Session 15, Languages of Predictive Analytics: A Tower of Babel?

Moderator:
Eric D. Halpern, FSA

Presenter:
Jeff T. Heaton, Ph.D.
Session 15: Languages of Predictive Analytics: A Tower of Babel?

Jeff Heaton, Ph.D., FLMI

Lead Data Scientist, RGA Global Research & Data Analytics

09-14-2017
The views expressed in this presentation are my own and do not necessarily reflect the views of the Society of Actuaries (SOA), nor the views of Reinsurance Group of America (RGA).
Programming Languages

An electronic tower of Babel?

- Excel (VBA)
- Julia
- MatLab/Octave
- Python
- R
- SAS
- SQL
What is a Programming Language

Are they the same as human languages?

- Formal Language
- Natural Language
Types of Programming Language

Reinsurance Group of America

- Domain Specific Programming Language (DSL):
 - Excel (VBA)
 - MATLAB/Octave
 - R
 - SAS
 - SQL

- General Purpose Programming Language:
 - Julia
 - Python
Sapir-Whorf Hypothesis

Linguistic Relativity

- Theory developed by Edward Sapir and Benjamin Lee Whorf.
- The **Sapir-Whorf hypothesis** proposes that the structure of a language determines or greatly influences the modes of thought and behavior characteristic of the culture in which it is spoken.
- Is one natural language better suited to a particular task?
- Is one programming language better suited to a particular task?
Turing Completeness

Are all programming languages the same?

- Turing’s Famous Paper: On Computable Numbers, with an Application to the Entscheidungsproblem, Turing (1936).
- Is a programming language Turing Complete?
- Has the core concept of programming languages changed since 1936?
- What differences are just “syntax sugar”?

Raw Performance

Compare mathematical performance of several languages.

<table>
<thead>
<tr>
<th></th>
<th>pure python</th>
<th>c</th>
<th>numba</th>
<th>numpy</th>
<th>cython</th>
<th>scipy</th>
<th>lapack</th>
<th>julia</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.000051</td>
<td>0.000016</td>
<td>0.000002</td>
<td>0.000074</td>
<td>0.000006</td>
<td>0.000029</td>
<td>0.000031</td>
<td>6.091400e-07</td>
</tr>
<tr>
<td>10</td>
<td>0.000312</td>
<td>0.000016</td>
<td>0.000003</td>
<td>0.000234</td>
<td>0.000006</td>
<td>0.000030</td>
<td>0.000031</td>
<td>1.060710e-06</td>
</tr>
<tr>
<td>30</td>
<td>0.007800</td>
<td>0.000028</td>
<td>0.000014</td>
<td>0.001950</td>
<td>0.000014</td>
<td>0.000070</td>
<td>0.000056</td>
<td>9.082080e-06</td>
</tr>
<tr>
<td>100</td>
<td>0.289310</td>
<td>0.000154</td>
<td>0.000463</td>
<td>0.029782</td>
<td>0.000309</td>
<td>0.000309</td>
<td>0.000309</td>
<td>2.265530e-04</td>
</tr>
<tr>
<td>200</td>
<td>2.277604</td>
<td>0.001800</td>
<td>0.007200</td>
<td>0.119600</td>
<td>0.003600</td>
<td>0.001200</td>
<td>0.001200</td>
<td>1.740604e-03</td>
</tr>
<tr>
<td>300</td>
<td>7.636214</td>
<td>0.007800</td>
<td>0.019500</td>
<td>0.226200</td>
<td>0.007800</td>
<td>0.003900</td>
<td>0.001300</td>
<td>5.823171e-03</td>
</tr>
<tr>
<td>400</td>
<td>18.267632</td>
<td>0.017829</td>
<td>0.051257</td>
<td>0.514801</td>
<td>0.020057</td>
<td>0.008914</td>
<td>0.002229</td>
<td>1.372135e-02</td>
</tr>
<tr>
<td>600</td>
<td>62.197309</td>
<td>0.062400</td>
<td>0.124800</td>
<td>0.982802</td>
<td>0.088400</td>
<td>0.036400</td>
<td>0.010400</td>
<td>4.543215e-02</td>
</tr>
<tr>
<td>1000</td>
<td>290.472510</td>
<td>0.257401</td>
<td>0.569401</td>
<td>3.042005</td>
<td>0.288600</td>
<td>0.070200</td>
<td>0.039000</td>
<td>2.642414e-01</td>
</tr>
</tbody>
</table>
Titanic Tutorial Challenge

- Practice Kaggle competition
 - No ranking points, but lots of fun!
- Predict mortality, did passenger:
 - Survive
 - Perish
- From passenger features:
 - Gender
 - Name
 - Passenger class
 - Age
 - Family members present
 - Port of embarkation
 - Cabin
 - Ticket

https://www.kaggle.com/c/titanic
Learning from the Titanic Data

<table>
<thead>
<tr>
<th>Survived</th>
<th>Pclass</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>SibSp</th>
<th>Parch</th>
<th>Ticket</th>
<th>Fare</th>
<th>Cabin</th>
<th>Embarked</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>Owen Harris</td>
<td>male</td>
<td>22</td>
<td>1</td>
<td>0</td>
<td>A/5 21171</td>
<td>7.25</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Mrs. Fanny</td>
<td>female</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>PC 17599</td>
<td>71.2833</td>
<td>C85</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Miss. Laina</td>
<td>female</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>PC 3101282</td>
<td>7.925</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Miss. Mary Pe</td>
<td>female</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>113803</td>
<td>53.1</td>
<td>C123</td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>William Henry</td>
<td>male</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>373450</td>
<td>8.05</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>Mr. James</td>
<td>male</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>330877</td>
<td>8.4583</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Mr. Timothy J</td>
<td>male</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>17463</td>
<td>51.8625</td>
<td>E46</td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>Costa Leonard</td>
<td>male</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>349909</td>
<td>21.075</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Emilina Berg</td>
<td>female</td>
<td>27</td>
<td>0</td>
<td>2</td>
<td>347742</td>
<td>11.1333</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Leif Achen</td>
<td>female</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>237736</td>
<td>30.0708</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Marguerite Rut</td>
<td>female</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>PP 9549</td>
<td>16.7</td>
<td>G6</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Miss. Elizabeth</td>
<td>female</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>113783</td>
<td>26.55</td>
<td></td>
<td>C103</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>William Henry</td>
<td>male</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>A/5. 2151</td>
<td>8.05</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>Anders Johan</td>
<td>male</td>
<td>39</td>
<td>1</td>
<td>5</td>
<td>347082</td>
<td>31.275</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>Maria Adolfina</td>
<td>female</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>350406</td>
<td>7.8542</td>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>
Code Availability

All code is available on Jeff Heaton’s GitHub page.

- https://github.com/jeffheaton
Excel (VBA)

Reasons to use Excel

Great mix of programming, charting, and user interface elements.

- Excel is a very common format for tabular data.
- Even without VBA, Excel is an advanced spreadsheet and reporting application.
- Excel is available natively for both Windows and Macintosh, and is mostly interoperable between the two.
- Excel provides most needed programming language functionality: SQL, internet/web services, file access, GUI, graphics, etc.
Reasons Not to use Excel

Over aggressive desire to “help” its user.

- One in five genetics papers contain errors thanks to Microsoft Excel, Science Magazine 2016.
- Sometimes inconsistent implementations (enter 2^{-2} in Excel vs every other language in this presentation).
- Lack of lower level elements make it difficult to write server applications entirely in Excel.
- Difficult to write multiprocessor applications.
Julia

Open source programming language introduced by Jeff Bezanson (and others) in 2012 while they were at MIT. Julia is designed for numerical computing.
Reasons to use Julia

The functionality and ease of use of R and Python with the speed of Java and C++.

- Direct calling of low level C/C++ and Fortran code.
- Best-of-Breed open source C and Fortran libraries for linear algebra, random number generation, signal processing, and string processing.
- Optional typing: Why choose between static and dynamic typing?
- Built in, Extensive multiprocessing and distributed parallel execution capabilities based on messaging.
- Julia Box: https://www.juliabox.com/
Reasons Not to use Julia

Bleeding edge language with growing community and package support.

- Somewhat rare programming language. Difficult to find programmers.
- Very cutting edge, growing (but relatively small) community.
- Somewhat confusing type-system. (separate types for NA’s)
- Steeper learning curve than languages such as Python or Excel.
- Some questions of performance vs other languages.

http://zverovich.net/2016/05/13/giving-up-on-julia.html
Julia Example

Read and Preprocess Data

df = readtable("./data/titanic-dataset.csv");

delete!(df, :PassengerId);
delete!(df, :Name);
delete!(df, :Ticket);
delete!(df, :Cabin);
df[isna.(df[:Age]),:Age] = median(df[.~isna.(df[:Age]),:Age])
df[isna.(df[:Embarked]),:Embarked] = "S"
pool!(df, [:Sex]);
pool!(df, [:Embarked]);
Julia Example

Training and Validation Split

split_pt = trunc(Int,size(df,1)*0.7) # 70% validation
shuffle_idx = sample(1:size(df,1),size(df,1));
df_train = df[1:split_pt,:];
df_validate = df[split_pt+1:size(df,1),:];
Julia Example

Fit Logistic Regression and Predict

model = glm(@formula(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare + Embarked), df_train, Binomial(), LogitLink());

pred = predict(model, df_validate);
pred = convert(DataArray{Int}, round.(pred));

print("Accuracy: ")
println(sum(pred .== df_validate[:Survived]) / length(pred))
GNU Octave is an open source programming language released in 1988 for numerical programming. GNU Octave is a free alternative to MATLAB.

MATLAB (matrix laboratory) is a commercial programming language introduced by MathWorks in 1984 for numerical computation.
Reasons to use MATLAB

Advanced numerical programming language with matrix mathematics at its heart.

- Basic data element is the matrix. A simple integer is considered an matrix of one row and one column.
- Advanced graphing. Python’s most popular graphing library (Matplotlib) is based on MATLAB.
- Quick prototypes of machine learning applications.
- Extensive toolbox (library) support for very specialized tasks.
- Simulink - a graphical programming environment for modeling, simulating and analyzing multi-domain dynamic systems.
Reasons Not to use MATLAB

Expensive proprietary language without intrinsic support of multiprocessing.

- Expensive, a single copy of MATLAB is $2K-$8K, toolkits cost extra, and everyone needs a license.
- Octave provides some features of MATLAB for free, but compatibility is incomplete.
- MATLAB has performance issues for any code that is not specifically written as matrix operations.
- Steeper learning curve than languages such as Python or Excel.
MATLAB Example

Read and Preprocess Data

% Load the data
ds = readtable('titanic-dataset.csv');

% Handle missing ages
ds.Age(isnan(ds.Age)) = nanmean(ds.Age);

% Handle categoricals
ds.Embarked = categorical(ds.Embarked);
t = dummyvar(categorical(ds.Sex));
ds.Sex = t(:,1);
MATLAB Example

Split X&Y

% Split X & Y.
y = ds(:, 'Survived');
x = ds(:, {'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare'});

% Create training matrix (all numeric)
x = table2array(x);
x = horzcat(x, dummyvar(ds.Embarked));
y = table2array(y);
MATLAB Example

Training and Validation Split

% Training & validation split
[trainInd,valInd] = divideblock(length(x),0.7,0.3);
x_train = x(trainInd,:);
y_train = y(trainInd,:);
x_val = x(valInd,:);
y_val = y(valInd,:);
MATLAB Example

Fit Logistic Regression and Predict

% Fit the model
model = glmfit(x_train,y_train,'binomial','link','logit');

% Predict and calculate accuracy.
pred = glmval(model,x_val,'logit');
pred = round(pred);
acc = (pred == y_val);
sum(acc)/length(acc)
Python

Open source programming language introduced by Guido van Rossum in 1991 as a general purpose programming language.
Reasons to use Python

Great mix of programming, charting, and user interface elements.

- Type-less programming language.
- TensorFlow, Numpy, and Scipy provide highly optimized distributed linear algebra operations for Python.
- Large community and add-on libraries.
- Extensive array of machine learning, statistical, and artificial intelligence libraries.
- Shallow learning curve, with a syntax that often requires much less formality than other languages.
Reasons Not to use Python

Great “glue” language, but slow when used in pure form.

- Type-less programming language. (yes this is a pro and a con)
- Nested loops will be slow unless there is a library, such as Numpy, Scipy or TensorFlow to do the heavy lifting.
- Libraries may not always have out-of-the-box support for Windows or Mac.
- Python 2 vs Python 3.
- Programmers will either love or hate the whitespace scoping/blocking.
- Not commercially supported like Excel, SAS, or MATLAB.
Python Example

Read Data

path = ".\data/"

def encode_text_dummy(df, name):
 dummies = pd.get_dummies(df[name])
 for x in dummies.columns:
 dummy_name = "{}-{}".format(name, x)
 df[dummy_name] = dummies[x]
 df.drop(name, axis=1, inplace=True)

filename_read = os.path.join(path,"titanic-dataset.csv")
df = pd.read_csv(filename_read,na_values=["NA","?"])
Python Example

Preprocess Data

df.drop('Name',1,inplace=True)
df.drop('PassengerId',1,inplace=True)
df.drop('Ticket',1,inplace=True)
df.drop('Cabin',1,inplace=True)
df['Sex'].replace('female', 0,inplace=True)
df['Sex'].replace('male', 1,inplace=True)
med = df['Age'].median()
df['Age'].fillna(med,inplace=True)
df['Embarked'].fillna('S',inplace=True)
encode_text_dummy(df,'Embarked')
Python Example

Split X&Y, Validation Train Split

```python
x = df.as_matrix(['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked-C','Embarked-Q','Embarked-S'])
y = np.ravel(df.as_matrix(['Survived']))

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=42)
```
Python Example

Fit Logistic Regression and Predict

classifier = LogisticRegression()

classifier.fit(x_train, y_train)

pred = classifier.predict(x_test)
score = metrics.accuracy_score(y_test, pred)
print("Accuracy score: {}\).format(score))
Open source programming language introduced in 1993 by the R Programming Team. R is a general purpose programming language primarily designed for statistical analysis.
Reasons to use R

Open source programming language for statistical computing and graphics.

- Support for a vast array of statistical techniques.
- Statisticians who develop new methods often work in R, so R users often get to use them immediately.
- KDD Nuggets rates R as the software language most commonly used for data science.

Reasons Not to use R

Steep learning curve and very different programming paradigm than other languages.

- R is a strange, deeply flawed language that nevertheless has an enthusiastic and rapidly growing user base. (John Cook, MSDN)
- Everything must fit into RAM (usually).
- Larger learning curve than Excel or Python.
- Not commercially supported like Excel, SAS, or MATLAB.

R Example

Load Data and Preprocess

df = read.csv("./data/titanic-dataset.csv", header = TRUE)

drops <- c("PassengerId","Name", "Ticket", "Cabin")
df <- df[, !(names(df) %in% drops)]
df$Age[is.na(df$Age)] <- median(df$Age, na.rm=TRUE)
df$Embarked [is.na(df$Embarked)] <- 'S'
R Example

Split Training and Validation Sets

smp_size <- floor(0.75 * nrow(df))

set.seed(42)
train_ind <- sample(seq_len(nrow(df)), size = smp_size)

train <- df[train_ind,]
test <- df[-train_ind,]

model <- glm(Survived ~ ., family=binomial(link='logit'), data=train)
R Example

Fit and Evaluate Model

```r
pred <- predict(model, newdata=test, type='response')
pred_survived <- round(pred)

sprintf( "Accuracy: %f", sum(pred_survived == test$Survived) / nrow(test) )
```
SAS

SAS (previously "Statistical Analysis System") is commercial application/programming language introduced by SAS in 1976 by the Institute for Advanced Analytics. SAS is primarily targeted at statistical computing.
Reasons to use SAS

Well known statistical package with commercial support.

- It is easy to move between SPSS and SAS.
- Can use disk in addition to RAM – Everything does not need to fit in RAM.
- Usually faster than R.
- Better debugging environment than R.
- Dedicated customer service support.
- Very stable and backwards compatible.
Reasons Not to use SAS

Expensive and slow to adapt commercial package.

- Less community support – not as easy to “google an answer”.
- Licensing fees.
- Can take multiple years to add new statistical methods.
- One object only, the data set – no vectors, lists, or other objects.
SAS Example

Load Data and Preprocess

/* Read the CSV */
PROC IMPORT DBMS=csv OUT=train REPLACE
 DATAFILE="/folders/myfolders/titanic-dataset.csv";
 GETNAMES=YES;
RUN;

/* Fill in missing ages with median */
PROC STDIZE DATA=train OUT=train
 METHOD=median reponly;
 VAR Age;
RUN;
SAS Example

Split Training and Validation

PROC SURVEYSELECT DATA=train outall OUT=train METHOD=srs SAMPRATE=0.7;
RUN;
DATA validate;
 SET train;
 IF selected = 0;
RUN;
DATA train;
 SET train;
 IF selected = 1;
RUN;
SAS Example

Fit Model and Predict

/* Fit the logit */
PROC LOGISTIC data=train outmodel=model descending;
 CLASS Sex / PARAM=ref ;
 CLASS Embarked / PARAM=ref ;
 MODEL Survived = Sex Age Pclass Parch SibSp Embarked;
RUN;

/* Predict */
PROC LOGISTIC INMODEL=model;
 SCORE DATA=validate OUT=pred;
RUN;
SAS Example

Evaluate

/* Turn prediction probabilities into class values (threshold=.5) */
DATA pred;
 SET PRED(KEEP = PassengerId Survived P_1);
 pred_survived = ROUND(P_1);
RUN;

/* Evaluate */
proc freq data=pred;
 tables Survived * pred_survived;
run;
SQL

SQL is a domain specific language specification created in 1973 and implemented by a large number of commercial and open source vendors.
Reasons to use SQL

Standard data manipulation language that has been in use for a long time.

- A SQL query goes into a bar, walks up to two tables and asks, “Can I join you?”
- SQL is very common and understood by business users and IT.
- SQL is critical if your data are in a relational database already (Oracle, SQL Server, or PostgreSQL).
- Your data are highly transactional (constantly changing) as opposed to static (warehouse).
Reasons Not to use SQL

Trying to find its place against the NoSQL competition.

- You need more than just data manipulation.
- Your data are in the traditional record and field format – Imagine storing a matrix in SQL.
- Not as useful for document data, such as Wikipedia like information.
- Not as good with data that must be augmented with other data sources, perhaps from Internet web services.
SQL Example

Preprocess Data

```sql
select survived, pclass, name, decode(sex,'male',1,'female',0) as sex, nvl(age, (select avg(age) from jth_titanic)) as age, sib_sp, fare, 
DECODE(embarked,'S',1,0) as embarked_s, 
DECODE(embarked,'C',1,0) as embarked_c, 
DECODE(embarked,'Q',1,0) as embarked_q
from jth_titanic;
commit;
```
SQL Example

Summarize Data

```sql
select a.pclass, sum(survived) / (select count(*) from jth_titanic b
where a.pclass=b.pclass)
from jth_titanic a
group by pclass order by 1;
```
Thank you!

Any questions?