

SOA Predictive Analytics Seminar – Malaysia 26 Aug. 2019 | Kuala Lumper, Malaysia

Session 6

Predictive Analytics in a Chaotic Data World

Wai Sum Chan, FSA, CERA, HonFIA, FRSS

SOA Predictive Analytics Seminar, Kuala Lumpur 26 August 2019, Session: 15:55-16:45

Predictive Analytics in a Chaotic Data World

Wai Sum Chan, PhD, FSA, HonFIA, CERA Professor of Finance The Chinese University of Hong Kong

1 of 60

Introduction

- Often actuarial practitioners are faced with working with data that is less than ideal.
- The data may be observed with gaps in it, a model may suggest variables that are observed at different frequencies, and sometimes predictive analytic results are very fragile to the inclusion or omission of just a few observations in the sample.
- Data, particularly big data, are often messy and something must be done about it.
- What is the actuary to do about these very practical matters?

What is the meaning of messy data?

- Data sets large and small are rarely ready to use.
- There are many problems that associated with messy data:
 - missing values
 - outliers
 - structural changes
 - o abridged and censoring data
 - lack of data and messy data
 - o ... and many more
- We should perform cleansing and validating data <u>before</u> any predictive modeling
- garbage in, garbage out (GIGO)

3 of 60

My lovely data generator

SOA exam curriculum in 1990s

- 100 Calculus and Linear Algebra
- 110 Probability and Statistics
- 120 Applied Statistical Methods
- 130 Operations Research
- 135 Numerical Methods
- 150 Actuarial Mathematics
- 151 Risk Theory
- 160 Survival Models
- 162 Construction of Actuarial Table
- 165 Mathematics of Graduation

5 of 60

SOA exam curriculum in 2020s

(A) Missing Data

7 of 60

Missing Data: A climate change data case study

Missing Data: A climate change data case study

- The National Data Buoy Center (NDBC) is a part of the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) of the US government.
- NDBC deploys weather buoys which are instruments which collect weather and ocean data within the world's oceans.

9 of 60

Missing Data: A climate change data case study

 The time-series weather data for each buoy are publicly available from the NDBC website (www.ndbc.noaa.gov).

These data have been used for research and teaching purposes. I
used this data set in my class "FINA3295 Predictive Analytics for
Actuarial Science".

Part (A) - constructing the dataset

- Students are asked to locate the data webpage of the Weather Station buoy 46035 at 57.026 N 177.738 W from NDBC.
- Examine the data format for each yearly data file.
- Write an R program to extract and patch the data into two time-series of daily Air Temperature and Sea Temperature readings recorded at noon.

11 of 60

Part (A) - constructing the dataset

Part (A) - constructing the dataset

13 of 60

Part (A) - constructing the dataset

Part (A) - constructing the dataset

15 of 60

Part (A) - constructing the dataset

Part (B) - data cleansing

- Students are asked to plot and clean the data.
- Messy data: outliers, missing values, lost of data due to vandalism/stolen of data buoys

17 of 60

Part (B) - the research question

- Students are asked to answer the question: Global warming have the temperatures (both sea and air) increased over the past 30 years?
- Students can use any statistical methods learned under the SOA new ASA exam curriculum.
- All computations have to be carried out in R.
- Two students form a team.
- Each team has to make a presentation and hand-in a final report (professionally written with proper conclusions and justifications).

Part (C) - data cleaning

- Students have to research and decide on how to clean the data.
- If you were asked to analysing this data set, what would you do?

19 of 60

Part (C) - data cleaning

PROBLEM OF MISSING DATA!

How to deal with missing data?

- The first action, most of my students have done, is to ...
- Ask 'Goo-Goo'

21 of 60

How to deal with missing data?

- The followings are 'more reasonable' choices adopted by my students:
 - Replace the missing value with the historical average of that corresponding month
 - Replace the missing value with the corresponding observation obtained from a 'nearby' buoy
 - Fit a seasonal ARIMA model to the data and imput the missing values with the fitted value
 - Use an Al alogarithm to imput the missing value
 - Use Kalman Filter..... The R package na.kalman()
- There is no 'right' or 'wrong' answer in dealing with missing data...

- In this climate study, we only use data from one buoy.
- In order to study the issue of gobal warming, we may use all the data in all buoys.
- It is a very BIG data set and each buoy may have different missing value problems.
- For missing value problems, we may not be able to deal with each buoy individually.
- A deep learning or Al alogarithm may help.

23 of 60

Missing data in a BIG data set

• There are many many buoys around the world:

• There are no buoys near the Malaysia!

25 of 60

Missing data in a BIG data set

• Buoy 45008 :

• Buoy 46059:

27 of 60

Missing data in a BIG data set

• Buoy 46059 :

• Buoy 41049 (with missing values imputed) :

29 of 60

(B) Outliers

What are the outliers?

- In statistics, an outlier is a data point that differs significantly from other observations.
- · differs significantly:
 - o size
 - o pattern (time-series)
 - catergory
 - influential
 - o :::
- An outlier can cause serious problems in predicitive analyses.
- Here are some examples:

31 of 60

Impact of outliers on regression

• Consider a simple linear regression

$$y_i = \alpha + \beta x_i + e_i$$
 for $i = 1, ... 200$.

• An outlier with size ω is added to x_{100}

Impact of outliers on time-series autocorrelations

- Consider an ordinary time-series $(z_1, z_2, \dots, Z_{200})$, according to the orthodox Box-Jenkins modelling approach, we examine the sample autocorrelation function (ACF)
- The following graphs show (a) no outlier, (b) one outlier at x_{100} , (c) two outliers at x_{100} & x_{103}

33 of 60

How to deal with outliers

- Three different philosophical approaches.
- The first one assumes that outliers occur by chances because the population has a heavy-tailed distribution.

• Under this approach, we can employ predicitive models which allows heavy-tailed distributions, e.g., GLM.

How to deal with outliers

- The second approach seeks to detect the outliers, provide plausible explanations, adjust the model (by dummy-variable regression or intevention method in time-series analysis) and perform prediction using the adjusted model.
- We shall briefly illustrate this approach using an actuarial example.
- Forcasting mortality rates using stochastic models has been becoming an important task for actuaries (pricing and reserving annuity products, reverse mortgages, social secutiry planning, among many others).
- We consider the classical Lee-Carter model for UK mortality data (See, Li and Chan, 2005, *Scandinavian Actuarial Journal*, 187-211).

35 of 60

Outliers in mortality data: an example

- The data: England and Wales (1841- 2000) from Human Mortality Database
- The mortality model: Lee-Carter (1992)

$$log(m_{x,t}) = a_x + b_x k_t + e_{x,t}$$

- where $log(m_{x,t})$ is central rate of death, a_x is a age-specific parameter, k_t is the time-varying mortality index parameter and b_x represents how rapidly or slowly mortality at each age varies when the mortality trend changes.
- The time-series model on k_t : ARIMA, Box and Jenkins (1976).

Outliers in mortality data: an example

• The outlier model:

Figure 2. Different types of time-series outliers

37 of 60

Outliers in mortality data: an example

• The Result:

Fig. 4. Number of deaths per year (thousands), by age group, England and Wales, 1901-2000.

• **Remark:** The R package *tsoutliers* implements the above time series outlier detection procedures

Outliers in two-dimensional data

• Test 1:

39 of 60

Outliers in two-dimensional data

• Test 2:

Outliers in two-dimensional data

• Tests 1 and 2:

41 of 60

Outliers in high-dimensional big datasets

 An Example - 6 variables: Gender, Alcohol, Smoking, Exercise, Cholestrol, Sugar

Outliers in high-dimensional big datasets

 An Example - 6 variables: Gender, Alcohol, Smoking, Exercise, Cholestrol, Sugar

43 of 60

How to deal with outliers

- The third approach is to use robust and resistant methods for predicitive modelling.
- Robust statistical methods are expected with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal.
- A resistant statistical method is relatively unaffected by unusual observations.
- Examples include:
 - o robust regression analysis R packages MASS, robust
 - \circ robust time series analysis R package robts
 - o resistant lines R packages MASS, parody

(C) Structural Changes

45 of 60

Structural changes

- In statistics, **structural change** is a shift or change in the basic ways the underlying mechanism functions or operates.
- For predictive modelling purpose, we may only consider the latest portion (or the most relevant portion) of the data set.
- Structural change tests are a type of statistical hypothesis test. They are used to verify the equality of coefficients across separate subsamples of a data set.
- Commonly used R packages include: strucchange, segmented, breakpoints
- This is particularly important for linear model analyses.

Structural changes

47 of 60

Structural changes

The End of the World

49 of 60

Structural changes

How to deal with structural changes

- One approach is to incorporate the structural changes into the predictive model.
- We shall briefly illustrate this approach using an actuarial example
- Forcasting mortality rates using stochastic models has been becoming an important task for actuaries (pricing and reserving annuity products, reverse mortgages, social secutiry planning, among many others).
- We consider the classical Lee-Carter model for US mortality data (See, Li, Chan, Cheung, 2011, North American Actuarial Journal, 13-31). Awarded the Edward A. Lew Research Award (Second Prize) - by SOA.

51 of 60

Structural changes in mortality data: an example

- The data: USA (1950- 2005) from Human Mortality Database
- The mortality model: Lee-Carter (1992)

$$log(m_{x,t}) = a_x + b_x k_t + e_{x,t}$$

- where $log(m_{x,t})$ is central rate of death, a_x is a age-specific parameter, k_t is the time-varying mortality index parameter and b_x represents how rapidly or slowly mortality at each age varies when the mortality trend changes.
- The time-series model on k_t : ARIMA, Box and Jenkins (1976).
- Broken-Trend model: R package: ur.za

Structural changes in mortality data: an example

53 of 60

(D) Abridged and Censoring Data

Abridged life tables, censoring data

Table 1 Abridged Life Table For Singaporeans (2001) Age-Specific Death Rates

Age	$1000 \times {}_{n}M_{X}$	
	Male	Female
0	2.4	2.1
1 - 4	0.3	0.3
abridged 5-9	0.1	0.1
10 - 14	0.1	0.1
15 - 19	0.4	0.3
20 - 24	0.7	0.2
25 - 29	0.7	0.2
30 - 34	0.7	0.5
35 - 39	1.0	0.6
40 - 44	1.6	0.9
45 - 49	2.5	1.5
50 - 54	4.6	2.6
55 - 59	8.1	4.6
60 - 64	13.2	7.2
65 - 69	23.2	12.8
70 +	58.3	47.5

censoring

55 of 60

How to deal with abridged and censoring data

- 100 Calculus and Linear Algebra
- 110 Probability and Statistics
- 120 Applied Statistical Methods
- 130 Operations Research
- 135 Numerical Methods
- 150 Actuarial Mathematics
- 151 Risk Theory
- 160 Survival Models
- 162 Construction of Actuarial Table
- 165 Mathematics of Graduation

(E) Lack of Data, Messy Data

57 of 60

Lack of Data, Messy Data

- More than one problems exist in your data set
- Example: Chinese mortality data

• Bayesian approach may be useful....

Summary

- There are many problems that associated with messy data:
 - missing values
 - o outliers
 - o structural changes
 - o abridged and censoring data
 - o lack of data and messy data
 - o ... and many more
- The main purpose of this presentation is to draw audience's attention to this important topic in predicitive analytics

59 of 60

Thank You!

Q & A