1. Learning Objectives:
 1. The candidate will understand the types of risks faced by an entity and be able to identify and analyze these risks.

 2. The candidate will understand the concepts of risk modeling and be able to evaluate and understand the importance of risk models.

 4. The candidate will understand the approaches for managing risks and how an entity makes decisions about appropriate techniques.

Learning Outcomes:
(1c) Identify and assess the potential impact of risks faced by an entity, including but not limited to market risk, currency risk, credit risk, counterparty risk, spread risk, liquidity risk, interest rate risk, equity risk, hazard/insurance risk, inflationary risk, environmental risk, pricing risk, product risk, operational risk, project risk and strategic risk.

(2e) Evaluate the theory and applications of extreme value theory in the measuring and modeling of risk.

(2f) Analyze the importance of tails of distributions, tail correlations, and low frequency/high severity events.

(2h) Construct approaches to modeling various risks and evaluate how an entity makes decisions about techniques to model, measure and aggregate risks including but not limited to stochastic processes.

(4e) Develop an appropriate choice of a risk mitigation strategy for a given situation (e.g., reinsurance, derivatives, financial contracting), which balances benefits with inherent costs, including exposure to credit risk, basis risk, moral hazard and other risks.

Sources:
Financial Enterprise Risk Management, Sweeting, 2011, Ch. 12 Extreme Value Theory

ERM-102-12: Value-at-Risk: Evolution, Deficiencies, and Alternatives

ERM-106-12: Economic Capital-Practical Considerations-Milliman

Financial Enterprise Risk Management, Sweeting, 2011 Ch. 16 Responses to Risk
1. Continued

Commentary on Question:
In general, candidates did well on the first two parts of the question. The candidates who did well on parts (c) and (d) were able to draw information from the question specific to the lines of business to justify their responses.

Solution:
(a)

(i) Explain why the GPD is an important distribution in the context of Extreme Value Theory.

(ii) Match the appropriate shape parameters of 2.5, 0, and -2.5 to each of the functions A, B and C in the figure above. Justify your identification for each curve.

Commentary on Question:
Most candidates did well on sub-part (i) by identifying that the distribution of X in excess of U converges to a GPD and that EVT looks at extreme events (so modelling X in excess of U is appropriate). Most candidates also did well on sub-part (ii). Some candidates used the distribution formula to calculate G(x) at 1 with each of the parameters, and others compared the shape of each of the distribution and comments on the size of the tail and identified how the parameters would impact the tail. Both justifications were accepted.

(i) Extreme Value Theory is looking at tail events, which can be represented by a distribution (X) in excess of a threshold (u). For a sufficiently large sample, the distribution of X in excess of U converges to a GPD.

(ii) A parameter of 2.5 would have the fattest tail, and therefore the G(x) would converge to 1 the slowest. Therefore, C(x) represents a parameter of 2.5. Similarly, a parameter of -2.5 would have the smallest tail, converging to 1 the fastest. Therefore A(x) represents a parameter of -2.5. A parameter of 0 would be in between the other two, therefore B(x) represents a parameter of 0.
1. Continued

(b) The GPD CDF is as follows:

\[G(x) = \Pr(X - u \leq x \mid X > u) = \frac{F(x + u) - F(u)}{1 - F(u)} \]

\[= \begin{cases}
1 - \left(1 + \frac{x}{\beta \gamma}\right)^{-\gamma} & \text{if } \gamma \neq 0 \\
1 - \frac{1}{\beta} & \text{if } \gamma = 0
\end{cases} \]

(i) Select the most appropriate shape parameter for the Medical Stop Loss business from part (a)(ii). Justify your choice.

(ii) Calculate the 98th percentile of losses in excess of the threshold for the Medical Stop Loss business using the shape parameter from part (i), and a scale parameter of $500 million.

Commentary on Question:
Most candidates acknowledged they should be looking for the largest tail, but some had mixed up which parameter from part (a)(ii) produced the fattest tail. Candidates who didn’t do well on part ii were unable to appropriately use the given formula correctly.

(i) Given the tail risk of the Medical Stop Loss, they should be using the parameter which produces the fatter tail. That would be \(C(x) \), where the parameter is equal to 2.5.

(ii) \(C(x) = 1 - (1 + (x / B * y))^{(-y)} \)
\(.98 = 1 - (1 + (x / 500 * 2.5))^{(-2.5)} \)
\(.02 = 1 + (x / 1250)^{(-2.5)} \)
\(4.78 = (1 + x / 1250)^{(-2.5)} \)
\(X = 4,727 \)

4.727 billion

(c) Critique BA’s risk metric choice for each line of business.

Commentary on Question:
The stronger candidates typically critiqued the choice of metric while also applying their analysis to the information provided on the specific lines of business (in other words, not just a general critique of the metric).
1. Continued

Term – CTE is a coherent risk measure that takes the information in the tail into account. Given that the maximum loss ($11,500) is not significantly higher than the mean loss ($9,000), the tail does not appear to be too large. So, VaR could be used in this instance as well, but there is no issue with using CTE95 either.

Fixed – VaR is not a coherent risk measure. The information also implies that the fixed annuity line of business has a larger tail (maximum loss of $9,900 is significantly higher than the VaR 95 of $5,400). As a result they could be ignoring important information in the tail by using VaR.

Stop Loss – EVT is an appropriate way to model the tail given the lack of data that they have. They should be careful in setting the parameters for the distribution and may want to calculate sensitivities in setting the parameters.

(d) BA’s ERM committee would like to mitigate tail risk arising from the following uncertainties:

- Higher than expected medical losses
- Unanticipated changes in interest rates
- Pandemic mortality risk

Propose a mitigating strategy that BA could implement to address each uncertainty. Justify your proposal.

Commentary on Question:

Answers that recommended product design changes such as surrender charges were not as strong as those changes don’t help to manage the risks already sold. Also, stating they could add reinsurance without specifying stop loss (since it is the tail risk they are concerned with) were not as strong.

High Claims Volume – Excess of loss reinsurance would allow BA to cap their losses at a threshold. Any losses in excess of that threshold would be covered by the reinsurer.

Interest Rate Risk – Entering into an interest rate floor would allow them to protect themselves against a scenario where they are not able to earn enough return to credit 2% (but would still have to credit 2% since it is guaranteed).

Pandemic Risk – Issuing a catastrophe bond would allow them to pass the tail risk onto investors.
2. Learning Objectives:
 1. The candidate will understand the types of risks faced by an entity and be able to identify and analyze these risks.
 4. The candidate will understand the approaches for managing risks and how an entity makes decisions about appropriate techniques.

Learning Outcomes:
(1c) Identify and assess the potential impact of risks faced by an entity, including but not limited to market risk, currency risk, credit risk, counterparty risk, spread risk, liquidity risk, interest rate risk, equity risk, hazard/insurance risk, inflationary risk, environmental risk, pricing risk, product risk, operational risk, project risk and strategic risk.
(4c) Demonstrate means for reducing risk without transferring it.
(4j) Demonstrate risk management strategies for other key risks (for example, operational, strategic, legal, and insurance risks).

Sources:
ERM-127-17 Quantitative Enterprise Risk Management, Hardy, Ch. 2: Risk Taxonomy
Financial Enterprise Risk Management, Sweeting, 2011 Ch. 16: Responses to Risk
ERM-123-14: S&P Enterprise Risk Management Criteria (paragraphs 1-71, 86-88)
ERM-133-19: Emerging Risks and Enterprise Risk Management (p.2-6)
ERM-103-12: Basel Committee-Developments in Modelling Risk Aggregation (p.72- 89)
ERM-120-14: IAA Note on Stress Testing and Scenario Analysis (pp. 1-6 and 14-17)
ERM-702-12: IAA Note on ERM for Capital and Solvency Purposes in the Insurance Industry, Pages 9–38
Group Insurance, Chapter 39: Risk Based Capital Formulas
2. Continued

Commentary on Question:
This question tested the candidate’s understanding of risk identification and risk management / mitigation actions in the context of a company’s plan to outsource certain services to another company, how such risks are impacted by an acquisition, how certain operational risks are considered emerging risks, how an elevated cyber risks impact other risks, and how certain risks arise when conducting business in a foreign currency. Candidates do not need to have knowledge of cryptocurrencies or Blockchain Technology to successfully answer this question.

Candidates generally performed better in part (a) and poorer in part (d). Depending on the quality, candidates received full credit by responding to the specific question being asked (e.g., explain, describe, evaluate, and not list), and to the quantity of items asked for. Similarly, candidates received full credit when answering in the context of the question stem as opposed to providing generic answers.

Solution:
(a) The VP is concerned that FirstMed’s operational risk will increase as a result of outsourcing to MHG.

(i) Explain two ways in which each of the following operational risks could increase for FirstMed if it outsources to MHG.

 I. People Risk
 II. Process Risk

(ii) Describe how each risk identified in (i) can be mitigated if Atria were to acquire MHG.

Commentary on Question:
For sub-part (a)(i), some candidates did not receive full credit because they explained only one way instead of two or because they explained two ways but described the risks in general terms and not specific to outsourcing.

For sub-part (a)(ii), some candidates did not receive full credit because they were answering in generic terms and not specifically discussing risk mitigation as a result of an acquisition.

(a)(i)
I. People Risk
 o There is risk that the skill, knowledge and expertise of MHG’s surgeons and nurses do not keep up with those of surgeons and nurses at FirstMed’s affiliate Florida hospitals, resulting in errors which may results in patient harm or death.
2. Continued

- Although English is a common language for both FirstMed and MHG, there may be cultural differences in how people work between these two companies.

II. Process Risk
- FirstMed, MHG or both may have little or no experience dealing/transacting with foreign currency or cryptocurrency, leading to inaccurate recording of accounting entries.
- Risk may arise from incomplete or fragmented medical records being transferred from FirstMed to MHG which could negatively impact patient health/customer experience.

(a)(ii)

I. People Risk
- With MHG under Atria as an acquired company, Atria can impose continuing professional development requirements to all employees of Atria's subsidiaries and affiliates, elevating overall professionalism standard and reducing people risk.
- Atria and FirstMed can more effectively enforce and maintain communication with MHG to address existing and future issues, thus reducing people risk.

II. Process Risk
- Under the same corporate structure, Atria can more easily impose Atria’s presumably higher standards of operation, i.e., corporate, auditing and accounting standards onto both FirstMed and MHG.
- During the integration phase, there may be gains in selecting best practices from all parties involved leading to better patient health and safety, including the transfer of medical records.

(b) The VP has identified the following as emerging risks if FirstMed outsources to MHG:

- Technology / Artificial Intelligence
- Pandemic
- Environmental

(i) Explain why each of these risks may be considered an emerging risk.

(ii) Describe how each of these risks may be impacted by outsourcing.

(iii) Describe three best practices for future identification of emerging risks for FirstMed.
2. Continued

Commentary on Question:

Some candidates received zero or partial credit, depending on the quality of their answers because one or more of the following:

- For sub-part (b)(i), they provided generic reasons on why these three risks may be considered emerging risks
- For sub-part (b)(ii), they did not address the impact to FirstMed with regards to either outsourcing to or acquisition of MHG
- For sub-part (b)(iii), they merely listed three best practices without describing them

(b)(i)
I. Technology / Artificial Intelligence (AI)
 a. There is a lack of consensus on whether humans or the emotional intelligence needed for health services can ever be provided by robots.
 b. There is a high level of uncertainty regarding timing of the emergence of this technology.

II. Pandemic
 a. Considered emerging because of high level uncertainty - pandemics have not directly occurred on US territory in recent history
 b. Difficult to assign ownership – pandemics may not be the sole responsibility of FirstMed/MHG because this risk likely requires coordination with different branches of governments in the US, Montseguay, and other countries.

III. Environmental
 a. Lack of consensus- Are anomalies (e.g., hurricanes, extreme heat and extreme cold) with the weather normal or the result of global warming?
 b. High level of uncertainty
 i. if or when Montseguay’s volcano will remain dormant;
 ii. if - or when - Montseguay will finally be impacted by a hurricane

(b)(ii)
I. Technology / Artificial Intelligence (AI)
 a. The risk of simple medical procedures/surgeons being replaced or assisted by robots, and services provided by nursing staff and administration staff being replaced by robots and automation.
 b. Such technological progress could potentially disrupt MHG's low-cost value proposition and then the outsourcing to - and the acquisition of - MHG may become a poor strategic decision.
2. Continued

II. Pandemic
 a. Increased risk of introducing spreading communicable illness/disease, through patient/employee transport across borders
 b. Result of the risk could potentially disrupt normal operations of FirstMed’s Florida health care providers plus the services outsourced to MHG, and significantly increase claim costs for FirstMed

III. Environmental
 a. The risk of higher category level hurricanes hitting Florida will also soon be hitting Montseguay; risk of volcanic activity in Montseguay
 b. Result: disruption of normal operations in Florida and Montseguay and nearby states, affecting normal operations and negatively impacting business continuity plans

(b)(iii)

1. Challenge conventional thought processes and expectations
 o What are the assumptions as to how the risk will manifest in terms of timing and impact? Could an emerging risk manifest itself in a manner that is different from expected?

2. Conduct emerging risk reviews
 o How – document a formal process
 o When – periodic meetings
 o Who – members of leadership, management, and business unit risk teams
 o How – create a channel to escalate new emerging risks.

3. Integrate emerging risk review into the strategic planning process in order to enforce a disciplined approach in risk-taking decisions.

(c) The VP thinks cyber risk would become one of FirstMed’s top risks should FirstMed proceed with the acquisition.

(i) Evaluate how an elevated cyber risk exposure may impact the following four risks for FirstMed. Justify your response.

 I. Data Risk
 II. Political Risk
 III. Regulatory / Legal Risk
 IV. Supplier / Third Party Risk

(ii) Recommend one action to mitigate each risk identified in part (i).
2. Continued

Commentary on Question:

Some candidates provided overly general responses without considering the context of potential acquisition or an elevated cyber risk; depending on the quality of their answers, some received partial credit.

For sub-part (c)(ii), some candidates did not provide justification for their recommended action; these candidates received partial credit.

Some candidates answered with the context of MHG as the Supplier/Third Party risk; others answered with the context of MHG’s own suppliers/third parties. Candidates could receive credit for either context.

(c)(i)

I. Data
 - An elevated cyber risk would lead to an increase in data risk as health care providers are potential soft target for cyber crime. MHG may mishandle patient data due to people or people process risk. As a non-US entity, MHG may be subject to lax regulations on data security & privacy.

II. Political
 - Cyber risk may disrupt Montseguay’s political environment – it may no longer be peaceful, idyllic nation leading to disruption of MHG’s normal operations.

III. Regulatory / Legal
 - Cyber risk regulation, including privacy laws, have the potential to become too restrictive to conduct business in the U.S. and with international partners
 - Montseguay may have little or no cyber risk regulation or may have regulations that differ from those of the U.S. and Florida

IV. Supplier / Third Party
 - An elevated cyber risk leads to increase in Supplier/Third Party risk as cyber criminals could disrupt FirstMed’s normal operations by attacking weaker links in its supply chain – either MHG or MHG’s suppliers.

(c)(ii)

I. Data
 - Increase senior management oversight of the system integration between the two companies - watching for potential gaps or entry points for cyber criminals to exploit

II. Political
 - Monitor the political landscapes in both countries and at the state level in order to take early risk-mitigating steps
2. Continued

III. Regulatory / Legal
 o Take early steps in anticipation of new regulations being enacted/proposed elsewhere, e.g. progressive U.S. states, EU, Canada, the rest of the Americas

IV. Supplier / Third Party
 o Assign risk limits: limit the number of patients being treated by MHG, and/or limit the type of procedures, surgeries, and treatments. Periodically assess if the limits can be increased after a period of success and comfort with respect to cyber risk and the supplier/third party

(d) Because FirstMed has had no previous experience transacting in MontsCoin, the VP is concerned with the following additional risks:

- Exchange rate risk associated with transacting in MontsCoin
- Liquidity risk associated with transacting in MontsCoin
- Credit risk associated with outsourcing services to MHG

For each risk:

(i) Describe the risk as it relates to FirstMed.

(ii) Propose an appropriate risk management technique for FirstMed to implement.

Commentary on Question:
For sub-part (d)(i) some candidates described Credit Risk as non-payments from MHG to Atria, where such payments were profits or dividends payable by MHG as an acquired company by Atria. If well described, this response was eligible for full credit.

For sub-part (d)(ii), some candidates did not provide support for their proposal and therefore received minimal credit. In particular, for III. Credit risk, some candidates merely listed credit default swaps (CDS) but they did not describe the credit risk event the CDS was intended to mitigate; for such an answer, they received minimal credit.

(d)(i)

I. Exchange rate risk
 o The risk that the value of MontsCoin dramatically rises against the USD so that outsourcing becomes too expensive. FirstMed may have contractual obligations which are specified in MontsCoin, but FirstMed received premiums in USD, resulting in exposure to exchange rate fluctuations.
2. Continued

II. Liquidity risk
 o If the outsourcing/intra-company service agreement is settled in MontsCoin, FirstMed needs to have a sufficient amount of MontsCoin to pay MHG. It would also be prudent for FirstMed to not hold too much of the cryptocurrency in the event of a dramatic decrease in value against the USD, which could make MontsCoin illiquid.

III. Credit risk
 o The risk that MHG may not provide the promised surgical services and FirstMed will incur additional expenses in arranging for alternative coverage.

(d)(ii)
I. Exchange rate risk
 o FirstMed should develop backup plans to contract alternate health care providers onshore. If MontsCoin dramatically increases in value, FirstMed could outsource to a lower-cost provider.

II. Liquidity risk
 o Consider a contingency funding plan to provide liquidity in times of stress or in the first few years of the FirstMed-MHG relationship, which may include uncommitted bank lines of credit or holding more cash.

III. Credit risk
 o FirstMed could ask for and hold acceptable letters of credit from MHG, or FirstMed could incorporate agreement language to withhold funds designated for MHG, preferably in USD.
3. **Learning Objectives:**

 2. The candidate will understand the concepts of risk modeling and be able to evaluate and understand the importance of risk models.

 3. The candidate will understand how the risks faced by an entity can be quantified and the use of metrics to measure risk.

 4. The candidate will understand the approaches for managing risks and how an entity makes decisions about appropriate techniques.

Learning Outcomes:

(2b) Evaluate how risks are correlated, and give examples of risks that are positively correlated and risks that are negatively correlated.

(2c) Analyze and evaluate risk aggregation techniques, including use of correlation, integrated risk distributions and copulas.

(3c) Analyze quantitative financial data and insurance data (including asset prices, credit spreads and defaults, interest rates, incidence, causes and losses) using modern statistical methods. Construct measures from the data and contrast the methods with respect to scope, coverage and application.

(4k) Apply best practices in risk measurement, modeling and management of various financial and non-financial risks faced by an entity.

Sources:

ERM-103-12: Basel Committee - Developments in Modelling Risk Aggregation, pages 72 - 89

ERM-101-12: Measurement and Modeling of Dependencies in Economic Capital (Ch 3-5)

ERM-130-18: AAA Model Governance Practice Note

Commentary on Question:

Commentary listed underneath each question component.

Solution:

(a)

(i) Calculate each correlation metric based on the data provided. Show all work.

(ii) Describe the advantages and disadvantages of each metric that you should consider when selecting an appropriate correlation metric for parameterizing a copula.
Commentary on Question:
Part (a) was well performed in general. Many candidates at least were able to obtain credit for knowing the formulas for each correlation metric and a few key advantages and disadvantages. Candidates lost credit for not knowing how to use the formula for the corresponding correlation metric and for make generic comments for the metric without specifying if it was an advantage or disadvantage.

Candidates whose responses included illogical numerical answers (e.g. a correlation coefficient > 1) left without an explanation, were awarded minimal credit. This comment applies to other parts as well.

Credit was awarded for providing the alternative Spearman’s Rho formula, even though the correct answer could not be found by using it with the given data.

a(i)
Pearson Rho

\[
\rho(j, k) = \frac{Cov[j, k]}{\sqrt{Var(j)Var(k)}} = \frac{E[jk] - E[j]E[k]}{\sqrt{Var(j)Var(k)}}
\]

\[
= \frac{0.006\% - (-0.109\%) \times (-0.155\%)}{\sqrt{0.034\% \times 0.021\%}} = 0.2182
\]

Spearman Rho
Using rank summary statistics (here j and k represent rank of series j(t) and k(t)):

\[
a(j, k) = \frac{Cov[j, k]}{\sqrt{Var(j)Var(k)}}
\]

\[
= \frac{18.45}{\sqrt{74.92 \times 74.92}} = 0.2463
\]

Kendall’s Tau:
Number of Concordant Pairs = 253 (Given)
Total Pairs = (30 * 29) / 2 = 435
Number of Discordant Pairs = 435 - 253 = 182

\[
\tau = \frac{C - D}{0.5n(n - 1)} = \frac{253 - 182}{0.5 \times 30 \times 29} = 0.1632
\]
3. Continued

a(ii)
Pearson’s Rho has the advantage that it is easy to calculate, but it is possible to have highly dependent variables with 0 correlation (e.g. X and X^2)

Spearman’s Rho has the advantage that it does not depend on marginal distribution of both values so it can be used to calibrate copulas from empirical data. However, it has the disadvantage that there is the additional complexity of ranking of observations

Kendall’s Tau has the advantage that it is robust to outliers, but it is time consuming (i.e. more computational power is required) for large data sets.

(b)

(i) Determine which fund has the higher expected variance. Show all work.

(ii) Assume that the t_0 conditional variances for each fund are equal to the empirical variances shown in the table on the previous page.

Calculate the conditional variances for the next two time steps, $t=1$ and $t=2$ for each fund using the GARCH(1,1) model. Show all work.

(iii) Maggie explains that there are simple modifications that can be made to the basic GARCH(1,1) model in order to more accurately reflect the behavior of typical financial time series.

Explain why the following modifications may be implemented for volatility forecasting:

- Using the absolute value of the innovation term
- Using a separate parameter for positive shocks and negative shocks

Commentary on Question:
Candidates did not do well on this part in general. While they were often able to demonstrate the ability to determine which fund has the highest expected variance, they were not able to forecast the conditional variances for time steps 1 and 2. Most candidates used the same formula for steps 1 & 2, which is incorrect. Candidates were also not able to explain the benefits of using the absolute value of the innovation term.
3. Continued

b(i)
Expected (unconditional) variance of Fund ABC

\[h_t = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta h_{t-1} \]
\[h = 0.0001 + 0.161h + 0.777h \]
\[h = \frac{0.0001}{1 - 0.161 - 0.777} = 0.0016 \]

Expected (unconditional) variance of Fund XYZ

\[h_t = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta h_{t-1} \]
\[h = 0.0002 + 0.257h + 0.565h \]
\[h = \frac{0.0002}{1 - 0.257 - 0.565} = 0.0011 \]

b(ii)
Fund ABC:
Step 1:
\[h_{t+1} = \alpha_0 + \alpha_1 r_{t+1}^2 + \beta h_{t} \]
\[h_{t+1} = 0.0001 + 0.161r_{t+1}^2 + 0.777h_t \]
\[h_{t+1} = 0.0001 + 0.161(0.0501)^2 + 0.777(0.00034) = 0.00077 = 0.077\% \]

Step 2:
\[h_{t+2} = E_t(r_{t+2}^2) = E_t(\alpha_0 + \alpha_1 r_{t+1}^2 + \beta h_{t+1}) = \alpha_0 + \alpha_1 h_{t+1} + \beta h_{t+1} \]
\[h_{t+2} = 0.0001 + 0.161h_{t+1} + 0.777h_{t+1} \]
\[h_{t+2} = 0.0001 + 0.161(0.00077) + 0.777(0.00077) = 0.00082 = 0.082\% \]

Fund XYZ:
Step 1:
\[h_{t+1} = 0.0002 + 0.257r_{t}^2 + 0.565h_t \]
\[h_{t+1} = 0.0002 + 0.257(0.0489)^2 + 0.565(0.00021) = 0.00093 = 0.093\% \]
3. Continued

Step 2:

\[
\begin{align*}
 h_{t+2} &= 0.0002 + 0.257 h_{t+1} + 0.565 h_{t+1} \\
 h_{t+2} &= 0.0002 + 0.257(0.00093) + 0.565(0.00093) = 0.00096 = 0.096% \\
\end{align*}
\]

b(iii)

a. Since the basic GARCH(1,1) model incorporates the squared value of the current innovation, large shocks tend to have substantial impact on the forecasted volatility. Using the absolute value instead mutes the impact of large innovations.

b. The basic GARCH(1,1) is symmetric, only the magnitude of the deviation influences the forecast (as innovations are squared). For some series, large negative returns have a bigger/different effect on risk than do positive returns.

(c) The formula for forecasting the covariance using the RiskMetrics approach is given below.

\[
h_{t_{1,2,t+1}} = \lambda h_{t_{1,2,t}} + (1-\lambda) r_{1,t} r_{2,t}
\]

(i) Identify two arguments in favor of using the RiskMetrics approach for forecasting covariance.

(ii) Calculate the forecasted \(t=1 \) Pearson correlation coefficient using the RiskMetrics approach and the results of part (b)(ii). Show all work.

Commentary on Question:
Candidates were typically able to determine one correct argument in favor of using the RiskMetrics approach, however they were not able to demonstrate that they understood how to calculate the forecasted \(t=1 \) Pearson correlation coefficient. Candidates did not lose credit if incorrect values from previous steps were used correctly in a subsequent calculation.

c(i)

- The most general GARCH model for forecasting correlation has a prohibitively high number of required parameters (7). As additional risk factors are added, number of parameters increases rapidly. RiskMetrics only has 1 estimated parameter, and is therefore more robust to estimation error.
- RiskMetrics approach has a relatively small number of effective observations, placing more importance on recent observations.
3. Continued

c(ii)
First you must calculate the current covariance (time t) between the funds (possibly derived in part a(ii)):

\[h_{12,t} = E[jk] - E[j]E[k] \]

\[h_{12,t} = 0.006\% - (-0.109\%) \times (-0.155\%) \]

\[h_{12,t} = 0.0058\% \]

Using this covariance value, and the given forecasted variance values, the one-step ahead covariance is calculated as:

\[h_{12,t+1} = \lambda h_{12,t} + (1 - \lambda)\rho_{1,t}\rho_{2,t} \]

\[h_{12,t+1} = 0.95(0.0058\%) + (0.05)(0.0501)(0.0489) = 0.0177\% \]

Finally, use the resultant forecast to calculate the one-step ahead correlation coefficient (note results from b(ii) are used in the denominator):

\[\rho_{12,t+1} = \frac{h_{12,t}}{\sqrt{h_{1,t}}h_{2,t}} \]

\[\rho_{12,t+1} = \frac{0.0177\%}{0.0058\% \times 0.093\%} = 0.2091 \]

(d) Based on the results of your analysis, your team plans to implement the forecasting model to assess short-term capital adequacy for the annuity block.

(i) Explain how model risk could arise while calibrating and implementing the models described above.

(ii) Recommend three model validation best practices that could be incorporated to help manage and mitigate model risk. Justify your response.

Commentary on Question:
Candidates did very well on this part of the question. Most candidates were typically able to describe at least one source of model risk which could arise while calibrating and implementing the models. Furthermore, most candidates were able to recommend model validation best practices to help manage and mitigate model risk.
3. Continued

d(i)
1. Model must be assessed for appropriateness - does the chosen model (i.e. GARCH, RiskMetrics) accurately reflect the dynamics of the time series under investigation?
2. The validation of model results should be performed to assess that both inputs and outputs are accurate. Errors in input data could lead to misleading output.

d(ii)
1. Employ a robust model validation procedure that includes a review of Design Use/Fit, Design Method/Processing, Data, Assumptions, Results, and Governance.
2. Designate a Model Steward: A model steward could help to ensure modeling best practices related to documentation, validation, and governance. The role of model steward can provide a segregation of duties between the activities connected with the initial model and the subsequent activities associated with model and system updates, change control management testing, and validation of these models.
3. Fully document the model and explain the intended purpose of the models and how the user’s needs are addressed by those models.
4. **Learning Objectives:**

1. The candidate will understand the types of risks faced by an entity and be able to identify and analyze these risks.

2. The candidate will understand the concepts of risk modeling and be able to evaluate and understand the importance of risk models.

5. The candidate will understand the concept of economic capital, risk measures in capital assessment and techniques to allocate the cost of risks within business units.

Learning Outcomes:

(1c) Identify and assess the potential impact of risks faced by an entity, including but not limited to market risk, currency risk, credit risk, counterparty risk, spread risk, liquidity risk, interest rate risk, equity risk, hazard/insurance risk, inflationary risk, environmental risk, pricing risk, product risk, operational risk, project risk and strategic risk.

(2a) Demonstrate how each of the financial and non-financial risks faced by an entity can be amenable to quantitative analysis including an explanation of the advantages and disadvantages of various techniques such as Value at Risk (VaR), stochastic analysis, and scenario analysis.

(2c) Analyze and evaluate risk aggregation techniques, including use of correlation, integrated risk distributions and copulas.

(2g) Analyze and evaluate model and parameter risk.

(2h) Construct approaches to modeling various risks and evaluate how an entity makes decisions about techniques to model, measure and aggregate risks including but not limited to stochastic processes.

(5d) Propose techniques for allocating/appropriating the cost of risks/capital/hedge strategy to business units in order to gauge performance (risk adjusted performance measures).

Sources:

Financial Enterprise Risk Management, Sweeting, 2011, Ch. 8 Risk Identification

ERM-106-12: Economic Capital-Practical Considerations-Milliman

ERM-118-14: Model Validation Principles Applied to Risk and Capital Models in the Insurance Industry

ERM-119-14: Aggregation of risks and Allocation of Capital (Sections 4-7 Excluding 6.3)
4. Continued

Risk Aggregation for Capital Requirements Using the Copula Technique, by Song Zhang

Commentary on Question:
This question sought to test candidates on various aspects of economic capital and risk identification. Overall candidates did well on this question.

Solution:
(a) Prepare a SWOT analysis of Big Ben.

Commentary on Question:
Candidates in general did not score as well on this part of the question. The main reason for candidates not scoring well was that there was not enough written to get full credit given the number of exam points allocated to this question. For example, many candidates only provided 1-2 points within each assessment section which was insufficient to receive full credit. Another area where candidates lost points was providing solutions which were too general and did not directly relate to the case study.

Strengths:
- World leader in the ETF market
- Strong brand and loyal customer base
- Good product innovation in commercial banking (all online)
- Comprehensive list of asset management products

Weaknesses:
- Low market share in investment banking
- Asset management expenses
- Limited liquidity risk assessment
- Poor capital allocation methods

Opportunities:
- Additional demand for asset management products through commercial banking line
- Innovation for holistic wealth management products
- Creating economy of scale to lower minimum investable assets requirement

Threats:
- Competition in rapidly evolving global financial services industry
- Competition from emerging new financial technology firms with innovative technologies
- Increasing stringency of banking regulations
- Price pressure on ETF MERs
4. Continued

(b) Evaluate the following components of the economic capital model.

I. The method used to quantify each risk.
II. The capital allocation method.
III. The model governance and validation.

Commentary on Question:
Candidates generally did well on this part. Candidates received only partial credit if they described, rather than evaluated, the components for each subpart. In addition, some candidates provided recommendations even though it was not asked for; no credit was given for them.

I.

- **Credit risk:** The method incorporates various systematic risk factors to model dependence between borrowers. This is an important component as when modelling credit risk the interaction between credit exposures is just as important as the assessment of each individual credit exposure. There is limited information as to how the probably of default and loss given default is modelled but a Monte Carlo simulation approach is used which is appropriate for a complex risk such as credit risk. Currently a joint normal distribution is used but may want to consider a distribution with fatter tails to capture more extreme scenarios.

- **Market risk:** Market risk is a complex risk that requires stochastic simulation. This is currently being used and is therefore appropriate.

- **Operational risk:** A simple add-on approach is generally appropriate for operational risks. An alternative solution would be to model low frequency/high severity and high frequency/low severity operational risks separately by developing loss distributions.

- **Strategic/Business risk:** Given that these are generally high severity/low frequency events, scenario analysis is an appropriate method for quantifying this risk.
4. Continued

II. Currently economic capital allocation is only performed on an ad hoc basis. Allocation should instead be done on a regular basis and used to support pricing, risk budgeting and risk adjusted performance measures. There are various other approaches that could be used such as: marginal approaches, pro-rate/linear approaches, game theory, etc. Big Ben is allocating capital to risk types which is useful for managing the types of risks accepted across the company but less useful for decision making.

III. A more robust governance structure needs to be established. Currently there is no validation scheduled until the following year, this in inappropriate for a model that impacts financial results. Since the models impact financial reporting the model should not be used for published results until it has been validated. Given this is a highly complex model that impacts financial reporting there should be a robust validation process in place

(c) Big Ben asked Caerus to review the economic capital model’s risk aggregation technique to address the concern related to non-linear dependence and tail dependence among risk factors.

(i) Evaluate the current risk aggregation method.

(ii) Recommend a copula to aggregate the risks. Justify your answer.

Commentary on Question: Candidates in general did well on subpart (i) and not as well on subpart (ii). Similar to part (a), a main reason for candidates not scoring well was that there was not enough written to get full credit given the number of exam points allocated to this question. For subpart (ii), candidates did not receive credit for simply writing down a copula without any justification. Recommending the t-Copula was not the only valid answer to this question, and recommending other copulas received credit with appropriate justification.
4. Continued

(i)
- The current method is a simple way to reflect the fact that all risks are not 100% correlated.
- However, the Correlation Matrix approach may overstate the benefits of diversification. This is because the observable correlations are assumed to apply in the tails of the risk distribution and the observable correlations may break down in these types of scenarios (e.g. correlations may increase in an extreme stress scenario).
- There is limited information as to how Big Ben calculates its correlations currently. If the correlations are calibrated to tail event this can minimize the issue but there still exists superior risk aggregation techniques.

(ii)
- Recommend the t-Copula. The t-Copula is able to incorporate tail dependence and a linear relationship is not assumed.
- This should help address the concerns that Big Ben has expressed. In addition, the t-Copula allows for a correlation matrix of the risk factors to be fed in, so the current correlation matrix can still be used.
- Lastly, the marginal distributions of individual risks can be of any form which allows for flexibility.
5. Learning Objectives:
1. The candidate will understand the types of risks faced by an entity and be able to identify and analyze these risks.

2. The candidate will understand the concepts of risk modeling and be able to evaluate and understand the importance of risk models.

5. The candidate will understand the concept of economic capital, risk measures in capital assessment and techniques to allocate the cost of risks within business units.

Learning Outcomes:
(1c) Identify and assess the potential impact of risks faced by an entity, including but not limited to market risk, currency risk, credit risk, counterparty risk, spread risk, liquidity risk, interest rate risk, equity risk, hazard/insurance risk, inflationary risk, environmental risk, pricing risk, product risk, operational risk, project risk and strategic risk.

(2h) Construct approaches to modeling various risks and evaluate how an entity makes decisions about techniques to model, measure and aggregate risks including but not limited to stochastic processes.

(5a) Describe the concepts of measures of value and capital requirements (for example, EVA, embedded value, economic capital, regulatory measures, and accounting measures) and demonstrate their uses in the risk management and corporate decision-making processes.

(5b) Define the basic elements and explain the uses of economic capital. Explain the challenges and limits of economic capital calculations and explain how economic capital may differ from external requirements of rating agencies and regulators.

(5c) Apply risk measures and demonstrate how to use them in capital assessment. Contrast regulatory, accounting, statutory and economic capital.

(5d) Propose techniques for allocating/appropriating the cost of risks/capital/hedge strategy to business units in order to gauge performance (risk adjusted performance measures).

Sources:
ERM-101-12: Measurement and Modeling of Dependencies in Economic Capital (Ch 3-5)

ERM-106-12: Economic Capital-Practical Considerations-Milliman

ERM-119-14: Aggregation of risks and Allocation of Capital (Sections 4-7 Excluding 6.3)
5. Continued

ERM-130-18: AAA Model Governance Practice Note

Risk Appetite: Linkage with Strategic Planning Report

Ch. 13 Liquidity Risk

Commentary on Question:
This question was intended to test different topics and questions related to Economic capital, in particular for liquidity risk and was integrated with the core case study. Overall candidates did well on this question. Most candidates struggled with part (c). Many were able to indicate some impacts, but often the causal loop was not specific to Big Ben. There was an issue with part (e) that is described in future detail under that section.

Solution:
(a) Big Ben is evaluating its current Economic Capital (EC) model and has determined that the only shortcoming is the absence of liquidity risk in the model.

(i) Identify three additional shortcomings with the current EC process followed by Big Ben.

(ii) Recommend an improvement to address each of the shortcomings you have identified in (i).

Commentary on Question:
Most candidates did well on this part. Minimal points were given if a candidate responded to sub-part (i) by only identifying three risks that weren’t specifically mentioned in the case study and recommending in sub-part (ii) only that those three risks be included.

(i)
1. EC is calculated in the Corporate Treasury Department
2. Allocation of the economic capital to the business divisions is done based on simple rules of thumb and is only done upon request
3. Diversification Benefit methodology – they use var-covar but state that correlations are difficult to obtain.
5. Continued

(ii)
1. EC should be done in an area that understand the EC model and all of the components. ERM would be a better area for this.
2. The allocation of capital should be based on the return on the capital for each division.
3. Determine a way to effectively calculate the correlations, or switch to a copula or other method, casual modelling

(b) A recent FSA assigned to the task of evaluating Big Ben's liquidity risk has made the following report.

- The company is positioned well to handle all liquidity needs for the next six months
- Big Ben should obtain a letter of credit with another financial institution
- Big Ben should limit the types of assets to those in which the investing team has strong expertise. This would reduce the number of asset classes invested in by 50%

Critique each of these statements.

Commentary on Question:
Candidates did poorly on this part, often commenting on the structure of the statement instead of the content in the statement. For example, candidates would comment only that the company should look at more than just the next six months for liquidity, instead of evaluating the actual liquidity position of the company over the next six months. Minimal credit was awarded for candidates who didn’t critique the statements, which should include why the statement was valid or not.

- Based on Exhibit B, the company is NOT positioned well to handle the liquidity needs for the next 6 months
 - Exhibit B shows total liabilities over next 6 months = 34,728
 \((28,285 + 2,161 + 4,282)\) is greater than the assets = 31,181 \((27,786 + 1,825 + 2,205)\)

- Yes, obtaining a letter of credit would be relevant. They have a liquidity issue. Having a LOC would allow Big Ben to get credit needed. Although obtaining a LOC would also create counterparty risk.
5. Continued

- Big Ben should not limit their assets to those they have expertise in. Limiting the types of assets, would increase the amount of each asset they have, which could lead to
 - Difficulty selling because you only have limited types of assets to sell.
 - The price of the asset could be impacted because of the amount you are trying to sell
 - The assets you have left could be highly correlated and cause credit issues.

(c) A CERA in the ERM department states that a causal loop should be drawn to identify the impacts of the following liquidity-related events on the solvency of the bank.

- Increase in the cost of letters of credit
- Thinning of the real estate market
- Increase in mortgage prepayment rates
- Financial markets deepening
- Negative regulatory review
- Increase in interest rates
- Asset/liability mismatch increasing

Develop a causal loop for Big Ben failure indicating the type of relationship (“+” for a positive feedback / “-” for a negative feedback).

Commentary on Question:
Candidates did poorly on this section.
- Most candidates showed a relationship only between two events, and not recognizing that one event could impact multiple events.
- Most candidates didn’t include “Bank Failure due to Liquidity” or “Solvency of Big Ben” as an event.
- Many candidates indicated overall market relationships, and not the impact of the event specific for Big Ben.

Credit could be earned if the candidate described the impacts without drawing the actual loop.

Increase in cost of Letters of Credit
- Positively correlated with Bank Failure. Can have an impact on the solvency of the bank as in part (b) it specifically says they are considering obtaining a LOC

Thinning of the Real Estate Market
- Does not impact any of the others as they don’t have much real estate
5. Continued

Increase in Mortgage Prepayment Rates
- Negatively correlated with Bank Failure due to liquidity, as it brings in more cash

Financial Market deepening
- This term is used in chapter 13 of Jorian
- Negatively correlated with Increase in cost for LOC, as it could provide alternative for LOC
- Negatively correlated with Bank failure as it would be easier to sell our assets

Negative Regulatory Review
- Positively correlated with Increase in cost of LOC (specifically for Big Ben)
- Positively correlated with Bank Failure, but NOT directly with Bank Failure due to liquidity
- Positively correlated with Increase in Interest Rates (specifically for Big Ben liabilities)

Increase in Interest Rates
- Negatively correlated with Increase in Mortgage Prepayment Rates
- Positively correlated with Asset/Liability Mismatch

Asset/Liability Mismatch
- Positively correlated with Increase in Interest Rates
- Positively correlated with Negative Regulatory Review
5. Continued

Drawing is below
Green lines indicate (+) positive, red lines indicate (-) negative.

(d) A new liquidity risk model for EC is created that calculates the required capital for this risk independently for each line of business. The quantile used for the VaR calculation is 99.5%.

The results of the model are shown in the table below.

<table>
<thead>
<tr>
<th>Economic Capital Required</th>
<th>Asset Management</th>
<th>Commercial Banking</th>
<th>Investment Banking</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquidity Risk</td>
<td>40</td>
<td>70</td>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>Revised Diversification Benefit</td>
<td>-110</td>
<td>-68</td>
<td>-46</td>
<td>-224</td>
</tr>
</tbody>
</table>

Assess if Big Ben still satisfies its capital adequacy objective globally and by line of business compared to its existing situation as shown in Exhibit C, table III of the Case Study. Show all work.

Commentary on Question:
Most candidates did very well on this section. Partial credit could be earned if the candidate didn’t have the correct result but provided a formula and demonstrated accurate use of that formula.
Big Ben is able to satisfy the capital adequacy objective of 140% globally and for Asset Management and Investment Banking, but not for Commercial Banking.

(e) The following table shows the long-term expected risk-adjusted return and updated EC for each business unit after one year. The available capital for each business unit has not changed.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Asset Management</th>
<th>Commercial Banking</th>
<th>Investment Banking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk-Adjusted Return</td>
<td>70</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Total Required EC</td>
<td>530</td>
<td>300</td>
<td>220</td>
</tr>
</tbody>
</table>

(i) Calculate the RAROC and RARORAC for each line of business. Show all work.

(ii) Evaluate the performance of each of the business units relative to the other units based on the results of (i).
5. Continued

(iii) Evaluate the four future expansion plans for Big Ben outlined in the Case Study based on the results of (i).

Commentary on Question:
Candidates provided feedback immediately after the exam that RARORAC was removed from the syllabus prior to this exam sitting. This immediate feedback was appreciated, and the grading of this part was adjusted to reflect this. As a result, most candidates received full or nearly full credit for this section.

(i) RARORAC isn't part of the syllabus for Fall 2019.
In the Risk Appetite: Linkage with Strategic Planning Report source doc it states that RAROC can be defined different ways including reflecting actual capital or required capital.
All candidates will get full credit if RAROC is calculated using either definition.

(ii) Full credit was awarded to all candidates as long as a response was provided.

(iii) Full credit was awarded to all candidates as long as a response was provided based on their analysis in part (i), and the responses reflected the future expansion plans outlined in the Case Study.

(i)
RAROC = risk adjusted return / capital
RARORAC = risk adjusted return / required capital

<table>
<thead>
<tr>
<th></th>
<th>Asset management</th>
<th>Commercial</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Adjusted Return</td>
<td>70</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Required capital</td>
<td>530</td>
<td>300</td>
<td>220</td>
</tr>
<tr>
<td>Available Capital</td>
<td>778</td>
<td>466</td>
<td>311</td>
</tr>
<tr>
<td>RAROC</td>
<td>9.00%</td>
<td>8.58%</td>
<td>6.43%</td>
</tr>
<tr>
<td>RARORAC</td>
<td>13.21%</td>
<td>13.33%</td>
<td>9.09%</td>
</tr>
</tbody>
</table>

Based on RAROC, not taking into account the cost of capital for extreme risks associated with a line of business, Asset management would be the most profitable.
5. Continued

However, from an internal asset allocation purpose, RARORAC is showing us that the Commercial Banking is the best performer, contributing more per dollar of capital allocated to take into account underlying risks associated with that line of business. Investment is the least profitable on both measures

(iii)

- Investment banking expansion should definitively not be envisioned as it destroys value from both measures.
- Big Ben is a leader in Asset management. It may want to continue to invest in that line of business, both returns are positive and high.
- Regardless of the result, Commercial Banking will need to be reevaluated, if they wish to undertake this in a few years.
- Expansion of Private banking clients - ex. lowering investable assets - would have to be evaluated separately from the commercial banking return calculation. Difficult to assess from limited and overall calculations from commercial banking.
6. **Learning Objectives:**

4. The candidate will understand the approaches for managing risks and how an entity makes decisions about appropriate techniques.

Learning Outcomes:

(4b) Demonstrate means for transferring risk to a third party, and estimate the costs and benefits of doing so.

(4e) Develop an appropriate choice of a risk mitigation strategy for a given situation (e.g., reinsurance, derivatives, financial contracting), which balances benefits with inherent costs, including exposure to credit risk, basis risk, moral hazard and other risks.

(4g) Demonstrate the use of tools and techniques for analyzing and managing credit and counterparty risk.

(4j) Demonstrate risk management strategies for other key risks (for example, operational, strategic, legal, and insurance risks).

(4k) Apply best practices in risk measurement, modeling and management of various financial and non-financial risks faced by an entity.

Sources:

Pension Risk Transfer pp. 1-7 and 11-46

Corporate Pension Risk Management and Corporate Finance: Bridging the Gap between Theory and Practice in Pension Risk Management

Actuarial Standard of Practice No.51 - Assessment and Disclosure of Risk Associated with Measuring Pension Obligations and Determining Pension Plan Obligations

Commentary on Question:

This question tests the candidates’ ability to (1) interpret a company’s balance sheet and pension plan in a holistic manner and (2) recognize the unique context and considerations behind the pension risk transfer transactions proposed.
6. Continued

Solution:
(a) Calculate TSL’s Weighted Average Cost of Capital (WACC), taking into account its Plan. Show your work.

Commentary on Question:
Most candidates were able to accurately interpret “taking into account its [Pension] Plan” as treating the corporate balance sheet and the pension balance sheet holistically.

Pension asset beta
= Equity asset beta * Equity asset weight + Debt asset beta * Debt asset weight
= 1.3 * 0.7 + 0.0 * 0.3
= 0.91

Balance Sheet asset beta
= (BS Liabilities * BS Liabilities beta + BS Equity * BS Equity beta + Pension Liab * Pension Liab beta – Pension Assets * Pension Assets beta) / BS Assets
= (50.0*0.0 + 22.5*1.8 + 15.0*0.0 – 15.0*0.91) / 72.5
= 0.37

WACC
= Risk-free rate + Balance Sheet beta * Market Risk Premium
= 2.5% + 0.37 * 4.5%
= 4.17%

(b)
(i) Evaluate Ella’s de-risking strategy for each of the Actives, Terminated Vested, and Pensioners groups in terms of cost efficiency.

(ii) Recommend improvements to address two of the issues identified in (i) assuming that Ella may only use lump sum offerings and/or annuity purchases.

(iii) Describe two alternative de-risking approaches other than annuity purchases and lump sum offerings.

Commentary on Question:
On sub-part (i), candidates received full credit for suggesting that a lump sum offer before purchasing a group annuity contract is a cost-effective de-risking strategy. There is debate among market participants on this approach. After a group annuity contract is purchased, a terminated vested participant, in many cases, retains the option to select a lump sum at retirement. In effect, the anti-selection risk remains.
6. Continued

On sub-part (iii) other approaches in addition to the two suggested in the model solution below were considered for full credit.

(i) Actives: Deferred group annuity for non-annuitants has a lengthy payout period and thus elevated risk around longevity and investments. The insurer will likely offer the contract at a higher price after taking into account the significant uncertainties. The insurer may also factor into pricing any optional form of pension payout available that may cause anti-selection. Altogether this is unlikely a cost-effective de-risking strategy.

Terminated Vested: Offering the option of lump-sum payment poses an anti-selection risk to the insurer. The insurer may infer that participants who choose not to take the lump-sum option to be healthier than those who do. The insurer may charge a higher premium for the group annuity contract based on assumed greater longevity of the remaining participants.

Pensioners: The “buy-in” proposal involving the purchase of a group annuity contract to cover immediate payments to pensioners is a good de-risking strategy. With this proposal, TSL also retains the administration of benefits to its pensioners.

(ii) Actives: Offer lump sums to non-annuitants on benefits already accrued

Terminated Vested: Purchase deferred annuity contract without offering lump-sum option

(iii) Guaranteed Separate Accounts: These accounts separate pension plan assets from corporate assets of the insurer, providing additional protection from insolvency

Longevity Swaps: Agreement to receive actual benefit payments in return for periodic payments of a fixed amount

(c) Describe the factors that may cause the group annuity quotes that Ella would receive to be different from the market value of TSL’s pension liability.

Commentary on Question:
The comparison is against the market value of the pension liability, therefore accounting vs. market value of the liability itself is not a consideration here.
6. Continued

- Demographics and Longevity risk – Actives pose significant longevity and investment risk.

- Optionality and Anti-Selection risk – Lump sum offers may result in healthier annuitants, in other words, longer payout. Permanent features create uncertainty in timing.

- Asset portfolio and Plan/Contract size – Shorter duration and smaller contracts both have less transaction costs and capital requirements. On the contrary, longer duration and larger contracts may require more frequent asset turnover and greater capital requirements on the insurer.

- Cost of administering the annuity contract and of insurer profit margin.

(d) Identify the risks PRTL would assume in the pension buy-in.

Commentary on Question:
Most candidates were able to identify the generic risks that PRTL assumes in selling the group annuity contract. To receive full credit, candidates needed to suggest additional considerations given the fact that PRTL is an insurance start-up.

Standard risks assumed on the group annuity contract:
- Longevity risk
- (Re)Investment risk
- Anti-selection risk

Risks specific to PRTL as a start-up:
- Concentrated source of longevity risk
- High capital requirement due to idiosyncratic risks
- Capacity and resource constraint, e.g. not able to source appropriate long-dated investments
- Underwriting risk from inexperience in pricing pension-related products
- Possible underpricing to gain market share

(e) Describe the additional risks that TSL assumes in the pension buy-in from PRTL instead of from a larger, established insurer.
6. Continued

- **Fiduciary / Legal risk** – TSL has the fiduciary duty to select prudent investments to back its pension liabilities, and similarly in the case of purchasing an annuity contract, to select a safe and sound annuity provider that has considerable resources and level of surplus. There is a conflict of interest when Ella, the CFO of TSL, chooses to purchase the group annuity contract from her close friend’s insurance start-up. PRTL’s annuity offer price may not be the most competitive in the market.

- **Counterparty risk** – PRTL is a start-up insurer with possibly minimal capital and assets, implying a higher chance of insolvency relative to a larger insurer with greater financial resources and higher credit rating. Because it is a buy-in (as opposed to a buy-out), TSL will remain liable for the pension payments even if PRTL becomes bankrupt.

(f) Describe an appropriate method, as suggested in ASOP 51, to assess the risk to the Plan of each of the following. Justify your answer.

(i) A sudden level shift of the yield curve

(ii) A significant decline in the demand for submarines

Commentary on Question:

A few candidates suggested using the Monte Carlo method to simulate the impact of a decline in business on the Pension Plan. There are a couple of issues with this approach:

- The normal relationship between the sponsor’s core business and pension plan surplus may not hold up when the core business is under severe stress. The Plan is also currently fully funded so there may not have been contributions in the recent past. In other words, there may not be enough data points to put together a robust Monte Carlo model for this purpose.

- The Monte Carlo approach is relatively time-consuming and costly to set up relative to other methods available.

(i) Sensitivity testing is an appropriate method because the impact of a level shift of the yield curve can be measured easily using duration measures on the pension’s assets and liabilities.

(ii) A significant decline in TSL’s business may signal a regime change beyond fluctuations in the economy and can be considered more of a unique event. As such, the risk to the Plan, most likely contribution risk, is best evaluated with stress or scenario testing.
7. **Learning Objectives:**
5. The candidate will understand the concept of economic capital, risk measures in capital assessment and techniques to allocate the cost of risks within business units.

Learning Outcomes:
(5d) Propose techniques for allocating/appropriating the cost of risks/capital/hedge strategy to business units in order to gauge performance (risk adjusted performance measures).

(5e) Demonstrate the ability to develop a capital model for a representative financial firm.

Sources:
Corporate Pension Risk Management and Corporate Finance: Bridging the Gap between Theory and Practice in Pension Risk Management (RET)

ERM-327-17: Pension Funding Strategy (Aon) (RET)

Commentary on Question:
This question tested adjustments to accounting results to better account for risks presented by the pension plan. Most candidates did well on constructing the balance sheet after consolidating the net pension obligation. Some candidates had trouble understanding that the excess contributions can be viewed as a debt repayment and should be designated a financing cash flow instead of an operating cash flow.

Solution:
(a) Construct Energetix’s balance sheet after consolidating the net pension obligation.

<table>
<thead>
<tr>
<th>Company Liabilities = $80,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Pension Liability = ($80,000 - $50,000)</td>
</tr>
<tr>
<td>= $30,000</td>
</tr>
<tr>
<td>Total Debt = ($80,000 + $30,000) = $110,000</td>
</tr>
<tr>
<td>Equity = $30,000</td>
</tr>
</tbody>
</table>

Total assets = ($190,000 - $50,000) = $140,000
7. Continued

(b)
(i) Assume the borrowing cost is 4.00%.

Calculate the pretax income after the Moody’s adjustment to the net periodic pension cost. Show your work.

(ii) Explain the inconsistency between the holistic balance sheet approach and the Moody’s adjustment to pretax income.

(i) Implied interest = Borrowing Cost x Net Pension Liability = 4.00% x $30,000 = $1,200

Pretax Income = $1,100

Net Period Pension Cost (NPPC) = service cost + interest cost – expected return on assets + amortization of net (gain)/loss = $2,000 + $2,994 - $440 + $550 = $5,104

Pretax income after Adjustment = Pretax Income + NPPC - SC - Implied Interest = $1,100 + $5,104 - $2,000 - $1,200 = $3,004

(ii) The holistic balance sheet separates pension assets and liabilities because of their separate characteristics (i.e. pension liability behaves like debt, but pension asset behavior depends on investment selection).

Moody's adjustment ignores the difference in the risk characteristics of the assets vs liabilities when using a net liability and applying the cost of debt to determine the implied interest.

On the income statement, Moody’s Investment Service makes two adjustments (Smyth, 2013). First, only service cost is included in the pretax income. All of the pension costs related to smoothing are removed. Next, if the pension plan is underfunded, an implied interest equal to the underfunded pension debt multiplied by the marginal borrowing rate is subtracted from the pretax income.

(c)
(i) Calculate the operating and financing cash flows after applying the Moody’s adjustment to the pension-related cash flows.

(ii) Explain the rationale behind applying the Moody’s adjustment to cash flows.
7. Continued

Commentary on Question:
Candidates needed to understand that the excess contributions can be viewed as a debt repayment and designated a financing cash outflow.

Note that the original OCF and FCF are cash inflows. With respect to the OCF, which is where the entire pension contribution is originally located, “undoing” the pension contribution requires adding it back. Then, one can reduce it by the amount attributable to the service cost. Similarly, shifting the excess pension contribution to FCF results in a reduced FCF.

(i) Adjusted Operating Cash Flow: Original Operating CF + max(0, Pension Contribution - Service Cost) = $880 + ($2,660 - $2,000) = $1,540

Adjusted Financing Cash Flow: Original Financing CF - max(0, Pension Contribution - Service Cost) = $990 – ($2,660 - $2,000) = $330

(ii) Service cost is considered an operating cost (as it's a form of compensation).

Any contributions in excess of service cost are assumed to be offsetting the outstanding liability, can be considered a payment of interest / repayment of principal, and is reclassified to financing activities.

(d) (i) Energetix has recently sold an asset at book value and now has to repurpose the 30,000,000 in proceeds. The company has two options:

1) Invest the amount in a project with an after-tax return of 6.00%

2) Contribute the amount to the pension plan and invest it in debt securities with an expected return of 4.00%

Recommend a course of action to Energetix. Justify your answer.

(ii) Before Energetix could act on the recommendation in (i), the proceeds from the asset sale were used to pay a legal settlement. Energetix is now proposing issuing debt at 8.00% and using the money to contribute to the plan.

Assume that the company has borrowing capacity and that the corporate tax rate is 21%.

Determine whether or not Energetix should enact its proposal. Justify your answer.
7. Continued

(i) In order to recommend a course of action to Energetix, we need to compare the pension “return” against the project return. As we know, the project’s after-tax return is 6%. The Pension “return” = Expected return on Debt + PBGC VRP = 4.00% + 3.00% = 7.00%

Since the pension return of 7% is greater than the project’s after-tax return of 6%, we recommend Energetix contribute the sale proceeds to the pension plan.

(ii) In order to determine whether or not Energetix should issue the debt then contribute the amount to the pension plan, we should compare the after-tax cost of borrowing against pension “return”.

After-tax cost of borrowing = Pre-tax Cost of Borrowing x (1 - Tax Rate) = 8.00% x (1 - 21%) = 6.32%

Pension "return" = Pension Discount Rate + PBGC Variable Rate Premium = 3.75% + 3.00% = 6.75%

Since the after-tax cost of borrowing of 6.32% is less than the pension “return” of 6.75%, Energetix should borrow (i.e. issue debt) to invest in pension plan.