Session 5

Leveraging Predictive Analytics for Enterprise Risk Management

Yun-Tien Lee, FSA
Janice Wang, ASA, CERA
Leveraging Predictive Analytics in ERM

JANICE WANG, ASA, CERA
Actuarial Associate
Milliman Inc.

YUN-TIEN LEE, FSA, FRM
Consulting Actuary
Milliman Inc.

31st August 2018

Agenda

• What is Predictive Analytics

• Application in ERM:
 - Economic capital calculation
 - Digital ERM dashboard

• Look into future

Janice Wang
Hong Kong
Janice.Wang@milliman.com

Education and Qualifications
The University of Hong Kong
(2012-2016)
B.Sc. Actuarial Science

Current responsibilities
• Actuarial associate with Milliman life consulting practice in Hong Kong

Yun-Tien Lee
Taipei
yuntien.lee@milliman.com

Education and Qualifications
University of Illinois, Urbana-Champaign, M.Sc. Applied Mathematics, 2005
National Taiwan University, M.Sc. Computer Science, 2003

Current responsibilities
• Head of Advanced Analytics and a Consulting Actuary with Milliman in Taipei
What is Predictive Analytics?
What is Predictive Analytics?

- **Business Intelligence** — a set of technologies and tools to understand and analyze business performance
- **Analytics** — the extensive use of data, statistical and quantitative analysis, explanatory and predictive models
- **Predictive Analytics** — predicting the value of an outcome, given a number of input measures

- A wide range of statistical methods and approaches
 - e.g. random forest, neural network, generalized linear models
- Using large and granular data sets
 - Various types and sources
- To predict future patterns
 - Predictive vs. descriptive
- To obtain business insight and facilitate decision-making
Now comes its time…

Expanding Data

Computational power

Management interest

Competitive pressure

Predictive analytics

Entering a new era

Wherever Decisions are made, there is Opportunity for Predictive Analytics

Marketing
- Brand management
- Target marketing
- Cross sell
- Product design

Underwriting
- Underwriting requirements
- Exposure audits

Pricing
- Rate relativities

Claims
- Fast track
- High risk case management
- Fraud detection

Distribution
- Agency selection
- Agency management
Application in ERM:
Economic Capital Calculation

Economic Capital:
Sufficient surplus to cover potential losses at a given risk tolerance level over a specified time horizon

Applications of Economic Capital:
- Product Pricing
- Determine Risk Profile
- Capital Budgeting
- Applications of Economic Capital
- Managing and Limiting Risk
- Long Term Value
- ALM

Determine Risk Profile
Typical Risks

- **Market Risk**
 - Equity & Interest rate: performance of underlying investments
 - Volatility
 - Misestimation

- **Policyholder Behavior Risk**
 - Persistency/Lapse: Early termination
 - Catastrophe
 - Volatility
 - Misestimation

- **Insurance Risk**
 - Mortality/Longevity: Risk from misestimating mortality
 - Catastrophe
 - Volatility
 - Misestimation
 - Trend

- **Other Risks**
 - Counterparty: Risk of reinsurer failing to meet obligations
 - Operational: Risk from inadequate or failed internal processes
 - Expense: Risk of incurred expenses being higher than anticipated

Evaluation of Behavioral Tail Risk

Types of Lapse Tail Risk

- **Drift**
 - Risk that best estimate lapse rates vary under different market conditions
 - Captured by a dynamic lapse component

- **Diffusion**
 - Risk that estimates of the entire lapse function are off
 - Captured by simulation of lapse behaviour using predictive model

- **Extreme Event**
 - Risk that some unprecedented events may impact lapse in an extreme way
 - Resort to some manner of judgement call
Lapse Behavior Simulation

\[
\text{logodds} \sim a + b_1 \cdot \text{Variable1} + b_2 \cdot \text{Variable2} + b_3 \cdot \text{Variable3} + \varepsilon
\]

Model Assumptions:
- Each coefficient \(b_x \) is normally distributed
- The error term \(\varepsilon \) is normally distributed with a mean of 0
- Correlation between each predictive \(\text{VariableX} \) can be given by a correlation matrix
- The standard deviation of \(\varepsilon \) denoted by \(\mathbf{\Omega} \) can be determined from the correlation matrix using numerical methods such as Cholesky decomposition

Lapse Behavior Simulation – Determine Best Estimate

- Consider the following model, where the only predictive variable considered is In-The-Moneyness

\[
\text{logodds} \sim a + b_1 \cdot ITM + \varepsilon
\]

- After fitting your experience to the model, the following best estimate calibration is attained:

\[
\text{logodds} = 0.5 + (-2) \cdot ITM + 0
\]

Resulting best estimate lapse rate (\(\rho \)):

<table>
<thead>
<tr>
<th>ITM</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225%</td>
<td>1.8%</td>
</tr>
<tr>
<td>175%</td>
<td>4.7%</td>
</tr>
<tr>
<td>125%</td>
<td>11.9%</td>
</tr>
<tr>
<td>75%</td>
<td>26.9%</td>
</tr>
<tr>
<td>25%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>
Lapse Behavior Simulation – Simulating the Risk of Model Misestimation

- Alternatively, we can simulate lapse rates by allowing the coefficients to vary according to their standard deviation, assuming a multivariate normal distribution

\[\text{logodds} = 0.5 + N_1(0, \Omega) + (-2 + N_2(0, \Omega)) \times \text{ITM} \]

<table>
<thead>
<tr>
<th>Best Estimate</th>
<th>ε = (0.2, 0.1)</th>
<th>ε = (-0.2, -0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>ITM</td>
<td>p</td>
</tr>
<tr>
<td>0</td>
<td>225%</td>
<td>1.8%</td>
</tr>
<tr>
<td>0</td>
<td>175%</td>
<td>4.7%</td>
</tr>
<tr>
<td>0</td>
<td>125%</td>
<td>11.9%</td>
</tr>
<tr>
<td>0</td>
<td>75%</td>
<td>26.9%</td>
</tr>
<tr>
<td>0</td>
<td>25%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

Application in ERM: Digital ERM Dashboard
Why (digital) ERM Dashboards?

Digital ERM dashboards go beyond static dashboards by enabling quick access to the unbiased data needed to support decisions.

Convenience
- Imagine going to a board meeting with a printout of 1-2 pages from a dashboard you're logged into that allows complete drilldown ability on the fly.
- Drill in to answer questions and provide data to come to informed decisions.

Timing issues
- Hooking into source data eliminates issues of prioritizing time by the business units to acquire the needed data.
- Analysis can be updated in real time as experience emerges and market conditions evolve.

Reporting bias
- Taking business units out of the update process also reduces bias in reporting without reducing their opportunity to add commentary.

Customized
- Can be set up with a traffic light or heat map approach.
- Can grow as you identify important data points to monitor.
Empowering Digital ERM Dashboard

- Real-time data and refreshed models
- Continuous monitoring

Dashboard

- Identify areas for further investigation
- Generate ideas for why things may be unfolding as they are.

Predictive Modeling

- Test theories and create a desired level of confidence in the answer.
- Use machine learning to investigate what drives risk events

Problems for analysis → Results reported back to dashboard

Market-Based Explanations

- A digital dashboard can connect straight to news feeds and to your admin system to put stats side by side
- Watch experience emerge next to changes in the economic environment, political environment, etc.
- Do spikes or drops in activity relate to the external world?

Hypothesis: lapse rates drop after a lag in response to a drop in the S&P, likely related to a rise in ITM
Actual vs Expected

- A dashboard can quickly and easily highlight which segments of business are performing as expected and which are diverging.
- This shows aggregate experience dipping into warning territory.

Note: Lapse rates have dropped recently relative to expectations.

Actual vs Expected

- Drilling deeper, you can identify segments of the block that are behaving closer to expectations, and some behaving even further from expected.

Note: Youngest ages are still lapsing as expected, older ages contribute to low lapses.
Economic Capital – Behavioral Sensitivities

- If we change our assumption, what’s the dollar impact?
- Adding a calculation possibly via Greeks, for the dollar impact of changes to policyholder behavior is a quick step to a traffic light indicator

Look into the (near) future
The use of Machine Learning and Artificial Intelligence (AI) adds value to every stage of ERM cycle

- Identify anomalies through structured and unstructured data
- Automate reports to deliver near real-time alerts and help generate business insights
- Predict exposure based on evolving business environment
- AI-based decision making in risk mitigation and control strategies

Illustration of Cyber Risk model

1. **Risk Profiling**
 - Identify and assess each risk
 - Cognitive mapping
 - Historical experience
 - Current indicators
 - Process, controls, and users

2. **Model Construction**
 - Establish causal chain between triggers and consequences
 - Performance of controls
 - Likelihood of cyber attacks after management actions
 - Potential outcomes (e.g. losses/reputation)

3. **AI Integration**
 - Model calibration with real-time data
 - Threat detection
 - Incorporation of unstructured data

4. **Reporting & Ongoing Monitoring**
 - Dynamic dashboard
 - Threat development
 - Establish learning process: predict, monitor, learn, predict again