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Published studies featured in the media

• “Late-night eating hurts learning and memory”
• “Science proves pizza is the most addictive food”
• “A glass of red wine a day can equal to an hour in the gym”
• “Driving dehydrated just as dangerous as driving drunk”



Everything we eat both causes and prevents cancer

The American Journal of Clinical Nutrition, Volume 97, Issue 1, January 2013, Pages 127–134, https://doi.org/10.3945/ajcn.112.047142



Rigorous replication effort succeeds for just two of five 
cancer papers

Science, “Rigorous replication effort succeeds for just two of five cancer papers,”  http://www.sciencemag.org/news/2017/01/rigorous-replication-effort-succeeds-just-two-five-cancer-papers accessed August 18, 2018.



Single medical studies by the numbers 

Of new journal articles 
reviewed annually are 
deemed high-quality 

enough to inform 
patient care

SOURCE: Haynes, Evidence Based 
Nursing

6% 29%
Of highly cited original 
medical studies were 
either contradicted by 
later studies or were 
found to have much 
smaller effects than 

original articles 
suggested

SOURCE: loannidis, JAMA

5
Only 5 Of 101 new 

therapies or medicines 
claimed by medical 

studies to be promising 
made it to market

SOURCE: Contopoulos-loannidis, 
American Journal of Medicine

$200B
Of annual global 

spending on research is 
wasted on badly 

designed or redundant 
studies

SOURCE: Macleod, Lancet

Belluz, J. (2017, February 27). This is why you shouldn’t believe that exciting new medical study. https://www.vox.com/2015/3/23/8264355/research-study-hype

https://www.vox.com/2015/3/23/8264355/research-study-hype


Most scientists have experienced failure to reproduce results
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Chemistry
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Physics and engineering

Medicine

Earth and environment

Other

Have You Failed to Reproduce an Experiment?
Someone else's My own

Baker, M. (2016, May 25). 1,500 scientists lift the lid on reproducibility. https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970


Publication Asymmetry

• Once something appears in print, it becomes very difficult to criticize
• Incentives to publish positive replications are low
• Journals can be reluctant to publish negative findings

Dietvorst, B., Simmons, J. P., & Massey, C. (2015). Algorithm Aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology: General, 144 (1), 114-126. http://dx.doi.org/10.1037/xge0000033



Major medical journals don’t follow their own rules for 
reporting results from clinical trials

• Editors and researchers 
routinely misunderstand what 
correct trial reporting looks like

• Authors should describe the 
outcomes they plan to study 
before a trial starts and stick to 
that list when they publish the 
trial

• This varied by journal

Didn’t correctly report the primary 
outcome they set out to measure 
and 

Didn’t properly report all secondary 
outcomes

Trials published in the five journals 
reported outcomes correctly, the 
COMPare team reported on 14 
February in the journal Trials. 

9
out of 

67

25%
45%

Kaiser, J. (2019, February 15). Major medical journals don’t follow their own rules for reporting results from clinical trials. https://www.sciencemag.org/news/2019/02/major-medical-journals-don-t-follow-their-own-rules-reporting-results-clinical-
trials



Reasons for the Replication Crisis

Baker, M. (2016, May 25). 1,500 scientists lift the lid on reproducibility. https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970


Overfitting: What & Why
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Overfitting Definition

“The problem of capitalizing on the 
idiosyncratic characteristics of the sample 
at hand. Overfitting yields overly optimistic 
model results: “findings” that appear in an 
overfitted model don’t really exist in the 
population and hence will not replicate.” 
(Babyak, 2004)

Text from Babyak 2004: What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models.

One of many definitions



When Does Overfitting Occur?

Researcher degrees of freedom (also known as 
procedural overfitting, data dredging, p-hacking, etc.)

Asking too much from the data (model complexity)

Generally, overfitting occurs due to analyst oversight in 
two key areas:



The Garden of Forking Paths

Forking paths come from choices in data processing and also 
from choices in analysis

• A group of researchers plans to compare three 
dosages of a drug in a clinical trial.

• There’s no pre-planned intent to compare effects 
broken down by sex, but the sex of the subjects is 
routinely recorded.

• They have informally made fifteen comparisons

Dietvorst, B., Simmons, J. P., & Massey, C. (2015). Algorithm Aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology: General, 144 (1), 114-126. http://dx.doi.org/10.1037/xge0000033



Several studies published on the association 
between adolescent well-being and digital 
reported by many news outlets

The Garden of Forking Paths



Scientists could have analyzed the data in over a trillion ways

Differences in:
• How to define well-

being
• How to define 

technology use
• Model specifications
• …etc.

Orben, A., & Przybylski, A. K. (2019). The association between adolescent well-being and digital technology use. Nature Human Behaviour, 3, 173-182.



Number of (Plausible) Forking Paths: 603,979,752

“The association we find between digital 
technology use and adolescent well-being 
is negative but small, explaining at most 
0.4% of the variation in well-being.” 

Orben, A., & Przybylski, A. K. (2019). The association between adolescent well-being and digital technology use. Nature Human Behaviour, 3, 173-182.



The Problem With Statistical Significance

• “Significantitis” or “Dichotomania” 
(Greenland, 2017)

• Overreliance on phrases like “We deemed a 
p value less than 0.05 to be significant,” 

• P-values are extremely noisy unless 
underlying effect is huge

Greenland, S. (2017). The need for cognitive science in methodology. American Journal of Epidemiology 186, 639–645



When Does Overfitting Occur?

Make research design decisions before analyzing the data

Where applicable, use subject matter knowledge to inform data 
aggregation (i.e., age groups) 

Limit the exclusion of data

Validate your results (discussed later in the presentation)

Strategies to Minimize 
Researcher Degrees of 
Freedom



When Does Overfitting Occur?

Researcher degrees of freedom (also known as procedural 
overfitting, data dredging, p-hacking, etc.)

Asking too much from the data (model complexity)

Generally, overfitting occurs due to analyst oversight in two 
key areas:



“Given a certain number of observations in a data set, there is an 
upper limit to the complexity of the model that can be derived 
with any acceptable degree of uncertainty.” (Babyak, 2004)

Text from Babyak 2004: What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models.

One of many definitions
Asking too much of the data

When Does Overfitting Occur?
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How Do You Prevent Overfitting?
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How Do You Prevent Overfitting?
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Test-set01

02

03

Cross-Validation

Leave-one-out Cross Validation 

These are some 
additional classical ways 
to approach overfitting 
and researcher degrees 
of freedom:

 AIC/BIC metrics

 Bootstrapping

 Bonferroni 
correction 
(adjusts for 
multiple 
comparisons)



Case Study:
Variable Annuity Surrender Rates



VM-21 PBR for Variable Annuities

Public redline exposure draft as of April 30, 2019
https://naic-cms.org/exposure-drafts

Section 10:  Contract Holder Behavior Assumptions
Should examine many factors including cohorts, product features, 
distribution channels, option values, rationality, static vs dynamic
Required sensitivity testing, with margins inversely related to data 
credibility
Unless there is clear evidence to the contrary, should be no less 
conservative than past experience and efficiency should increase over time
Where direct data is lacking, should look to similar data from other 
sources/companies

1

2

3

4
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You and your 
data

Building 
models with 
your data

Improving 
models with 
industry data

32



You and Your Data

33



0%

35%

7 or
more

6 5 4 3 2 1 0 -1 -2 -3 or
more

Years Remaining in Surrender Charge Period

2008

2016

2018

Surrender charges work, but impact has changed over the years
GLWB

Su
rr

en
de

r R
at

e

34
34



0%

30%

7 or
more

6 5 4 3 2 1 0 -1 -2 -3 or
moreYears Remaining in Surrender Charge Period

Surrender rates are lower with living benefit guarantees…

Su
rr

en
de

r R
at

e

None

GLWB

Hybrid GMIB

35
35



…and when guarantees are more valuable
GLWB (nominal moneyness basis)
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How you measure value matters, but company-level credibility is 
very limited
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Largest and smallest contracts behave differently
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Building Models with Your Data
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Modeling and assumptions

• Measuring goodness-of-fit for candidate models
• Testing predictive power on out-of-sample data
• Art + science:  choosing, communicating, and ongoing recalibration

40
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Improving Models with Industry Data
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Results vary over time and between companies

• Each company’s size affects quality of analytical insights and volatility of their 
own results (a credibility problem)

• Obvious composition differences
• Subtler idiosyncratic differences (product feature nuances, distribution 

channels, operational practices, open/closed blocks, etc)
• Using only your data, it is very difficult to identify the signal from the noise

50



Variable annuity industry data

• 24 companies
• Seriatim monthly data for policyholder behavior and mortality
• January 2008 through December 2018
• $795 billion ending account value

51



How you measure value matters, and credibility is vastly 
improved with industry data
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…and dynamic lapse sensitivity varies
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Modeling and assumptions

• Measuring goodness-of-fit for candidate models
• Testing predictive power on out-of-sample data
 Using relevant industry data to improve candidate models
• Art + science:  choosing, communicating, and ongoing recalibration
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Customize your model in a credibility-based framework

• Subject matter expertise
• Actuarial judgment
• Quantify the benefits of using relevant industry data
• Ongoing recalibration, so focus on the framework

59
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Improving models with industry data

• Customize your model in a credibility-based framework
• Quantify the improvement in goodness-of-fit and predictive power metrics
• Quantify these improvements in financial terms
• Quantify the cost to access and use relevant industry data
• Altogether, does this improve your financial risk profile?
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More data and/or 
relevant industry 

data

Art + science, 
subject matter 
expertise and 

actuarial judgment

More statistically 
justifiable model 

factors and 
dramatically 

improved fit and 
predictive power
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Learnings
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