 

 

11.3.7 MAXIMUM-LIKELIHOOD ESTIMATION FOR THE ONE-FACTOR VASICEK MODEL 

The dynamics of the Vasicek model are based on the unobservable quantities (also called state variables) {rt : t  0}. 

The distribution of interest rates for the model is determined by the dynamics of the state variable. To estimate the 

model, we need to construct a metric that measures the fit of the model to the data used to calibrate it. Maximum-

likelihood estimation (MLE) is one choice of metric. To apply MLE, we need to relate the distribution of interest rates 

implied by the model assumptions to the data (i.e., interest rates), so that we have a metric that can be optimized. 

In theory, if we had N observations of the short rate, we could use these observations in the likelihood function 

 

and find the usual MLE parameter estimates. 

The main issue we must resolve is that we cannot observe these values, and we must compute the likelihood function 

from the data we can observe. 

Fortunately, there is another way to approach the problem, which is based on information we can observe. We know 

from (VAS-PRICE)  that there is a one-to-one correspondence between a time series of yield rates on a bond of a 

particular maturity and a time series of short rates. 

Fix a time interval h > 0. We know that 

 

We may turn the algebra around and write 

 

If we let y(t, h) denote the yield to maturity on an h-year discount bond at time t, we can also express what we’ve just 

derived as  

 

Since both F(h) and G(h) are constant for a fixed value of h, we have found that the unobservable short rates are 

linear functions of observable data. 

Owing to the Markov property of the short-rate process, the likelihood function can be expressed as a product of 

conditional distributions as follows:6 

                                                                        
 

6 
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As we shall discuss in a moment, the conditional densities (rt|rt–1) are known in both explicit and approximate form.  

The key to completing the formulation of the estimation problem is to use (EST-YIELD)  to establish the likelihood 

function. 

 

Suppose that the random variable X has the density function X and that X is related to a second random variable Y 

through the linear equation 

 

By elementary algebra 

 

Therefore, we find that 

 

Applying this to the conditional density (rt|rt–1) based on (EST-YIELD) yields the following formula for the likelihood 

function: 

 

We see that the likelihood function is based on a known data set. We may then maximize this likelihood function if we 

know the conditional density function f(|) in explicit form. There are two ways to obtain a conditional density 

function. The first is to use stochastic calculus to obtain the exact conditional density. 

The second is to discretize the stochastic differential equation for the short rate and use this as a basis for an 

approximate conditional density. The approximate technique has the advantage that it will allow us to estimate 

models for which closed-form exact transition densities are not available. It has the disadvantage that the 

discretization process is known to introduce a bias in the estimation process. However, as the discretization interval 

tends to 0, this bias vanishes. 

The approximate conditional density function. The approximate conditional density function is obtained by 

discretizing the stochastic differential equation for the short rate at a uniformly fixed discretization length. 

Let us fix a uniform discretization length, which we will denote by Δt. The continuous-time dynamics of the short-rate 

are 

 

When we discretize this equation at discretization length Δt, we obtain the discrete time equation 

 

where  is normally distributed with mean 0 and variance 1. We may rearrange this equation as 
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and again as 

 

Therefore, we see that conditional on rt, the random variable rt + Δt has an approximate normal distribution with 

 

We thus have an approximate conditional density for use in the likelihood function 

 

For obtaining maximum-likelihood estimates of the model parameters, it remains to numerically maximize the 

approximate likelihood function as a function of the four parameters, , , η, and λ. This can be done using the built-

in numerical functions in Excel. 

The exact conditional density. We are interested in the transition density  for s > t. By using the method of 

integrating factors, we can solve the stochastic differential equation for the short rate and find that 

 

This implies that conditional on rt, the random variable rs is normally distributed. 

We may then compute the conditional mean and variance using stochastic calculus as 

 

and 

 

We thus know the exact conditional distributions for use in the likelihood function: 

 

Although the market price of risk parameter λA does not appear in the conditional density function, it does appear in 

(LIKE) because it appears in the function G(h). (Recall that G is defined in Section 11.3.2.) 

For obtaining maximum-likelihood estimates of the model parameters, it remains to numerically maximize the 

likelihood function as a function of the four parameters, , , η and λ. One way to carry out this calculation is by using 

the built-in functions in Excel. 



   134 

 Page 134  

11.4 MORE ADVANCED MODELS FOR THE TERM STRUCTURE 

The primary advantage of one-factor models is their simplicity. The most significant disadvantage of these models is 

that they cannot provide realistic models of the term structure. 

The next step beyond a one-factor model is to introduce an additional factor, resulting in a two-factor model. Two-

factor models are more realistic, but they provide this at a cost in computational complexity and estimation 

difficulties. We will discuss the most basic aspects of the two-factor Gaussian model. 

One can move away from the most basic continuous-time affine models to a range of models classes such as these: 

 Quadratic interest rate models 

 Shadow interest rate models 

 Threshold interest rate models 

 Regime-switching models 

 Macro finance models (such as the dynamic Nelson Siegel model) 

 

Quadratic interest rate models can be single- or multifactor and have efficient procedures for computing prices and 

estimation. The quadratic class has some advantages in fitting swaption prices, and some development of their 

adaptation to low-interest-rate environments has been undertaken. Shadow interest rate models goes back to an idea 

put forward by Fischer Black and show some promise as a model class for the low-rate environments that have been 

prevalent post financial crisis. Threshold interest rate models relate the dynamics of interest rates to the level of the 

interest rate. Threshold models are computationally demanding. Regime-switching models relate the dynamics of 

interest rates to an unobservable latent process that is usually assumed to follow a Markov chain. The latent process 

serves to define the type of environment that the economy is currently in—for example, a low-volatility or a high-

volatility regime. Regime-switching models have been extensively researched, and a range of effective techniques are 

available for computing prices and calibration. Macro finance models attempt to relate interest rate dynamics to 

important macroeconomic variables like GDP and inflation. The reader is referred to the annotated bibliography for 

some papers that cover these topics. 

We now discuss details of some of the more advanced model classes. 

11.4.1 A SIMPLE TWO-FACTOR GAUSSIAN MODEL 

The term structure of interest rates is assumed to be driven by two factors, which we will call x and y. These are latent 

factors and do not necessarily directly correspond to observable economic variables. The dynamics of these two 

factors are assumed to follow the mean reverting Gaussian processes: 

 

It is assumed that these Brownian motions (driving noise) are independent. However, this assumption can be relaxed. 

The short rate is denoted by rt and is assumed to have the additive factor structure 

 

The market price of risk process for the factor x is assumed to be constant and equal to λ, and the market price of risk 

process for the factor y is assumed to be constant and equal to Λ. 

The price of a discount bond at time t that matures for a unit at time s (s > t), when the factors are equal to xt and yt 

at time t, is denoted by 
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Discount bond prices are determined by the usual risk-neutral expectation formula as: 

 

Because the parameters in this model are time homogeneous, the bond price function will depend on t and s only 

through the difference r  s – t. We may therefore economize in the notation we use to write our bond price as 

 

where  is the time to maturity of the discount bond. 

One can compute (Bonds) in closed form for this model.  

Before we summarize these formulas, we require some notation. Note that the factor parameters appear in these 

expressions. 

 

The bond price function is given by the product 

 

Simulating the term structure for the two-factor model. The simulation of the evolution of the term structure for this 

model now depends on the simulated two-dimensional trajectory of the two-dimensional process: 

 

Providing that one has generated a trajectory of the state variables, 

 

one can then compute the term structure at each of these nodes as 

 

This is in complete analogy to what we described for the one-factor case. The main difference is that we must 

simulate the trajectory of each factor to obtain the trajectory of the two state variables (TRAJ). 

11.4.2 AFFINE MODELS 

Affine models are a rich class of term structure models that was studied in its generality and popularized by the work 

of Duffie and Kan (1996). To this class belong many of the models developed in the pioneering works in the 1970s and 

’80s, including the Vasicek model (Vasicek 1977), the Cox, Ingersoll, and Ross (CIR) model (Cox et al. 1985a; 1985b) 

and other models. The first models were described by only one random process, but later on, these models were 

generalized to higher dimensions. Affine models assume that the dynamics of the term structure is driven by state 

variables, or factors. These factors are described by stochastic processes, and they represent the source of 

uncertainty of the models. They might be considered unobservable variables or nodes on the term structure, but in 

most applications, they are unobservable or latent variables, and we are going to describe in detail this case. 
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Affine models assume that the short rate, rt, is a linear function of the state variables, Χt: 

 

for matrices a and αi. 

In this setting, the state vector Xt is represented as a vector of m CIR processes and n Vasicek processes.7 We use the 

index sets I = {1, . . . , m} and J = {m + 1, . . . , d}, and accordingly for a vector , we write . A 

diagonal matrix with u along the diagonal is denoted Diag(u). The ith row of a matrix M we denote Mi. We note that a 

Feller factor xi  may be renormalized in such a way that αi,i = 1, and a Vasicek factor xj may be renormalized in such a 

way that bj = 0.  

Using a no-arbitrage argument, one can prove that the bond prices are given by 

 

(see Filipovic and Mayerhofer 2009, Theorem 4.1) with auxiliary functions that satisfy the following equations: 

 

It can be shown that under certain regularity conditions on the coefficients, the solution of the partial differential 

equations exists and is unique. Moreover, under more restrictive assumptions on the dynamics of the state variables, 

the partial differential equations have a closed-form solution. One can see from the equations that in the affine 

framework, the yields are affine functions of the state variables, and more generally, all the quantities and prices of 

contingent claims depend on the state variables. 

11.4.3 MARKET PRICE OF RISK 

To completely specify the model, we have to provide a market price of risk, which gives the change of measure 

between the risk-neutral and the physical specifications of the model. Some conditions have to be satisfied in order to 

have an acceptable change of measure, but very often, more structure is imposed on the market price of risk in order 

to have affine dynamics under both measures. It turned out that the most general change of measure, introduced in 

Cheridito et al. (2007) and called extended affine market price of risk t, is given by 

 

                                                                        
 

7 CIR processes provide for nonnegative factors with noncentral chi-squared distributions, and Vasicek processes provide for factors 
with normal distributions. A combination of these factors provides some flexibility in the structure of the model. 



   137 

 Page 137  

Estimation. A very common technique used for the estimation of the model parameters is the maximum-likelihood 

estimation. Since in this class of models, the state variables are unobservable, a Kalman filter is typically used to 

extract the latent state variables from the historical yield series. There is an extensive literature on this. The 

interested reader can consult the following references: 

 Singleton, Kenneth J. 2006. Empirical Dynamic Asset Pricing. Princeton, NJ: Princeton University Press. 

 Duan, Jin-Chuan, and Jean-Guy Simonato. 1999. Estimating and Testing Exponential-Affine Term 
Structure Models by Kalman Filter. Review of Quantitative Finance and Accounting 13: 111–135. 

 Chen, Ren-Raw, and Louis Scott. Maximum Likelihood Estimation for a Multifactor Equilibrium Model of 
the Term Structure of Interest Rates. Journal of Fixed Income 3(3): 14–31. 
 

Fit of the initial term structure. Even if the model has been parameterized by using the historical time series, it is 

almost impossible that it can exactly fit an initial term structure (for instance, a zero-coupon curve or a swap curve). 

This drawback can be eliminated by using an exogenous extension of the models that preserves their analytical 

tractability. In other words, the short rate can be extended to be 

 

 

where is a deterministic piecewise function whose elements can be used to exactly fit the initial term 

structure. This method has been extensively described by Brigo and Mercurio (1998; 2001). 

Pros and cons. The affine class of models has the following advantages: 

 Under certain assumptions on the diffusion coefficients of the state variables, one can find closed bond 

price formulas and semiclosed derivative price formulas for vanilla and nonvanilla derivatives. 

 This class of model can be used both under the risk-neutral and the real-world measures, because it has a 

realistic behavior under the physical measure and an accurate pricing under the risk-neutral measure. 

 The affine structure allows well-defined estimation and calibration procedures, and the parameters can be 

efficiently estimated. 

 The affine structure allows rich instantaneous volatility correlation structure of the state variables, which 

allows realistic correlations between yields within and across economies. 

Its drawbacks are as follows: 

 The models are linear, but in real data, nonlinearities can play an important role. 

 The affine structure imposed some restrictions on the nature of some correlation behavior across yield 

tenors. 

11.4.4 QUADRATIC MODELS 

Quadratic models are a class of term structure models in which the short rate is a quadratic function of the state 

variables. This class of models has been studied in its generality by Ahn, Dittmar, and Gallant (1996) and encompasses 

other models previously developed by Longstaff (1989), Beaglehole and Tenney (1991; 1992), Constantinides (1992), 

Karoui, Myneni and Viswanathan (1992) and Ahn (1995). 

Dynamics. In the quadratic term structure models, the short rate is a quadratic function of the state variables 

 

where , and the state variable vector follows a 

multivariate Gaussian process with mean reverting properties 
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where   and .  

Moreover, it is assumed that  is diagonalizable with positive real components of eigenvalues, and dWt is a d–

dimensional vector of standard and independent Wiener processes. 

To ensure positive interest rates, we require that  be symmetric, positive semidefinite and that 

 

The bond pricing formula is given by 

 

with auxiliary functions that satisfy 

 

 

where  = (Xt) . 

It can be shown that under certain regularity conditions on the coefficients, the solution of the partial differential 

equations exists and it is unique. 

Market price of risk. To completely specify the model, we have to provide a market price of risk, which gives the 

change of measure between the risk-neutral and the physical specifications of the model. The most general change of 

measure, such that one has a multivariate Gaussian process under both measures, is given by 

 

11.5.5 ESTIMATION 

The estimation of this class of models can be done by using an extended Kalman filter, as in Claessens and Pennacchi 

(1996), or the efficient method of moments (EMM) of Gallant and Tauchen (1996). 

One of the differences of quadratic models with respect to the affine models is that there is not a one-to-one 

correspondence between yields and state variables. 

Pros and cons. The quadratic class of models has the following advantages: 

 Flexibility in modeling heteroscedastic volatility and negative correlation among factors 

 Potential to capture the nonlinearities in the data  

 

It has the following drawbacks: 

 Difficulties in fitting targets on both yields and returns 

 A heavy and time-consuming estimation procedure 

 

The dynamic Nelson-Siegel model. The dynamic Nelson-Siegel model has some desirable properties, and there has 

been a flurry of recent research into multiple aspects of the model, including the linking of the term structure to 

macroeconomic factors. A very useful general reference on the model is the book of Diebold & Rudebusch (2013). 
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The model is widely applied for forecasting interest rates and has several intuitively appealing features. In its most 

general form, the model is not arbitrage-free. However, it is possible to restrict this model to an arbitrage-free class. 

The basis for implementation of this model is the equation 

 

where  is treated as a fixed parameter and 1t, 2t and 3t are analogous to the role of state variables in affine 

modeling (Diebold and Rudebusch 2013, 26). When the model is fitted across panel data, 1t, 2t and 3t form a time 

series of estimated parameters. For a discussion of the interpretation of the terms in this equation, see Diebold and 

Rudebusch (2013, 27). 

Evidently, 1t governs the level as it results in parallel shift, 2t governs the slope, and 3t governs the curvature. For 

this reason, (4.5) is often written as 

 

The idea behind the DNS model is quite simple. First, there is a “basis” consisting of three maturity-dependent 

functions, F1, F2 and F3, which serve to determine the yield curve at each point in time. The basis functions are defined 

as follows: 

 

Second, the coordinates of the basis functions, 1t, 2t and 3t, are taken as stochastic processes, so that a range of 

interesting and plausible yield curves are generated. This combination results in the DNS yield curve equation 

 

Evidently, a different collection of basis functions could be used, but the primary consideration in the selection of the 

basis functions and the dynamics of the coordinate processes is maintaining the ability to capture a broad range of 

yield curve behavior. 

There is a range of opinion on the nature of the parameter . Typically,  is held fixed, based on some considerations 

relating to the most reasonable maturity at which to have maximum curvature effects. These considerations are 

outlined in Diebold and Rudebusch (2013, 346), and they fix this parameter at  = 0.0609, since it is this value of the 

parameter for which the curvature factor achieves its maximum (at about 30 months’ maturity). 

Direct calculation shows that 

 

Since there is no easily manipulated expression for the derivative of the third basis function with respect to maturity, 

the computation of the maximum level needs to be performed by numerical evaluation. 

A most important element of understanding the DNS model is to determine the behavior of the data implied by 

coordinate processes 1t, 2t and 3t. Key questions must be asked that enable us to determine what type of 

stochastic dynamics are needed to run the model. Some such key questions are the following: 
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 What is the path-wise behavior of the coordinate processes? 

 Are the coordinate processes correlated? 

 What regions of  do the coordinates need to occupy to capture historical yield curve behavior 

and to allow for extreme but plausible behavior? 

 What types of stochastic processes can achieve the range of yield curve behavior we want to see 

with the given Nelson-Siegel basis functions? 

 

The data-implied coordinate processes are easy to compute if one fixes the value of λ. Figure 11.15 shows the 

properties of the coordinate processes for the United States. 

Figure 11.15 

TIME SERIES OF HISTORICAL FACTOR ESTIMATES FOR DNS MODEL 

Note: 1 + 2 is the short rate. 
Source: Conning, Inc. 

Ordinary least squares (OLS) estimates for a fixed . We will compute the OLS estimates for the coordinate 

processes for a range of values of . We do not know, ex ante, how robust the OLS estimates will be to changes in , 

nor do we know how robust the OLS estimates will be to the number of points on the yield curve that are used in the 

OLS. We do know that the data window does not affect anything, since we are computing cross-sectional estimates. 

However, the data window does influence the stochastic dynamics used to model the coordinate processes. 

To perform the OLS, we must specify the number of points on the yield curve that are used for the OLS. Obviously, we 

cannot use more points than we have data for, but we may not wish to use all cross-sectional data. 

Let us denote the yield curve data maturity points that are to be used as 

 

and the associated vector of points as . We are assuming that there are M yield curve data points included at each 

point in time. 

We now form the matrix M(), which is defined as follows: 
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We also form the matrix of bond yield panel data: 

 

where the columns of the data matrix consist of the time series of yield observations for the yield curve data maturity 

points that are to be used in the OLS estimation. 

The estimation equation for the OLS is now 

 

where the OLS estimated matrix 

 

contains the estimated panel of coordinate processes. The columns of B represent the coordinate estimates for the 

yield curve at a particular point in time. The rows of B are the data-implied time series for each coordinate process. 

These estimates are conditional on the value . 

There is, of course, no guarantee that any given set of coordinates is a good fit to the data at that time. The ability of 

the DNS model to fit the data at any particular point in time is a function of the properties of the basis of maturity-

dependent functions F1, F2, F3. In theory, one can augment the basis, as was done in the Svensson model, or change 

the basis functions in order to accommodate different yield curve shapes. Ideally, one is able to select a “good basis” 

that can capture a rich range of yield curve shapes, and one should find that the dynamics of the data-implied time 

series for the associated coordinate processes are amenable to a parsimonious stochastic model. If one finds that the 

data-implied time series for the associated coordinate processes are chaotic looking, then that means a reasonable 

model for the dynamics of the coordinate processes will not be able to capture the range of historical data that the 

OLS estimates were based on. 

In summary, the art of the DNS modeling approach is to be able to find good basis functions and a rich but logical 

coordinate process dynamic. We must also use coordinate process dynamics that can be “easily” controlled and 

changed. 

In MATLAB, the computation of B in equation (4.13) is performed as 

 

which is set up to solve the system, column by column, as 

 

and to write these column-by-column solutions back to B. 

Comments on DNS. The DNS model provides an approachable and flexible framework for modeling interest rates. 

Strictly speaking, the DNS model is not arbitrage-free, but there are ways to amend the model to make it fit the 

arbitrage-free framework. The ability of the model to capture interest rate dynamics depends on the stochastic 

processes used to model the factor processes. An advantage of the DNS framework is that a wide range of factor 

dynamics can be introduced. Furthermore, the model is often integrated into a macro-finance framework, where the 

factor dynamics are directly linked to key macro variable dynamics. A drawback of the model is that it is not suitable 

for derivatives pricing and is therefore a tool for real-world applications. 
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11.6 APPENDIX: MATHEMATICAL DETAILS FOR A GENERAL SINGLE-FACTOR MODEL 

The basis for single-factor models is the specification of a stochastic process for the short rate (also called the 

instantaneous riskless rate) as 

 

This equation is called a stochastic differential equation in which Z denotes a Brownian motion process (also called 

Wiener process). The term b(r, t) is called the instantaneous drift of the short rate, and a(r, t) is called the 

instantaneous standard deviation of the process. The term dZ is thought of as noise and represents random shocks to 

the level of the short rate. We can then obtain the prices of discount bonds and interest-rate-contingent claims as the 

solutions to certain partial differential equations. 

11.6.1  MARKET PRICE OF RISK  

It is assumed that all contingent claims can be expressed as a function of the short rate r, time t, and its maturity date 

T. Functionally, this means that the price of the claim can be expressed as 

 

As a convenience, we will refer to this generic claim as “the contingent claim C.” If the claim in question is an ordinary 

discount bond, it is customary to use the notation P(r, t, T). 

Using techniques from stochastic calculus (Itô’s lemma), we can show that C will satisfy the following stochastic 

differential equation: 

 

Let us introduce the notation 

 

and 

 

We can then write our stochastic differential equation for C in the compact form 

 

Using sophisticated mathematics, we can show that in an arbitrage-free interest rate model, the ratio 
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cannot depend on T. In other words, this ratio is independent of which risky asset we form it from. We call this ratio 

the market price of risk process and denote it 

 

We emphasize again that this ratio is the same for all risky assets in the model. The market price of risk is interpreted 

as the amount of excess return per unit of risk. It has the same feel and interpretation as the Sharpe ratio from 

portfolio theory. 

11.6.2 DESCRIPTION OF THE BOND MARKET   

The price P(r, t, T) of a default-free zero-coupon bond is a function of the time t, the value of the short rate r, and the 

time T  T* of maturity of the bond. This is a fundamental assumption of the model. The particular form of the 

functional relationship is not specified; rather, we assume only that the price is a differentiable function of the three 

parameters. 

By Itô’s formula, the process  is also an Itô’s process, and its differential equation is 

 

where it is understood that the functions are evaluated at (r, t) = (rt, t). The drift and volatility components are written 

in this special form: 

 

and 

 

With this notational convention, the stochastic differential equation for the bond price is usually written in this 

equivalent form: 

 

The notation P, P(t, T), and P(t, r, T) all denote the price, but it is customary to suppress the reference to r, or even t 

and T, when no confusion can arise. 

11.6.3 TRADING AND PORTFOLIOS 

Continuous default–free borrowing and lending at the short rate is available to all traders. It is usually described in 

terms of an account, like a savings account. The account values from a process {B(t)} satisfying B(0) = 1 and dB(t) = 

r(t)B(t)dt for t  0. The account has one dollar initially and grows by constantly earning and reinvesting the short rate. 

A trader who invests k dollars (buys the account) at time t1 receives a right to k/B(t1) units of the account. At time t2 > 

t1, the trader can withdraw (sell units) with a value of B(t2)k/B(t1). 

The account value can be written explicitly as 
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so an investment of k at time t1 accumulates to a value of 

 

Let S1 and S2 denote two traded securities in this market with differential equations 

 

for i = 1, 2. A portfolio of S1 and S2 is a pair of processes (Φ1(t), Φ2(t)), where Φ1(t) denotes the number of units of the 

security i in the portfolio at time t. The number of units can be negative, indicating short selling (borrowing). The 

number of units need not be an integer; any real number is allowed for the number of units. The value of the 

portfolio at time t is 

 

The number of units in the portfolio has to be determined before the prices are revealed. This means that in setting a 

trading strategy, a trader may base the values of (Φ1(t), Φ2(t)) on information available for s < t but not on 

information at time t. In addition, the trading strategy must satisfy the technical condition: For i = 1, 2: 

 

A portfolio is self-financing provided that the portfolio’s value changes over an interval (t, t + dt) solely due to price 

changes, not due to changes in the number of units held. Mathematically, this is expressed as follows: 

 

By substitution, we can find the Itô’s representation of V: 

 

Self-financing portfolios are a key ingredient in pricing and hedging. In applying the concept, we will usually arrange 

the strategy so that the portfolio’s volatility term is zero and use the following additional important assumption. 

11.6.4 NO-ARBITRAGE PRINCIPLE   

An arbitrage opportunity is a self-financing portfolio with zero initial value, having at some future time no possibility 

of a negative value and a positive probability of a positive value. In terms of the notation defined above, an arbitrage 

opportunity based on the securities S1 and S2 is a portfolio (Φ1(t), Φ2(t)) for which the value process V(t) = Φ1(t)S1(t) + 

Φ2(t)S2(t) satisfies the following conditions: 
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The bond market is assumed to be arbitrage-free, meaning there are no arbitrage opportunities. This natural 

assumption has some strong implications for modeling. A common application goes like this: If a traded security (or 

portfolio of traded securities) with price {Xt} has zero volatility, then its drift is rtXt, where rt is the short rate. By zero 

volatility, we mean that, when written in its Itô representation, 

 

the volatility term is identically zero with probability one: 

 

For any such security or portfolio, we must have μX(t) = r(t)X(t) for all t with probability one. 

11.6.5 MARKET PRICE OF RISK 

Consider two zero-coupon bonds denoted by S1(t) = P(r, t, T1) and S2(t) = P(r, t, T2) with T2 < T1. The zero-coupon bonds 

have differential equations dSi = μiSidt + σiSidZ. Make a portfolio with one unit of S1 and φ(t) units of S2 at time t, 

selected so that the resulting portfolio has zero drift: 

 

The differential equation of V(t) is 

 

For a diffusion coefficient of zero, ϕ(t) = –S1(t)σ1(t)/S2(t)σ2(t) for all t. Since there is no arbitrage and the portfolio has 

zero volatility, then its drift is r(t)V(t). Substituting the values of the parameters and solving gives us the following 

relation: 

 

This can be rearranged to obtain 

 

under our original assumption that these are different bonds. 

Thus, the no-arbitrage principle forces this relation: The excess of a bond’s drift over the default-free rate divided by 

its volatility is independent of the maturity of the bond. The common value is a characteristic of the market rather 

than the security. This quantity is called the market price of risk. Although it is not a price, the name is widely used. 

So far, we do not have a formula for valuing zero-coupon bonds (or any other security) in terms of the short rate. The 

missing ingredient is the market price of risk. Therefore, in addition to our other assumptions, we assume that the 

market price of risk, denoted λ(r, t), is known. Its relation to the parameters of the zero-coupon bond P(r, t, T) is 
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where 

 

for all zero-coupon bond maturities T. There are important consequences of these assumptions. The equation 

becomes a partial differential equation with known coefficients when we (again) rewrite it, but now in terms of the 

bond price function and its derivatives: 

 

Therefore, we can determine zero-coupon bond prices in terms of the short rate drift, diffusion, and the market price 

of risk by solving this partial differential equation: 

 

for 0 < r < ∞, 0 < t < T, subject to the boundary conditions: P(T, T) = 1 and r(0) = r0 is the observed value of the short 

rate at t = 0. 

We also rewrite the bond’s stochastic differential equation incorporating the market price of risk: 

 

11.6.6 VALUATION OF INTEREST-RATE-CONTINGENT CLAIMS   

We will now derive the partial differential equation (PDE) that the price of a general interest-rate-contingent claim 

must satisfy.  

 

As we have shown, the instantaneous return and instantaneous standard deviation of the claim satisfies the 

restriction 

 

for some market price of risk process. This can be rearranged as 

 

Substituting the full expressions for αc(r, t, T) and σc(r, t, T) in this equation results in the following equation: 
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Simplifying this and rearranging gives the PDE that is satisfied by a general interest-rate-contingent claim: 

 

Generally, the price of an interest-rate-contingent claim is determined as the solution to this equation with 

appropriate boundary conditions. The boundary conditions usually reflect the price of the claim at its maturity. For 

instance, if the claim is a discount bond, denoted P, maturing at time T, then the appropriate boundary condition is 

 

 

Similarly, if the claim is an interest rate cap, denoted C, with a notional amount of $1,000 and a strike price of x that 

pays once at time T, then the appropriate boundary condition is 

 

It may be necessary to impose additional regularity conditions. 

11.6.7 FEYNMANN-KAČ FORMULA 

The price at time t is a function of t and the current value of the short rate rt = r. The price of a zero-coupon bond is 

the expected discounted value of its future cash payment. In general, the price of a security that pays its owner a 

single payment of H(rT) at time T is also the expected discounted value of its cash payment. The expectation is taken 

over the paths described by the differential equation 

 

subject to rt = r. This follows from the Feynmann-Kač formula. 

Let {Xt} denote an Itô process with equation Xt = μ(Xt, t)dt + σ(Xt, t)dZt. Let H(x) be a given function for the states of XT. 

Define the function: 

 

Then V(x, t) satisfies the partial differential equation 

 

subject to V(x,T)=H(x) for all x. 

This is an intuitive justification for the formula. Let 

 

The derivative of the path integral  with respect to the lower limit t is Xtdt.  
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So by the Itô formula with 

, 

 the differential of  

. 

Another application of the Itô formula with (x, t) = ex shows that the differential of Yt = V(Xt, t) is 

 

Now equate the two conditional expectations. The first representation gives 

 

 

The second gives 

 

Equating the two expressions yields the Feynmann-Kač formula. The boundary condition follows from the fact that YT 

= H(x). 

This is applied to bond markets with the short-rate process {rt} in place of {Xt}. The physical short-rate process is 

 

The price of a short-rate derivative at time t with current short rate r is denoted V(r, t). It pays its owner a single 

payment of H(rτ) at time T. As before, it satisfies the partial differential equation 

 

satisfies the same partial differential equation and boundary condition where the short-rate process is driven by 

 

Hence, V*(r, t) = V(r, t). We have two methods of numerically calculating the derivative price. We can solve the partial 

differential equation numerically, or we can calculate the expected discounted value by simulating the short-rate 
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process, being careful to use the drift μ – λσ, and evaluate the value  many times. Then, the average 

of the simulated values approximates the price. 

11.6.8 TIME HOMOGENEITY AND THE  NOTATION 

When the parameters of the short-rate process do not depend on time, the price of interest-rate-contingent claims 

(including discount bond prices) can be expressed in the following form:  

 

In other words, we find that 

 

Consequently, when contingent claims have this functional property, the valuation PDE can be simplified by replacing 

C t  w i t h  –C τ .  

In models for which the short-rate process is time homogeneous (which means the drift function b(r, t) and 

instantaneous volatility of the short rate a(r, t) do not depend on time t and are thus of the form b(r) and a(r) 

respectively), discount bond prices will be of the form 

 

As we have examined in the main body of this chapter, the Vasicek model 

 

and the Cox-Ingersoll-Ross model 

 

are two examples of such short-rate processes that lead to discount bond prices of the form P(r, τ). 
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Chapter 12: Corporate Bond Models 
A corporate bond is a security with a fixed schedule of payments, generally consisting of a scheduled maturity date, 

and associated coupons and a redemption amount. The receipt of the scheduled payments is contingent upon the 

issuing name being able and willing to pay them as scheduled. Similar to an investor in default-free bonds, the 

corporate bond investor is subject to fluctuation in prices resulting from the general level of interest rates, but in 

contrast to default-free bonds, pricing will also contemplate the possibility that these payments may not be made as 

scheduled. There are also pricing implications resulting from changes in the potential for default. The possibility or 

belief that such an event will occur or has occurred may fluctuate with specific conditions of the issuer or class of 

issuers, so the impact on pricing may also fluctuate. The general idea of fluctuations in the price of a bond or a class of 

bonds is referred to as migration risk. 

The corporate bond market is the universe of all existing corporate bonds, together with the institutional details 

necessary for the market to function. Corporate bond models address these further complications and institutional 

details regarding these classes of securities. The mathematics required to represent these complications can be 

intense, and this chapter presents an introduction to how models should go about reflecting this complexity. 

Section 12.1 addresses specific considerations that corporate bond models need to address concerning corporate 

bonds and the corporate bond market. These include default and the potential for recovery from default; signals for 

the potential of default (including ratings) and migration of changes in those ratings; and credit spread dynamics. 

Section 12.2 introduces some basic mechanisms of corporate bond models, including four classes of corporate bond 

models (structural or Merton models, reduced-form models, ratings-based models and hybrid models). The section 

also provides an overview of pricing mechanics. 

Section 12.3 introduces structural or Merton models. These models are based on modeling the value of the firm that 

issued the debt to be priced. The value of the corporate debt is assumed equal to the firm value less the value of the 

equity. 

Section 12.4 discusses reduced-form models. These models do not contemplate ratings changes during the life of the 

bond. They consider a risk-free term structure as a component, along with credit risk as an intensity process. 

Additional considerations that may be incorporated in the model are loss given default, arbitrage-free pricing, zero-

recovery considerations and the role of risk premium. 

Section 12.5 addresses ratings-based models, beginning with a discussion of a basic transition matrix to model 

changes in the spread of a corporate bond in response to changes in the underlying rating. It presents the 

mathematics behind the development of this transition matrix, along with considerations necessary to make this 

model tractable. 

Section 12.6 presents additional considerations, including a brief discussion of validation and considerations 

regarding the uncertainty in corporate bond behavior introduced after 2008. 

12.1 DEFINITION AND KEY CONSIDERATIONS OF THE CORPORATE BOND MARKET 

By the phrase corporate bond market, we mean the universe of all existing corporate bonds together with the 

institutional details necessary for the market to function. These institutional details include redemptions, new 

issuance, trading protocols, call provisions, and resolution procedures for default events. There is no doubt that the 

corporate bond market is a complex market of bonds. It is therefore not surprising that seemingly innocuous concepts 

such as the “AA yield curve” turn out to be more involved than casual reflection may suggest. Generally, significant 

but reasonable assumptions must be made about what proxy for the corporate bond market a particular corporate 

bond model is attempting to capture. For example, it is common to assume that a corporate bond model is restricted 

to the modeling of noncallable industrial-issuer bonds. An effective ESG will need to have all of these elements if the 

regulatory aspects of corporate bonds are to be captured. 
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For our purposes, a corporate bond is a security with a fixed schedule of payments, generally consisting of a 

scheduled maturity date and associated coupons and a redemption amount. 

What are the main risk factors for an investor who owns corporate bonds? 

12.1.1 DEFAULT 

Certainly, the bond may default. If the bond does default, will any further payments be received by the investor, 

thereby representing a partial recovery of capital? The receipt of the scheduled payments is contingent upon the 

issuing name being able and willing to pay them as scheduled. In contrast to default-free bonds (also referred to as 

treasury bonds), there is a possibility that these payment may not be made as scheduled. If the payments schedule is 

broken, default is said to have occurred. The probabilities of default will fluctuate with general economic conditions 

and firm- or industry-specific conditions. A wide range of default outcomes are possible, ranging from a total loss of 

all remaining scheduled payments to relatively small losses or an extension of the payment schedule. Either a given 

bond will survive to its maturity date without migrating to default, or it will migrate to default prior to its scheduled 

maturity date. The events that occur after a bond defaults are complicated and vary case by case. For modeling 

purposes, a recovery protocol is specified to consistently handle bonds that migrate to default prior to their 

scheduled maturity date. 

12.1.2 RATINGS AS A CREDIT RISK SIGNAL 

Another important risk factor for an investor that holds a bond is that the bond issuer’s ability to meet its scheduled 

obligations might decline. The rational response to knowing for certain that such an event has occurred is to place a 

lower value on the bond’s scheduled payments (i.e., future promises), resulting in a reduced price for the bond. The 

rational response to observing a highly reliable (but not totally reliable) signal that the bond issuer’s ability to meet its 

scheduled obligations has declined is also a reduced price of the bond. In practice, the signal that most corporate 

bond investors receive is a rating downgrade. 

Most corporate bonds of interest to insurers will be rated during their lives. These ratings are provided by an 

independent rating agency, and the bond’s rating endeavors to capture the likelihood the bond will make its 

scheduled payments. The rating for an individual bond will generally fluctuate over time. If the rating is to have any 

practical value, one would expect that a deterioration in a bond’s rating would be accompanied by a decline in its 

price, and that an improvement in a bond’s rating would be accompanied by an increase in its price. To some extent, 

the success of a corporate bond model that includes rating dynamics lies in capturing this simple idea in a sufficiently 

robust fashion that permits a realistic but rich range of co-movements in ratings and price. For instance, during the 

financial crisis, ratings did not change even in the face of large spread widening. Ratings are also necessary for 

insurance companies to comply with risk-based capital requirements. 

However, the act of a rating agency announcing to the world that the bond the investor holds is now less likely to 

make its payments than it was before should not affect the price of the bond unless the market believes that this 

signal is reliable. Recent experience shows that ratings have differential value. In a case where an investor does not 

regard a rating as credible, that investor might elect to continue to hold the bond after a reduced rating, and might 

even plan to hold the bond to maturity. Evidently, if that bond does not default, then the investor will receive all cash 

flows as promised, even though the investor had to endure the indignity of holding a bond that a rating agency had 

downgraded, perhaps more than once. Obviously, the opposite sort of situation may occur as well, whereby an 

investor holds a bond with a strong credit rating, but the bond nonetheless goes into default. 

Changes in bond ratings do have real consequences for risk-based capital requirements and investment portfolio 

rules, even if default never happens. 

ESGs typically adopt the position that a rating is a correlated signal of the creditworthiness of a bond. For modeling 

purposes, this means that there must be a meaningful relationship between a bond’s rating and its price. There are 

two fundamental ways to incorporate ratings into a corporate bond model: 

 Rating changes may be specifically embedded in the dynamics. 

 Ratings may be implied by the movements in bond prices; we call these market-implied ratings. 
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12.1.3 MIGRATION RISK AND CREDIT SPREAD DYNAMICS 

The general Idea that a bond’s rating will fluctuate and thereby induce fluctuations in the price of that bond is 

referred to as migration risk. The corporate bond investor is also subject to fluctuation in the general level of interest 

rates in the same way that an investor in default-free bonds (i.e., treasury bonds) is. Since changes in the general level 

of interest rates are not a risk that is specific to the corporate bond market, they are not a risk that defines the 

purpose of a corporate bond model. Instead, the power of a corporate bond model is distinguished by its ability to 

accurately capture credit spread dynamics. Credit spreads may be thought of as a broad measure of the additional 

yield over a comparable treasury security that an investor gets from holding a corporate bond. Credit spread 

dynamics are then the model of how this risk-return relationship varies through the simulation. 

12.2 THE MECHANISMS OF CORPORATE BOND MODELING 

Corporate bond modeling is considered part of the general area of credit risk modeling. A corporate bond model 

should generate prices, cash flows, and simulated dynamics for a realistic corporate bond universe. Ideally, a 

mechanism for attaching a rating to each bond also should be provided. The model must be calibrated to the 

appropriate historical benchmarks and validated against them. 

We will focus on bonds without call provisions or other derivatives embedded in them. 

Many approaches to credit risk modeling have been used. These include four broad classes of models: 

1. Structural models, also referred to as Merton models 

2. Reduced-form models, which have an actuarial feel and resemble survival distribution theory1 

3. Ratings-based models 

4. Hybrid credit models, which may involve copulas, may not be arbitrage-free, and are often focused on important 

risk factors of a specific credit application 

There are many approaches to the modeling of corporate bonds in arbitrage-free and more general modeling 
contexts. We are interested in continuous-time models, the primary focus of which is to model credit spreads and to 
capture certain stylized facts. 

We adopt the simplified view of the corporate bond market as a universe of coupon-bearing bonds, each of which 
will have a rating at each point in time. The ratings that the bonds may be assigned are AAA, AA, A, BBB, HY and Def. 
Each bond is a vanilla coupon bond with no call features or other special provisions. 

We adopt the recovery of market value (RMV) protocol when we provide technical model details below. Under the 
RMV protocol, the defaulted bond is assumed to be immediately retired at the time of default, and the bondholder 
receives a payment at the time of default equal to a fraction of the market value of the defaulted bond on the 
instant prior to its default. The fraction of the market value received is modeled by a loss given default (LGD) 
variable, which is often taken to be a constant. The concept of LGD is actuarial in nature and corresponds to the 
“severity” portion of the classical actuarial frequency-severity model. Protocols other than RMV may be used, each 
with its relative pros and cons. A popular alternative recovery protocol is recovery of face amount. We will use this 
protocol to present a heuristic overview of pricing in Section 12.2.1. 

12.2.1 A HEURISTIC OVERVIEW OF CREDIT-PRICING MECHANICS  

We consider the problem of pricing a defaultable bond at time t that is scheduled to make a series of payments up 

until time T.  

We use ν(t; T)  to denote the value at time t of one unit scheduled to be paid at time T, where T > t and the scheduled 

payment is subject to credit risk. 

                                                                        
 

1 The seminal paper by Duffie and Singleton (1999) popularized these models, but aspects of this class of models predate that work. 
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We will denote the time that the bond defaults by the symbol r. The time of default may be thought of as the financial 

analogue of the time of death in life insurance mathematics. Unlike life insurance mathematics, where the ultimate 

time of death is usually considered, in credit risk pricing we are typically only concerned with whether default occurs 

before the scheduled maturity date of the bond. The event that the bond defaults prior to the scheduled maturity 

date of the bond corresponds to the set {r < T}. 

Let us consider the pricing of a defaultable zero-coupon bond scheduled to mature for a unit amount at time T. For 

the moment, we assume that if default occurs, then all of the remaining scheduled payments are forfeited.2 One 

might reason that the price of this bond can be computed as the present value of a unit amount to be delivered at 

time T, weighted by the probability that the bond has not defaulted by time T, i.e., the bond survives to time T.  

Let Q0(r > T) denote the risk-neutral probability that the newly issued bond at time zero survives to maturity. Then we 

are reasoning that the price of the defaultable bond should look something like this: 

(12.1)                                                

Note that Equation 12.1 says the spread to treasury3 on such a bond is equal to 

(12.2)                                               

The pricing expression in Equation 12.1 may be generalized to time t > 0 as follows. 

Let Qt(r > T) denote the risk-neutral probability that the bond survives to maturity. Then we are reasoning that the 

price of the defaultable bond should look something like this: 

(12.3)  

with associated credit spreads 

(12.4)                                                   

Under certain conditions, Equation 12.3 is valid. 

Evidently, under pricing formulas such as Equation 12.3, there is independence of the default-free term structure 

from the credit spread component. 

It is plain from the expression in Equation 12.4 that the dynamics of the credit spreads depend on the dynamics of the 

risk-neutral default probabilities. If the risk-neutral default probabilities are deterministic, meaning that they depend 

only on the time and/or the remaining time to maturity, then credit spreads will be deterministic.4 This is unrealistic, 

since credit spreads fluctuate over time. 

The pricing of defaultable coupon bonds then flows through by pricing the individual components of the coupon bond 

and adding the result. 

12.3 STRUCTURAL/MERTON MODELS 

Structural models are based on a model for the value of the firm that issued the debt to be priced. Some simplifying 

assumptions are needed to get the theory into a tractable form, but the intuitions the model provides are valuable. 
                                                                        
 

2 This assumption is referred to as “zero recovery.” 
3 Measured as a continuously compounded interest rate. In general the spread over treasury for a T-year zero-coupon bond is equal 

to  
4 For example, when risk-neutral default probabilities are deterministic, then the spread to treasury for a 10-year zero-coupon bond 

will be a constant given by  
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Merton’s original paper “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates” remains a very 

readable presentation and an important source from which to understand this model. 

The ideas proceed broadly as follows: A stochastic process is defined for the value of the firm, generally referred to as 

firm value. One may also think of this as the value of the firm’s assets. It is assumed that the value of the firm 

comprises two components: the value of the equity issued by the firm and the value of the debt issued by the firm. 

Assume that the debt issued by the firm matures for a face amount F. At the time the debt matures, the holders of 

the debt will receive the smaller of the redemption amount or the value of the firm.5 If the value of the firm is less 

than the amount the firm’s debt matures for, then the firm is technically bankrupt, a default trigger. 

Option-pricing theory may then be used to compute the value of the equity issued by the firm. The value of the 

corporate debt is then equal to the firm value less the value of the equity. An advantage of the model is that its 

components have natural interpretations, and the observable variables in the model can be used to impute default 

probabilities. A disadvantage of the model is that it is difficult to get it to apply to general coupon bonds and to 

capture realistic default triggers. 

12.4 REDUCED-FORM MODELS 

Reduced-form models are one of the first widely developed classes of corporate bond models. This class of model is 

ideally suited for actuaries and is an important part of the life insurance actuarial knowledge base, given the 

importance of corporate bonds to life insurers. These models are generally based on point process dynamics (Poisson 

process type mechanisms that actuaries are familiar with), which may be specified through a stochastic default 

intensity process in analogy to the force of mortality in life insurance mathematics. Reduced-form models may not 

allow for rating migration. The fundamental modeling objects are the time of default and the intensity process. 

(These have natural analogues to time of death and force of mortality.) 

The simplest reduced-form class of models is based on the concept of an intensity process, and there is no explicit 

mechanism for rating change. This is the class of model that is developed in Duffie and Singleton (1999). While one 

may attempt to impute ratings for bonds modeled in this framework, it is the case that the intensity processes will 

have fixed parameters, which necessarily involve some degree of mean reversion. Consequently, the long-term credit 

behavior of an issuer name cannot deviate significantly from the parameters that the bond was issued with. 

This creates significant practical issues in attempting to use this class of models when ratings migration is required. 

This class of models may be unsuitable for applications requiring realistic rating migration. Nonetheless, this class of 

models is very useful in many circumstances for which rating migration is not a first-order issue. For example, this 

class of models is useful for the modeling of certain classes of municipal bonds and sovereign bonds where rating 

changes are infrequent. 

12.4.1 RISK-FREE TERM STRUCTURE AS A COMPONENT OF PRICING 

Although we are interested in modeling credit risk, we also require the risk-free term structure of interest rates as a 

component of corporate bond pricing. Consequently, as we did in Chapter 11, we let rt denote the usual 

instantaneous short rate of interest that is used in treasury bond pricing, and we allow for the short rate depending 

on state variables x(1), x(2), x(3), . . . .  

If one is using a three-factor treasury model, then one would have rt = xt
(1) + xt

 (2) + xt
 (3). 

We continue to let v(t; T) denote the value at time t of one unit scheduled to be paid at time T, where T > t and the 

scheduled payment is subject to credit risk. This notation is the credit risk analogue of P(t; T) that was used in Chapter 

11. 

                                                                        
 

5 That is, either the bondholders will be paid the contractual redemption amount, or they will seize the assets of the firm and 
recover what they can. 
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12.4.2 CREDIT RISK AS AN INTENSITY PROCESS 

Credit risk is measured and modeled by an intensity process for the default time. This process is denoted by ht. One 

may think of the intensity process at time t as the instantaneous probability that the bond defaults by the next instant 

t + dt, conditional on the bond having survived to time t. In a simple deterministic model, the intensity plays the same 

role as to force of mortality in life insurance mathematics. This element of credit modeling is familiar to actuaries. 

Generally, the intensity is a nonnegative stochastic process with additional properties that are chosen according to 

the application at hand. 

12.4.3 LOSS GIVEN DEFAULT 

Also included in the model is the loss given default process, denoted by Lt. The loss given default process 

determines the consequence of a default at each point in time subject to the RMV protocol. Specifically, if default 

occurs at time t, then the bondholder receives payment in the amount of (1 – Lt)v(t –, T) at time t, and the security 

is effectively wound up. For obvious reasons, 1 – Lt is referred to as the recovery rate. The notation v(t –, T) serves 

to indicate the value of the bond at the instant prior to default. 

12.4.4 ARBITRAGE-FREE PRICING WITH DIVIDEND 

For a general intensity process and a nonzero recovery rate, it is not possible to immediately write down the price of 

the defaultable bond in terms of simple financial quantities (such as the price of an equivalent treasury bond and the 

survival probability of the credit risky bond). Instead, to derive the bond-pricing relation, one must leave the 

functional form of v(t, T) unspecified and rely on the theory of arbitrage-free pricing with general dividend processes 

to derive a stochastic differential equation that the bond price must satisfy. 

The end result of this analysis is the fundamental pricing relationship 

(12.5)                 

 

where the expectation must be taken under a risk-neutral measure and the subscript t denotes conditional 

expectation on the information available at time t. One may think of the risk-neutral measure as defining the risk 

premiums for credit risk. 

Although Equation 12.5 is valid for a general stochastic loss given default process Lt, in practice one often assumes a 

constant value for this process. In some applications, one might use a Cox-Ingersoll-Ross square-root diffusion for the 

intensity process h. One might also use some of the more general intensity dynamics studied in Duffie and Singleton 

(1999). 

Typically, one expects that Equation 12.5 will evaluate to a functional form such as 

(12.6)                                                     

where {xt
(i)} serves to denote the factors that the treasury rate depends on. 

Consequently, if the functional form is known either in closed form or from an efficient numerical procedure, then 

one may efficiently simulate bond prices by simulating the treasury state variables and the intensity process, as in 

Equation 12.6. 

12.4.5 ZERO-RECOVERY BONDS 

Corporate bond models with zero recovery are relatively simple to work with, because one may define the bond price 

processes directly as expectations of a known terminal random variable. For example, if r is the default time for the 

zero-recovery bond in question, then the bond price may be expressed as 
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This expression has the interpretation that the bond price is the discounted expected value of a unit at maturity when 

default does not occur. 

The previous expression leads to an arbitrage-free model, since the discounted price process is a martingale under Q: 

 

When there is nonzero recovery under the RMV assumption, the gains process for the bond becomes more 

complicated, and there no longer exists a direct representation for the bond price in terms of a terminal random 

variable. 

12.4.6 THE ROLE OF RISK PREMIUM 

In simple reduced-form models, one can adjust the risk premiums to gain insight into how the model spread dynamics 

can be stressed. For CIR square-root diffusions, one can stress the model to an interesting level by adopting a highly 

skewed intensity process. 

12.5 RATINGS-BASED MODELS 

Rating-based models offer an intellectually appealing framework that appears to be the natural candidate for a 

workhorse corporate bond model. Indeed, rating-based models allow the user to prescribe a transition matrix and to 

model the changes in the spread of a corporate bond in response to changes in the underlying rating. While these are 

attractive features, these same features imply certain limitations on the robustness of the model output. For 

example, one no longer has idiosyncratic bond price behavior, since any two bonds with the same rating, maturity 

and coupon will evolve to have the same price. 

We now discuss a general class of models that include those presented in Hurd and Kuznetsov (2007) and Feldhütter 

and Lando (2008). A Heath-Jarrow-Morton (HJM) approach to the ratings-based framework is given in Eberlein and 

Ozkan (2003).  

12.5.1 THE BASIC RATINGS-TRANSITIONS GENERATOR MATRIX 

We allow for K rating classes {1, 2, . . . , K – 1, K}, where state K is the default. As we have noted, we expect that in 

practice, the rating classes we will implement are {AAA, AA, A, BBB, HY, DEF}. 

Fundamental to the analysis is the K × K-generator matrix for the rating transitions under the real-world measure P 

 

 

(12.5.1)                                   

 

 

where                                                      (               , as is always the case for a true generator). The state of the Markov 

chain at time t is denoted by  . 

The price at time t of a zero-coupon bond rated i at that time and scheduled to mature at time T is denoted vi(t, T). 

The model also includes factor processes that are used to drive the treasury term structure and to affect conditional 

changes in the generator matrix under the risk-neutral measure Q. This vector of factor processes is denoted by Z, 
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and its components are denoted by Z(i). Stochastic calculus can be used to show that it is possible to induce a change 

of measure such that entries of the generator matrix are stochastic processes under the new measure. 

In particular, one may find a change of measure that induces the generator of the form Lμ(Zt), where the new 

generator is multiplied by a scalar factor μ(Zt) that depends on the factor processes. The precise form of μ(Zt) need 

not be specified at this point in the model. Typically, it will be a linear function of the factor processes. 

Let us write our basic generator matrix from (5.1) as  

 

12.5.2 RMV PRICING 

Using the form for the intensity of a Markov chain, one may adapt the RMV pricing argument to show that  

 

Evidently, v(Xu)μ(Zu) is the intensity process for the default event, and this intensity fluctuates as the Markov chain X 
changes states. The loss-given-default variable can depend on time, the state of the Markov chain X and the factor 
processes. We now consider the simplest version of Equation (5.3), which defines our model bond prices at time 
zero, namely 

 

Note that the only randomness remaining in Equation  (5.5) is that of the Markov chain itself and that, conditional on 

the factor process Z, this is a time-inhomogeneous Markov chain. 

Generalizing the calculation performed in Di Graziano and Rogers (2009, 60), we may show that the vector function  

V(t; •) satisfies the first-order differential equation 
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12.5.3 LOSS GIVEN DEFAULT 

At this level of generality, Equation (5.9) is of little practical value, because we do not have available tractable 

expressions for V(0, X0). However, if we suppose that the loss-given-default random variables do not depend on the 

factor processes, then 

 

The next level of specialization, and the one that leads to a closed-formula solution for our zero-coupon bond prices 

in Equation (5.3), is to suppose that recovery rates depend only on X. This then leads to  



   160 

 Page 160  

 

 

where B is the matrix of eigenvectors and D is the usual diagonal matrix populated with the corresponding 

eigenvalues of  . 

Since such a diagonalization is always possible if  has distinct eigenvalues, we can always make a minor adjustment 

to  if needed so as to ensure that Equation (5.17) holds. Ideally, the diagonalization occurs over real numbers, , but 

one cannot guarantee that this happens. It is possible to handle the case for which  is diagonalizable over complex 

numbers C but not over real numbers (i.e., some eigenvectors have nonzero imaginary parts), but one must code the 

evaluation of Equation (5.16) to recognize the special conjugate structure that occurs in this case. 

At this point, the key to evaluating Equation (5.16) is to realize that 
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which follows from the assumption in Equation (5.17) and the series expansion for the matrix exponential. 

The last set of assumptions that are required to obtain a closed formula is to ensure that structure of µ(Zs) permits 

the factor processes to be evaluated, including any interaction terms with the factors that are driving the treasury 

model. A typical example is to assume a linear structure for the function µ The bond price formula may be partially 

simplified without explicit assumptions on µ as follows. 

Let us use the notation  

Then 

 

which simplifies to 

 

Using this expression in (5.16), we find 

 

Under the assumption that rs and µs are linear functions of the factor processes, one may be able to evaluate this 

expression in closed form using the moment generating functions associated with the factor processes. 

 

Since both rs and µs are affine functions of X and since the components of X are independent, this can be evaluated as 

a sum of products of CIR moment-generating functions. 

12.6 OTHER ISSUES 

Among other metrics, one should check that the model in use correctly captures spread distributions, total return 

characteristics, and the correct correlation with other asset classes. The validation of a corporate bond model or any 

other financial model is a critical part of the process of using such models in business applications. 

For more on considerations relating to model validation, see Chapter 8. 

12.6.1 WHAT TO DO ABOUT 2008? 

The causes and effect of the events of 2008 remain unsettled. Just as uncertainty exists about the drivers of the Great 

Depression, so too will be the case with respect to the Great Recession. One is faced with the need to capture some 

features of systemic risk without destroying historical relationships within the credit risk model. Some advances are 

being made: for example, improvements to rating-based models to incorporate better spread dynamics and easier 

fitting of initial yield curves, improvements to estimation algorithms for rating-based models, and enhancements to 

existing corporate bond models that allow the features of the financial crisis to emerge in simulation but otherwise 

preserve the historical long-run model behavior. 
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Chapter 13: Equity Index Models 
The preceding two chapters have looked at models for interest rates. The fundamental object that was modeled in 
those chapters was a bond, and from the price of the bond, an associated interest rate was derived. In this chapter, 
we will look at how to model the price of an equity index, together with its dividend payments, so that a model for 
total return can be obtained. 

Equity index models are fundamentally different from bond models for a few reasons. These differences depend on 
which bond market we are comparing with equities. For the purposes of the high-level discussion here, we are 
thinking about a liquid equity market versus treasury or high-quality investment-grade bonds. The value of a bond is 
known on its maturity date, but the price of an equity index is random in perpetuity. Equity indices tend to be more 
volatile than most bond prices. The volatility of equity returns tends to show periods of elevated volatility and lower 
volatility, with the periods of elevated volatility clustering together while bond returns are more stable. Equity prices 
can exhibit sudden large changes over short periods of time that can be interpreted as jumps in the equity index 
price, but this is not typical for bonds.1 

Section 13.1 provides some general considerations of equity models. A realistic equity model should incorporate 
stochastic volatility, jump behavior and accurate return behavior. Equity models provide total return characteristics, 
often split between an ex-dividend pricing model component and a dividend yield model component. More robust 
models may interfere with the concept of market completeness, limiting the ability to conform to requirements of 
arbitrage-free pricing. 

Section 13.2 provides a description of the standard Black-Scholes model, which is the traditional workhorse model 
for equity returns and associated derivatives pricing. A description of the mathematics underlying the model and its 
components is provided. The Black-Scholes model has the disadvantage of carrying a constant volatility term and a 
constant dividend yield. 

Section 13.3 provides a description of the Heston model, which generalizes the Black- Scholes model by introducing 
stochastic volatility to produce more realistic equity return behavior and permit more accurate pricing of 
derivatives. The stochastic process incorporates two Brownian motion terms that allow for the correlation of the 
price and volatility. 

Section 13.4 discusses the stochastic volatility with jumps (SVJ) model, which is an additional generalization of the 
Heston model by introducing a jump component to the price level. This can produce very accurate equity return 
distributions and path-wise price behavior, but it also requires complex mathematics to apply it effectively. 

Section 13.5 provides a discussion and basic mathematics of the regime-switching model. This also builds off the 
Black-Scholes model but has the feature of changing parameter sets in a random fashion, comparable to ongoing 
shocks to the economy. This model is capable of significantly fattening the tails of stock price returns but can 
produce a market that is incomplete. Examples and mathematical notation are provided for stock price dynamics 
and option pricing. Discussion of pros and cons of the model also is provided. 

Section 13.6 provides a brief discussion of econometric models. These models are particularly challenging in risk-
neutral applications. 

13.1 GENERAL CONSIDERATION OF EQUITY MODELS 

The state of econometric and financial modeling knowledge has reached the point where quite realistic equity 

models are available. One can select from a range of models featuring jump behavior, stochastic volatility and 

feedback effects between volatility and jumps. It is possible to generate very robust path-wise behavior and 

accurate return distributions. However, the introduction of some of these advanced features does come with a cost: 

The asset market becomes incomplete. Incomplete means that all sources of risk cannot be hedged away by trading 

in the universe of available assets, and as a result, one cannot arrive at a unique price for some contingent cash 

flows by arbitrage-free pricing considerations alone. Therefore, one of the most important negative consequences 

                                                                        
 

1 It can be argued that interest rates (equivalently bond prices) do jump on occasion. 
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of using some of these advanced modeling techniques is that the asset market becomes incomplete and additional 

assumptions are needed to price derivatives. How this issue is resolved is beyond the scope of this chapter. If one is 

interested only in real-world risk simulation, then the incompleteness is not a concern. The challenges posed by 

incomplete models tend to be ignored, but one should keep in mind the two issues that incompleteness introduces: 

 Some cash flows that are contingent on the equity index cannot be hedged by the assets available for 
trading. 

 Some cash flows that are contingent on the equity index do not have a unique price based on the 
absence of arbitrage alone. 

 

The latter condition can be overcome to some extent by adopting other methods for assigning a price. The former 
condition is more problematic if one is interested in hedging effectiveness, as would be the case in the risk 
management of a variable-annuity book. 

13.1.1 WHAT MUST THE MODEL DO? 

An equity index model must produce total returns for the equity index it is intended to model. Total returns consist 
of the combined effect of price returns and dividends. In some applications, it is required that the ESG separately 
produce the price return and dividend components of total return. 

It is common for an ESG to need to model more than one equity index per economy. For example, an ESG for the 
United States may require equity indices for large-cap, mid-cap and small-cap returns. The simultaneous modeling 
of multiple equity indices requires that appropriate co-movements between the indices be allowed for. Co-
movements between indices might be measured by correlation, and a standard way to correlate equity indices is to 
correlate the innovation (or error terms) that drive price movements. If the equity indices also include jump 
dynamics, then the possibility of simultaneous jump movements across all indices also needs to be allowed for. 

Insurance products such as variable annuities require the pricing and hedging of complex guarantees. In such 
applications, the equity index model must be capable of generating risk-neutral scenarios for the pricing of 
contingent cash flows. The computation of hedge ratios (i.e., option Greeks) also may be required. 

Equity index models typically specify the ex-dividend price of the index as one model component and the dividend 
yield as the other. The dividend yield is taken to represent the payout rate of the equity index as a percentage of its 
current price level. Modeling dividend yield instead of a cash dollar dividend payout has advantages in imposing 
arbitrage-free restrictions on the model. It has the disadvantage that dividend yield models do not reflect actual 
market dividend payout behavior as well as a cash dividend model would. For the purposes of this chapter, we 
assume that dividends are accommodated by a model for dividend yield. 

13.1.2 JUMPS 

Conventional wisdom suggests that equity markets are subject to jumps in prices and that equity market volatility 
also may exhibit jumps. By their nature, jumps are difficult to measure, and the empirical finance literature is not 
settled on the matter. For example, Christensen and Podolskij (2014) assert that “jumps in financial asset prices are 
often erroneously identified and are, in fact, rare events accounting for a very small proportion of the total price 
variation.” They further conclude, “In both theory and practice, traditional measures of jump variation based on 
lower-frequency data tend to spuriously assign a burst of volatility to the jump component. As a result, the true 
price variation coming from jumps is overstated. Our estimates based on tick data suggest that the jump variation is 
an order of magnitude smaller than typical estimates found in the existing literature.” 

Regardless of the empirical findings, experience with the performance of models with and without jumps leads one to 

conclude that stochastic volatility models alone require more variation than seems natural in order to capture the 

tails of equity returns. Some combination of stochastic volatility and jumps tends to place the equity returns in the 

right place relative to historical benchmark data. 

There seems to be a need to include a jump component in equity returns in order to obtain realistic real-world price 
dynamics. For some risk-neutral applications, the jump component may be omitted because it complicates the 
pricing of derivatives. 

Jondeau, Poon and Rockinger (2007) provide a range of additional equity models beyond what is discussed in this 
chapter. 
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13.1.3 ARE EQUITY RETURNS PREDICTABLE? 

It is tempting and natural to try to explain equity returns with observable variables. For example, one might think that 

a model with conditional mean, estimated off of things like GDP, interest rates and unemployment, would be a good 

starting point in getting a sound equity model. Unfortunately, the inclusion of observable economic variables does 

not significantly improve the explanatory power of the equity model. For this reason, most ESGs do not attempt to 

relate equity returns directly to macroeconomic effects. 

In Section  13.6, we will note an econometric approach that can be taken if one wants to build in such relationships. It 

must be noted that although such an approach would build in a relationship, the explanatory power of the model will 

remain weak. 

13.2 THE STANDARD BLACK-SCHOLES MODEL 

The Black-Scholes model was the traditional workhorse model for equity returns and associated derivatives pricing. 

The basic model assumes that the stock index price level has a lognormal distribution and a constant dividend yield. 

The real-world ex-dividend price of the equity index is modeled by the process 

 

The parameters λS and σS are constant. One may sometimes see the model expressed as 

 

but the two formulations are equivalent once arbitrage-free pricing restrictions are considered. 

Comparing Equations (2.1) and (2.2), we arrive at the nice interpretation that 

 

where λS measures the risk-return trade-off in the equity index and is referred to as the market price of equity price 

return risk. 

The dividend yield on the price index can be taken as a constant ∞ or can be modeled by a more general process 
such as 

 

where κD , θD and σD are constant parameters. The process At may be included to cause dividend yield to fluctuate 

around other financial variables, examples being interest rates and GDP growth. 

Correlation can be allowed for between movements in the equity price index and the dividend yield. 

13.2.1 ON THE IMPLEMENTATION OF THE DIVIDEND YIELD 

The dividend payments for the model are calculated based on the dividend yield rate as follows.  

If one holds φt units of the S&P 500 index over the interval [t, t + dt], then one receives the cash flow 

 

over this interval. Therefore, the dividend yield is the rate at which the dividend cash flow is paid per dollar of 

investment in the S&P 500. 
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As an example, suppose that an investor holds $1,000 in the S&P 500 index at time t. Mathematically, the condition 

that an investor holds $1,000 in the index means that the number of units held in the index (denoted ) times the 

unit price of the index (which we have denoted St) is equal to $1,000, in other words: 

 

If the current dividend yield is Dt = 0.035, then at time t, the investor is being instantaneously paid an amount equal 

to 1,000(0.035)dt = 35dt. 

13.3 THE HESTON MODEL 

The Heston model (Heston 1993) generalizes the Black-Scholes model by introducing stochastic volatility. Instead of a 

constant σS parameter for price volatility, a stochastic process is used for volatility. This has the advantage of 

generating more realistic equity return behavior and permits more accurate pricing of derivatives. 

Let St denote the equity index price level. The Heston model can be described by the following two general equations: 

 

where the two Brownian motions W(1) and W(2) can be correlated with correlation parameter ρ, and the drift term µt 

may take on a fairly general stochastic form. The stochastic process V is the volatility process for the equity index. The 

process V fluctuates but remains nonnegative due to properties associated with its specified dynamics. Since V can 

trivially be set to a constant, the model nests Black-Scholes. 

A nonzero value for the correlation parameter ρ will associate changes in volatility with price returns. For example, if 

ρ < 0, then an increase in volatility will tend to be associated with negative price return. 

The dynamics can also be expressed in terms of the logarithm of the equity index price level, and this is commonly 

found in the literature. When the logarithm of the equity index price level is used, there is a small change in the 

dynamics of the model, but no practical differences result. 

A very large literature has developed around this model that addresses the accurate simulation of returns and the 

precise computation of derivatives. 

13.4 THE STOCHASTIC VOLATILITY WITH JUMPS (SVJ) MODEL 

The SVJ model generalizes the Heston model by introducing a jump component to the price level. The model is also 

referred to as the Bates model (Bates 1996). 

Let St denote the equity index price level. The SVJ model can be described by these two equations: 

 

where Jt is a jump process and where, as with the Heston model, the two Brownian motions W(1) and W(2) can be 

correlated with correlation parameter ρ, and the drift term µt may take on a fairly general stochastic form. 

The jump process can be taken to be of the compound Poisson type that is familiar to actuaries. In practice, the 
jump process usually incorporate a feedback effect, whereby the volatility process affects the likelihood of a jump 
occurring. This type of feedback effect is known as the leverage effect and is important in capturing the tendency for 
volatile equity returns to be accompanied by more large drawdowns. 
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The model has the advantage that it can produce very accurate equity return distributions and path-wise price 
behavior. It has the disadvantage that the pricing formulas are quite involved and require a high level of 
mathematical knowledge to effectively apply. 

13.5 REGIME-SWITCHING MODEL 

The regime-switching model is based on the standard Black-Scholes lognormal dynamics with the additional feature 

that these dynamics can change parameter sets in a random fashion. Such an underlying change is interpreted as 

ongoing unobservable shocks to the economy. For simplicity, we will restrict our discussion to a two-regime model. 

We are following the model as developed in Hardy’s (2001) well-known paper. 

13.5.1 STOCK PRICE DYNAMICS 

There is a two-state Markov chain with monthly transition probabilities  We are labeling the 

two possible states as state 1 and state 2. 

Evidently, two parameters are required to define this transition matrix, since p1,1 + p1,2 = 1 and p2,1 + p2,2 = 1. The state 

of the Markov chain at month k will be denoted by  

The stock price process, denoted St, follows the real-world dynamics: 

 

It is more convenient to write the model out as a month-on-month return (assuming one month is the finest 

simulation interval) formulation.2  

The return for the nth month is (assuming time is expressed in years): 

 

where ε(1) are standard normal random variables (which can be correlated with their interest-rate counterparts, if 

desired). It is possible to allow for correlation between the driving Brownian motion W(1) and other Brownian motions 

in the ESG, such as those used to drive changes in interest rates. It is not possible to generalize the drift term (i.e., 

instantaneous expected return) if we wish to employ the type of estimation procedure given in Hardy (2001). 

The simulation of the stock price process is straightforward. It requires the simulation of the Markov chain together 

with normal random draws weighted by the appropriate parameter set. 

The form of the dividend yield process can be made as we have discussed in section 13.2.1. The presence of 

stochastic dividends complicates the closed formula for option pricing that one can obtain in this model, and to retain 

a tractable structure, we need some approximations to dividends in the option formula. 

13.5.2 OPTION PRICING 

Let us consider the basic option-pricing formula in the case where interest rates are constant (at the value ∞) and the 

stock does not pay dividends. The price of a European call option expiring at time T with strike price K is given by 

                                                                        
 

2 To make a strict translation between the two formulations, we should have  
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If we let R denote the number of months the regime spends in state 1 (and p(r) the probability function for R), then 

the distribution of log (ST/S0) is normal conditional on R. Specifically: 

 

Therefore, 

 

where BSP(r) denotes the usual Black-Scholes option price based on 

 

Thus, we are able to compute an option price under our two-regime model as a weighted sum of the usual Black-

Scholes formulas. Of course, we need to compute P(r) up front. In summary, we have the following formula for option 

prices: 

 

If we now introduce dividends as a constant dividend yield, this formula would have the immediate generalization to 

 

where  is the well-known formula for dividend-paying stocks with the same mean and variance as before. 

13.5.3 DATA AND ESTIMATION METHODOLOGY 

The regime-switching model can be estimated using a classical maximum-likelihood approach or by using a Bayesian 

likelihood approach. Hardy discusses the classical estimation (EM-type algorithm). This requires a recursive 

computation of the likelihood components together with a search algorithm. The Bayesian approach can be 

implemented using a Markov chain Monte Carlo algorithm. 

13.5.4 PROS AND CONS OF THE MODEL 

The model is capable of significantly fattening the tails of stock price returns. It can increase the downside risk with no 

upside improvement as well. The model offers a tractable range of option-pricing formulas. Since Black-Scholes is the 

basis for the formulas, there is a natural intuition on the model’s behavior, and it is relatively simple to work with. 

A drawback of this model is that it is incomplete. However, this is also true of stochastic volatility models. The source 

of the incompleteness in the regime-switching model is that there is no asset available to hedge the risk of a regime 
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switch. The source of the incompleteness in models with stochastic volatility is that there is no asset available to 

hedge the risk of stochastic changes in equity volatility. For such incomplete models, there is a range of viable option 

prices that are consistent with the absence of arbitrage. Each model needs an assumption about the price of regime 

switch risk or volatility risk. The method offered for the regime-switching model assumes this risk is unpriced. The 

assumption that volatility risk is unpriced has also been made in the literature. These assumptions could be altered, 

but an alteration would result in technical adjustments to the option-pricing formulas. 

13.6 ECONOMETRIC MODELS 

Very good econometric models are available for capturing equity returns and equity return volatility. Due to 

challenges in using these models in risk-neutral applications, the most straightforward applications are to real-world 

simulation. However, versions of these models can be applied in risk-neutral simulations, and there is a considerable 

literature that takes many powerful econometric models over to the risk-neutral world. 

A popular class of econometric models for equity returns is the GARCH(1,1) formulation. This model is defined as 

 

where the random variables vt are independent and identically distributed (i.i.d.) with zero mean and unit variance. 

In this formulation, the vector xt consists of observable financial variables that are used to define the conditional 

mean of the process. One might include changes in interest rate levels, GDP growth, oil prices and so on. The critical 

feature of the model is that the volatility structure accommodates periods of high and low volatility, and high 

volatility tends to be persistent. The model has the advantage that it may be estimated directly using maximum-

likelihood techniques. It has the disadvantage that it is a discrete time model and is therefore not as flexible for 

general ESG simulations. 

More sophisticated GARCH formulations can be adopted. In many cases, researchers have found the GARCH(1,1) to 

be sufficient to capture the key properties in the data. Also, a range of modifications can be made to this class of 

models to include jump behavior. 
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Chapter 14: International Considerations 
There are many reasons that international considerations can enter into the application of an ESG. Frequently, an 

insurance company must deal with lines of business in a multinational context. ESG practitioners often refer to an ESG 

that simultaneously simulates more than one economy as multi-economy. Multi-economy can be considered as a 

synonym for “international.” If an ESG is used to aggregate risks across multiple economies, then all of the relevant 

economies would need to be available, together with the foreign-exchange rates necessary to combine the results in 

a single currency. Today’s investing environment is international in nature, as managers look to different regions of 

the world for growth and seek some of the benefits of global diversification. Larger insurance companies typically 

have business interests that span more than one country. 

There are many practical issues in constructing and calibrating a multi-economy ESG. There are issues of data 

availability. Less developed economies tend to have a smaller menu of assets available for trading. In a less developed 

economy, the assets that are available for trading may not represent a liquid market, thereby making it hard to 

interpret the data that is available. Then there is the question of how changes in variables within the individual 

economies are related across economies in the multi-economy context. For example, it may be that changes in long-

term interest rates in one economy tend to be accompanied by changes in long-term interest rates in some but not all 

of the other economies being modeled. 

Section 14.1 discusses the differences between single- economy and multi-economy ESG modeling. Broadly speaking, 

moving to a multi-economy ESG imposes cross-economy calibration and validation requirements that are not a 

consideration in a single-economy context. The need for foreign-exchange rates is another distinction between single-

economy and multi-economy ESGs. A multi-economy framework differs from single-economy modeling in the need 

for global correlation matrices and foreign-exchange processes that serve to link the constituent economies together 

into a global model. 

Section 14.2 discusses differences between important variables across economies. Since the objective of an ESG is to 

capture market behavior, the financial variables that an ESG simulates for a given economy depend on the actual 

market structures associated with that economy. ESG variables that appear in several economies may have materially 

different payment or risk characteristics despite sharing similar names. 

Section 14.3 addresses data issues in modeling global economies and associated challenges in setting calibration 

targets. One of the primary challenges in building multi-economy ESGs is that the availability of historical data varies 

greatly across economies. Some economies have long time series of data across a wide range of asset classes. Other 

economies may have short data histories for a small number of asset classes. Economies that are in transition may 

have available data series that need to be carefully interpreted in light of structural changes occurring in those 

economies. 

Section 14.4 discusses the importance of capturing co-movements between financial variables across economies, and 

the limitations of what can be inferred from history. The simultaneous modeling of multiple economies requires that 

the components of each economy react sensibly as a global entity. There is no universally accepted way to measure 

co-movements of financial variables, but statistical correlation is one standard approach. Some of this can be 

achieved through correlation parameters, but some if this is structural and should be a part of the design of the 

dynamics of the global model. Two aspects of this general concept are the need to have a realistic proxy for global 

risk, and a distribution of global scenarios that is suitable for understanding the diversification effects of various 

business strategies. 

Section 14.5 details the nature of exchange rate movements and their importance in multi-economy models. Foreign-

exchange rates are the variables that complete the linkage between the component economies in a multi-economy 

ESG. Exchange rates are needed to understand the historical risk-return relationships between global asset classes, 

and exchange rates are needed to link the simulation results so that insurance risks and investment outcomes can be 

aggregated across economies. 

Section 14.6 addresses the construction of a multi-economy ESG from existing single-economy models. 
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14.1 SINGLE-ECONOMY VERSUS MULTI-ECONOMY MODELING 

Whether one is using a single-economy ESG or a multi-economy ESG, there are common considerations in putting 

together a solid ESG that we have touched on in earlier chapters. At the top of the list is the requirement that the ESG 

should produce realistic behavior for the simulated financial variables. In a single-economy context, “realistic 

behavior” encompasses things such as return distributions, stochastic volatility and co-movements between variables 

within the economy, such as equity returns and corporate bond returns. In a multi-economy context, “realistic 

behavior” encompasses these things as well but also requires that the correlation between interest rates across 

economies behave correctly and that the calibration targets across economies be coherent. Broadly speaking, moving 

to a multi-economy ESG imposes cross-economy calibration and validation requirements that are not a consideration 

in a single-economy context. 

It is possible that a multi-economy ESG application might only look at business results within the constituent 

economies. For example, an insurer with business interests in the United States, Canada and the United Kingdom 

might want to look only at risk and profitability for the portions of their business pertaining to the United States, 

Canada and the United Kingdom. In such an application, realistic co-movements between financial variables across all 

three countries are of concern, in order for the model to correctly measure joint outcomes where results are 

unfavorable across all jurisdictions. It would not normally be sensible to simulate the three economies independently 

of one another, since that is not how these three economies typically relate to one another. Therefore, the need to 

capture co-movements between key financial variables across economies is an important additional consideration in 

the multi-economy ESG setting. 

More comprehensive applications of multi-economy ESGs will involve aggregating positions in a common currency. 

Therefore, a multi-economy ESG will normally produce foreign-exchange rates as part of its output. Once exchange 

rates are available, the ESG becomes a truly global model in which asset prices directly relate to one another and 

international investing becomes available. The need for foreign-exchange rates is another distinction between single-

economy and multi-economy ESGs. A detailed discussion of exchange rates is provided in Section 14.5. 

If the multi-economy models are required to be arbitrage-free, then there are technical conditions that the traded 

assets across all component economies must simultaneously satisfy. These conditions are related to the arbitrage-

free requirements for single-economy models, but they are more delicate to express, impose and verify, because the 

dynamics of all traded assets must be analyzed under a common currency. Thus, in a multi-economy framework, the 

arbitrage-free restrictions involve exchange rate processes, and the determination of risk-neutral dynamics is 

correspondingly more involved. 

An important practical question is whether a multi-economy model needs to be constructed by simultaneously 

specifying all economies in the model, or whether it is possible to bootstrap up to a multi-economy ESG from existing 

single-economy models. If the answer is a qualified yes, then one can develop a list of single-economy models with 

their single-economy calibrations and select which of these are to be used to define a multi-economy simulation run, 

thereby giving the ESG structure a great deal of flexibility. In the yes case, if the parameters of one economy are 

changed, it would not affect the other economies, and changes in calibrations could be made to one economy that 

did not require a set of global parameter adjustments. If the answer is no, then one would have to construct a large 

global economy that includes all economies that might be required, and calibration would have to be performed on 

this global entity. Under a no, if an economy were needed that was not on the original list, then the global economy 

would have to be reconstructed and recalibrated. 

Fortunately, the answer to the question is a qualified yes. The answer is qualified because one cannot obtain a global 

economic model by simply pasting together individual economies, but a coherent global economic model can be 

obtained by linking existing models for individual economies together using global correlation matrices and foreign-

exchange processes. A detailed discussion of this is provided in section 14.6. 

The perspective we take is that of an ESG practitioner working with continuous-time arbitrage-free models. If one 

departs from this classical framework, then other approaches for obtaining a global economic model from individual 

economies are possible. Thus, a multi-economy framework differs from single-economy modeling in the need for 

global correlation matrices and foreign-exchange processes that serve to link the constituent economies together into 

a global model. 



   172 

 Page 172  

14.2 DETAILS OF SIMILAR ASSET CLASSES CAN VARY SIGNIFICANTLY ACROSS ECONOMIES 

There is a core commonality to asset classes across global economies. Since the objective of an ESG is to capture 

market behavior, the financial variables that an ESG simulates for a given economy depend on the actual market 

structures associated with that economy. For example, each economy is expected to include a market for treasury 

bonds, equities and a broad inflation measure. Many economies will have corporate bond markets. Some economies 

will have mortgage-backed securities (MBSs). Other mortgage-related assets, like the German Pfandbriefe, can be 

important to a given economy. Real estate investments may be made through different vehicles, such as real estate 

investment trusts (REITs), as opposed to brick-and-mortar properties. An ESG may model the dominant investment 

vehicle for a given asset class, rather than include multiple variations of the same asset class. There also can be 

unique asset classes that are not present in other economies. 

Institutional details can vary significantly across economies. European sovereign bonds pay annual coupons, while 

U.S. Treasury bonds pay semiannual coupons. U.S. corporations pay quarterly dividends on equity shares, which are 

equal across quarters unless the dividend is changed, while European equity shares tend to pay annual dividends with 

a possible interim payment. Large liquid markets for MBSs exist in the United States and to a lesser extent in Canada 

and Denmark. However, the prepayment features that are critical to the behavior of U.S. MBS pass-throughs are not 

present in the Canadian mortgage market, and the available interest rate lock-in period for Canadian mortgages is 

much shorter than the 30 years that is available in the U.S. market. Therefore, the characteristics of MBS securities in 

the U.S. and Canadian markets are very different. Pfandbrief securities, jumbo Pfandbriefe in particular, represent an 

important liquid asset class for Germany but are of much less importance elsewhere in the world.1 Some government 

bond markets do not have securities with long maturities, Brazil being one such example. Other government bond 

markets issue securities with very long maturities; two examples are Great Britain and France. 

In summary, there can be significant differences between the universe of ESG variables across economies. Some 

economies will have a lot of asset classes available while other economies will have a much slimmer menu to choose 

from. ESG variables that appear in several economies may have materially different payment or risk characteristics 

despite sharing similar names. 

Table 14.1  

ILLUSTRATIVE ASSET CLASSES AND KEY ESG VARIABLES FOR THREE DEVELOPED ECONOMIES 

United States Germany United Kingdom 

Treasury bonds 

Equity indices 

Corporate bonds 

Inflation-indexed bonds 

Mortgage-backed securities 

Municipal bonds 

 

Inflation 

GDP 

Unemployment 

REITs 

Treasury bonds 

Equity indices 

Corporate bonds 

Inflation-indexed bonds 

 

 

Jumbo Pfandbriefe 

Inflation 

GDP 

Unemployment 

Properties 

Treasury bonds 

Equity indices 

Corporate bonds 

Inflation-indexed bonds 

 

 

 

Inflation 

GDP 

Unemployment 

Real estate 

                                                                        
 

1 Outside of Germany, the corresponding asset class is best described as covered bonds. 
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14.3 DATA ISSUES IN MODELING GLOBAL ECONOMIES 

Whether one is building a single-economy ESG or a multi-economy ESG, data is essential for informing the 

development, calibration and validation processes that are central to an ESG. One of the primary challenges in 

building multi-economy ESGs is the availability of data. The availability of historical data varies greatly across 

economies. Some economies, such as the United States and the United Kingdom, have long time series of data across 

a wide range of asset classes. Other economies may have short data histories for a small number of asset classes. 

Economies that are in transition may have available data series that need to be carefully interpreted in light of 

structural changes occurring in those economies. 

A key implication of all of this is that even when the relevant data for each economy has been identified, the 

aggregated global data is ragged. Ragged data means that we may have one series for a variable that runs from 

January 1950 to current (i.e., through today’s date), but the best we can get for another series is data from April 1994 

to current. Ragged also means that we may have one series for a variable that runs from January 1967 to current, but 

the best we can get for another series is data from January 1967 to June 2012. This latter case can happen when asset 

classes cease to exist, as happened to data for AAA and AA corporate bonds for many economies in recent years.2 

Ragged data presents challenges in setting calibration targets. For example, when data is ragged, one cannot simply 

average returns across a common historical window to obtain coherent average return targets across economies.3 As 

another example, when recent data is missing but the ESG needs to continue to model that variable, then the 

practitioner is forced to make an extrapolation of the previous data against the relevant remaining global 

benchmarks. 

Economies with developing financial markets can have relatively large asset classes that are important to the 

companies domiciled there, but for which there is very limited or no historical data. The Chinese financial bond 

market, bank deposit market and private debt markets are examples of this situation. The relative risk-return 

characteristics for such asset classes may be hard to reconcile, particularly within an arbitrage-free modeling 

framework. For example, in the Chinese market, financial bonds might be thought of as default-free, with a better 

average yield than for other assets also viewed as default-free. Obviously, one cannot have an arbitrage-free model in 

which some default-free assets are dominated by other default-free assets. This situation can develop for many 

reasons, one of which might be that financial bonds are driven by government policy and not market demand. 

Nonetheless, this type of situation shows up in global data, and one must then deal with the resulting model 

implications. A global model may attempt to include these asset classes, but model development for such asset 

classes cannot proceed as it would for a well- developed economy. One may also be faced with doubts about the 

quality or accuracy of official statistics. A classic example is concerns about the accuracy of official GDP statistics for 

China, as discussed in Holz (2014). 

Several very useful references are available that deal with international capital markets. Ibbotson and Brinson (1993) 

survey global capital markets and provide an overview of the returns of major asset classes as they stood in 1993. 

Dimson, Marsh and Staunton (2002) provide another valuable in-depth look at global capital markets and their risk-

return characteristics. While this reference is now more than 10 years old, it is supplemented each year by the Global 

Investment Returns Yearbook report put out by these and other authors through Credit Suisse. 

14.3.1 INTERPRETING DATA FOR ECONOMIES IN TRANSITION 

One of the primary uses for historical data is the setting of ESG calibration targets. As we have noted, the process of 

setting calibration targets for a multi-economy ESG is often complicated by the fact that the availability of historical 

                                                                        
 

2 Post financial crisis, AAA and AA corporate bond series were discontinued, since there were too few bonds remaining to reliably 
assess representative interest rate curves. 
3 Even if data was available for the same historical periods across all economies, there are reasons why average returns across a 
common historical window might not be the right choice for average return targets. 
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data varies greatly across economies. Related to this is the fact that, for emerging economies, only a portion of the 

available data may be relevant to current modeling. Let us consider the case of setting calibration targets for Poland.4 

Poland is one example of an emerging economy where an econometric analysis of the available data is insufficient to 

construct a sound set of calibration targets. Indeed, as Figure 14.1 shows, the data on Polish interest rates begin 

when the country was recovering from its Communist epoch, which officially ended in 1989, and Polish interest rates 

have moved significantly ever since. The recent era of central bank manipulation calls into question the interest rate 

data over the past few years, not just for Poland but globally. One thing that is clear from Figure 14.1 is that Polish 

interest rate dynamics have undergone a significant transition. 

Figure 14.1   

POLISH THREE-MONTH AND 10-YEAR TREASURY RATES 

 

Sources: Bloomberg; Conning, Inc. 

It may be reasoned that Poland’s geographical location, robust manufacturing sector and high education level make it 

probable that Poland will eventually converge to similar economic performance as Germany’s. Therefore, it might be 

appropriate that the calibration targets for Poland are comparable to the targets used for Germany. There is some 

expert judgment involved in the rate at which this convergence is assumed to happen, but this is not part of the 

calibration targets. Alternatively, one might expect that Poland is likely to have a comparable but somewhat lesser 

financial standing to Germany’s, and that long-term calibration targets for Poland should therefore be at a small 

positive spread to Germany. The convergence between German and Polish interest rates has been appreciable in 

recent years. The key issues to note here is that calibration targets for Poland must be established relative to other 

global economies, and some expert judgment is unavoidable. 

It should be noted that the flavor of this example is not unique to emerging economies. If an ESG practitioner takes 

U.S. Treasury interest rate data from 1970 to present and attempts to set calibration targets for U.S. interest rates, it 

will immediately be apparent that there has been some kind of change in U.S. interest rate behavior that commenced 

in the early 1990s. This practitioner’s task will be further confounded by the peculiar behavior of interest rates post 

financial crisis, for which there are now seven years of actual data to consider. This practitioner is likely to appreciate 

                                                                        
 

4 Calibration targets are approached differently, depending on the nature of the economy that we are setting the targets for. There 
are three broad cases: 
Case 1: Data is available for the economy for the entire calibration window, and it is believed all available data is relevant. Statistics 
for data over the entire calibration window could be used for setting targets. 
Case 2: Data is available for the economy for a portion of the calibration window, and it is believed all available data is relevant. 
Econometric analysis is needed in relating the available data to the full calibration window. Some expert judgment may be needed. 
Case 3: It is believed that some of the available data is not relevant. Econometric analysis and expert judgment are needed. 
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that the high interest rate data from the 1970s and 1980s are less relevant to the setting of current calibration 

targets. 

14.3.2 SIGNIFICANT DIFFERENCES IN MARKET NORMS 

Another interesting example of the challenges in multi-economy modeling is presented by the Malaysian corporate 

bond market. As we know from our discussion of corporate bonds, ratings are designed to reflect expected credit 

costs associated with holding a particular security. In an international context, one might expect that the credit costs 

associated with holding an A-rated bond in one economy would be similar to the credit costs associated with holding 

an A-rated bond in a different economy. Often, this is true. Sometimes it is not, as we will now illustrate for Malaysia. 

Based on Bloomberg data, the average spread to treasury on an A-rated 10-year bond for the period August 2003 

through November 2015 for U.S. industrial corporate bonds is 108 basis points and for Malaysian corporate bonds it is 

439 basis points. In the U.S. market, a rated bond with a 439-basis-point spread to treasury would almost certainly 

have a below-investment-grade rating. Figure 14.2 illustrates the situation. 

Figure 14.2 

COMPARISON OF SPREADS ON U.S. AND MALAYSIAN CORPORATE BONDS 

 

Sources: Bloomberg; Conning, Inc. 

One might feel that a consequence of the large Malaysian spread differential is that Malaysian corporate bonds must 

have significant credit costs if their risk-return characteristics are consistent with other A-rated bonds in a global 

context. Another explanation for this wide spread differential might involve liquidity effects or differences in what the 

ratings mean. In any event, this feature of the Malaysian corporate bond market has significant modeling implications 

for the ESG practitioner. 

A key observation is that similar-sounding asset classes can have very different behavior across economies. 

14.4 THE IMPORTANCE OF CO-MOVEMENTS BETWEEN ECONOMIES 

The simultaneous modeling of multiple economies requires that the components of each economy react sensibly as a 

global entity. In a multi-economy ESG context, it is natural to ask whether the co-movements of variables across 

economies are reasonable and consistent with historical norms. As always, the devil is in the details of what 

constitutes reasonable and what the historical norms really are. One viewpoint would be that the ESG output should 

encompass history and produce extreme but plausible outcomes. Explicit calibration targets might also serve as a 

reasonableness check. It is far more difficult to draw definite conclusions from the historical data concerning the 
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relationships between the co-movements of variables that can be used to establish historical norms for a multi-

economy framework. 

There is no universally accepted way to measure co-movements of financial variables, but statistical correlation is one 

standard approach.5 Figure 14.3 shows the fiv- year trailing correlations of the monthly changes in the 10-year 

treasury rate for the United States, Germany and the United Kingdom, using data from March 1967 through 

December 2015. 

Figure 14.3  

CROSS-ECONOMY CORRELATIONS FOR MONTHLY CHANGES IN 10-YEAR TREASURY RATES 

 

Sources: Bloomberg; and Conning, Inc. 

Figure 14.3 shows that there has been a significant change in the way interest rates for the United States, Germany 

and the United Kingdom co-move, with the trend being toward a convergence of these markets. Furthermore, the 

correlations in recent years have been relatively stable. Figure 14.3 might be interpreted as showing that correlations 

move around significantly over time and that there are periods of time for which correlations can be relatively stable. 

The implications for ESG modeling are subject to a range of interpretations. Some practitioners would conclude that 

using static (i.e., constant) correlation parameters in a global ESG model is adequate. Others might decide that a 

dynamic correlation structure is warranted. 

More sophisticated dynamic correlation structures are a challenge to fit into a tractable arbitrage-free pricing 

framework. Furthermore, it is very difficult to identify the drivers of the changes in correlations and to map these 

drivers into fundamental ESG variables that can be modeled. In practice, ESGs that try to incorporate dynamically 

changing correlations are likely to rely on latent variables (i.e., sources of randomness with no direct economic 

interpretations) to drive changes in correlation. Consequently, some practitioners might prefer the easier-to-explain 

assumption of constant correlation. 

Buhler and Zimmermann (1996) find that, in the case of German and Swiss interest rates, neither volatilities nor 

correlation coefficients are stable (constant) over time, but that the correlations are much more stable than the 

volatilities. They note that volatilities may be unstable even for rather long subperiods. This type of finding seems to 

be typical of interest rate behavior across economies. 

                                                                        
 

5 We are referring to the usual concept of correlation, also known as Pearson’s correlation coefficient. Other measures of 
correlation/association are possible but are not considered here. 
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The simultaneous modeling of multiple economies requires that the components of each economy react sensibly as a 

global entity. Some of this can be achieved through correlation parameters, but some if this is structural and should 

be a part of the design of the dynamics of the global model. 

Correlation is probably the most direct tool that can be used to measure and model co-movements of ESG variables. 

A common technique for accommodating correlation in an ESG structure is to correlate the innovation terms (i.e., 

error terms) that drive changes in the relevant financial variables. Specific correlation dynamics in the innovation 

terms can be induced by using a Choleski factorization of the relevant correlation matrix. Mathematically, if the 

correlated standard error terms are to be the vector Z with correlation matrix P, then these can be generated as LW, 

where P = LLΤ is the Choleski factorization of P. Other techniques can also be used to capture correlation structures, 

copulas being a popular alternative. 

It is very difficult to explain why correlations are unstable and to identify the cause(s) of changes in the way variables 

relate to one another across economies. In Dimson, Marsh and Staunton (2002, 114), the general observation is made 

that “correlations depend on the underlying structural relationship between countries, and these have naturally 

changed over time. Major shifts have occurred in world power blocks and politics through decolonialization, wars 

being replaced by peace, economic growth and development, shifting trade flows, economic unions, changing 

currency regimes, and so on.” 

Intuitively, a cause of sudden changes in movements could be flight to quality—the idea that when market risks 

become elevated, the best course of action is to sell all but the highest-quality assets and move into strong 

currencies.  Cho et al. (2016) discuss aspects of this effect and conclude that it creates positive correlation between 

currency and equity in emerging markets and negative correlation between currency and equity in developed 

markets. These effects are difficult to capture in an ESG and are all the more difficult to model if one wishes to retain 

an arbitrage-free model structure. If one is willing to depart from an arbitrage-free framework, then a wide range of 

econometric tools can be applied, one such approach being dynamic conditional correlation models, as in Engle 

(2009). 

A deeper study of the finance literature does not lead to firmer conclusions about the nature and causes of co-

movements of financial variables across economies that could be used to inform the global dynamics for an ESG. 

Longin and Solnik (1995) study the correlation of returns across major economies over the period 1960–1990. They 

find that the correlation matrices are unstable over time. Longin and Solnik (2001) find that correlation increases in 

bear markets but not in bull markets. Solnik, Boucrelle and Le Fur (1996) note that International correlations for 

stocks and bonds fluctuate widely over time, and that international correlation increases in periods of high market 

volatility. A general discussion of correlation and its importance in financial models may be found in Meissner (2015). 

A high-level discussion of how the breakdown of correlation and its modeling created large losses in credit products is 

given in Triana (2009, Chapter 4). 

Despite the complexities of the way correlations behave, it should be remembered that ESGs are fairly general 

models about broad pieces of the economy. Indeed, ESGs model things like large-cap equity returns, investment-

grade bond returns, inflation and GDP. At the other extreme would be models of small-cap health care returns or 

returns on B-rated utility bonds for a manager interested in investment decisions at a very granular level. At such a 

granular level, the intricacies of the correlations between returns would be a key consideration in developing an 

investment strategy. In the much more aggregated world of risk management, it is less important that ESGs capture 

the intricacies of global correlation structures than that they provide a platform that offers a plausible proxy for the 

manner in which global economies interact. Therefore, if an ESG can offer a reasonable correlation structure it is likely 

to be sufficient for most risk management applications. 

Ensuring that a multi-economy ESG correctly captures the co-movement of variables across economies is important. 

Two aspects of this general concept are the need to have a realistic proxy for global risk and a distribution of global 

scenarios that are suitable for understanding the diversification effects of various business strategies. 

14.4.1 CREATING A REALISTIC PROXY FOR GLOBAL RISKS 

The identification of severe risk scenarios for an international insurer depends on the ESG being capable of simulating 

extreme outcomes occurring simultaneously across some or all of the economies in which the insurer operates. If 



   178 

 Page 178  

economies were simulated independently of one another, then the ESG output would lack scenarios where extreme 

conditions simultaneously occur in multiple economies. While bad outcomes could happen simultaneously across 

multiple economies even though the economies were simulated independently, the frequency with which this would 

occur would be greatly reduced from what would be observed in a correlated multi-economy setting.  

Figure 14.4 illustrates the point. Suppose that the red pairs are a reasonable proxy for the risk profile we are 

concerned with. In this figure, the components of the blue pairs are independent, while the components of the red 

outcomes are correlated. The marginal distributions of all pairs are standard normal, so both the blue and red 

outcomes correctly capture the risk characteristics of the individual components of the pairs. The blue outcomes do 

not generate the same occurrences of jointly extreme outcomes that we see in the red outcomes. Additionally, the 

blue outcomes wind up generating a lot of simulated scenario pairs that reside in a part of the outcome space we do 

not expect to encounter (under our assumption that the red pairs are a reasonable proxy for the risk profile we are 

concerned with).  

Figure 14.4 

SIMULATED PAIRS OF STANDARD NORMAL RANDOM VARIABLES, UNCORRELATED AND CORRELATED. 

 

Note: The blue pairs are simulated standard normal random variables (U1, U2), and the red pairs are constructed from these draws as   

. 

Source: Conning, Inc. 

In practical terms, the lesson is that using independent economies as a proxy for a multi-economy framework will 

create a lot of irrelevant ESG scenarios. The flip side of the coin is that having too much correlation is also 

undesirable, as it will constrain the range of simulated outcomes relative to the outcomes that we consider plausible, 

and it will produce some extreme scenarios that we may not regard as plausible. Again using Figure 14.4 for 

illustration, if the blue pairs are a reasonable proxy for the risk profile we are concerned with, then using the red 

outcomes as a proxy for this risk profile would miss the important outcomes in the northwest and southeast corners 

of the chart and produce some extreme scenarios in the northeast and southwest corners of the chart that we do not 

expect to encounter. 
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In summary, an ESG that assumes too much independence may produce many scenarios of limited relevance to what 

the insurance company expects to encounter and fail to produce scenarios that reflect jointly occurring extremes 

across economies. Conversely, imposing strong views on correlation can limit the range of scenarios that are 

necessary for a fair sampling of the risk profile an insurance company faces and produce too many scenarios that 

reflect jointly occurring extremes in the global economy. 

14.4.2 DIVERSIFICATION BENEFITS OF BUSINESS STRATEGIES 

Insurers may want to use ESG scenarios to understand the diversification benefits of changes in lines of business 

across economies, the effects of a potential acquisition, changes in international reinsurance treaties, or the 

consequences of varying global allocations in their investment strategies. Getting the co-movement of variables 

across economies right is an essential part of measuring the benefits of diversification. In an investment context, it is 

the correlation structure that is important in understanding diversification effects. As noted in Ibbotson and Brinson 

(1993, 229), “An asset’s diversification value depends on the correlation of its return with those of other assets.” 

Correlation among global risk factors can limit the benefits of diversification. Ensuring that the co-movement of key 

financial variables across economies is realistic will provide insight into the limitations of risk mitigation strategies. 

Correctly capturing negative correlation effects can help insurers better position their risks with no cost to overall 

performance. Of course, if a multi-economy ESG is able to create a realistic proxy for global risks, then it follows that 

the application of these ESG scenarios will be suitable for understanding diversification effects. However, it is unlikely 

that any ESG will be given such a broad level of acceptance. In practice, one may be forced to accept some 

imperfections in the way that a multi-economy ESG handles the co-movement of variables across economies. 

Developing an understanding of the implications of various correlation assumptions and how they affect the 

outcomes associated with changes in business strategy is an important step in deciding which cross-economy features 

of an ESG can be accepted and which will require modification. 

14.5 FOREIGN EXCHANGE (FX) 

Foreign-exchange (FX) rates are the variables that complete the linkage between the component economies in a 
multi-economy ESG. Exchange rates are needed to understand the historical risk-return relationships between 
global asset classes, and exchange rates are needed to link the simulation results so that insurance risks and 
investment outcomes can be aggregated across economies. 

Useful overviews of currency markets and exchange rates may be found in Ibbtoson and Brinson (1993, Chapter 2) 
and Dimson, Marsh and Staunton (2002, Chapter 7). 

It is only in the relatively recent times, beginning from the early 1970s, that exchange rates have been floating. 
Therefore, we have data that goes back no more than about 40 years from which to understand FX rates. For 
economies that have experienced an economic trauma such as high inflation and have recently recovered, we have 
even less data. Nonetheless, global foreign-exchange markets are very liquid with high volumes of trade, and a lot 
can be inferred about the qualitative statistical features of exchange rates. 

14.5.1 SOME OBSERVATIONS ON FX RATES 

Two notable features of exchange rates are that they are subject to extended periods of trending and significant 

fluctuations in volatility. Whether there is mean reversion in exchange rates is open to debate, and the conclusions 

depend upon the statistical tests applied and the historical period examined. As Figure 14.5 shows, the relationship 

between the Canadian dollar (CAD) and the U.S. dollar (USD) usually seems to be in some type of trend. Furthermore, 

the CAD/USD exchange rate has historically traded in a band of about $0.94 to $1.60. 
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Figure 14.5  

MONTHLY EXCHANGE RATES OF CANADIAN DOLLAR (CAD) TO U.S. DOLLAR (USD) 

 

Sources: Bloomberg; Conning, Inc. 

Figure 14.6 shows that the volatility of the CAD/USD exchange rate fluctuates over time. 

Figure 14.6  

MONTHLY CHANGES IN CAD/USD EXCHANGE RATE: EVIDENT HETEROSCEDASTIC BEHAVIOR 

 

Sources: Bloomberg; Conning, Inc. 

Exchange rates are essential in the calculations that investors need to perform in order to evaluate global investment 

opportunities. For example, Figure 14.7 shows the returns and standard deviations from treasury bills, treasury bonds 

and equities for the United States, Great Britain, Germany and Switzerland in local currency and U.S. dollars. Local-
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currency returns are what an investor in that country would experience, while USD returns are what a U.S. investor 

would experience. 

Figure 14.7 

USD RETURNS VS. LOCAL-CURRENCY RETURNS  

 

Sources: Bloomberg; Conning, Inc. 

In practice, investors may seek to hedge some portion of their exchange rate risk. Figure 14.8 shows that this can 

produce quite different results from the unhedged case. Note how the risk-return structure changes when exchange 

rates are accounted for.  

Figure 14.8 

GLOBAL RETURNS FOR A USD INVESTOR, WITH CURRENCY RISK HEDGED AND UNHEDGED 

 

Sources: Bloomberg; Conning, Inc. 

Hedging of exchange rate risk can be done a variety of ways and may involve the use of derivatives contracts. If an 

ESG is to be used to evaluate a full range of global investment options including the hedging of exchange rate risk, 

then the ESG will need to include an arbitrage-free model for exchange rates. 

14.5.2 MODELS FOR FOREIGN-EXCHANGE (FX) RATES 

There are many sophisticated econometric models that can be used to capture the statistical features of exchange 

rate data. This literature is vast, and the reader may consult Johnson and Schneeweis (1994), Cuthbertson and 

Nitzsche (2004), Cheung and Erlandsson (2005) and Erdemlioglu, Laurent and Neely (2016), to name just a few 

representative resources. In some cases, a range of financial or macroeconomic variables may be included in the 

exchange rate model to attempt to explain the movements in the exchange rate, and a general econometric 

framework with explanatory variables is reviewed in Pilbeam and Langeland (2015). It is appealing to attempt to 

develop models that explain exchange rate movements. However, it can be argued that the incorporation of such 
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detailed mechanisms is not the way an ESG should work, since the focus of an ESG is the generation of plausible risk 

scenarios, not forecasting. The use of a robust econometric model may be suitable for some real-world ESG 

applications. 

If one requires an arbitrage-free multi-economy model, there are additional technical considerations. To begin with, 

the arbitrage-free framework requires that one consider all traded securities simultaneously. As we discussed earlier, 

the nature of the absence of arbitrage is that there is no way to generate a free lunch from trading in available 

securities. In a multi-economy ESG, the securities available for trade consist of the universe of all traded securities 

from each constituent economy, compared in a single currency by application of the appropriate exchange rates. 

For example, in a two-economy model for the United States and Canada, we could view the universe of all traded 

securities as the securities available for trade in the United States and the securities available for trade in Canada 

converted to U.S. dollars by the USD=CAD exchange rate. Let us denote the USD=CAD exchange rate at time t by Dt. 

Evidently, the CAD=USD exchange rate at time t is 1/Dt Ξ Dt
–1. For each economy, United States (i = 1) or Canada (i = 

2), let the money market account be denoted by Bt
(i), the price of a zero-coupon bond be denoted by the usual 

notation P(i)(t, T). Many assets will be available for trade in each economy, and all must be considered simultaneously 

in the arbitrage-free framework. For illustrative purposes in the following example, we will assume that only money 

market accounts and zero-coupon bonds are available for trade. 

With the exchange rate process defined, we can now bring assets from each economy over for trade in the other 

economy. Consequently, we can define a global asset market in the units of currency of either local economy. This is 

indicated in Table 14.2. Note that in the U.S. column, the assets that involve the symbol Dt are Canadian bonds 

denominated in U.S. dollars, and that in the Canada column, the assets that involve the symbol Dt
–1 are U.S. bonds 

denominated in Canadian dollars. 

Table 14.2 

GLOBALLY TRADED ASSETS IN CURRENCY OF EACH ECONOMY 

 

The no-arbitrage restrictions can be expressed in terms of either economy, and there is symmetry in the way that an 

equivalent martingale measure is selected. The key consideration is that the risk-neutral parameterization must 

simultaneously take into account all traded assets across all economies. The presence of the exchange rate process 

and the necessity of considerable notation make the framework more burdensome than what is needed to 

understand risk-neutral in a single economy. An approachable introduction to these ideas may be found in Baxter and 

Rennie (1996, Chapter 6). 

A popular continuous-time model for exchange rates that can be readily applied in risk-neutral is a variation on the 

Heston model that we looked at for equity returns. If we denote the exchange rate by xt, then 

 

where the two Brownian motions W(1) and W(2) can be correlated with correlation parameter ρ. The parameter μ is 

sometimes replaced with the differential between the foreign and domestic interest rate, depending on the dynamics 

that are emphasized. The model is able to capture varying degrees of mean reversion and stochastic volatility. 
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14.6 CONSTRUCTING GLOBAL ECONOMIES FROM SINGLE-ECONOMY MODELS 

The construction of an arbitrage-free multi-economy ESG requires that all models for traded assets fit together 

according to the restrictions that the arbitrage-free condition imposes. In theory, one could obtain a global arbitrage-

free model by laying out all of the economies to be modeled and carefully obtaining a global risk-neutral measure. In 

principle, one can build in very intricate relationships between variables across economies and still have an arbitrage-

free model, so long as one can impose the required conditions. 

In practice, ESGs must add (or remove) economies over time, and the asset classes that are included within each 

economy may get expanded over time. It would be very inconvenient if one had to go back and reassess the global 

risk-neutral measure each time a modest change is made to the ESG. Furthermore, a given application may not call 

for all economies, and at times only some of the available economies will be simulated. For these reasons, global ESGs 

are not normally constructed based on the imposition of many detailed relationships between variables across 

economies. To be sure, provisions should be made to allow for appropriate correlations and some structural linkages 

across economies, but enough flexibility needs to be maintained so that portions of the ESG can be run alone and so 

that modest changes can be made to the ESG without requiring a total overhaul of its structure. 

It turns out that it is possible to construct individual economies and then assemble these economies into a global 

arbitrage-free model, providing certain restrictions are imposed on the dynamics across economies. The fine details 

of what these restrictions are and why they permit a “modular” approach to a global ESG requires looking at the 

technical details of a global ESG and is beyond the scope of this chapter. However, the basic idea is straightforward, 

and we will give a high-level description of one method that can be used to retain a “modular” approach to the 

construction of a global ESG. 

The phrase “driving Brownian motion” or “innovation term” is used to refer to the stochastic process that changes 

ESG variables. For instance, in Equation (5.1) in the prior section,, W(1) is the innovation term for the exchange rate 

level, and in Equation (5.2), W(2) is the innovation term for the volatility process of the exchange rate. Within each 

economy, there will be a collection of innovation terms associated with the models for that economy. The innovation 

terms within each economy will drive changes in the interest rates, equity returns, inflation, etc. for that economy. 

The foreign-exchange processes that link the economies will also have innovation terms, just as we have noted for 

Equations (5.1) and (5.2). If the innovation terms within each economy are not shared across other economies and if 

the innovation terms in the foreign-exchange processes are not shared across economies, then one can construct a 

global risk-neutral measure. The manner in which a global risk-neutral measure is constructed is based on 

bootstrapping up from the risk-neutral dynamics within each of the single economies, and it is this feature that gives 

the global ESG a degree of modularity. The condition that the innovation terms within each economy are not shared 

across other economies should not be taken to mean that we require that the innovation terms across economies be 

independent. On the contrary, the innovation terms will generally be correlated across economies. What the 

condition captures is the idea that the current state and future movements within each economy are determined by 

innovations that are modeled within that economy. 
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Annotated Bibliography 
 

Here we list the references that are especially important for ESG modeling and applications. The citations within each 

section are in order of publication date. Some annotations cite papers that are not in this annotated collection. 

Reference data for those citations is at the end.

INTEREST RATES 

Fair, R. C., and B. G. Malkiel. 1971. The Determination of Yield Differentials Between Debt Instruments of the Same Maturity. 

Journal of Money, Credit and Banking 3(4): 733–749. 

 The purpose is to study yields on three types of bonds: long-term U.S. government bonds, high-quality utility bonds 

and high-quality industrial bonds. This study strongly supports the theory that yield differentials of such bonds of the 

same maturity are influenced by the supply and anticipated flow of new issues. However, the authors also suggest 

that utility, industrial and government bonds are not perfect substitutes. The study is based on data for U.S. bonds 

traded in 1968–1969.  

Cox, J. C., et al. 1985. A Theory of the Term Structure of Interest Rates. Econometrica 53: 385–407. 

 This paper has become a classic in the literature on the term structure of interest rates. The underlying 

bonds are default-free. For example, this model might be used to simulate returns on U.S. Treasury bonds. 

The underlying model is a general equilibrium model. The authors’ basic model (now called the CIR model) 

has a single-state variable subject to three assumptions. The result is that the spot interest rate r satisfies 

𝑑𝑟𝑡 = κ(θ − 𝑟𝑡)𝑑𝑡 + σ√𝑟𝑡 𝑑𝑧𝑡 

where 𝑧𝑡  is a Wiener process and κ, θ and σ are positive constants. The model has “empirically interesting” 

properties: 

 Negative interest rates are precluded. 

 If the interest rate reaches zero, it can bounce back and become positive again. 

 There is a steady-state distribution for the interest rate. 
 

The authors explain many other features. The probability density at time s, conditional on its value at 𝑡 < 𝑠, can be 

written explicitly in terms of a Bessel function. They provide formulas for the first two moments of the distribution of 

𝑟(𝑠), conditional on 𝑟(𝑡) for 𝑡 < 𝑠. They also derive formulas for zero-coupon bond prices and European call options 

on zero-coupon bonds. 

The authors consider generalizations of the basic model, but the basic CIR model is the main contribution. 

Ho, T. S. Y., and S.-B. Lee. 1986. Term Structure Movements and Pricing Interest Rate Contingent Claims. Journal of Finance 

41(5): 1011–1029. 

 The authors describe an arbitrage-free interest rate model. The initial complete interest rate terms structure is given. 

Subsequence evolution through discrete time yields a complete arbitrage-free structure at each step. Applications 

include valuing options on (default-free) bonds and pricing callable bonds. 

Pedersen, H. W., et al. 1989. Arbitrage-Free Pricing of Interest Rate Contingent Claims. Transactions of the Society of 

Actuaries 41: 231–279. 

 The authors discuss the pricing of bond options and interest-sensitive cash flows by discrete time binomial lattice 

models. The main contribution is an arbitrage-free binomial model that allows the initial term structure of interest 

rates to be prescribed exogenously. This allows the model price for each stream of fixed and certain cash flows to be 

set as the market price. Their approach can be viewed as a generalization of Ho and Lee (1986). 
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Tilley, J. A. 1990. A Stochastic Yield Curve for Asset/Liability Simulation. Actuarial Approach for Financial Risks: First AFIR 

International Colloquium, Paris, April 23–27, International Actuarial Association. 

 The author describes an empirical approach to long-term asset/liability simulations. The model has dynamic U.S. 

Treasury yield curves but no other variables. It is intended for modeling U.S. life insurer or pension assets and 

liabilities. 

The yields are based on the bid prices for “on the run” U.S. Treasury securities, observed once each four weeks during 

December 16, 1981, to August 16, 1989, a total of 101 observed yield curves. The yield range (three months to 30 

years) is mapped to the unit interval [0,1]. Orthogonal polynomials are fit to the 101 (transformed) yield curves on 

[0,1]. Each of the 101 yield curves was fitted to a third-order polynomial, resulting in a vector for 𝑡 = 0, 1, ⋯ , 100. It 

turns out that the dynamics is described by an autoregressive process of order two, with 𝑎𝑡 depending on 𝑎𝑡−1 and 

𝑎𝑡−2. Tilley reports two important results: 

 The fitted coefficients exhibit mean reversion, with the result that the yield curves tend to revert over the 
long term to a normal, positively sloped form centered near 8.3%. 

 The residuals have fat-tailed distributions that are explainable by a mixture of two normal distributions. 
 

Heath, D., et al. 1992. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims 

Valuation. Econometrica 60: 77–105. 

 This paper is important because it provided a unifying framework for understanding arbitrage pricing theory of 

default-free bonds and their contingent claims. The authors claim that all previous models are special cases, including 

Vasicek (1977), Brennan and Schwartz (1979), Ho and Lee (1986), and others. 

The model takes the initial forward rate curve as given. The authors specify a general continuous-time stochastic 

process for its evolution across time, in such a way that it has an equivalent martingale probability measure. Under 

these conditions, markets are complete, and contingent claim valuation is then straightforward. This is an important 

theoretical paper, but it has no applications and only two simple examples. 

Tilley, J. 1992. An Actuarial Layman’s Guide to Building Stochastic Interest Rate Generators. Transactions of the Society of 

Actuaries 44: 509–538. 

 This is a long discussion of important concepts in the theory of arbitrage-free pricing of interest rate contingent cash 

flows: arbitrage, complete markets, expected value pricing in the risk-neutral world, and stochastic interest rate 

models. The paper is written for actuaries, but it has no mathematical descriptions of the models. Indeed, there are 

exactly two equations in the entire paper. 

A quote from the author's concluding remarks: 

This paper has shown that it is possible to gain a practical understanding of key concepts in financial 

economics without having to resort to a study of the mathematics of stochastic processes. Based on the 

assumptions that opportunities for riskless arbitrage do not exist and that the financial markets are 

complete, it was shown that a theory could be developed for pricing interest-rate-contingent cash-flow 

streams relative to the prices of all zero-coupon bonds, which are taken as exogenous inputs to the theory. 

The arbitrage-free prices are calculated in a straightforward manner by the expected-present-value 

algorithm, a technique that lies at the heart of actuarial science. 

The comments at the end of the paper and the author's responses are also valuable contributions. This paper won the 

1992–93 Society of Actuaries Annual Prize and the Halmstad Prize for 1992. 

Hull, J., and A. White. 1993. One-Factor Interest Rate Models and the Valuation of Interest-Rate Derivative Securities. Journal of 

Financial and Quantitative Analysis 28(2): 235–254. 

 This important paper discusses different approaches to arbitrage-free models of the term structure of interest rates. 

The authors present a numerical procedure for constructing one-factor models that are Markov and consistent with 

the initial term structure. 
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One approach is to specify a process for the short rate that has one or two unknown functions of the drift and then 

estimate the functions so that the process fits the initial term structure. The authors cite several examples of this 

approach, including models by Vasicek (1977), Cox et al. (1985) and Black and Karasinski (1991). 

The authors also describe a general procedure for this procedure based on a trinomial tree. The tree can also be used 

to value options on bonds and interest rate options. 

Goldstein, R. S., and W. P. Keirstead. 1997. On the Term Structure of Interest Rates in the Presence of Reflecting and Absorbing 

Boundaries. Available at SSRN: http://ssrn.com/abstract=19840 or http://dx.doi.org/10.2139/ssrn.19840 

 The authors use the historic interest rate behavior in Japan in 1991–1995 to motivate introduction of a class of 

models that “admit the possibility of high volatility of low interest rates, while precluding the possibility of negative 

rates. This is accomplished by imposing reflecting or absorbing boundaries” on interest rates. They compare this to 

Black's approach, which treats interest rates as options (1995).. Introducing barriers seems better because it allows 

closed-form solutions for bond prices and some derivatives. It also allows for maximum-likelihood estimation of 

parameters. The authors give a convincing argument for their approach versus Black’s . In Section 5 they illustrate the 

barrier approach when the spot rate process under risk-neutral dynamics is one of the following: 

(1) Brownian motion with drift 
(2) An Ornstein-Uhlenbeck process 
(3) An extended Cox-Ingersoll-Ross process 
(4) Longstaff dynamics: 𝑟(𝑡) = [𝑥(𝑡)]2, where x(t) is Brownian motion with negative drift and a reflecting 

barrier at 𝑥(𝑡) = 0 
(5) Multifactor where 𝑟(𝑡) = 𝑥1(𝑡) + ⋯ + 𝑥𝑛(𝑡) is the sum of independent processes 𝑥𝑘(𝑡), each one of 

the types (1) to (4) 
 

Delbaen, F., and H. Shirakawa. 2002. An Interest Rate Model With Upper and Lower Bounds. Asia-Pacific Financial Markets 9(3-

4): 191–209. 

 The authors introduce a new interest rate model for the spot rate 𝑟(𝑡): 

 

𝑑𝑟(𝑡) = 𝛼 (𝑟𝜇 − 𝑟(𝑡)) 𝑑𝑡 + β√[𝑟(𝑡) − 𝑟𝑚][𝑟𝑀 − 𝑟(𝑡)]𝑑𝑊(𝑡) 

 

where 𝑊(𝑡) is standard Brownian motion, 𝛼 > 0, β > 0 and 0 < 𝑟𝑚 < 𝑟𝑀 are constants. According to the authors, 

this type of process is called a Jacobi process, and it has been well studied in genetics. An important feature is that 

the spot rate is bounded away from zero, since it always satisfies 𝑟𝑚 < 𝑟(𝑡) < 𝑟𝑀. However, we do not usually see 

models with an upper bound on the spot rate. As the authors note, “The use of such models could be questionable.” 

The authors obtain some interesting results: 

(1) The CIR model can be obtained as a limiting case in which the lower bound is zero and the upper bound 
tends to infinity. 

(2) The authors show how the transition probabilities of the spot rate can be calculated as series expansions in 
Jacobi polynomials. 

(3) They show how to compute moments of the spot rate. 
(4) Assuming the spot rate dynamics is the pricing dynamics, they show how to compute prices of zero-coupon 

bonds. 

There are no examples, and there is no attempt to estimate the model. 

Gorovoi, V., and V. Linetsky. December 2003. Shadow Interest. Risk, pp. 81–84. 

 The authors study the Black (1995) approach, in which the spot rate 𝑟𝑡 is the maximum of zero and the shadow rate 

𝑥𝑡. They assume the shadow rate follows a Vasicek process. The main contribution is the detailed solution for zero-

coupon bond prices based on an eigenfunction expansion. This is necessarily an approximation. They calibrate the 

model to Japanese bond market prices. Evidently, the same approximation can be applied to evaluate prices of 

options on zero-coupon bonds. 
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Takamizawa, H., and I. Shoji. 2003. Modeling the Term Structure of Interest Rates with General Short-Rate Models. Finance and 

Stochastics 7(3): 323–335. 

Takamizawa, H., and I. Shoji. 2004. On the Accuracy of the Local Linear Approximation for the Term Structure of Interest Rates. 

Quantitative Finance 4(2): 151–157. 

Miller, S., and E. Platen. 2005. A Two-Factor Model for Low Interest Rate Regimes. Asia-Pacific Financial Markets 11(1): 107–

133. 

 The authors provide an interest rate term structure model for markets where one observes prolonged periods of low 

interest rates, such as Switzerland in the late 1970s and Japan in 1995–2005. The model has a savings account, 𝐵𝑡, 

and a growth optimal portfolio (GOP), 𝑆𝑡. The proposed model is an extension of the minimal market model derived 

previously by Platen. Here briefly are the dynamics: 

𝑑𝐵𝑡 = 𝑟𝑡𝐵𝑡𝑑𝑡 

 

𝑑𝑆𝑡 = 𝑆𝑡 [𝑟𝑡𝑑𝑡 + ∑ θ𝑡
(𝑘)

2

𝑘=1
(θ𝑡

(𝑘)
+ 𝑑θ𝑊𝑡

(𝑘)
)] 

  

Initial values 𝐵0,  𝑆0 > 0 are given. The component θ𝑡
(𝑘)

 is a nonrandom function of time, called the kth market price 

of risk with respect to the standard Brownian motion 𝑊𝑘  (𝑘 = 1, 2). Note also that 𝑊1 drives the short rate 𝑟𝑡, and 

𝑊2 is independent of the short rate. 

 

The World Stock Accumulation Index (WSAI), denominated in Japanese Yen (JPY), is taken as a proxy for the GOP. The 

authors use observations of the WSAI and the short rate in JPY over 1949–2003 to justify this model. They obtain 

some interesting results: 

(1) They show that no-arbitrage prices for zero-coupon bonds are calculated as discounted expected values 
under the real-world probability measure. 

(2) The model quadratic variation of the discounted GOP fits the empirical values for 1949–2003 rather well. 
(3) They consider two specific models for the shadow short rate Ψ𝑡 for which 𝑟𝑡 = max(Ψ𝑡, 0), as in the Black 

model (Black 1995). They provide formulas for zero-coupon bonds and some interest rate derivatives. 

An interesting feature: “For the proposed model, an equivalent risk neutral martingale measure is neither possible 

nor required. Hence we use the benchmark approach where the growth optimal portfolio is chosen as numeraire. Fair 

derivative prices are then calculated via conditional expectations under the real world probability measure.” 

This is a long and complex paper, but it is a promising approach for modeling a low-interest-rate environment. 

Akahori, J., and T. Tsuchiya. 2006. What Is the Natural Scale for a Lévy Process in Modelling Term Structure of Interest Rates? 

Asia-Pacific Financial Markets 13(4): 299–313. 

 In this necessarily mathematical paper the authors show that, under reasonable assumptions, a term structure model 

based on a Lévy process is arbitrage-free. The authors call these Lévy density term structure models (LDTSM). They 

show that the LDTSM class includes quadratic term structure models and Gaussian Heath-Jarrow-Morton models. This 

is a significant theoretical development, but the there are no practical examples. There is no discussion of estimating 

these models. 

Diebold, F. X., and C. Li. 2006. Forecasting the Term Structure of Government Bond Yields. Journal of Econometrics 130: 337–

364. 

 The authors use the Nelson-Siegel model yield curve as the basis for forecasting interest rates. The yield curve at time 

t is given as: 

 

𝑦𝑡(τ) = β1𝑡 + β2𝑡 (
1 − 𝑒−𝜆𝑡τ

λ𝑡τ
) + β3𝑡 (

1 − 𝑒−λ𝑡τ

λ𝑡τ
− 𝑒−λ𝑡τ) 
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They obtain yields corresponding to end-of-month prices for U.S. Treasury bonds from January 1985 through 

December 2000. The functions β1𝑡, β2𝑡, and β3𝑡 are latent dynamic factors. The authors describe them as follows: The 

β1𝑡  function is a long-term factor that governs the level of the yield curve. The β2𝑡 function is a short-term factor that 

governs the slope, and β3𝑡 is a long-term factor that governs the curvature. The function λ𝑡 is set equal to a constant, 

λ𝑡 = 0.0609, which maximizes the long-term factor at τ = 30 months; it is constant at this value throughout the 

paper. 

 

The authors model the factors as a univariate AR(1) processes, thereby creating a dynamic version of the Nelson-

Siegel model. They investigate several alternatives and provide statistical test results. The one-month-ahead forecasts 

are no better than alternatives, but the one-year-ahead are “much superior.” They comment on the fact that this 

model is not arbitrage-free, saying it is not obvious that an arbitrage-free model is necessary or desirable for 

forecasting.  

Hanes, C. 2006. The Liquidity Trap and U.S. Interest Rates in the 1930s. Journal of Money, Credit, and Banking 38(1): 163–194. 

 The author shows that bond yields were negatively related to nonborrowed reserve supply in the U.S. 1930s period of 

zero overnight interest rates. Bond yields were unrelated to changes in required reserves apart from news about 

monetary policy. The results are relevant to the debates about monetary policy under low inflation and contradict the 

view that the interest rate channel of monetary policy is blocked when short-term rates are zero (the so-called 

liquidity trap). 

Realdon, M. 2009. Extended Black Term Structure Models. International Review of Financial Analysis 18: 232–239. 

 The author examines “extended Black” term structure models (EBTSM), which are multifactor extensions of Black's 

(1995) interest rate model. There are no formulas, but the author shows that EBTSM bond pricing is reasonable as the 

finite difference numerical solution of a partial differential equation. From the author’s conclusion: “EBTSM merit 

attention, even though they are less tractable than affine term structure models (ATSM) and quadratic term structure 

models (QTSM).” 

Le, A., K. J. Singleton and Q. Dai. 2010. Discrete-Time Affine𝑄 Term Structure Models with Generalized Market Prices of Risk. 

Review of Financial Studies 23(5): 2184–2227. 

The authors study dynamic term structure models (DTCMs) and non-negative DTSMs (NDTSMs) because of 

the recent experience following the global financial crisis when even US interest rates dropped to zero 

effectively.  The authors develop the formulation and empirical goodness-of-fit of multi-factor DTSMs that 

enforce a zero lower bound on bond yields. 

Bandara, W., and R. Munclinger. 2012. Term Structure Modeling with Structural Breaks: A Simple Arbitrage-Free Approach 

Available at SSRN: http://ssrn.com/abstract=1974033. 

 The authors start with a general continuous regime-switching model of term structure of interest rates that leads to a 

general class of affine models. This is an extension of what they call the dynamic Nelson and Siegel model. 

Kikuchi, K. 2012. Design and Estimation of a Quadratic Term Structure Model With a Mixture of Normal Distributions. Tokyo: 

Institute for Monetary and Economic Studies. 

 The author presents the quadratic mixture of Gaussian term structure model (QMGTM) and derives bond prices using 

a log-linear approximation. This model does not allow negative yields, considered a drawback of the affine Gaussian 

term structure model (AGTM). And it captures the fat-tailed feature of changes in yields, which the quadratic 

Gaussian term structure model (QGTM) fails to do. Estimation requires a nonlinear filtering method. The usual 

Kalman filter approach does not work. The author estimates and compares the three models—AGTM, QGTM and 

QMGTM—using monthly data from January 1996 through December 2010 on Japanese government bonds. 

Kim, D. H., and K. J. Singleton. 2012. Term Structure Models and the Zero Bound: An Empirical Investigation of Japanese Yields. 

Journal of Econometrics 170: 32–49. 

 The authors study dynamic term structure models (DTCMs) and nonnegative DTSMs (NDTSMs) because of the recent 

experience following the global financial crisis when even U.S. interest rates dropped to zero effectively. “This paper 
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explores in depth the formulation and empirical goodness-of-fit of multi-factor DTSMs that enforce a zero lower 

bound on bond yields.” 

 

They spend some time on the “best known” NDTSM, the Cox-Ingersoll-Ross model. They point out that in the CIR 

model, if the short rate is zero, then the n factors are also zero, and consequently yields on bonds of all maturities are 

constant. This is inconsistent with the Japan bond market experience. They show how the CIR model can be 

generalized by allowing (nonzero) correlation among the factors. 

 

The also consider quadratic Gaussian models, finding that even if the short rate is zero, the long-term yields can 

fluctuate, thereby allowing the possibility of fitting the Japanese data. They also discuss shadow rate models and their 

limitations. 

 

The main contribution is estimation of five two-factor NDTSMs, including two affine models, a Gaussian quadratic 

model and two shadow rate models. Their empirical findings suggest that all of these capture variation in bond yields 

and risk premiums when the interest rate is near zero. The affine models do not fit the yield distributions as well as 

the others. Overall the shadow rate models outperform the other models, providing the best fits at both the short 

and long ends of the yield curve. 

Gourieroux, C., and A. Monfort. 2013. Linear-Price Term Structure Models. Journal of Empirical Finance 24: 24–41. 

 The authors present an alternative to the affine term structure models (ATSMs) based on bond prices rather than 

yields, called the linear term structure model (LTSM). The new approach has interesting technical and practical 

features. The main feature is that it accounts for “regimes hidden from investors.” The authors show that two classes 

of LTSM provide “quasi explicit” formulas for bond prices and derivatives. 

Xiang, J., and X. Zhu. 2013. A Regime-Switching Nelson-Siegel Term Structure Model and Interest Rate Forecasts. Journal of 

Financial Econometrics 11(5): 522–555. 

 This paper develops and estimates a dynamic Nelson-Siegel model with regime shifts. The authors begin with Diebold 

and Li's (2006) reinterpretation of the original Nelson-Siegel model (with different notation).  In this paper, the yield 

curve equation is as follows: 

𝑖𝑡(τ) = 𝐿𝑡 + 𝑆𝑡 (
1 − 𝑒−λτ

λτ
) + 𝐶𝑡 (

1 − 𝑒−λτ

λτ
− 𝑒−λτ) 

In the Diebold and Li model, the level factor is β1𝑡, but here it is 𝐿𝑡. In the same way, the curvature factor is β3𝑡 = 𝐶𝑡, 

and the slope factor is β2𝑡 = 𝑆𝑡. 

 

This paper uses a state-space representation that allows modeling the entire yield curve. This approach does not 

require ex ante that λ be fixed. A Markov-switching vector autoregressive process governs the dynamic behavior of 

the three factors. The result is called the regime-switching dynamic Nelson-Siegel model. It allows for one, two or 

three regimes. The authors estimate the model and do extensive testing. They find that the model fits the yield curve 

very well. It provides accurate out-of-sample forecasts even at short horizons. 

Wu, J. C., and F. D. Xia. 2014. Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound. Cambridge, 

MA: National Bureau of Economic Research. 

 The authors propose a new interest rate model using the shadow rate similar to Black's (1995) model. It is an 

approximation to a nonlinear term structure model designed especially for the situation in which interest rates are 

near the zero lower bound. They use the model to summarize the macroeconomic effects of unconventional 

monetary policy at the zero lower bound. It has nice figures (11) and tables (five). An article in the trade press by 

Zumbrun (2014) is based on this paper. 

Zumbrun, J. January 31, 2014. Bernanke Secret Sauce Drops Fed Rate as QE Quantified: Economy. Bloomberg Business. 

This financial-press article discusses the results of Wu and Xia (2014) on macroeconomic effects of unconventional 

monetary policy at the zero lower bound on the interest rate. Here is an interesting quote from the article: 
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The economists, Jing Cynthia Wu and Fan Dora Xia, used a concept known as the “shadow rate” to gauge the 

impact of quantitative easing and the Fed's forward guidance on the likely path of interest rates. Their findings: 

as of December, Fed policy was the equivalent of cutting the benchmark interest rate to minus 1.98 percent, 

according to Wu at the University of Chicago Booth School of Business and Xia at the University of California at 

San Diego. 

Christensen, J. H. E., and G. D. Rudebusch. 2015. Estimating Shadow-Rate Term Structure Models with Near-Zero Yields. Journal 

of Financial Econometrics 13(2): 226–259. 

 This is a significant development in interest rate modeling. It is important to recognize the zero lower bound, 

especially in low-interest-rate environments. The authors extend Black’s approach (1995) based on a shadow interest 

rate, resulting in a shadow rate version of the Gaussian arbitrage-free Nelson-Siegel model. The authors describe 

one - ,  two- and three-factor empirical shadow rate models, based on weekly Japanese government bond yield data 

over the period from January 6, 1995 to May 3, 2013.  

They also compare the shadow rate across the three models. When rates are positive, they find “little disagreement” 

in the three models. However, when the shadow rate is negative, there can be “pronounced differences.” 

CORPORATE BONDS AND CREDIT RATINGS 

Jarrow, R. A., et al. 1997. A Markov Model for the Term Structure of Credit Risk Spreads. Review of Financial Studies 10(2): 481–

523. 

 This paper presents a model for valuing bonds and derivatives written on the bonds, where the bonds are subject to 

default. For example, this model applies to corporate bonds, municipal bonds and the associated credit derivatives. 

The model is presented in both discrete time and continuous time. In either setting, the default time is modeled via a 

time-homogenous Markov chain with a finite state space representing possible credit classes. 

 

The model presented here is an extension of the model presented by Jarrow and Turnbull (1995). It can be used with 

any term structure model for default-free bonds, such as the Cox et al. (1985) model or the Heath, et al. (1992) 

model. The authors show how to estimate the model using observable data, and they provide several illustrative 

examples. 

Bangia, A., et al. 2002. Ratings Migration and the Business Cycle, With Application to Credit Portfolio Stress Testing. Journal of 

Banking and Finance 26(2–3): 445–474. 

 The main results are estimates of transition matrices for credit ratings. The authors find distinct differences between 

U.S. expansion and contraction matrices. That is, estimates in an expanding and contracting economy are different. In 

addition to the transition of ratings, the authors also estimate the quarterly regime-switching matrices, where the 

two regimes are expansion and contraction. The authors use National Bureau of Economic Research data for the 

regime-switching estimates and Standard & Poor’s data for the rating transition estimates, both over the period 

1981–1998. The authors claim that first-order Markov rating dynamics (as in Jarrow et al. 1997) provides a reasonable 

practical approximation to actual rating behavior, so long as different transition matrices are used for expansions and 

contractions. 

Parnes, D. 2007. Time Series Patterns in Credit Ratings. Finance Research Letters 4(4): 217–226. 

 This paper provides an alternative to the homogeneous Markov chain dynamics of credit ratings. Here the dynamics is 

specified as an AR(1) time series for each entry in the transition matrix. The author shows how to estimate the model 

using S&P credit ratings for 1985–2004. 

 

The paper provides a comparative analysis of the homogeneous Markov chain approach and the alternative internal 

correlations model. The two techniques were calibrated on data for 1985–1994. Then both models were run for 

1995–2004 and compared with actual credit default rates. It turns out that the Markov chain approach overestimates 

transition probabilities and projects much higher default rates than observed. The proposed alternative provides a 

better fit (but still overestimates). 
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Acharya, V. V., et al. 2013. Liquidity Risk of Corporate Bond Returns: Conditional Approach. Journal of Financial Economics 

110(2): 358–386. 

 The paper uses two liquidity risk factors. The stock illiquidity index is the market's average price-impact measure. It is 

calculated as the equally weighted average of the daily ratio of absolute stock return to its daily dollar volume and 

averaged over the days of the month to provide a monthly illiquidity measure using NYSE and Amex stocks. The bond 

illiquidity measure is the equally weighted quoted bid-ask spread on on-the-run short-maturity treasuries. The 

authors show that liquidity risk in the bond market is conditional on the state of the economy. Liquidity risk is more 

important in times of financial distress. The authors are able to predict out-of-sample bond returns for the stress 

years 2008–2009. 

STOCK PRICE MODELS  

Black, F., and M. Scholes. 1973. The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81(3): 637–654. 

 This is the paper in which Black and Scholes published the famous equation, now called the Black-Scholes-Merton 

equation, for valuing European-style call and put options on a stock. Merton published about the same time as 

Merton (1973). Merton and Scholes received the 1997 Nobel Memorial Prize in Economic Sciences for their work. 

Though ineligible for the prize because of his death in 1995, Black was mentioned as a contributor by the Swedish 

Academy. 

 

Options on stocks or stock indices arise in insurance models as, for example, return guarantees in variable annuities, 

unit-linked life insurance, and universal life insurance. 

Boyle, P. P. 1977. Options: A Monte Carlo Approach. Journal of Financial Economics 4(3): 323–338. 

 This is one of the first papers on option valuation via simulation. Boyle shows how to value European-style options on 

dividend-paying stocks. This is seminal work on Monte Carlo–based option pricing. This paper facilitated the 1980s 

explosion in the world of derivatives. 

Tilley, J. A. 1993. Valuing American Options in a Path Simulation Model. Transactions of the Society of Actuaries 46: 499–549. 

 This paper demonstrates that American-style options can be valued efficiently in a simulation model. It removes what 

has been considered a major impediment to the use of simulation models for valuing financial instruments or 

insurance company asset liability valuation. This is a general algorithm for estimating the value of American options 

on an underlying security for which the arbitrage-free probability distribution of paths through time can be simulated. 

The general algorithm is tested on a put option on a non-dividend-paying stock for which the exact option premium 

can be determined. 

Amaral, L. A. N., et al. 2000. The Distribution of Returns of Stock Prices. International Journal of Theoretical and Applied Finance 

3(3): 365–369. 

 This is an empirical study of stock returns. The stock price data comes from the trades and quotes database for 1994–

1995 and the Center for Research and Security Prices database for 1962–1996. There are three findings: 

(1) The distribution of normalized returns for individual companies is consistent with a power law behavior 

characterized by an exponent α ≈ 3. 

(2) The distributions of returns retain the same functional form for a wide range of time scales ∆𝑡, varying over 

three orders of magnitude, 5 ≤ ∆𝑡 ≤ 6,240 minutes = 16 days. 

(3) For ∆𝑡 > 16 days, the distribution of returns appears to slowly converge to a Gaussian distribution. 

 

Hartmann, P., et al. 2004. Asset Market Linkages in Crisis Periods. Review of Economics and Statistics 86(1): 313–326. 

 The authors apply an extreme dependence measure to weekly returns of stocks and bonds in the G-5 countries during 

1987–1999. There are some important results that should be considered when modeling stock and bond returns in 

more than one country. Extreme losses are much higher for stock indices than government bond indices. Stock index 

extremes are asymmetric, in that the absolute extreme loss in stock index returns exceeds the maximum positive 
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return. Stock markets have co-crashes and flight-to-quality effects during periods of market turbulence. Stock market 

crashes on the order of a 20% weekly loss and a bond market weekly loss of 8% are rare events, occurring once or 

twice in a lifetime. Stock market co-crashes occur in approximately one out of five to eight crashes. The number is 

lower for bond markets and even less likely for stock and bond co-crashes. A widespread securities meltdown in the 

main industrialized countries happens much less often than once in 200 years. It is nevertheless much higher than a 

normal-distribution-based analysis would lead one to believe. One implication is that a severe market crisis spilling 

over to another market cannot be a prevalent phenomenon among G-5 countries. 

Hilal, S., et al. 2011. Hedging the Black Swan: Conditional Heteroskedasticity and Tail Dependence in S&P500 and VIX. Journal of 

Banking and Finance 35(9): 2374–2387. 

Kristensen, D., and A. Mele. 2011. Adding and Subtracting Black-Scholes: A New Approach to Approximating Derivative Prices in 

Continuous-Time Models. Journal of Financial Economics 102(2): 390–415. 

 This paper provides a method of approximating derivative prices in multifactor continuous-time models. For a model 

with no closed-form solution, it requires a closely related model that has a closed-form solution. A special case is 

given in the examples. The difference of the solutions is approximated by a finite sum of differences related to the 

partial differential equation of the difference in the prices. The authors illustrate this with applications to a 

generalized Black-Scholes option model with stochastic volatility, term structure of interest rate models including CIR 

and Vasicek models, and stock price models with jumps. They provide many examples showing how to apply this 

method. 

Grundke, P., and S. Polle. 2012. Crisis and Risk Dependencies. European Journal of Operational Research 223(2): 518–528. 

 The authors set out to answer two questions. 

 Is it possible to describe the multivariate stochastic dependence between the returns of different asset 

classes by some standard parametric families of copulas? 

 If so, how did the stochastic dependence between the returns of different asset classes change during the 

recent financial crisis?  

 

They use data on six assets classes (credit, stocks, bonds, currencies, commodities and real estate) during January 2, 

2006, to October 21, 2008. The authors report “rather bad news” because of the observed weakness of statistical 

goodness-of-fit tests in identifying the correct copula. How large the consequences of this model risk are depends on 

the application. Whether a specific copula can be rejected or not depends on the asset class and the time period. 

Different tests for copulas can yield very different results. Finally, they suggest some alternatives to goodness-of-fit 

tests of copulas, such as a graphical tool or Akaike’s information. 

Andersen, L., and A. Lipton. 2013. Asymptotics for Exponential Lévy Processes and Their Volatility Smile: Survey and New 

Results. International Journal of Theoretical and Applied Finance 16(1): 1–91. 

 This is an unusual paper because it has introductory material on foreign-currency exchange trading and Lévy 

processes. It is unusually long, almost 100 pages. It has a good introduction to foreign-exchange markets, background 

for Lévy processes, and discussion of the Lewis-Lipton option price formula. The main contribution is three sections 

on asymptotics. This is from the paper's abstract: “Our main conclusion is that studying asymptotic properties of the 

implied volatility, while theoretically exciting, is not always practically useful because the domain of validity of many 

asymptotic expressions is small.” 

Bollerslev, T., et al. 2013. Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns. Journal of Econometrics 

172: 307–324. 

 The authors apply new statistical techniques for analyzing jumps in individual stock returns. For a large panel of 50 

stocks and the S&P 500, they find that idiosyncratic and systematic jumps are both heavy tailed. They also find 

asymptotic tail dependence between individual stocks and the index. 

Durham, G. B. 2013. Risk-Neutral Modeling with Affine and Non-affine Models. Journal of Financial Econometrics 11(4): 650–

681. 
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 This is an important development in asset-pricing models, although necessarily long and complex. The author 

considers seven log volatility models and seven affine models classified as follows: no jumps, jumps in returns alone, 

and jumps in both returns and volatility. 

 A given model is assessed in these steps: 

 Given observed option prices, invert the risk-neutral measure to get the implied volatility. 

 Use the option data and implied volatility to compute the log-likelihood. 

 Examine some diagnostics. For example, the generalized residuals 𝑢𝑡 should be independent and identically 

distributed uniform on (0, 1), and their transforms �̃�𝑡 = Φ−1(𝑢𝑡) should be identically distributed standard 

normal variables. Diagnostics such as normal-quintile plots are applied in this step. 

 

The author finds that log volatility models are “dramatically” better than affine models. Affine models have problems: 

All affine models exhibit substantial autocorrelation in squared volatility residuals. The square root specification for 

volatility does not fit the data. Also, affine models with exponential jumps are able to match the right tail but not the 

left. A final quote from the paper: 

All the models are rejected at far beyond conventional significance levels on at least one test. One would have to 

be almost hopelessly optimistic to believe that any of the models examined in this article was the true data-

generating process. Failure to reject a model in exercises such as this should more likely be interpreted as a sign 

of insufficient sample size or tests with low power rather than an indication that one has found the true data-

generating process. Powerful diagnostics are a good thing; failure to find evidence of defective models is a 

serious liability. 

Maheua, J. M., et al. 2013. Do Jumps Contribute to the Dynamics of the Equity Premium? Journal of Financial Economics 110(2): 

457–477. 

 This paper shows the importance of jumps in equity models. Jump risk is priced in the market index, and it contributes 

to the equity premium. The authors show that it is possible to identify jump risk and its contribution to the market 

risk-return trade-off using equity data only. It is not necessary to use options data. 

Wang, Y.-C., et al. 2013. A Revisit to the Dependence Structure Between the Stock and Foreign Exchange Markets: A 

Dependence-Switching Copula Approach. Journal of Banking and Finance 37(5): 1706–1719. 

 This paper provides a dependence-switching copula model to describe the dependence structure between stock 

markets and foreign-exchange markets. In this way, it allows for dependence of bull and bear markets associated with 

currency appreciation and depreciation. This is important in an international economic scenario generator. 

The authors estimate the model based on stock indices for Canada, France, Germany, Italy, Japan and the United 

Kingdom and currency exchange rates expressed in U.S. dollars. In this setting, they find dependence and tail 

dependence are asymmetric in a negative-correlation regime but symmetric in a positive-correlation regime. 

Exchange rate exposure effects or portfolio-rebalancing effects dominate for most countries on most occasions. 

INVESTMENT MODELS, ECONOMIC SCENARIO GENERATORS 

Redington, F. M. 1952. Review of the Principles of Life-Office Valuations. Journal of the Institute of Actuaries (1886–1994) 78(3): 

286–340. 

 The main contribution is the rigorous exposition of asset-liability matching (ALM). The author has in mind application 

to life insurance, but the development is rather general with applications to life office management. Although the 

author uses the terms "mean" and "spread about the mean," he does not define random variables explicitly. This is 

fundamental work on ALM. 

Wilkie, A. D. 1986. A Stochastic Investment Model for Actuarial Use. Transactions of the Faculty of Actuaries 39: 341–403. 

This is one of the first papers on stochastic investment models for actuarial applications. The model has four 

variables: a retail price index 𝑄(𝑡), an index of stock dividends 𝐷(𝑡), dividend yield 𝑌(𝑡), and a default-free interest 
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rate 𝐶(𝑡). The variables are modeled in a cascade structure. 

The author describes the model estimation, sensitivity analysis and applications. The suggested applications include 

estimation of reserves for unit-linked life insurance, the estimation of cost of guarantees for indexed annuities, 

portfolio selection, and estimation of premiums. 

Wilkie, A. D. 1992. Stochastic Investment Model for the 21st Century Actuaries. Transactions of the 24th International Congress 

of Actuaries 5: 119–137. 

 Wilkie reviews the history of computer-based models in actuarial work, particularly in the United Kingdom. In Section 

2, he describes the historical development of stochastic investment models. An early example was the Institute of 

Actuaries Maturity Guarantees Working Party approach, which was developed later by the author. Wilkie mentions 

models developed by Tilley (1990) and (1992), but those are bond-yield-only models. In Section 3, Wilkie reviews 

applications of stochastic investment models. The original MGWP application was to investigate contingency reserves 

for unit-linked life insurance. 

Wilkie cites many applications in the 1980s and 1990s to life insurance, general (property-casualty) insurance and 

pension plans. In Section 5, Wilkie briefly discusses generalizations, and in Section 6, he presents an extension of the 

model to several countries. This requires the fundamental variables—price index 𝑄(𝑡), dividend yield 𝑌(𝑡), dividend 

index 𝐷(𝑡) and interest rate 𝐶(𝑡)—for each country, as well as the exchange rates between countries and the 

interaction of all the variables. Wilkie describes and estimates the international model for three countries: the United 

Kingdom in 1923–1990, the United States in 1926–1989 and France in 1951–1989. 

Ahlgrim, K. C., et al. 2005. Modeling Financial Scenarios: A Framework for the Actuarial Profession. Proceedings of the Casualty 

Actuarial Society 177(2): 177–238. 

 In May 2001, the Casualty Actuarial Society (CAS) and the Society of Actuaries (SOA) jointly issued a request for 

proposals on the research topic “Modeling of Economic Series Coordinated With Interest Rate Scenarios.” This paper 

summarizes the authors’ research project initiated in response to the joint request for proposals. The authors’ project 

involves the construction of a financial scenario model that simulates a variety of economic variables over a 50-year 

period. The variables projected by this model include interest rates, inflation, equity returns, dividend yields, real 

estate returns and unemployment rates for the United States. 

The paper includes a good discussion of modeling issues and a review of the literature. The third section describes the 

component models. The authors also provide a discussion of the data used to calibrate the model. There is also a 

discussion of simulated economic scenarios generated with the model, including correlations among the variables. 

Peters, M. 2007. Economic Scenarios and Economic Capital. Enterprise Risk Management Symposium. 

 The author presented Allstate’s ESG at the Enterprise Risk Management Symposium in 2007. Allstate is a large 

insurance company with 13 lines of business, including life and property-casualty. According to the author, the model 

covers Allstate’s core operations in life and property-casualty. Allstate uses a cascade model illustrated in the cited 

presentation. 

Ahlgrim, K. C., et al. 2008. A Comparison of Actuarial Financial Scenario Generators. Variance: Advancing the Science 

of Risk 2(1): 111–134. 

 This paper is another report of the authors’ research project “Modeling of Economic Series Coordinated with Interest 

Rate Scenarios.” They include a discussion of the American Academy of Actuaries (AAA) models for equity returns and 

interest rates. One section is devoted to cash flow testing set up to illustrate the differences between the CAS-SOA 

model and the AAA C-3 model. One test is based on term life insurance with the net single premium invested in T-bills 

(50%), large-cap stocks (25%) and small-capstocks (25%). The second example is based on a property-liability loss 

reserve situation. In this case, a loss reserve of $10 million is established, which is supported by $10 million in assets, 

because property-liability insurance accounting does not permit discounting of loss reserves. The CAS-SOA model 

generally leads to a wider set of distributions than the AAA model. 

McNeil, A. J., and A. D. Smith. 2012. Multivariate Stress Scenarios and Solvency. Insurance: Mathematics and Economics 50: 

299–308. 
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 From the authors' abstract: “We show how the probabilistic concepts of half-space trimming and depth may be used 

to define convex scenario sets 𝑄(α) for stress testing the risk factors that affect the solvency of an insurance 

company over a prescribed time period. By choosing the scenario in 𝑄(α) which minimizes net asset value at the end 

of the time period, we propose the idea of the least solvent likely event (LSLE) as a solution to the forward stress 

testing problem. By considering the support function of the convex scenario set 𝑄(α), we establish theoretical 

properties of the LSLE when financial risk factors can be assumed to have a linear effect on the net assets of an 

insurer. In particular, we show that the LSLE may be interpreted as a scenario causing a loss equivalent to the Value-

at-Risk (VaR) at confidence level α, provided the α-quantile is a sub-additive risk measure on linear combinations of 

the risk factors. In this case, we also show that the LSLE has an interpretation as a per-unit allocation of capital to the 

underlying risk factors when the overall capital is determined according to the VaR. These insights allow us to define 

alternative scenario sets that relate in similar ways to coherent measures, such as expected shortfall. We also 

introduce the most likely ruin event (MLRE) as a solution to the problem of reverse stress testing.” 
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Glossary 
 

Arbitrage-Free Model  — An arbitrage is defined as an explicit trading strategy involving the simultaneous buying and selling of 

securities, possibly quite complicated, for which either the trader would receive a positive cash flow today with no further 

payment obligations during the remainder of the trade horizon, or the trader would enter into a trade at zero net cost and 

receive only non-negative cash flows during the remainder of the trade horizon, with a positive cash flow occurring with 

probability greater than zero. The model is said to be arbitrage-free if there do not exist any self-financing trading strategies 

that produce an arbitrage. 

Binominal Interest Rate Model — A discrete-time model of interest rates, where from each current state (interest rate level), 

there are two possible subsequent states. A binomial model recombines, meaning that the structure of possible states forms a 

lattice, as opposed to an exponentially growing binary tree. 

Black-Box Model — A model where the mathematical underpinnings are not disclosed. In general, a user of a black-box model 

has access to only the inputs and outputs of the model. 

Calibration — The process of setting the parameters of the equations within an ESG model to produce the distributions and 

dynamics (e.g., volatility, correlations, tail characteristics) of economic and financial variables that are required by the 

application for which they are being used.  The term calibration is often used interchangeably with the term parameterization 

in general usage. In this report, we use the term calibration to describe the process of setting the parameters of the model 

equations and distributions to reflect market consistent conditions, and reserve the term parameterization to describe the 

process of setting the coefficients and parameters of the model equations and distributions to reflect real-world behavior. 

Cascade Model — A model framework whereby each subsequent variable depends only on prior values of the variable and the 

values of variables that lie above them in the cascade structure. 

Closed-Form Expression — A mathematical expression that can be calculated directly, without requiring iterative methods. 

Closed-form expressions are usually written in terms of familiar functions or operations. 

Deterministic — A quality of a system that means no randomness is involved in developing future states of the system. 

Drawdown Risk — The maximum potential loss from peak to trough. 

Economic Capital — The amount of capital that a firm, usually in financial services, needs to ensure that the company stays 

solvent, based on an economic view of firm solvency (i.e., able to fulfill financial obligations). 

Economic Capital Models — Models used by financial institutions to determine their economic capital. 

Economic Scenario Generator (ESG) — A software tool that simulates future paths of economies and financial markets, and 

illuminates the nature of risk elements within the economy that drive financial variability. 

Expert Judgment — The use of subjective and informed judgment by experienced professionals in the construction, calibration 

and parameterization of an ESG. 

Financial Markets — Markets in which people trade financial securities, options, commodities, currencies and similar items 

with transparent pricing where market forces of supply and demand determine prices of these items. 

Finite Difference Method — A type of numerical method used for solving differential equations by discretizing the equations, 

approximating derivatives in the equations with finite differences. 

Fourier Inversion Method — A specific process of interpreting model output to determine the model source specification. 

Fundamental Theorems of Asset Pricing — A collection of theorems that provide necessary and sufficient conditions for a 

financial market to be arbitrage-free and to be complete (i.e., every asset has one price in every possible state of the world). 

Independent and Identically Distributed (IID) — Quality of a set of random variables, that means each random variable in the 

set having the same probability distribution as the others and all being mutually independent. 
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Jump Process — A type of stochastic process that has discrete discontinuous movements, called jumps, rather than continuous 

movements. 

Kalman Filter — An algorithm involving consecutive cycles of predicting the state of an observed variable based on a model, 

comparing that prediction with the realized outcome in the historical observed data, and updating model parameters to 

achieve optimal predictive power. 

Least Square Monte Carlo — A two-step procedure used in valuing American options. The first step is a backward induction 

process, in which values are assigned to states at every time increment by starting at the final states and working backward 

through time. At each time step, the value is determined via a least squares regression against market price of the option at 

that state and point in time. Once every possible state at each time is given a value, the second step of the process is to move 

forward in time, making an optimal decision on option exercise for each state. 

Liquidity — When applied to a financial instrument, the degree to which the asset or security can be traded in the market 

without affecting the instrument’s price.  Generally, high liquidity is associated with high trading volume.  

Market Consistent — Quality of prices of instruments that are generated within a valuation model that means they are 

consistent with the prices at which the instruments trade in the market. 

Markov Chain — A “memoryless” random process, in which the probability of the next state of the process depends only on the 

current state, with no regard to preceding states. 

Martingale Process — A sequence of random variables where the expected value of the next random variable in the sequence 

is equal to the value of the current random variable and does not depend on prior random variable values. 

Maximum-Likelihood Estimation — A method for estimating statistical model parameters via maximizing a likelihood function, 

given a data set. 

Monte Carlo Process — A broad class of computational algorithms that rely on repeated random sampling to obtain numerical 

results. 

Nested Stochastics (or Stochastic on Stochastic) — A simulation approach where variables are projected using a real-world 

calibration (outer loop) and pricing is performed at each future real-world node, using a second stochastic simulation (inner 

loop) that is based on a market-consistent calibration. This simulation technique is used when pricing of contingent cash flows 

is required as part of a risk management application. 

Ordinary Differential Equations — Equations that involve the ordinary (as opposed to partial) derivatives of functions. 

Parameterization — The process of setting the coefficients and parameters of the model equations and distributions to reflect 

real-world behavior. The term is often used interchangeably with the term calibration. In this report, we use the term 

calibration to describe the process of setting the parameters of the model equations and distributions to reflect market-

consistent conditions. 

Pathwise Behavior — The behavior of a random variable along a given path over time. 

Problem Discovery — A model validation approach where a user first runs the model, creating a large output data set, and then 

tries to discover problems with the output. 

Projection Period — The period over which a given variable within a model is projected into the future. 

Ratings Migration — Changing of a fixed-income security’s credit ranking or credit grade over time. 

Real-World Model — A model that attempts to represent the future risk-reward dynamics that may actually occur in the 

economy and capital markets. 

Reduced-Form Models — In credit modeling, a specific kind of simplified model of bond default. In general, reduced-form 

models are in contrast to structural models that produce solutions by modeling the cause-and-effect relationships; reduced-

form models try to capture dynamics using fewer inputs and/or parameters. 
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Regime-Switching Model — In asset modeling, a stochastic model that utilizes different volatility regimes, with a stochastic 

process for switching between regimes. 

Replicating Portfolio — A portfolio, typically of assets, that replicates the expected cash flows or other properties of another 

specific portfolio of assets or liabilities. Generally, the replicating portfolio is constructed for market pricing of portfolios with 

unknown value or efficiently producing representative simulations of more complex portfolios. 

Risk-Neutral Model — A model where all investments have the same expected return, regardless of risk. 

Scenario — One specific trial from a scenario set. 

Scenario Set — The set of all scenarios that make up a stochastic model run. 

Simulation — The representation of the operations or features of one process (or system) through the use of another. 

State Price Density — A density function over states, in order to price assets under an arbitrage-free system and using real-

world probabilities. 

Steady-State Behavior — The quality of results from a random process in the case where the future distribution will be 

consistent with prior-period results. 

Stochastic — A system or process involving the use of random variables. 

Stochastic Differential Equations — Differential equations involving stochastic processes, for which the solution is also a 

stochastic process. 

Stochastic Volatility Model — A model in which the volatility of a stochastic process is itself modeled by a random process. 

Structured Investment Vehicle (SIV) — A pool of assets and liabilities intended to earn a credit spread between longer-tem 

assets in the pool and shorter-term liabilities. The shorter-term liabilities of the SIV generally are leveraged many times over, 

which may allow for vulnerability to liquidity meltdowns. 

Stylized Fact — Generalized interpretations of empirical findings, both qualitative and quantitative, that provide a basis for 

consistent understanding of markets or economic drivers across a wide range of instruments, markets, and time periods. 

Strategic Asset Allocation — A portfolio strategy that involves setting target allocations based on optimizing specific quantities 

or maintaining specific targets (such as optimizing expected return for a target volatility in the portfolio). 

Structural Models — A model for estimating deep “structural” parameters of theoretical economic models. These models are 

usually contrasted with reduced-form models. 

Swaptions — An option to engage in a swap transaction under certain terms; the owner of a swaption is not obligated to enter 

the specified swap. 

Swaption Volatility Surface — A three-dimensional graphical surface of implied swaption volatilities. 

Time Horizon — The length of time over which a process is to be modeled.  

Validation — A process to ensure that the estimation of an ESG’s parameters results in simulated behavior that is a good 

representation of the variable or market under consideration. 

 


