

The Predictive Analytics & Futurism Section Presents

Practical Predictive Analytics Seminar
May 10, 2017 | Sheraton Seattle Hotel | Seattle, WA

Presenters:
Eileen Sheila Burns, FSA, MAAA

Talex Diede, MS
Jean‐Marc Fix, FSA, MAAA
Brian D. Holland, FSA, MAAA
Matthias Kullowatz, MS

Ricardo Trachtman, FSA, MAAA

Practical Predictive
Analytics Seminar

Jean-Marc Fix, FSA, MAAA
Intro to R
10 May 2017

SOCIETY OF ACTUARIES
Antitrust Notice for Meetings

Active participation in the Society of Actuaries is an important aspect of membership. However, any Society activity that arguably could
be perceived as a restraint of trade exposes the SOA and its members to antitrust risk. Accordingly, meeting participants should refrain
from any discussion which may provide the basis for an inference that they agreed to take any action relating to prices, services,
production, allocation of markets or any other matter having a market effect. These discussions should be avoided both at official SOA
meetings and informal gatherings and activities. In addition, meeting participants should be sensitive to other matters that may raise
particular antitrust concern: membership restrictions, codes of ethics or other forms of self-regulation, product standardization or
certification. The following are guidelines that should be followed at all SOA meetings, informal gatherings and activities:

• DON’T discuss your own, your firm’s, or others’ prices or fees for service, or anything that might affect prices or fees, such as costs,
discounts, terms of sale, or profit margins.

• DON’T stay at a meeting where any such price talk occurs.

• DON’T make public announcements or statements about your own or your firm’s prices or fees, or those of competitors, at any SOA
meeting or activity.

• DON’T talk about what other entities or their members or employees plan to do in particular geographic or product markets or with
particular customers.

• DON’T speak or act on behalf of the SOA or any of its committees unless specifically authorized to do so.

• DO alert SOA staff or legal counsel about any concerns regarding proposed statements to be made by the association on behalf of a
committee or section.

• DO consult with your own legal counsel or the SOA before raising any matter or making any statement that you think may involve
competitively sensitive information.

• DO be alert to improper activities, and don’t participate if you think something is improper.

• If you have specific questions, seek guidance from your own legal counsel or from the SOA’s Executive Director or legal counsel.

2

Presentation Disclaimer

Presentations are intended for educational purposes only and do not
replace independent professional judgment. Statements of fact and
opinions expressed are those of the participants individually and,
unless expressly stated to the contrary, are not the opinion or
position of the Society of Actuaries, its cosponsors or its
committees. The Society of Actuaries does not endorse or approve,
and assumes no responsibility for, the content, accuracy or
completeness of the information presented. Attendees should note
that the sessions are audio-recorded and may be published in
various media, including print, audio and video formats without
further notice.

3

A is for Actuary
B is for Big
C is for Complex
D is for Data

4

What R you afraid of?

5

Basic R: A Programming Language!

6

R Studio: be a star on your own
computer

7

A script without a movie

8

Ggraphhing withh ggplot2

9

Playing with dplyr

10

The black box

11

Pygmalion

Pygmalion
by Etienne Falconet

Be a learn-R

13

Eileen S. Burns
Matthias Kullowatz
Session 2: Predictive Models in Life and Annuities
May 10, 2017

Practical Predictive
Analytics Seminar

Theory

2

Theory
• Questions of interest for life and annuity products
• Predictive model forms that are best suited to

investigating them
• Associated theoretical concerns that may arise in the

modeling process.

3

Questions of interest
• When will a policyholder…

• Lapse?
• Partially withdraw?
• Die?

• How will a policyholder utilize the policy?
• What drives these “behaviors” and why?

4

Predictive model forms

5

Regression

6

• OLS, GLM, ridge, lasso, elastic net
• Pros

• Quick fitters
• Interpretable coefficients and output
• Harder to overfit

• Cons
• Constrained by functional form
• Multicollinearity issues

Tree-based models

7

• Decision trees, bagging, boosting
• Pros

• Non-parametric
• Intuitive output

• Cons
• Black-box formula
• Constrained to rectangular regions

Clustering

8

• K-means, hierarchical, k-nearest neighbors
• Pros

• Non-rectangular regions
• Can be unsupervised

• Cons
• Sensitive to outliers
• Lacks proximity to other clusters (probabilities)

Agent-based modeling

9

• Pros
• Causation is implied in the model
• Outputs easily interpretable

• Cons
• At high risk of modeler bias
• Difficult to validate

Logistic GLM
• For predicting probabilities of binary outcomes
• Link function provides much needed flexibility
• Predictor variables can be quantitative or qualitative

10

Why a link function?

11

predictor

re
sp

on
se

0

1

p

The logistic function
• 𝑦� = 𝑔 𝐿 = 𝑒𝐿

1+𝑒𝐿

• 𝐿 = 𝛽0� + 𝛽1�𝑥1 + 𝛽2�𝑥2 + ⋯+ 𝛽𝑝�𝑥𝑝
• lim

𝐿→∞
𝑔 𝐿 = 1 𝑎𝑎𝑎 lim

𝐿→−∞
𝑔 𝐿 = 0

• 𝑔−1 𝑦� = ln 𝑦�
1−𝑦�

= 𝐿
• Logit function (“logodds”)

12

Consequences of logit link

13

Generalized linear models
• Theoretical extras

• Independent observations
• The model is fit by maximizing the following:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = � 𝑌𝑖 ln 𝑦�𝑖 + 1 − 𝑌𝑖 ln(1 − 𝑦�𝑖)

• 𝐴𝐴𝐴 = −2 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
• 𝐵𝐵𝐵 = −2 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + ln (𝑁) × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

14

Practical concerns

15

Predictive analytics process

16

Data Prep

Exploratory
Analysis

Modeling

training/holdout test

Validation

Practical concerns: Data
• Formatting variables (1)
• Identifying and dealing with outlier data values (2)
• Accounting for missing data (2)
• Derive new variables for modeling (3)
• Compile dataset into appropriate format (4)

17

Practical concerns: Modeling
• Holdout dataset (2A)
• Fitting a model (2C)
• Using the step function for variable selection (2D)
• Multicollinearity concerns (2E)
• Setting reference levels for factors (DataPrep 2)
• Piecewise terms (2F)
• Undersampling (3)

18

Data outliers

19

Missing values

20

Missing values

21

Model NA treatment Intercept Height
coefficient

Flag coefficient

Death ~ height Removed -4.418 0.0100 N/A

Death ~ height + Ind Set to 0 -3.580 0.0100 -0.838

Death ~ height + Ind Set to mean -4.245 0.0100 -0.173

Death ~ height Set to 0 -3.589 -0.0024 N/A

Death ~ height Set to mean -4.343 0.0095 N/A

• The first three models are mathematically equivalent
• The second two are biased

Training versus holdout data

22

Stepwise model building

23

logodds f(attained
age) f(cad) f(cognitive)

logodds f(attained
age) f(cad)

logodds f(attained
age)

Multicollinearity
• pairs()

• cor()

• vif()

24

height weight bmi
height 1.000000 0.637640 0.052578
weight 0.637640 1.000000 0.795710
bmi 0.052578 0.795710 1.000000

Reference levels

25

Active Sedentery Average NA Active Sedentery Average NA

Piecewise linear effects

26

5 7 9 11 13 15 17 19
0

2

4

6

8

10

12

Nu

0.0

0.5

1.0

1.5

2.0

Actual

 .

A/E by predictor before piecewise split

5 7 9 11 13 15 17 19
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Log

Piecewise impact of example predictor

Undersampling
• For logistic regression, undersampling can help

improve runtimes:
• All deaths (n) +
• Randomly selected non-deaths (3n)

• Fitting the model Death ~ AttAge

27

Dataset Records Runtime Intercept AttAge
coefficient

Full 259,284 2.15 -14.13 0.129

Undersampled 25,152 0.12 -10.99 0.123

Validation

28

Validation and comparison
• Overall model fit (4A)

• Bias-variance tradeoff

• Comparison between two candidate models (4B)

29

Model fit
• R2

• AIC/BIC
• Actual-to-expected plots (4A-i)
• Confusion matrix (4A-ii)
• AUC (4A-iii)

30

Confusion matrix
• Select a threshold for predicting the outcome
• Build a 2x2 contingency table

31

Prediction Death

0 1 Total

0 65,815 835 66,650

1 18,500 1,313 19,813

Total 84,315 2,148 86,463

True positive rate = 1,313/2,148 = 0.658
False positive rate = 18,500/84,315 = 0.301

Area under the curve (AUC)
• The curve here is the relationship of the true positive

rate and false positive rate as the threshold moves
from 0 to 1

32

• Actual to expected (4B)
• Two-way lift (4B)

Model comparison: Lift charts

33

PPAS data preparation guide

Society of Actuaries
Life and Annuity Symposium

Eileen S. Burns and Matthias Kullowatz

May 10, 2017

1

Contents
Intro . 3
Set up R’s environment . 3
Data assessment/Formatting variables . 3
Identify outliers and missing data . 4
Create new variables . 7
Year-by-year dataset . 7

2

Intro

Throughout the day, we will discuss questions of interest for life and annuity products, as well as the predictive
model forms that are best suited to investigating them. There will be some focus on the corresponding
theoretical concerns that may arise in the modeling process. We will set the stage for the afternoon session
to address more practical concerns by introducing several concepts such as identifying and dealing with
outlier data values, accounting for missing values, using the step() function for variable selection, identifying
correlated variables, setting reference levels for factor variables, and testing and improving the model fit
across the range of each covariate. We will also explore a technique to improve computational efficiency for
logistic GLMs. Finally, we will discuss assessing overall model fit and comparison between two candidate
models.

Note: we have included only select output to show in this document, but we encourage the reader to run these
on his/her own machine to see all output.

Set up R’s environment

Set the working directory and load packages that we’ll be using.
setwd("C:/work/SOASeminar") # the directory where you're working
library(dplyr)
library(car)
library(zoo)
library(lubridate)

Note: in our Intro to R document, we discuss using R Projects for organizing and documenting your work,
as well as pre-loading packages and other options each time you open the project.

Data assessment/Formatting variables

Import data sets and bind together. The as.is input preserves categorical variables in the character class,
rather than the factor class.
dsData <- read.csv("SampleStudy.rpt", as.is = TRUE)
dsData2 <- read.csv("SampleStudy2.rpt", as.is = TRUE)
dsData3 <- read.csv("SampleStudy3.rpt", as.is = TRUE)
data.full <- rbind(dsData, dsData2, dsData3)

Take a quick peak at the field names:
names(data.full)

Fix first column name. Notice that for data frames, names() and colnames() are equivalent functions.
colnames(data.full)[1] <- "timeinstudy"

Check the field names for potential date fields; often these are loaded incorrectly as character or factor
vectors. Let’s format the date fields called enteredstudydate, studyenddate, dob, and dod.
date.form <- "%Y-%m-%d"
data.full$dob <- as.Date(as.character(data.full$dob), date.form)
data.full$dod <- as.Date(as.character(data.full$dod), date.form)
data.full$studyenddate <- as.Date(as.character(data.full$studyenddate),

date.form)
data.full$enteredstudydate <- as.Date(as.character(data.full$enteredstudydate),

date.form)

3

Check automatically for character fields, and change to factor vectors. This is more a user preference than a
requirement, but sometimes it’s helpful when R treats these types of categorical variables as factors rather
than characters. Other times, dealing with factors can be a pain! You’ll learn.
classes <- sapply(data.full, class)
for (i in 1:dim(data.full)[2]) {

if (classes[i] %in% c("character")) {
data.full[, i] <- as.factor(data.full[, i])

}
}

Identify outliers and missing data

With date and factor fields now edited, using the summary() function can shed some light on outliers and
missing data:
summary(data.full)

A quick review of the output reveals a few interesting things…

There are 36,600 NA values in dod (date of death), and further analysis reveals there are also exactly 36,600
timetodeath values of zero. Here we use a contingency table to show that those are the same 36,600 people.
table(is.na(data.full$dod), data.full$timetodeath == 0)

FALSE TRUE
FALSE 8400 0
TRUE 0 36600

Here we show that there are 4,700 deaths indicated in in the “died” column.
sum(data.full$died) # Number of recorded deaths

[1] 4700

This is concerning because the first bit of code implies that 8,400 people (45,000 - 36,600) died during the
study (19%), but only 4,700 are marked as having died in the second bit of code (10%). Let’s contruct
a second time to death variable to check the first, as well as a death indicator–both based on the “dod”
field. We’ll see that the timetodeath2 variable matches the original, based on 100% of the observations being
within one day of each other. So we’ll proceed with our new, correct mortality indicator, death_ind, which
is based on the “dod” field.
data.full <- data.full %>% mutate(death_ind = ifelse(!is.na(dod),

1, 0), timetodeath2 = ifelse(!is.na(dod), (dod - enteredstudydate)/365.25,
0))

mean(abs(data.full$timetodeath - data.full$timetodeath2) < 1/365)

[1] 1
~ 1-day error tolerance

The summary from above (output not shown) also revealed that 10,739 people do not have height or weight,
and it is the same people that are missing both. Additionally, those two fields are factors! Let’s make them
numeric, impute the missing records with a value of zero, and create a missing value indicator field to mark
them for later. To convert factors to numerics, you have to first convert to characters as we do below.

4

data.full$height <- as.numeric(as.character(data.full$height))
data.full$weight <- as.numeric(as.character(data.full$weight))
table(is.na(data.full$height), is.na(data.full$weight))

FALSE TRUE
FALSE 34261 0
TRUE 0 10739

data.full <- mutate(data.full, ht.wt.flag = ifelse(is.na(height),
1, 0), height = ifelse(is.na(height), 0, height), weight = ifelse(is.na(weight),
0, weight))

Note that this is just one of many ways to impute missing values for modeling. This method of using a
missing value indicator may not be the most appropriate since there is a slight correlation between this
indicator and mortality. In other words, the missing values are informative. We conducted a two-sample
independent proportions test below, and we found that there is a statistically significant difference between
mortality proportions for those with and without height and weight values (p = 3.09 x 10-15). The actual
magnitude of the difference is only about 3.5 percentage points.
prop.test(x = tapply(data.full$death_ind, data.full$ht.wt.flag,

sum), n = table(data.full$ht.wt.flag), conf.level = 0.95)

The consquences of using this missing value indicator are that it might dim some of the effects of height,
weight, and BMI on mortality. This method of imputation is still statistically sound, but our interpretation
of the model’s coefficients will need to reflect our understanding of how missing values were handled. Note:
Regression Modeling Strategies by Frank E. Harrell, Jr. has an entire chapter devoted to the handling of
missing values for regression analysis.

Moving on, many of the disease fields have blanks. It’s probably fair to assume that this disease was never
reported for those people, and we’ll want to supply an “unreported” factor level in place of the blank. Here’s
a quick, automated way to do that. Note that we also “relevel” the new factor variables so that “unreported”
becomes the baseline/reference level. After that, we take another look at the data summary to admire our
work.
(blank.replace <- which(sapply(data.full, function(x) {

ifelse(class(x) == "factor", sum(x == ""), 0)
}) > 0))
for (i in blank.replace) {

new.labels <- c("unreported", levels(data.full[, i])[-1])
data.full[, i] <- relevel(factor(data.full[, i], labels = new.labels),

ref = "unreported")
}
summary(data.full)

Because of the NA values in the cancer_liver field, we need a special fix for that one. Here we’ll assume NA
cases are “unreported”.
data.full$cancer_liver[is.na(data.full$cancer_liver)] <- ""
data.full$cancer_liver <- relevel(factor(data.full$cancer_liver,

labels = c("unreported", "reported")), ref = "unreported")

This dataset contains no account information as you might find with life/annuity data, so for the purpose of
showing one more technique we’ll create a random set of face amounts/account values distributed similarly
to how we typically see them in our datasets.

5

set.seed(1)
tempAV <- exp(rnorm(45000, sd = 0.6)) * 2e+05
hist(tempAV, xlab = "Account value", col = "blue4")

Histogram of tempAV

Account value

F
re

qu
en

cy

0 500000 1000000 1500000 2000000

0
50

00
10

00
0

15
00

0

Note that the gap between the maximum value and the 99th percentile value is really wide–more than a
million dollars–even though the average is only about $250,000. For skewed distributions this is often the
case, and those outliers can have too much influence on linear models. What we often use in modeling is the
logarithm of these right-skewed data. Take a look at the log’s distribution. It has a recognizable bell shape!
unname(max(tempAV) - quantile(tempAV, 0.99))

[1] 1147934
hist(log(tempAV), xlab = "Log of account value", col = "blue4")

6

Histogram of log(tempAV)

Log of account value

F
re

qu
en

cy

10 11 12 13 14

0
50

00
10

00
0

15
00

0

Create new variables

Mutate a new field for BMI, and for squared BMI distance from the mean (which is 27.2). Also, let’s create
a grouped variable for all cancers since some are quite rare, and a healthy indicator for those without any
reported disease.
data.full <- data.full %>% mutate(bmi = ifelse(ht.wt.flag ==

1, 0, (weight/height^2) * 703), bmisqrerr = ifelse(ht.wt.flag ==
1, 0, (bmi - mean(bmi[ht.wt.flag == 0]))^2))

(cancer_columns <- grep("cancer", names(data.full)))

[1] 24 25 26 27 28 29 30 31 32 33
cancer_ind <- apply(data.full[, cancer_columns], 1, function(x) {

min(sum(x == "reported"), 1)
})
healthy_ind <- apply(data.full[, 15:33], 1, function(x) {

sum(x == "unreported" | x == 0) == 19
})
data.full <- data.frame(data.full, cancer_ind, healthy_ind)

Year-by-year dataset

We create a year-by-year dataset so that we can observe policy holders one year at a time. First, we’ll
determine each observation’s number of years in the dataset so that we know how many rows to make. We’ll

7

also record the fraction of the last year that each person was under observation.
data.full <- data.full %>% mutate(years = ceiling(timeinstudy),

finalyearfrac = 1 - (years - timeinstudy))

data.full[["PolNum"]] <- 1:45000
data.large <- data.frame(PolNum = rep(data.full$PolNum, data.full$years))
data.large <- data.large %>% group_by(PolNum) %>% mutate(PolYear = 1:n()) %>%

ungroup() # Always ungroup in case you want to group again by something else.

Join our original static policy information onto our expanded dataset.
data.large <- data.large %>% left_join(data.full, by = "PolNum")

Calculate attained age from age at entry and policy year; set YearFrac to be the exposure in each observed
year; and indicate when deaths occur, which will be our response (or “target”) variable in modeling.
data.large <- data.large %>% mutate(AttAge = age + PolYear -

1, YearFrac = ifelse(PolYear == years, finalyearfrac, 1),
Death = ifelse(PolYear == years & death_ind == 1, 1, 0))

Mutate on a field for current date so that we can later segment an out-of-time sample.
data.large <- data.large %>% mutate(current.date = enteredstudydate %m+%

months(12 * (PolYear - 1)))

Save dataset for modeling and validation steps:
saveRDS(data.large, file = "PPASExpandedData_20170320.rds")

8

PPAS modeling and validation guide

Society of Actuaries
Life and Annuity Symposium

Eileen S. Burns and Matthias Kullowatz

May 10, 2017

1

Contents
Intro . 3
Load packages . 3
1. Data setup . 3

A. Data exploration . 3
B. Training, holdout, and testing datasets . 3

2. Machine learning methods . 4
A. Regularization . 4
D. Stepwise Variable Selection . 4
E. Multicollinearity . 6
F. Finding non-linear relationships . 8

3. Undersampling . 11
4. Validation and model comparison . 11

A. Overall model fit . 11
B. Comparison between two candidate models . 15

2

Intro

In the previous sessions we were introduced to the dataset, we saw how to do some intitial data exploration
and cleaning. We also looked at fitting a logistic GLM to the dataset, use stepwise regression to identify
significant variables, and assess overall model fit. We also discussed how to compare candidate models. In
this session we will explore the world beyond linear models, moving into machine learning methods.

Load packages

library(dplyr)
library(lubridate)
library(car)
library(glmnet)

Import cleaned data:
data.large <- readRDS("PPASExpandedData_20170320.rds")

1. Data setup

A. Data exploration

Here we’ll take another quick look at the variables in the dataset and their respective summaries. This was
already demonstrated in the previous session but will helpful information to have around for this analysis as
well.
summary(data.large)

B. Training, holdout, and testing datasets

Now we’ll split the dataset into the same subsets it was split into for the previous analysis. A 50% training
sample, a 25% in-time holdout sample, and a 25% out-of-time holdout sample. If you were continuing on
from the previous analysis you wouln’t need to repeat this process.
(test.cut.date <- quantile(data.large$current.date, 0.75, type = 1))

75%
"2012-04-18"

set.seed(1)
sample.rand <- data.frame(PolNum = 1:45000, RandNum = runif(45000,

0, 1))
data.large <- left_join(data.large, sample.rand)
data.large <- mutate(data.large, Sample = ifelse(current.date >

test.cut.date, "testing", ifelse(RandNum > 2/3, "holdout",
"training")))

3

2. Machine learning methods

A. Regularization

Regularization is a technique that is mostly used to avoid the problem of overfitting. The idea is to add a
complexity term to the loss function to penalize more complex models. The package glmnet

Let’s dive into our first regularization method, ridge regression. Ridge regression, sometimes also called
weight decay, adds an L2-norm penalty term to the loss function.
form.mid <- as.formula(Death ~ AttAge + cancer_ind + smoker +

gender)
model.mid <- glm(formula = form.mid, family = binomial(link = "logit"),

data = filter(data.large, Sample == "training"))
summary(model.mid)

Call:
glm(formula = form.mid, family = binomial(link = "logit"), data = filter(data.large,

Sample == "training"))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9237 -0.2452 -0.1848 -0.1397 3.7397

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -14.614857 0.233202 -62.670 < 2e-16 ***
AttAge 0.132273 0.002783 47.533 < 2e-16 ***
cancer_ind 0.197248 0.047340 4.167 3.09e-05 ***
smokerS 0.756202 0.067335 11.230 < 2e-16 ***
genderM 0.338423 0.033558 10.085 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 39113 on 172948 degrees of freedom
Residual deviance: 36578 on 172944 degrees of freedom
AIC: 36588

Number of Fisher Scoring iterations: 7

As expected, each of the variables we chose corresponds to increased probability of death in the coming year.
The effect sizes are given by the coefficient “Estimate” column, and you can assess statistical significance in
the P(>|z|) column, which gives the Wald p-values.

D. Stepwise Variable Selection

Stepwise selection algorithms are convenient methods for paring down a lot of variables into a smaller model.
It is best to allow your algorithm to both add and subtract variables at any given step, as it is common for
a variable’s importance to be contingent on the combination of other variables in the model. We will refer
to this as bi-directional stepwise selection.

It should be noted that stepwise selection can lead to an overconfident model, one that things more highly

4

of its effects (its coefficient estimates) than is actually true. One should always perform some method of
model validation.

i) Middle-out approach

Now let’s take a look at the code and output for R’s stepwise function. First we’ll need to input a biggest
possible model formula object. For example’s sake, I have limited the algorithm to just one step here
because even that took nearly a full minute on my computer. Notice that you can wrap any function with
the system.time() function to time it.
form.big <- as.formula(Death ~ smoker + gender + activitylevel +

positivefamilylongevity + adls + pulmonary + depression +
cognitive + alcohol + cad + tia + parkinsons + diabetes +
cancer_prostate + cancer_breast + cancer_colon + cancer_pancreatic +
cancer_lung + cancer_hodgkins + cancer_leukemia + cancer_myeloma +
cancer_liver + cancer_brain + cancer_ind + ht.wt.flag + height +
weight + bmi + AttAge)

system.time(stepmodel.mid <- step(object = model.mid, scope = form.big,
direction = "both", steps = 1))

This function aims to optimize the model based on Akaike’s Information Criterion (AIC) by default. Even
a single step provides some interesting output. The coronary artery disease (cad) variable would lower the
AIC by the most; in other words, of all three- and five-variable models you could get to in one step from
this one, this is AIC’s best model. Additionally, the output ranks each possible step in order of how much it
would improve the model. A variable’s predictive ability is tied to which other variables are currently in the
model, so we shouldn’t necessarily expect that the next steps will be to add “cognitive”, “tia” and “diabetes”
in that order.

To make stepwise a little faster, we could reduce the number of models it has to look at by inputing a
different biggest model formula. Note that I’ve chosen variables for this stepwise selection that were among
the top variables to be added from the last stepwise function. This method takes about half as long to arrive
at the one-step model.
form.medium <- as.formula(Death ~ AttAge + cancer_ind + smoker +

gender + cad + cognitive + tia + diabetes + adls + activitylevel +
ht.wt.flag + height + weight + bmi)

system.time(step(object = model.mid, scope = form.medium, direction = "both",
steps = 1))

ii) Top-down approach

Generally, a top-down approach begins with considering every possible predictor variable that is available.
Variables are then removed from the model based on the criteria of choice. In Regression Modeling Strate-
gies, author Frank E. Harrell, Jr. notes that this top-down approach is preferrable a bottom-up approach
(next section) for a few reasons, not the least of which is that it “usually performs better…especially when
collinearity is present.” We discuss (multi)collinearity in a later section.

These stepwise methods can be very computationally intensive. Taking advantage of parallel computing and
other, more efficient, machine learning algorithms is often necessary. We won’t cover those here, but for
completeness I will include the code for a full, one-directional backward stepwise method.
system.time(step(glm(form.medium, family = binomial, data = filter(data.large,

Sample == "training")), direction = "backward", k = 2)) # This is the default value, which leads to AIC criterion.

5

iii) Bottom-up approach

Generally, a bottom-up approach–or “forward” stepwise selection–starts with an empty model, and then
variables are added based on some criteria. Even an algorithmic stepwise approach has some options for you
to consider. The direction of the algorithm, as discussed previously, indicates whether you will be adding
variables, removing variables, or both. The maximum number of steps to make is self explanatory, and
another option is which criteria is used to make these additions and subractions. The AIC and the Bayesian
Information Criterion (BIC) are two common options. Here we’ll take a look at a one-step, one-directional
stepwise algorithm using BIC as the criterion for selection. BIC penalizes the addition of variables to the
model more so than AIC, and this makes it attractive for a researcher looking to avoid overfitting the model.

Set up the empty, “intercept” model:
model.int <- glm(Death ~ 1, family = binomial(link = "logit"),

data = filter(data.large, Sample == "training"))

Run “forward selection” with the BIC criterion (yes, we realized that’s like saying ATM machine).
(data.dim <- dim(filter(data.large, Sample == "training")))
system.time(step(model.int, scope = form.medium, direction = "forward",

steps = 1, k = log(data.dim[1]))) ## Here is how we input the BIC criterion

The output suggests that the most important variable out of the gate is one’s attained age (AttAge), and
“cognitive”, “cad”, and “tia” are distant runner-ups. This suggests that our original four-variable model may
not have started with the best-fitting team of variables, but more steps would be required to confirm that.

Let’s make our final model from this section the result of a BIC bi-directional model selection process,
starting with the full model.
(data.dim <- dim(filter(data.large, Sample == "training")))
system.time(stepmodel.final <- step(glm(formula = form.medium,

family = binomial(link = "logit"), data = filter(data.large,
Sample == "training")), scope = form.medium, direction = "both",

k = log(data.dim[1])))

After a few minutes, we have arrived at a model that we’ll evaluate going forward. One thing to note is
that the flag for missing height/weight values was removed from the model. The stepwise algorithm may
not have understand its importance, and we should definitely consider it moving forward.
form.final <- as.formula(Death ~ AttAge + cancer_ind + smoker +

cad + cognitive + tia + diabetes + adls + activitylevel +
height + weight + bmi + ht.wt.flag)

model.final <- glm(form.final, family = binomial, data = data.large %>%
filter(Sample == "training"))

E. Multicollinearity

We recommended that you use bi-directional stepwise methods before, and that is true regardless of your
criteria and whether you are going with a top-down or bottom-up approach. The correlation between
variables in the dataset is referred to as multicollinearity, and its consequences require that the algorithm
be able to “change its mind” about a variable at a later step.

On that note, let’s take a quick detour to assess the correlation between height, weight and BMI, and how
that affects model fits. If we check out the correlation between those three variables, we see some high linear
correlations. That means the coefficients fit to each will depend very heavily on which of the others has also
been included.

6

cor(data.large %>% filter(ht.wt.flag == 0) %>% select(height,
weight, bmi))

height weight bmi
height 1.00000000 0.6376396 0.05257831
weight 0.63763964 1.0000000 0.79571002
bmi 0.05257831 0.7957100 1.00000000

pairs(data.large %>% filter(ht.wt.flag == 0) %>% select(height,
weight, bmi))

height

100 200 300 400 500

50
60

70
80

10
0

30
0

50
0

weight

50 55 60 65 70 75 80 20 40 60 80

20
40

60
80

bmi

We’ll fit a model with only height first, then add the other variables one at a time.
summary(glm(Death ~ ht.wt.flag + weight, family = binomial, data = filter(data.large,

Sample == "training")))

summary(glm(Death ~ ht.wt.flag + weight + height, family = binomial,
data = filter(data.large, Sample == "training")))

summary(glm(Death ~ ht.wt.flag + weight + height + bmi, family = binomial,
data = filter(data.large, Sample == "training")))

If you’re following along, you probably noticed that the role of the weight variable really yo-yoed. The
variables in a linear model are like the players on a basketball team. Some players will play better with
others, and when substitutions are made, the roles of those still on the court will probably change. Too
many ball hogs–i.e. too many correlated variables–can lead to no one getting a good shot.

Following the outputs from the models above, here’s a summary of what happened. Weight began as an

7

insignificant predictor of death when it was alone in the model. Once we added height, weight became
a significant predictor with a negative slope. But then, when BMI was added to the model, all variables
became statistically insignificant at the 5% level. This is a good example of why it’s important to monitor
the linear correlation between candidate predictor variables. Not only were the coefficients highly sensitive
to the addition of new variables, but the standard errors of the coefficients grew with the addition of new
variables. As an example, the standard error on the weight coefficient grew from 0.0005, to 0.0006, to 0.0050.

Now, back to our model. Let’s assess the correlation between our model’s variables in terms of Variance
Inflation Factors (VIF’s).
vif(model.final)

GVIF Df GVIF^(1/(2*Df))
AttAge 1.137976 1 1.066760
cancer_ind 1.015396 1 1.007668
smoker 1.016890 1 1.008410
cad 2.025490 3 1.124834
cognitive 1.267572 3 1.040308
tia 2.110898 3 1.132603
diabetes 1.100237 3 1.016048
adls 1.394092 1 1.180717
activitylevel 1.206108 3 1.031726
height 2150.881620 1 46.377598
weight 609.197311 1 24.681923
bmi 557.970545 1 23.621400
ht.wt.flag 2080.970546 1 45.617656

Yikes! Using this metric (the right-most column from the output), it becomes obvious why weight, height,
and BMI can’t all exist in the model as is. They are so linearly correlated to each other, that they practically
break a linear model. Recall that a minium VIF value is 1, which means that particular variable is completely
uncorrelated with all the other predictor variables in the model. Values as high as 3 or 4 should encourage
you to reconsider the need for these variables; their information may be largely redundant. Note here that
most of our variables are uncorrelated with the rest, as shown by the scaled, generalized VIF’s in the final
column. In simple terms, GVIF’s allow us to measure multicollinearity for models that include categorical
variables.

We certainly want to do something about the multicollinearity. This is an instance where human intuition
is preferable to throwing more algorithms at the problem. We know that BMI makes an attempt to score
one’s weight relative to height, so let’s use that one.
form.final <- as.formula(Death ~ AttAge + cancer_ind + smoker +

cad + cognitive + tia + diabetes + adls + activitylevel +
bmi + ht.wt.flag)

model.final <- glm(form.final, family = binomial, data = filter(data.large,
Sample == "training"))

F. Finding non-linear relationships

Linear models are more flexible than you might think, and you can manipulate the variables in the model to
test for non-linear relationships. To do so, we typically look at how well the model predicted actual mortality
across the range of each variable. By looking at the discrepancy between actual and predicted death rates,
specifically by ratio, we will assess whether or not there are patterns in those errors. The ratio of actual to
predicted death rates is often referred to as “Actual-to-expected ratios” or “A/E ratios.” This is not unlike
some residual analyses for gaussian linear models, but because of the binary nature of the response, we will
need to group observations into buckets. The buckets will be determined by each variable’s values. Here’s
an example of such analysis across attained age and BMI.

8

First, we append the predictions to the whole dataset.
data.large <- data.frame(data.large, Preds.large = predict(model.final,

newdata = data.large, type = "response"), Preds.middle = predict(model.mid,
newdata = data.large, type = "response"))

Then, we break up observations into buckets by attained age and BMI values using the cut() function.
We group observations into their buckets and calculate A/E ratios. We’ve also included the number of
observations in each bucket with the n() function so that we don’t get caught making model changes based
on small subsets of our training data.
AttAge.plotdata <- data.large %>% filter(Sample == "training") %>%

group_by(AttAge.cut = cut(AttAge, breaks = 20)) %>% summarize(AttAge.avg = mean(AttAge),
Deaths = mean(Death), PredDeaths = mean(Preds.large), AE.attage = mean(Death)/mean(Preds.large),
N = n())

BMI.plotdata <- data.large %>% filter(Sample == "training", ht.wt.flag ==
0) %>% group_by(BMI.cut = cut(bmi, breaks = 20)) %>% summarize(BMI.avg = mean(bmi),
Deaths = mean(Death), PredDeaths = mean(Preds.large), AE.bmi = mean(Death)/mean(Preds.large),
N = n())

Now let’s plot the A/E ratio over attained age. I use the type = “l” input to create a line graph, rather than
a scatter plot.
par(mfrow = c(1, 2))
plot(x = AttAge.plotdata$AttAge.avg, y = AttAge.plotdata$AE.attage,

type = "l", lwd = 2, col = "blue", xlab = "Attained age",
ylab = "Actual/Expected")

abline(h = 1)
plot(x = BMI.plotdata$BMI.avg, y = BMI.plotdata$AE.bmi, type = "l",

lwd = 2, col = "blue", xlab = "Attained age", ylab = "Actual/Expected")
abline(h = 1)

9

50 60 70 80 90

0
1

2
3

4
5

6
7

Attained age

A
ct

ua
l/E

xp
ec

te
d

20 40 60 80
0.

0
0.

5
1.

0
1.

5
2.

0

Attained age

A
ct

ua
l/E

xp
ec

te
d

Those plots strongly suggest non-linearity across both variables. Combining the attained age plot with its
AttAge.plotdata chart, we see that the high A/E values from ages 54.2 to 65.9 are based on a combined
sample size of more than 5,000 observations. There are algorithmic methods for finding where exactly the
inflection points might be, but for now let’s just split the attained age variable into two pieces at 68.8. As
for BMI, most of the data exist below a value of 45, and the quadratic appearance in that range of BMI
suggests that we could improve fit with a squared version of BMI (fortunately, we already made one!).

Note that our human intuition is useful here as a final filter. For BMI especially, we should expect mortality
to increase for both very low and very high values, and a quadratic effect makes a lot of sense. For attained
age, the reason for the non-linearity is more ambiguous, implying that it may be spurious. Here, we’ll
include adjustments for both variables for the sake of demonstrating strategies for dealing with non-linear
relationships and their corresponding code.

For attained age, we’ll create a variable that is equal to zero for all attained ages below 68.8, and the
difference between attained age and 68.8 for those observations that are older. In addition to the orginal
AttAge variable, this provides us a simple way to let the model fit two linear pieces over one variable.
The distinct linear terms over one variable are often called “piecewise terms.” We’ll use “bmisqrerr,” the
centered-squared version of “bmi.”
data.large <- mutate(data.large, AttAge2 = pmax(0, AttAge - 68.8))

Now let’s see how our model likes those “new” variables.
form.nonlin <- as.formula(Death ~ AttAge + AttAge2 + cancer_ind +

smoker + cad + cognitive + tia + diabetes + adls + activitylevel +
bmi + bmisqrerr + ht.wt.flag)

model.nonlin <- glm(form.nonlin, family = binomial, data = filter(data.large,
Sample == "training"))

10

summary(model.nonlin)

Our additions appear to be statistically significant, so we’ll proceed with this model. Note that it is important
to be conservative with the addition of piecewise terms. Look for trends that continue over multiple buckets,
and be sure the split makes sense. As mentioned before, it doesn’t seem like a negative initial slope coefficient
on attained age makes sense, but it gives us something to check on our holdout dataset later.

Let’s make sure to add predictions from that model to the entire dataset:
data.large <- data.frame(data.large, Preds.nonlin = predict(model.nonlin,

newdata = data.large, type = "response"))

3. Undersampling

Often we work with many more observations and many more variables than there are in this dataset. If there
is a way to move through the modeling stages more quickly, then we’ll do it. To that end, undersampling
is extremely helpful. Undersampling involves removing a random sample of the majority outcome. For our
dataset, we would remove many yearly observations of non-deaths. We have 6,288 deaths in our training
dataset, so randomly selecting 6,288 non-deaths would be a symmetric way to create a new dataset. However,
that symmetry is not statistically necessary, largely due to the fact that the coefficients of a logistic GLM
are odds ratios in disguise, and odds ratios are immune to undersampling.

Here, we will simply show some code for creating this undersampled training dataset. All of the same analysis
we have done to this point could be done on that training set. Obviously, mortality rates will appear higher,
but all the model’s coefficients except the intercept will yield the same values to within a margin of error.
Once you’ve selected your best model on an undersampled dataset, all you have to do is fit that model once
on the full dataset.
ratio <- 3 # Thrice as many non-deaths as deaths
data.deaths <- data.large %>% filter(Sample == "training" & Death ==

1)
data.sample <- sample_n(tbl = data.large %>% filter(Sample ==

"training" & Death == 0), size = ratio * dim(data.deaths)[1])
data.small <- rbind(data.deaths, data.sample)

4. Validation and model comparison

This is where our holdout observations are required. At no point in the modeling process did we ever “check
our answers” on the holdout observations, referred to as “holdout” and “testing,” so we can use them now
to make final model edits and to show others how well our model could do when applied to new data. We’ll
stick to the in-time holdout portion here since our data did not allow our model to be particularly dynamic,
and that does not bode well for long-term future predictions.

A. Overall model fit

There are many ways to test a logistic model’s fit, including A/E ratio plots, confusion matrices, and
calculation of the Area under the ROC curve (AUC).

i) Actual to expected plots

Typically, we first create A/E plots across each of the variables in our model using training data, and also
across time-related variables like policy year or valuation date. Then we make tweaks as we did with attained
age and BMI. Later, we review these A/E plots using the in-time holdout dataset.

11

As an example, here we’ll make an A/E ratio plot across time. Our holdout dataset stretches from April of
1999 to April of 2012 with about 86,500 observations. That gives us enough data to break the observations
up into 20 buckets across the current date variable, with an average of about 110 deaths and 4,500 total
observations per bucket.
date.plotdata <- data.large %>% filter(Sample == "holdout") %>%

group_by(Date.bin = ntile(current.date, 20)) %>% summarize(Date = mean(current.date),
AE.date = sum(Death)/sum(Preds.nonlin))

plot(date.plotdata$Date, date.plotdata$AE.date, pch = ".", cex = 0,
main = "A/E Plot", xlab = "Date", ylab = "A/E", ylim = c(0.55,

1.25))
lines(date.plotdata$Date, date.plotdata$AE.date, lwd = 2, col = "blue")
abline(h = 1)

2004 2006 2008 2010 2012

0.
6

0.
8

1.
0

1.
2

A/E Plot

Date

A
/E

Ouch, we must have missed something! The plot suggests that we overpredict deaths earlier in the exposure
period and underpredict later. Because we had few dynamic variables at our disposal, it made it hard for
the model to keep up with changes to the subjects. To correct, let’s quickly add a time predictor variable.

12

2004 2006 2008 2010 2012

0.
6

0.
8

1.
0

1.
2

A/E Plot

Date

A
/E

There, errors now look more random across the time dimension. The in-time “holdout” dataset can be
used to make further tweaks to the model. The out-of-time “testing” dataset is what you’d use to convince
someone that the model you’ve created can be used to make future predictions.

Note: If we had dug into this data deeper a little earlier, we would have seen that the mortality rates plummet
in the final year or so of exposure, which represents a large portion of the testing data subset. In a full study,
we’d want to go figure out what happened with the data before getting into modeling.

ii) Confusion matrices

A confusion matrix, also known as a 2x2 contingency table, cross tabulates observations over predictions
and actual outcomes. If you’re not familiar with these tables, we have provided an example from base R
below. The “caret” package, among others, has functions for developing contingency tables and calculating
classification metrics.
data.large <- data.large %>% filter(Sample == "holdout") %>%

mutate(Pred.bin = ifelse(Preds.time > mean(Preds.time), 1,
0))

(conf.mat <- xtabs(~Pred.bin + Death, data = filter(data.large,
Sample == "holdout")))

Death
Pred.bin 0 1

0 60400 700
1 23915 1448

13

(sensitivity <- conf.mat[2, 2]/sum(conf.mat[, 2]))

[1] 0.6741155
(specificity <- conf.mat[1, 1]/sum(conf.mat[, 1]))

[1] 0.7163613

iii) Area under the (ROC) curve

Here’s how to check AUC. The technical definition of AUC is more complicated than what it implies. AUC
is basically this: given you select two holdout observations at random, one that died and one that did not,
what are chances that the model assigned the one that died a higher probability of doing so? A 50% AUC
would basically be a model that randomly assigned death probabilities, so that becomes our baseline.

First we’ll load the ROCR package, and create “prediction” objects.

Note: typically we’d do this on an unused holdout dataset, like our testing subset. However, as mentioned
before, this particular dataset has some oddities in the testing subset.
library(ROCR)

Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

lowess
preds.mid <- prediction(filter(data.large, Sample == "holdout")$Preds.mid,

filter(data.large, Sample == "holdout")$Death)
preds.time <- prediction(filter(data.large, Sample == "holdout")$Preds.time,

filter(data.large, Sample == "holdout")$Death)

Now let’s compare the AUC percentages. The following output shows that the larger model outperformed
the smaller one by AUC, 76.0% to 71.7%.
(auc.mid <- performance(preds.mid, "auc")@y.values[[1]])

[1] 0.7203179
(auc.time <- performance(preds.time, "auc")@y.values[[1]])

[1] 0.7651487

For a more visual approach, here’s how to plot the ROC curves:
auc.plot.mid <- performance(preds.mid, "tpr", "fpr")
auc.plot.time <- performance(preds.time, "tpr", "fpr")

plot(auc.plot.mid, col = "red")
plot(auc.plot.time, add = T, col = "blue")
legend(0.4, 0.4, legend = c("Mid-size model", "Time-adj. Model"),

fill = c("red", "blue"))

14

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mid−size model
Time−adj. Model

B. Comparison between two candidate models

We’ll compare our “middle model” and our “full model” with the time variable as an example. Two-way lift
charts are a bit complicated at first, but they do a very good job of comparing models visually.

At its core, a two-way lift chart is an A/E ratio plot, but the trick is in how we arrange the buckets across the
x-axis. We’ll order the ratios of predictions between the two models from least to greatest. So the extreme
right and left sides of the graph will consist of buckets representing where the two models disagreed the most,
while the middle of the x-axis will consist of buckets where the two models tended to agree. The model with
an A/E ratio line closest to one across this entire range of model agreement (x-axis) would be considered
the best model.

First, the plot data:
data.twoway <- filter(data.large, Sample == "holdout") %>% group_by(Agreement = ntile(Preds.time/Preds.middle,

20)) %>% summarize(Pred.ratio = sum(Preds.time)/sum(Preds.middle),
AE.large = sum(Death)/sum(Preds.time), AE.middle = sum(Death)/sum(Preds.middle))

Now let’s plot it:
plot(data.twoway$Agreement, data.twoway$AE.large, cex = 0, ylim = c(0,

2), xlab = "Agreement", ylab = "A/E ratio", main = "Two-way Lift Plot")
legend("bottomright", legend = c("Mid-size model", "Time-adj. Model"),

fill = c("red", "blue"))
lines(data.twoway$Agreement, data.twoway$AE.large, lwd = 2, col = "blue")
lines(data.twoway$Agreement, data.twoway$AE.middle, lwd = 2,

col = "red")

15

abline(h = 1, lwd = 2)

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Two−way Lift Plot

Agreement

A
/E

 r
at

io

Mid−size model
Time−adj. Model

The plot shows that the fuller model did better across nearly the entire range of Agreement (blue line closer
to 1).

16

Practical Predictive
Analytics Seminar

Talex Diede, MS
Session 3: Machine Learning Topics
May 10, 2017

GLM review
• Linear model
• Interpretable
• Issues:

• Multicollinearity
• Variable selection
• Variable importance
• Interactions

2

Machine learning techniques
• Regularization methods
• Classification and regression trees
• Ensemble models
• Others:

• Clustering
• Bayesian
• Neural network
• Deep learning

3

Milly

Regularization Methods

4

What is “regularization”?
• Regularization is a technique used to avoid the

problem of overfitting. The idea is to add a
complexity term to the loss function to penalize
more complex models.

5

Regularization methods
• Ridge regression
• LASSO
• ElasticNet

• In R:

• Packages: glmnet, MASS, ridge, lars, elasticnet, …

6

Ridge regression

• weight decay
• L2-norm penalty
• 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

−� 𝑌𝑖 ln 𝑦�𝑖 + 1 − 𝑌𝑖 ln(1 − 𝑦�𝑖) + 𝝀�𝜷𝟐

7

Example (2A)
i. Ridge regression

8

fit <- glmnet(x = mod.mat.train[, -1], y = Death.train, family = "binomial", alpha = 0)
plot(fit, xvar = "dev")

Example (2A)
i. Ridge regression

9

cl <- makeCluster(3)
registerDoParallel(cl)
cvfit.ridge <- cv.glmnet(x = mod.mat.train[, -1], y = Death.train,
family = "binomial", alpha = 0, parallel = T)
stopCluster(cl)
plot(cvfit.ridge)

Example (2A)
i. Ridge regression

10

6 5 4

3 2 1

Aside: Cross-Validation

• Useful for smaller datasets

11

1 2 3

4 5 6

LASSO

• Least absolute shrinkage and selection operator
• L1-norm penalty
• 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

−� 𝑌𝑖 ln 𝑦�𝑖 + 1 − 𝑌𝑖 ln(1 − 𝑦�𝑖) + 𝝀� |𝜷|

12

Example (2A)
ii. LASSO

13

fit <- glmnet(x = mod.mat.train[, -1], y = Death.train, family = "binomial", alpha = 1)
plot(fit, xvar = "dev")

Example (2A)
ii. LASSO

14

cl <- makeCluster(3)
registerDoParallel(cl)
cvfit.lasso <- cv.glmnet(x = mod.mat.train[, -1], y = Death.train,
family = "binomial", alpha = 1, parallel = T)
stopCluster(cl)
plot(cvfit.lasso)

Example (2A)
ii. LASSO

15

ElasticNet

• Convex combination of ridge and LASSO
• L2 & L1-norm penalties
• 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
−� 𝑌𝑖 ln 𝑦�𝑖 + 1 − 𝑌𝑖 ln(1 − 𝑦�𝑖) + 𝝀 (𝟏 − 𝜶)�𝜷𝟐 + 𝜶� |𝜷|

16

Example (2A)
iii. ElasticNet

17

fit <- glmnet(x = mod.mat.train[, -1], y = Death.train, family = "binomial", alpha = 0.5)
plot(fit, xvar = "dev")

Example (2A)
iii. ElasticNet

18

cl <- makeCluster(3)
registerDoParallel(cl)
cvfit.enet <- cv.glmnet(x = mod.mat.train[, -1], y = Death.train,
family = "binomial", alpha = 0.5, parallel = T)
stopCluster(cl)
plot(cvfit.enet)

Example (2A)
iii. ElasticNet

19

Classification and
Regression Trees (CART)

20

Trees

• Sequence of questions/rules for splitting the data
• Elements of CART algorithms

• Rules for splitting data at each node
• Stopping criteria
• Prediction for the target variable

21

N = 350
0 = 200/350
1 = 150/350

Classification vs regression

• Classification trees: used for categorical or binary
target variables

• Predict the category a policy will fall into

• Regression trees: continuous target variable
• Predict the value of the continuous target

22

Splitting nodes

• Goal: choose the split that results in nodes with
maximum homogeneity

• Classification: “Impurity” function
• Entropy
• Missclassification rate
• Gini index
• Twoing

• Regression: Squared residuals minimization

23

Stopping rules

• Depth
• Size
• Number of nodes
• Complexity parameter

24

STOP

Example (2B)

25

tree <- rpart(formula = form.full, data = filter(data.large, Sample == "training"),
method = "class", control = rpart.control(minsplit = 20, cp = 1e-04, minbucket = 10))

rpart.plot(tree)

Example (2B)

26

Example (2B)

27

fit <- prune(tree, cp = 0.00025)
rpart.plot(fit)

Ensemble Models

28

Overview

• What:
• An ensemble model is the aggregation of two or more

related but different models, averaged into a single
prediction.

• Why:
• Improve accuracy of predictions
• Improve stability of the model

29

Ensemble methods

• Bagging
• Boosting
• Stacking

30

Bagging

• What is it:
• Building multiple models from different subsamples of

the training dataset, results are then combined for the
final prediction.

• Helps to reduce the variance error

• Example:
• Random Forest
• R package: randomForest, …

31

Example (2C)
i. Random forest

32

set.seed(17)
RF <- randomForest(form.full,
 data = filter(data.large, Sample == "training"),
 importance = T, ntree = 100,
 nodesize = 100)
plot(RF)

Example (2C)
i. Random forest

33

varImpPlot(RF, type = 2)

Boosting

• What is it:
• Building multiple models, each of which is built to

improve the prediction errors of a prior model
• Has shown better predictive accuracy than bagging, but

more likely to overfit

• Example:
• Gradient Boosted Machines (GBM)
• R packages: gbm, xgboost, …

34

Example (2C)
ii. GBM

35

set.seed(17)
fit.gbm <- gbm(form.full, distribution = "bernoulli",
 data = data.frame(filter(data.large, Sample == "training")),
 n.trees = 200, shrinkage = 0.1, n.minobsinnode = 20)
summary.gbm(fit.gbm)

Example (2C)
ii. GBM

36

Example (2C)
ii. GBM

37

plot.gbm(fit.gbm, i.var = "AttAge", type = "response")

Example (2C)
ii. GBM

38

plot.gbm(fit.gbm, i.var = c("AttAge", "cognitive"), type = "response")

Stacking

• What is it:
• Building multiple models, typically different types of

models, then having a supervisor model that determines
how to best combine those results

39

Final Thoughts

40

Weighing your options

• Implementation
• Explanation
• Cost

41

MAGIC

Log
Odds

β1 X1 β 2 X2 β 3 X3

Other considerations

• Actuarial judgement
• Model selection
• Data issues
• Hardware/Software

42

M
AL

E

FE
M

AL
E

N
A

Now you know everything…

43

…that I could fit into 45 minutes!

Tools it’s a pity to miss
Git and similar bits

Brian D. Holland, FSA, MAAA
2017.05.10, Seattle, WA

SVC
 Source and Version Control
 Why use an SVC system: answer the W's

Who did what, when, and why

You document this anyway (right?): the tool helps
 Software packages: discussion and list at…

https://en.wikipedia.org/wiki/Version_control
 Here: focus on git

How does this look?

 - Many views possible
 - Here: my favorite overview
 - Shows many branches
 - GUI interfaces available

Log: more details

- ID of the change

- Who did it

- When

- Why (comment)

- What: … next slide

What changed?

This is the change made
by the top commit on the
prior slide.

It looks like the comment
was a good description.

Point: it’s easy to check
what changed.

Social networking: github,
gitlab, CI
 Additional features
 Pull requests
 to ask others to use your work

 Issue flagging
 including assigning issues with a due date

 Workflow in general
Marking when issues are complete

What do you do with this?
1. Write your work - text files for source code

2. Commit your changes – grouped as you like

 - You can "undo" to this point later.

 - You have to comment on the "commit point."

3. Branch off in a new direction and work on that

4. Check out a different branch, like “undoing” to another point

5. Merge other changes into yours.

6. Push the changes to a place that is shared with others.

7. Pull others' changes to your local work to synchronize.

Jupyter project

 Notebook workspace
 Local or remote
 Text, graphs, computation

all together
 Many languages: Python, R

included

Cloud computing - topics
 Which vendor? Some names:

AWS = Amazon Web Services

Microsoft Azure

Google, IBM also have offereings

Rackspace, DigitalOcean
 For what

Using a big server for a few hours

Having a common workspace with others

… many possible reasons: off-site backups, …

Where to learn more
 Git:

https://git-scm.com/documentation

 Github:
https://guides.github.com/activities/hello-world/

 Jupyter
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/

 AWS:
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html

Have fun!

Thanks

Brian Holland, FSA, MAAA

	Cover Page
	Session 1 - Essential Skills in R - Jean-Marc Fix
	Session 2 - Predictive Models in Life and Annuities - Matthias Kullowatz and Eileen Burns
	Session 2 - Data Preparation Guide
	Session 2 - Modeling and Validation Guide
	Session 3 - Machine Learning Topics - Talex Diede
	Wrap Up - Brian Holland

