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Introduction – Historical Actuarial Approach 
Insurance practitioners have been analyzing risk for thousands of years.  From the Code of 

Hammurabi, which waived loans on a ship if it was lost in voyage, to the initial mortality tables 

developed by John Graunt in the mid-18th century1, the goal of the actuary has remained 

constant: analyze “the financial consequences of risk.”2 As society has progressed and 

technology has developed, both the design of insurance products and the means of analyzing the 

risk have increased in complexity.  The introduction of computers has, in a very short period of 

time, changed the way actuaries approach their day-to-day jobs.  The need for both technical and 

product expertise has never been greater.  The goal of this paper is to help you understand one 

tool that has gained an enormous amount of traction over the past two decades: predictive 

modeling.  Predictive modeling is the practice of leveraging statistics to predict outcomes.  The 

topic covers everything from simple linear regression to machine learning. The focus of this 

paper is a branch of predictive modeling that has proven extremely practical in the context of 

insurance: Generalized Linear Models (GLMs). 

Before moving to GLMs, it is important to understand actuarial techniques that have been used 

in the past.  In particular, we will discuss one and two-way analysis.  Although the terminology 

may be foreign, anyone with a basic analytical background has used these techniques.  One-way 

analysis refers to the review of a response by a single variable (e.g. observed mortality by age). 

Two-way analysis looks at the response by two variables (e.g. observed mortality by age and 

gender).  Relativities between variable groupings are then used to ascertain the risk between the 

two groups (i.e. mortality of a 46 year old male versus that of a 45 year old male).  This 

technique is then applied to other variables to help segment the risk in question.  Although this 

technique is extremely intuitive, it has a number of well-known drawbacks: 

- Ignores correlations - If Detroit experience is 20% worse than average and if auto 

manufacturing segment experience is 20% worse than average, should we expect auto 

manufacturers in Detroit to have experience that is 40% worse than average?  

- Suffers from sequencing bias - The first variable analyzed may account for the signal of 

variables that will be analyzed later.  This could reduce or eliminate the importance of 

those variables. 

- Cannot systematically identify noise – One large claim or a large unique policy can have 

a very large impact on one-way analyses.  It is difficult to identify the signal (true impact 

of a variable) vs. noise (volatility) in one-way analyses.   

                                                           
1 Klugman, Stuart A., “Understanding Actuarial Practice,” Society of Actuaries, 2012, Page 7. 
2 Society of Actuaries. 2010. “What is an Actuary?” https://www.soa.org/about/about-what-is-an-actuary.aspx. 
 

https://www.soa.org/about/about-what-is-an-actuary.aspx
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Although actuaries have developed techniques to account for these pitfalls, they are time 

consuming and require substantial judgment.  GLMs provide a systematic approach that 

addresses the above concerns by allowing all variables to be analyzed in concert. 

GLM Overview 
Let us begin with normal linear regression. Most readers will be familiar with this form of GLM.  

It is well known that linear models, along with all GLMs, require independence of observations.  

There are three assumptions unique to linear regression that we address below3:  

1. Error terms follow normal distribution 

2. Variance is constant 

3. The covariates effect on the response are additive 

These assumptions are relaxed when reviewing GLMs.  The new assumptions are as follows4:  

1. Error term can follow a number of different distributions from the exponential family 

2. Variance does not need to be constant 

3. The covariates can be transformed so that their effect is not required to be additive. 

Relaxing the first assumption allows us to utilize exponential distributions that apply directly to 

the insurance industry.  For distributions that are strictly non-negative, such as claims, a normal 

distribution that exists across all real numbers is not ideal.  The Poisson distribution and Gamma 

distribution apply to only positive numbers and are more appropriate for claim counts and claim 

amounts, respectively.  The Binomial distribution applies to all binary datasets, and may be 

appropriate for modeling policyholder behavior or mortality. 

GLMs allow variance to adjust with the mean.  As you can see in the exhibit below, the variance 

of the Poisson and Gamma distributions increase as their means increase: 

 

There are many instances where this makes intuitive sense.  When modeling claim amounts, we 

expect absolute variability to increase as the dollars increase.  Additionally, when reviewing the 

binomial variance formula, variance approaches zero as the mean tends toward zero or one.5   

                                                           
3 McCullagh, P. and J. A. Nelder, “Generalized Linear Models”, 2nd Edition, Chapman & Hall, CRC, 1989. Pages 23. 
4 McCullagh, P. and J. A. Nelder, “Generalized Linear Models”, 2nd Edition, Chapman & Hall, CRC, 1989. Pages 31. 
5 McCullagh, P. and J. A. Nelder, “Generalized Linear Models”, 2nd Edition, Chapman & Hall, CRC, 1989. Pages 12. 

Mean Variance

Poisson θ θ

Gamma αθ αθ
2

Binomial np np(1-p)

Normal µ σ
2
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Finally, the assumption of additive covariates is neither intuitive, nor can it be easily applied to 

actuarial analyses.  Predictive modeling allows this assumption to be relaxed.  For example, risk 

factors can be multiplicative. This is extremely useful when developing a pricing algorithm that 

follows a manual rate structure. 

The Math 
Before addressing the calculations to develop a model, it is important to understand the structure 

of the final equation.  There are three main components of both normal linear regression and 

GLMs: 

1. Random Component – distribution of the error term. 

2. Systematic Component – summation of all covariates (i.e. predictors) that develop the 

predicted value. 

3. Link Function – relates the linear predictor to the expected value of the dataset.  In other 

words, it is a mathematical transformation of the linear predictor that allows the expected 

mean to be calculated. 

The linear regression model is as follows: 

 

𝐸[𝑌𝑖] = 𝛽0 + 𝛽1 ∗ 𝑥𝑖,1 +  𝛽2 ∗ 𝑥𝑖,2 + ⋯ + 𝛽𝑛 ∗ 𝑥𝑖,𝑛 +  𝜀𝑖  

 

  

The formula above shows the expected value of each observation i.  This is calculated by 

multiplying a vector of rating variables B and a vector of observed values X.  The notation will 

make more sense in later sections when these formulas are applied to real life scenarios.  In 

linear regression, the expected value is equal to the systematic component because the identity 

link (described below) does not transform the systematic component.   

When moving to a GLM, the random component can take on a member of the exponential family 

and the systematic component is transformed via a link function: 

𝐸[𝑌𝑖] = 𝑔−1(𝛽0 + 𝛽1 ∗ 𝑥𝑖,1 +  𝛽2 ∗ 𝑥𝑖,2 + ⋯ + 𝛽𝑛 ∗ 𝑥𝑖,𝑛) +  𝜀𝑖 

 

 

 

Systematic 

Component 

Random 

Component 

Link Function 
Systematic 

Component 

Random 

Component 
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The link function is simply an algebraic transformation of the systematic component.  Please see 

the applications section below for examples of the link function.  

Now that we have seen what we are working towards, let us discuss how we develop the final 

formula. GLMs develop parameters in such a way that minimizes the difference between actual 

and predicted values.  In linear regression, parameters are developed by minimizing the sum of 

squared errors.  The same result can be achieved through maximum likelihood estimation 

(MLE).  MLEs are used to parameterize GLMs. 

For any member of the exponential family there exists a density function: 𝑓(𝑦; 𝜃).  Taking the 

log of each density function for each observation and adding them together gives the log 

likelihood function.6   

𝑙(𝜇; 𝑦) = ∑ log 𝑓𝑖(𝑦𝑖; 𝜃𝑖)

𝑖

 

To calculate the parameters, take the derivative of the likelihood function with respect to the 

rating variables and set them to zero: 

𝜕𝑙

𝜕𝛽1
= 0 

𝜕𝑙

𝜕𝛽2
= 0 

. 

. 

. 

𝜕𝑙

𝜕𝛽𝑛
= 0 

Using these equations, you then solve for the parameters in question. 

Applications 
Distributions 

The type of GLM chosen for a project hinges on the distribution of the data.  The table below 

details the major distributions.7  

The table below details the canonical link for some common distributions.  The canonical link is 

the link that can be used to calculate the parameters in closed form.  Given the size of modeling 

                                                           
6 McCullagh, P. and J. A. Nelder, “Generalized Linear Models”, 2nd Edition, Chapman & Hall, CRC, 1989. Page 24. 
7 McCullagh, P. and J. A. Nelder, “Generalized Linear Models”, 2nd Edition, Chapman & Hall, CRC, 1989. Page 30. 
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datasets, parameters are never calculated in this manner.  They are calculated using numerical 

methods (i.e. an iterative process).  Since the canonical link is not a requirement to parameterize 

the model, other link functions may be chosen if they are more practical.  

 

The name of the link functions and their transformations are described in the “Canonical Link” 

and “E(Y;θ)” columns.  For example, the binomial distribution uses the logit link.  The 

transformation is as follows: 

𝑒𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

1 +  𝑒𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
 

Normal:  The normal distribution is useful for modeling any response that exists between 

negative and positive infinity.  It can be used in an analysis focused on changes in a variable.  

For example, one might want to look at the drivers of changes in premium.  This practice is also 

known as premium dislocation. 

Poisson:  The Poisson distribution is primarily used to model claim counts when multiple claims 

can occur in a given exposure period.  For example, a policyholder with health care coverage can 

have multiple physician claims in a given month.  The Poisson distribution is also useful when 

modeling claims in group insurance, because claim counts may be reviewed at the group level 

rather than the individual level.   

Binomial:  The binomial distribution can be used to model binary responses.  Examples in an 

insurance context are as follows: 

- Mortality – the probability of dying. 

- Lapse/persistency – probability of a policyholder/client retaining or cancelling their 

coverage. 

- Close ratio/issue rate – probability of selling a policy. 

- Annuitization – probability of a policyholder annuitizing a contract. 

Range of y Canonical Link E(Y;θ) Var Function

Normal (-∞,∞) identity θ 1

Poisson 0, 1, … ∞ log exp(θ) µ

Binomial 0, 1 logit e
θ
/(1+e

θ
) µ(1 - µ)

Gamma (0,∞) reciprocal* 1/θ µ
2

* Gamma distribution often uses log link function for easier

 implementation.  This is explained in more detail in

 subsequent sections.
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- Termination/recovery – probability a claimant currently on disability will recover and the 

claim will terminate.  This can be used to develop reserve assumptions. 

The binomial distribution is by no means limited to the examples above.  The distribution can be 

used for any other situation characterized by a binary response.  Moreover, non-binary data can 

be transformed into a binary distribution to develop meaningful analytics.  For example, when 

reviewing large claim amounts, you can create a binary distribution that looks at claims greater 

than a certain threshold to determine the characteristics of those claims. 

Gamma:  The gamma distribution is most often used for claim severity (i.e. claim amount given 

a claim has occurred).  The gamma distribution is appropriate to handle the long tailed nature of 

claim amounts.  Additionally, it can be used to model pure premium (loss costs excluding 

overhead and profit loading). 

Tweedie:  Although not shown in the table above, the Tweedie distribution is very useful in both 

P&C and Group insurance.  The Tweedie distribution is a hybrid between the Poisson and 

Gamma distributions.  Therefore, it is applicable to pure premium and loss ratio modeling.  Loss 

ratio modeling determines what variables cause deviation from the average loss ratio.  For cases 

with minimal exposures, there is high probability of zero claims and a loss ratio of zero.  The 

Tweedie distribution, with a point-mass at zero and a long tail, is perfect for this type of analysis. 

We detail the common distributions and their potential uses below: 

 

Good Models 
Choosing the appropriate distribution is paramount when embarking on a modeling project.  

However, choosing an appropriate distribution does not necessarily lead to a good model.  The 

modeler will utilize historical information to inform decisions regarding future events. A good 

Potential Models Link Function

Normal Dislocation (i.e. Change in Premium) identity

Poisson Claim Frequency (incidence) log

Binomial

Mortality Rates

Lapse/Persistency Rates

Close Ratio/Issue Rates

Annuitization Rates

Termination/Recovery Rates

logit

Gamma
Claim Severity

Pure Premium
log*

Tweedie
Pure Premium

Loss Ratio Modeling
log

* Gamma distribution often uses log link function rather than the reciprocal link. 

This is explained in more detail in subsequent sections.
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model will reflect historical information expected to persist in the future and control for 

historical anomalies.  This involves avoiding two opposing modeling risks: overfitting and 

underfitting.   

Overfitting occurs when a model does a good job of predicting the past, but a poor job of 

predicting the future.  An extreme example of overfitting is creating a model with as many 

parameters as observations.  The model would predict the past perfectly, but it would not provide 

much insight to future.8 

Underfitting does a good job of predicting the future on average, but does not do a good job of 

segmenting risk factors.  An extreme example is a model with one parameter: the average of the 

past. 

The modeling process discussed in subsequent sections will help the reader avoid both 

overfitting and underfitting.  Other principles mentioned in the Generalized Linear Model 

textbook by P. McCullagh and J. A. Nelder are as follows9: 

1. “… all models are wrong; some, though, are more useful than others and we should seek 

those.” 

2. Do not “… fall in love with one model to the exclusion of alternatives.”  

3. The modeler should perform “… thorough checks on the fit of a model.”   

The first principle lays the groundwork for a skepticism that all modelers should possess.  The 

popularity of modeling, driven by the results it has produced over the past decade, leads most 

individuals to give significant (and possibly too much) credence to the practice.  Although it is a 

very powerful tool, modeling is only as good as the modeler’s ability to take past data and inform 

meaningful future results.   

The second point explains that modeling may not always be the best solution.  Time constraints, 

lack of data, lack of resources, etc. are all impediments to developing a good model.  Do not 

blindly choose a predictive model without understanding the costs and benefits. 

The final point will be discussed further in the “Model Validation” section. 

Data Overview 
The first, and arguably the most important aspect of predictive modeling is data preparation.  We 

often call this “the 80%” because 80% of the time will be spent preparing the data and 20% will 

be spent building and checking the model.  This is not a strict rule.  Given that the majority of the 

authors’ work has been the first of its kind, data preparation is very time consuming.  As 

companies focus more and more on “model ready data,” the goal is that data preparation will 

                                                           
8 McCullagh, P. and J. A. Nelder. “Generalized Linear Models.” 2nd Edition. Chapman & Hall, CRC. 1989. Page 7. 
9 McCullagh, P. and J. A. Nelder, “Generalized Linear Models”, 2nd Edition, Chapman & Hall, CRC, 1989. Page 8. 
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take 20% of the time and modeling will take 80%, with the absolute amount of time per project 

decreasing substantially. 

The modeling dataset consists of rows, which are observations.  Each observation will have a 

corresponding exposure or exposure unit (i.e. weight).  Depending on the dataset, observations 

may equal exposures.  For example, an individual life mortality study may have a row for each 

life month.  In this case, the number of observations equals the number of exposures.  In other 

instances, exposures will differ from observations.  In a loss ratio model, which compares claim 

amounts to premium for clients over a period of time, the exposure would be the premium paid 

in the period that corresponds to the claim amounts.  

The dataset columns consist of three sections:  response, weight, and variables.  The response 

field is also referred to as the dependent variable.  The dependent variable is what you are trying 

to model, and the independent variables are what you are using to predict the dependent variable.  

The weight defines the exposure (i.e. credibility) of each observation.  The more weight of an 

observation means it will have a larger impact on the final parameters than an observation with 

less weight.  The independent variables (variables 1, 2, 3, etc.) in the exhibit below are what will 

be tested for their predictive power; they are often referred to as covariates.   

  

Modeling Process 

Project Scope 

Laying out the initial project scope is imperative for any modeling project.   This is most 

important when embarking on a predictive model for the first time.  Interested in your new work, 

your business partners will probably ask for additional analysis.  Sticking to a pre-defined scope 

will limit project creep and allow you to meet your deliverables in a timely manner. 

  Modeling Participants: 

Modeling Team 
- Modeling experts 

- Need strong data and business knowledge 

Business 

Partners 

- Have business knowledge (product, claims, 

underwriting, sales, etc.) of data and  business 

process 

- Owners of the final model  

Response Weight Variable 1 Variable 2 Variable 3 … Variable n

Observation 1

Observation 2

Observation 3
.
.
.

Observation n
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- Their involvement in the process helps them 

better understand and support the final model 

- Advocate your model across organization 

IT 
- Produce initial dataset 

- Implement final model 

Project 

Manager 

- Provide management expertise, allowing 

other participants to spend time more 

efficiently 

 

While setting scope, it is important to define the relationships with project participants, 

especially IT.  When dealing with large amounts of unstructured data, IT will be an important 

resource for both acquiring and understanding the data.  All too often, data is assumed to be 

clean. However, the modeler should understand that data is often entered by individuals whose 

goals are not necessarily aligned with the most accurate model data.  Underwriters, sales 

representatives, and clients are often the major suppliers of data.   

Given outdated IT systems, constraints, and other impediments, these business partners may 

enter information that results in the correct answer in their context, but that does not lead to 

accurate data.  Group life insurance provides a good example.  Benefit amounts can be defined as 

either flat or a multiple of salary. If a policyholder chooses a flat benefit and salary is not rate 

bearing, the underwriter may enter the flat benefit amount as the salary.  Although this has no 

price implications, it would make it difficult for the modeler to understand the true impact of 

salary on mortality.  In group insurance, we check the percent of people with the same “salary.”  

If this number is large, the underwriter most likely entered a flat benefit amount for each 

individual.  This data should be segregated from the true salary data.  It may be useful to include 

sales and underwriting in portions of this process to better understand the data. 

Along with the benefit of understanding data, including representatives from sales, underwriting, 

and other users of your model may have other benefits.  If sales will be impacted, it is important 

to include them in the process so that they are aware of what is changing and why.  If they feel 

included, they will be advocates for you and will help socialize the changes with the field.  This 

must be delicately balanced with the risk of having too many people involved.  The modeling 

team and business partners must decide the best means of balancing the pros and cons of 

including groups affected by the project.   Depending on the scope of the project, other business 

partners may include, but are not limited to, claims, ERM, marketing, and underwriting staff. 

Data Collection 

Data Scope 

The first step when compiling a dataset is to determine the scope of variables that will be tested 

in the model.  Naturally, you will want to test internal data sources.  Additionally, you may want 

to leverage external data to supplement the internal data.  Common sources include government 
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data, credit data, social networking websites, Google, etc.  This data is commonly acquired 

through third party data aggregators, including Experian, Axiom, D&B, and others.  External 

data can also be used to inform data groupings or as a proxy for other variables, such as a 

geographic proxy.  Additionally, external data can be combined with internal data to create 

interesting variables.  For example, you could combine salary and median income in a region to 

control for cost of living across regions.  A $100,000 salary in New York City leads to a very 

different lifestyle than $100,000 in North Dakota. 

It is important to avoid preconceived notions when constructing the dataset.  Including as much 

information (where practical) in the beginning will allow for the most meaningful analysis. More 

variables generally lead to more “a-ha” moments.  Additionally, there is very little harm 

including additional data fields, because the modeling process will eliminate insignificant 

variables.   

Data Structure 

After outlining the data scope, it is important to define the structure of the data.  You need to 

define the exposure period of the response.  For example, are you reviewing a policyholder over 

a year, month, or some other measurement of time?  There is no pre-defined answer, but your 

decision will depend on a number of factors: 

- Amount of data – if you have a very large dataset, using monthly data may cause run time 

issues while transforming variables, joining datasets, and performing analysis.  

Additionally, the software that you are using to parameterize your models may not be 

able to handle that much data.  The data phase will have multiple iterations as variables 

are added, questions are answered, and issues are resolved.  An extremely large dataset 

could be very time consuming. 

- Seasonality – if you believe the response varies by month, it may be better to take a more 

detailed view.  For example, policyholders are less likely to file a disability claim in the 

fourth quarter.  In pricing, when contracts are guaranteed in yearly increments, 

seasonality may not make a difference.  However, seasonality may be useful when 

analyzing cash flows.  

Data Scrubbing 

Once you acquire the data, it is important to determine reasonability.  The following analyses 

should be performed when receiving a new set of data: 

- Check the distribution of the response, weight, and potential modeling variables.  Review 

histograms of continuous variables and check the frequency of all discrete variables.  It is 

also helpful to review the response across each variable.  Reviewing information with 

business partners will help ensure that the data is in line with expectations. 

- Outlier analysis – review the largest and smallest variables for the response and all 

numeric variables.  Reviewing these outliers can point to observations that you want to 
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exclude from your analysis.  Additionally, you may want to floor or cap variables to more 

realistic values.  For example, if exposures are reinsured above a certain amount, you 

may want to cap values so they only represent retained exposure.  It is important to note 

that sometimes these outliers should be included in the analysis because you may want to 

determine why these outliers occurred.  

- Date reasonability – a good way to gain comfort in your data is to see if events occur 

within the expected exposure period.  For example, a claim that occurred prior to the 

policy effective date would set off red flags.   

- Null values – look at instances where levels of the data are null.  Often times, this is a 

sign that those records may have integrity issues.  You may also be able to find chronic 

issues with data processing that can be addressed.   

- Unreliable data – some data will fail to pass the smell test and should be separated from 

the variable in question (See same salary example above).   

- Default values – IT systems may default values to 999999 or some other variation.  These 

values should be separated into a missing or unknown bucket for a particular variable. 

Identifying errors will help reduce the likelihood of spurious results.  Although some of these 

checks may seem trivial, you will be amazed at what you find when digging into the data.  In 

almost all modeling projects, there will be some finding in the data phase that spawns additional 

analysis, process improvements, or uncovers a previously unknown issue.  When scoping out 

your project, it is imperative that you have sufficient time to dig through the data. 

Data Preparation 
Once you have sufficiently reviewed the data, it is time to prepare your data for modeling. 

Variable Transformations 

Transformations are a mathematical formula that adjusts the variable under review.  Some 

common transformations are: 

- Variable change over time - for example, change in premium from one point in time to 

another is extremely useful when looking at client retention. 

- Difference between two variables - for example, reviewing individual salary versus 

median salary is a useful metric to proxy an individual’s lifestyle. 

- Percentages – for example, reviewing the percent of females or males in a company. 

- Duration – calculating the difference between two dates. 

- Reciprocal – you may want to reverse the variable for explanatory purposes (e.g. BLS 

gives output/hour but it may be easier to explain hours per unit of output).10 

- Logarithm or square root – used to limit the skew of a variable.11  

                                                           
10 Cox, Nicholas J. 2005. “Transformations: An Introduction.” http://fmwww.bc.edu/repec/bocode/t/transint.html. 
11 Cox, Nicholas J. 2005. “Transformations: An Introduction.” http://fmwww.bc.edu/repec/bocode/t/transint.html. 

http://fmwww.bc.edu/repec/bocode/t/transint.html
http://fmwww.bc.edu/repec/bocode/t/transint.html
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Variable Grouping   

When grouping variables in the data phase, it is important to consider the following: 

- Work with your business partners to develop variable groupings that can eventually be 

implemented.  For example, you may use age groupings in line with your current rating 

structure for ease of implementation.  Surrender charge periods in an annuity lapse model 

would need to be calculated by subtracting effective date from date of exposure. 

- Low exposures – if you have levels that relate to a policy provision that is very 

uncommon, you may not have enough exposure to derive a meaningful result.  In these 

instances, it may be useful to group all of these odd provisions into a single category.  If 

it is determined that these odd provisions impact the response in a manner that could 

adversely impact the signal of other variables, it would be prudent to remove these 

observations from the data. 

- Create multiple groupings – when reviewing something with many levels such as an 

individual’s age, it may be useful to create additional variables for the purposes of 

summary analyses.  These grouped variables may also be useful when testing 

interactions, which will be discussed in subsequent sections.  

- Group by exposure size – when reviewing a variable like industry classification codes 

(SIC or NAIC) where the 4-digit code is a more granular version of the 3-digit, 2-digit, 

and 1 digit codes, you may want to review the 20 largest 3-digit SIC codes and group all 

other codes together.  There are an unlimited number of potential groupings, so the 

modeler must use their knowledge of the data to inform groupings. 

- Group by percentiles – percentiles of continuous variables allow the modeler a systematic 

means of giving equal credibility to each bucket. 

The initial groupings are by no means final.  In fact, you will most likely adjust your variable 

groupings multiple times throughout the model building process.   

Separating Datasets 

Overview 

Predictive modeling is such a powerful tool because there is a systematic approach for validating 

your algorithms.  Two techniques that exist are out-of-sample testing and out-of-time testing.  

Out-of-Sample Testing 

Out-of-sample testing separates the data into two independent sets.  We define the two datasets 

as train and test.  Train is the data that we will use to build our model.  Test, as the name implies, 

is the data that we will use to validate our model.  Separating the data into these two datasets can 

be accomplished through random sampling, stratified sampling, or bootstrapping.   

- Random sampling – random sampling can be performed using a random number 

generator for each observation.  If you want 50% of your data in train and 50% in test, 
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every randomly generated value less or equal to 0.5 could be placed in train and the rest 

could be placed in the test dataset. 

- Stratified sampling – stratified sampling is similar to random sampling.  The biggest 

difference is that the data is split into N distinct groups called stratas.  It is up to the 

modeler to define the stratas.  These will often be defined by a discrete variable in the 

dataset (e.g. industry, case size, region, etc.).  Observations from each strata will then be 

chosen to generate the train dataset.  For example, 100,000 observations could be split 

into 3 stratas: 

o Strata 1 – 50,000 observations 

o Strata 2 – 30,000 observations 

o Strata 3 – 20,000 observations  

You would then take random samples from each strata so that you have 50% of your train 

and test data from strata 1, 30% from strata 2, and 20% from strata 3. 

- Bootstrapping – the biggest difference between bootstrapping and the other two sampling 

techniques is that bootstrapping allows an observation to exist in multiple datasets.  

Bootstrapping is rarely used because the main goal of validation is testing your model on 

an independent dataset.  Including the same observation in multiple datasets does not 

allow for independence.  The main use of bootstrapping is to develop many datasets and 

have a range of parameter values to determine variability and a confidence interval for 

those parameters. 

Regardless of the approach, it is important to make sure that the datasets are indeed independent.  

If your data is structured in a way that has observations over time (e.g. policy/months) you will 

have multiple rows for a particular policy.  If you proceed with a random sampling of each 

observation (row) you will have the same policy in both your test and train data.  The danger is 

that you increase the chances of overfitting your model (i.e. validating a result that may not be 

true in the future).  This is especially dangerous if you have a very large unique policy.   

Out-of-Time Testing 

Out-of-time testing is a very powerful form of validation as well as a good method to market the 

power of your model.  If your dataset is large enough, it is beneficial to hold out a year of data to 

determine if the model built on other years does a good job of segmenting risk in the year that 

was held out from model building.  If the model performs well, it will be easier to convince your 

business partners that the model should be implemented. Conversely, if the model does not 

perform well, it gives an indication that the model requires additional work or that alternative 

methods should be considered. 

Another version of train/test that could also be used to test your models is separating the data by 

year.  In this method, you separate your dataset into two distinct time periods.  For example, if 

your data spans exposure years 2008-2013, you could build a model on 2008-2010 data and test 
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it on 2011-2013 data.  This allows any biases that occurred during certain time periods to be 

identified.    

A thorough understanding of the data and the business is important when determining the year 

stratification.  For example, building and testing a model on data during a recession may not be 

indicative of the post-recession world.  In this instance, you could build the model on “recession” 

data and test it on “post-recession” data.  Even if you don’t have a substantial amount of data for 

one time period, it is still important to perform these tests.  If certain factors are not validated, 

you will use business judgment to determine if they are not validated because of light data (i.e. 

volatility) or because there is a bias in these time periods.  

Dataset Size 

After determining the type of sampling, you will need to determine the percent of data to include 

in the train and test data.  As a rule of thumb, the largest datasets will result in a 50/50 split.  The 

smaller the dataset, the more you move towards a 70% train and 30% test dataset.  The rationale 

is that when testing a small dataset, you need to have sufficient observations in your training 

dataset to develop a model.  When reviewing the model on the test dataset, you will expect 

significant volatility in the actual values, but the actuals should still be centered around the 

average predicted values.   

Dataset size is not the only determining factor.  Response volatility will dictate your choice.  The 

split of train and test depends on the circumstances of the project and will vary from model to 

model. 

Finally, if you have an excessive amount of data, you can create more than two datasets.  

Multiple test datasets will increase your level of comfort with the final model.   

Building a Model 
For the purposes of illustrating the model building process, we will review a long-term disability 

insurance pricing project.  This includes both claim counts and their respective claim amounts.  

We chose this example because it details the process of modeling both incidence and severity.  

This modeling exercise explains nuances not present when modeling mortality or lapse rates.  

The actual response is not entirely important, because this process can be applied to any analysis 

across many disciplines. 

The modeling dataset consists of experience from 2007 – 2013.  We chose to hold out the 2013 

experience for out-of-time sampling.  The 2007 – 2012 was split so that 60% of the data would 

be used to train the model and 40% would be used to test the model. 

Defining the Distribution 
Once you have constructed your initial dataset, it is time to determine the distribution of your 

data.  As mentioned above, insurance data often follows well known distributions.  If you are not 
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modeling a previously identified distribution, review the histograms of your response.  This will 

help you understand what link and error structure to use. 

Once you have defined your distribution, use the tables in the Distributions section to determine 

the link of your data.  In most instances, the canonical link is the link that should be chosen for a 

specific error structure.  However, as we discussed, the canonical link may not be practical.  For 

example, we chose the log link rather than the canonical link (reciprocal) for the gamma 

distribution.  Combining the incidence and severity models is easier when both use the log link 

function because the factors and intercept are multiplicative. This will become clearer in 

subsequent sections. 

Fitting Main Effects  
The dataset has been built and the error and link have been defined.  It is finally time to start 

building your model by testing the main effects.  Main effects are the variables that will help 

predict the response in question.  For example, age of insured is a main effect. 

Your review of the data and your business knowledge should give you a strong indication of the 

most important variables.  Fitting these parameters first will reduce the likelihood of adding 

variables that will be removed later.   

The first step in model building is to test the predictive power of each variable.  This can be 

accomplished by fitting simple factors.  Simple factors are parameters for each level of a 

variable. The software you use will dictate the mechanics of adding variables.  The examples 

below will further explain simple factors. 

The first indication of the predictive power of your model is the change in deviance.  When 

adding a variable, you would expect a deviance reduction (i.e. the actual and predicted values 

move closer to one another).  A statistical measure that utilizes deviance reduction is AIC 

(Akaike information criterion).  AIC is a deviance measure that penalizes for the number of 

parameters.  If this metric is positive, it implies that the deviance reduction (if there is a deviance 

reduction) was not enough to justify the increase in parameters. 

The Chi-square statistic is a well-known statistical measure that measures the significance of a 

variable.  Generally, a threshold of 5% is used. If you add a variable and the resulting Chi-square 

statistic is 5%, we have 95% confidence that that the model is statistically different from the 

original model.  Anything above 5% is deemed insignificant and anything below 5% is deemed 

significant.  Depending on the response in question, these thresholds can be increased or 

decreased. 

Now that we have discussed the criteria for adding a variable, let us see it in practice.  The first 

main effect we review is gender.  As depicted in the graph below, female incidence is 11% 

higher than male incidence (3.54 vs. 3.20). 
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The table below shows the model before and after adding the gender variable: 

 

The table above details two models: the intercept only model and the model with Gender.  

Before explaining the results, we need to define the term intercept.  Intercept is the variable in 

the model that allows the average of your predicted values to equal the average of the actual 

values.  As you add variables to the model, the intercept will move up and down to make sure 

actuals equal predicted values in aggregate.   

Adding the variable gender reduces degrees of freedom (DoF) and increases the number of 

parameters by 1.  This is because only 1 level (in this case female) will have a parameter that 

distinguishes it from the base.  Since no other variables have been added to the model, the 

predicted value of Males will be based solely on the intercept value.   

The Male grouping is defined as the base because modeling software generally defaults the base 

to the largest exposure group.  However, the base can be changed by the modeler.  The choice of 
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©Society of Actuaries, All Rights Reserved  Michael Ewald 
Page 20 

 

the base will not change the final predicted values, but it will have an impact on the optics of the 

factors. 

We added an additional parameter while reducing deviance by 149,000.  Additionally, the Chi-

square statistic is very close to 0%, giving us a high level of confidence that the model with 

Gender is statistically different than the Intercept Only Model.  The formula developed by this 

model is as follows: 

𝐸[𝑌𝑖] = 𝑒𝛽0∗𝑥0,𝑖+ 𝛽1∗𝑥1,𝑖 

Where  

𝛽0 ∗ 𝑥0,𝑖 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 1.1617 ∗ 1 𝛽1 ∗ 𝑥1,𝑖 =

{
0.1034 ∗  0 𝑤ℎ𝑒𝑛 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑀𝑎𝑙𝑒     
0.1034 ∗  1 𝑤ℎ𝑒𝑛 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒

 

 

Therefore, the  

𝐸[𝑀𝑎𝑙𝑒] = 𝑒1.1617+ 0= 3.20 x 1.00 = 3.20 

And 

𝐸[𝐹𝑒𝑚𝑎𝑙𝑒] = 𝑒1.1617+ .1034 = 3.20 ×  1.11 = 3.54 

The log link function has the added benefit of giving clear relativities between variables.  In this 

case, females are 11% more likely to be disabled than males.   

Let us move on to adding another variable – age.  During the data stage, we created 11 different 

age buckets to match the prior rating structure.  Segmenting the age variable into two year age 

buckets would have substantially improved the model fit, but it was not worth the 

implementation complexity.  This is a good example of a practical decision made for easier 

implementation.  The one-way analysis is detailed below: 
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The table below shows the model before and after adding the age variable.   

 

The base level is now a male in age bucket 45-50.  The vector of parameters and observations is 

as follows:

Parameters where base is Male age 45-50: 
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The matrix of observations, where the first observation is a male age 45-50 and the second 

observation is a female age 55-60 would be as follows:  

 

 

The 10 columns in the matrix represent the 10 parameters in the above table.  The first column is 

the intercept, which applies to every observation.  The second column is the female parameter, 

which applies to the second observation, but not the first observation.  

After adding each variable it is often beneficial to look at the impact on other variables.  This 

will give you a better understanding of your data.  For example, if you look at the actual vs. 

predicted values by year, it is clear that the predicted values increase year-after-year.   

Parameter Label Linear Predictor

β0 Intercept 1.0241

β1 Female 0.1025

β2 0_25 -1.4671

β3 25_30 -1.3152

β4 30_35 -0.8535

β5 35_40 -0.4593

β6 40_45 -0.1253

β7 50_55 0.3873

β8 55_60 0.6525

β9 60_65 0.8116

β10 65+ 0.6625

[

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥0,𝑛 𝑥1,𝑛 𝑥2,𝑛 𝑥3,𝑛 𝑥4,𝑛 𝑥5,𝑛 𝑥6,𝑛 𝑥7,𝑛 𝑥8,𝑛 𝑥9,𝑛 𝑥10,𝑛

] 
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Given that only age and gender are in the model and incidence is greater for older individuals 

and females, the increasing trend implies that the block is aging, increasing the percentage of 

females, or a mix of both.  You can test this theory by removing the gender variable or removing 

the age variable.  Since the predicted pattern is flat without the age variable, it is clear that the 

book of business is aging.   

For each variable, a modeler will first determine if it is statistically significant and then check the 

impact on other variables.  The order of adding variables will vary from modeler to modeler.  

Although a modeler will generally start with the most important variables (e.g. fit age first when 

reviewing mortality), individual preference will dictate the order. 

Grouping Main Effects 
The simple factor model results in 86 parameters.  The simple factor model is almost always 

overfitting, so a modeler must now go through the process of simplifying the model without 

significantly reducing the model fit. 

Significance of Levels 

Although a variable may pass the inclusion criteria above, not every level of the variable will be 

significant.  The first step after fitting all the main effects is checking the standard errors for the 

level of each variable.  The standard error percent is calculated by dividing the standard error by 

the linear predictor.  The following criteria are rules of thumb and may be defined differently 

from modeler to modeler.  
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Any variable that has a standard error percent greater than 75% is not deemed statistically 

different than the base.  A standard error percent between 50% and 75% is marginally 

significant.  A standard error percent less than 50% is defined as statistically significant. The 

table below details the standard errors for an SIC based industry grouping: 

 

In the table above, Manufacturing and Public Administration are not significantly different from 

the base.  Agriculture and Retail Trade are marginally significant.  Given that the variables are 

not significantly different from the base, we chose to group all four of these variables with the 

base.  However, discretion can be used when deciding whether or not to include marginally 

significant variables.  When comparing the model with simple Industry factors to the grouped 

model in the table below, the Chi-square is above 5% and the deviance increases only slightly.  

Given that the two models are not statistically different, the best practice is to choose the more 

simple (i.e. less parameters) grouped industry model.   

 

In the graph below, the exponential of the linear predictors for the previously insignificant 

variables are now equivalent to the base.  The other item of note is that the model still does a 

good job of predicting the values of the variables that are grouped with the base.  For example, 

Agriculture has an observed incidence that is much higher than the base.  Although Agriculture 

is not included, the model still predicts the higher than average incidence.  This implies that other 

variables are predicting the phenomena such as age, gender, salary, etc. 

Industry Label Value Std. Error Std. Error %*

Industry_Manufacturing -0.0453 0.0597 132%

Industry_Agricultural 0.1457 0.0732 50%

Industry_Construction 0.2546 0.0406 16%

Industry_Finance_Insurance_RealEstate -0.1620 0.0738 46%

Industry_Mining 0.3415 0.0727 21%

Industry_Public_Admin 0.0909 0.0754 83%

Industry_RetailTrade 0.0970 0.0647 67%

Industry_Transportation_Communication 0.1405 0.0542 39%

Industry_WholesaleTrade -0.1559 0.0709 45%

* Cells above 75% are coded in red and are not significantly different from the

 base.  Cells between 50% and 75% are marginally significant.

Simple Industry Grouped Industry Change

DoF 1,402,811              1,402,815              4           

Parameters 86 82 (4)          

Deviance 610,898,000          610,990,300          92,300   

AIC (54,504,140)           (54,411,790)           92,350   

Chi-square 10.40%
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Counterintuitive Signals 

The other instance that requires grouping of simple factors is counterintuitive signals.  Below is a 

graph that shows the exponential of the linear predictor (exp(LP)) for Elimination Period (EP).  

EP is akin to a deductible in medical or P&C insurance.  It is the amount of time an insured must 

be disabled before they can begin collecting disability benefits.  Intuitively, longer EPs (the 

higher the deductible) lead to lower claim frequency.  However, the simplified factor graph 

below shows a counterintuitive result.  We expect a monotonically decreasing slope, but the 

indications show that a 9 month EP results in lower indicated incidence than the 12 month EP.  

This could be the result of low credibility or a large exposure that is driving the signal.  At this 

point, the modeler has two choices: 1. dig into the data to determine why this result is occurring 

(e.g. outlier policy, data error, etc.) or 2. assume that the signal is volatility and account for this 

volatility by grouping the variable. 
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Rather than grouping these variables with the base, it may make sense to group them with the 

next closest group.  For example, group EP 9 and 12 together.  Another interesting phenomenon 

is that the EP 5 indication is not significantly different from the base.  The modeler could try to 

group EP 4 and EP 5 together to increase credibility and come up with an indication that is 

between EP 3 and EP 6.  Performing these modifications resulted in a model that is not 

significantly different than the simple factor model, but simplifies the model by another 2 

parameters. 

 

Parameter Confidence Intervals 

Another useful technique that blends both the standard error and the counterintuitive discussions 

above is plotting the confidence intervals of our parameter estimate.  In the graph below, we 

have plotted the linear predictors for EP as well the confidence interval for these parameters.  

The confidence interval is defined as +/- 2 standard errors and roughly translates to a 95% 

confidence interval.  Said another way, we are 95% confident that the parameter lies within +/- 2 

standard errors of the linear predictor. 
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DoF 1,402,815             1,402,817                 2               

Parameters 82 80 (2)              

Deviance 610,990,300          611,027,300             37,000        

AIC (54,411,790)          (54,374,900)              36,890        

Chi-square 21.60%
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The 4 and 9 month EPs have very wide confidence intervals.  As discussed in the sections above, 

the only levels that are not significantly different from the base are EP 5 and EP 12.  The graph 

details the same result because the parameters lie within the 6 month confidence interval.  When 

you have a curve that you expect to be monotonically increasing/decreasing, it is also useful to 

look at the parameter estimates relative to the confidence intervals of the neighbors.  For 

example, the parameter estimate of 9 month is within the confidence interval of the 12 month EP 

and vice-versa.  Therefore, it may make sense to group EP 9 and 12 together rather than group 

EP 12 to the base.  Intuitively, we know that EP 9 and EP 12 have different risks.  Since the 

model cannot distinguish the difference, we will differentiate them in the selection process 

detailed in subsequent sections. 

The standard error approach discussed above is useful for determining a variable’s significance 

relative to the base.  The confidence interval approach allows a modeler to determine parameter 

significance relative to neighboring variable levels.  After grouping the variables as we discussed 

above, the graph is as follows: 
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The new grouping ensured that no parameters lie within one another’s confidence interval.  The 

linear predictor of EP 4 and EP 5 is at the edge of the confidence interval of both EP 3 and EP 6, 

indicating that the grouping is marginally significant.  However, the curve is monotonically 

decreasing, which is in line with our expectations.  Therefore, this grouping is reasonable and 

can be used to move forward. 

Variates 
Variates are another means of smoothing the main effects.  They are useful when the variable in 

question follows a line or curve because they force the structure of the parameters to follow an n-

degree polynomial.  Consider the example of monthly salary below.  From the observed values 

and the simple factor indications, it is clear that incidence decreases as salary increases.  When 

fitting simple factors, the indications jump around.  The salary grouping of 5,000 – 5,999 has 

effectively the same indication as 6,000 – 6,999.   
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If volatility is the suspected cause, we can smooth the indications by introducing a polynomial.  

The graph below shows the observed and fitted values after introducing a 1-degree polynomial.  

The secondary y-axis displays the linear predictors; the linear predictors are perfectly linear.  The 

polynomial could have been fit across all salary bands, but we decided to group salaries of 0 – 

3,000 together because the observed trend leveled off at these salary buckets.   
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The introduction of these variables yielded the following statistical results: 

 

Adding a 1-degree polynomial reduced the number of parameters by 9, making the model 

simpler.  However, a deviance increase of 309,300 implies that the model fit is worse.  This is 

evident when you compare the actual and predicted values.  We are under-predicting the end 

points and over-predicting the middle salaries.  A Chi-square of 0% indicates that the two models 

are statistically different.  Therefore, we have simplified the model at the expense of predictive 

power.  When the 1-degree polynomial is not sufficient, we can try a 2-degree polynomial. 

 

The graph above shows that the linear predictors no longer follow a linear trend.  They are 

decreasing at a decreasing rate.  This allows the model to better fit the lower and upper salary 

ranges.  When we look at the comparison of the simple factor model with the 2-degree 

polynomial model, we now see a Chi-square statistic above 5%.  Since 5% is our threshold for 

statistical significance, we can now say that the two models are not significantly different from 

one another.  Therefore, we were able to reduce the number of parameters by eight without 

significantly reducing the model fit. 

Simple Factors 1
◦ Polynomial Change

DoF 1,402,817               1,402,826               9                     

Parameters 80 71 (9)                    

Deviance 611,027,300           611,336,600           309,300           

AIC (54,374,900)            (54,065,600)            309,300           

Chi-square 0.20%
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Mid-Model Grouping 
You may have noticed that there are a large number of variables in the simple factor model (86).  

Forty nine of those parameters come from the state level.  Most of the state parameters are not 

statistically significant.  Therefore, a modeler may decide to create a new group in the middle of 

the modeling process.  In this instance, we mapped the state variable to the nine regions that are 

defined by the Bureau of Labor Statistics.  The statistics below show that the region grouping 

reduces the number of parameters by 41.  The Chi-square statistic of 17.1% signifies that the 

model with region is not significantly different than the model with state.   

 

The large increase in deviance occurs because we have removed a large number of parameters 

from the model.  Since we no longer have a parameter for each individual state, we expect a 

large deviance increase (i.e. the predicted values are not as close to the actuals).  Using the state 

level variable is a good example of overfitting.  Although the predicted values would be closer to 

the observed (i.e. lower deviance), the model with 41 additional parameters would not fit future 

data as well. 

As we have seen in the examples above, grouped factors and variates are added to create the 

main effects model. Once finished, the number of parameters was reduced from 86 in the simple 

factor model to 23 in the main effect model. 

Control Variables 
Control variables are modeled in the same manner as all other variables.  The greatest distinction 

between the two is that a control variable is included to control for a phenomena that we do not 

expect to continue in the future.  Year is the most common type of control variable. A good 

example is disability rates during a recession.  Since disability income insurance claims occur 

more often when the prospect of losing one’s job is greater, carriers often experience increased 

disability incidence rates in times of economic stress.  If the most recent year in the data is the 

base, and all prior years had worse than expected disability incidence, the introduction of the 

Simple Factors 2
◦ Polynomial Change

DoF 1,402,817               1,402,825               8                     

Parameters 80 72 (8)                    

Deviance 611,027,300           611,169,800           142,500           

AIC (54,374,900)            (54,232,360)            142,540           

Chi-square 15.80%

State Model Region Model Change

DoF 1,402,825            1,402,866            41                          

Parameters 72 31 (41)                         

Deviance 611,169,900         611,764,900         595,000                  

AIC (54,232,200)         (53,637,350)         594,850                  

Chi-square 17.10%
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year variable would show linear predictors above zero for years of economic distress and a 

decreased intercept value.  When implementing the model, this new intercept would better reflect 

the expected future state of incidence. 

Interactions 
Interactions allow the impact of one variable on another to be explained by the model.  As seen 

in the earlier example, females are on average more likely to be disabled than males.  Is this 

likelihood consistent across all other variables?  It is well known in the disability insurance 

industry that the difference in incidence between females and males is much greater at younger 

ages than older ages.  This stems from women of child bearing ages having increased likelihood 

of disability.  The graph below is the result of the main effect model and illustrates the actual 

versus predicted incidence for males and females across all age buckets.   The model under-

predicts the incidence of younger females and over-predicts the incidence of younger males.   

 

Adding an interaction is similar to adding parameters as we discussed previously.  The only 

difference is that these new variables are identified by the intersection of two other rating 

variables.  Interacting the simple factors for age and gender results in the following: 
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The criteria for adding interactions are the same as adding main effects.  The model statistics 

above indicate that the interaction is statistically significant.  The additional 9 parameters and the 

standard errors are as follows: 

 

The table to the left has no parameter for the 

45-50 year old female.  This bucket is 

defined by the main effect female factor. 

The standard errors show that the interaction 

above age 50 is not statistically significant.  

Therefore, you would simplify the model so 

that every female older than 45 would be 

defined by the female main effect.

It is recommended that a modeler be more conservative when adding interactions.  Interactions 

should only be included in the model when they are both statistically significant and make 

intuitive business sense.  Interactions are a more granular view of the data compared to the main 

effects, so the credibility will naturally be lower.  Given this lack of credibility, interactions that 

are statistically significant may, in fact, be overfitting.  For this reason, it is wise to remove 

marginally significant interaction variables from the model unless well justified for business 

reasons.   

We decided to remove the parameters above 50, but left the 25-30 parameter for the time being.  

Knowledge about younger females exhibiting higher than average incidence led to this 

conclusion.  The exhibit below shows that the model with the full interaction is not statistically 

different from the simplified interaction.  This implies that the difference in incidence between 

males and females above age 45 does not vary by age.    

 

When reviewing the actual versus predicted, the model with the interaction below age 45 does a 

better job predicting incidence by age and gender. 

Main Effect Model Model w/ Interaction Change

DoF 1,402,874                  1,402,865                           (9)                 

Parameters 23 32 9                  

Deviance 610,198,400               609,661,900                        (536,500)       

AIC (55,203,830)               (55,740,330)                        (536,500)       

Chi-square 0.00%

Parameter Label Value Std. Error Std. Error %

β24 Female & 0_25 0.7431 0.2928 39%

β25 Female & 25_30 0.3914 0.2206 56%

β26 Female & 30_35 0.4257 0.1440 34%

β27 Female & 35_40 0.5437 0.1009 19%

β28 Female & 40_45 0.3939 0.0868 22%

β29 Female & 50_55 0.1571 0.0811 52%

β30 Female & 55_60 0.1235 0.0861 70%

β31 Female & 60_65 0.0022 0.1028 4672%

β32 Female & 65+ 0.1070 0.1062 99%

Full Interaction Interaction Below Age 45 Change

DoF 1,402,865                  1,402,869                           4                  

Parameters 32 28 (4)                 

Deviance 609,661,900               609,736,200                        74,300          

AIC (55,740,330)               (55,666,040)                        74,290          

Chi-square 18.70%
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After adding an interaction, it is beneficial to review the change in main effects.  The exponential 

of the female linear predictor was 1.11 before adding the interaction.  After adding the 

interaction, this value reduced to 1.02.  This implies that the overall differential in incidence 

between males and females is driven purely by those females below age 45.  When reviewing the 

standard errors, the female parameter has a standard error percent well above 100.  In this 

instance, we can make the decision to either keep or remove the main effect.  We chose to keep 

the main effect, although there is no statistical rationale.  If the model structure were to be 

applied to a different dataset in the future, we would not want to ignore a potential difference in 

incidence at the older ages. 

After adding interactions, the standard errors should be reviewed again and any variables that are 

no longer significant may be removed.  We will proceed to validation with a model that has 28 

parameters. 

Model Validation 
Once you are satisfied with the model built on the train dataset, it is time to check how the model 

performs on the test dataset.  There are three methods of validation that can be performed:  

Parameterize Model on the Test Dataset 
After you adapt the model on the test dataset, you should review the signals to check for signals 

that do not align with the train model.  Additionally, the test dataset standard errors should be 
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reviewed.  In the exhibit below, we detail the standard errors for the industry variable and the 

age/gender interaction.  The table below shows that the Wholesale Trade and 

Transportation/Communication industries and the Female/Age 0-25 variables were both 

significant when parameterized on the train dataset.  However, on the test dataset, these variables 

are insignificant.   

 

This example details one of the major strengths of predictive modeling.  The train/test validation 

allows identification of these false signals.  Therefore, these parameters can be removed (i.e. 

grouped with the base level). 

After reviewing the other variables, the model parameters were reduced to 24 from 28. 

Compare Train and Test Factors 
Another means of determining false signals is comparing the parameters from the train and test 

datasets.  This allows determination of whether the parameters are stable between the two 

independent datasets.   Below, we compare the train and test factors for EP and the Age/Gender 

Interaction.   

Construction 0.2261 0.03599 16% 0.3238 0.04339 13%

Finance_Insurance_RealEstate -0.1869 0.07258 39% -0.2083 0.08995 43%

Mining 0.3143 0.07111 23% 0.4964 0.07999 16%

Transportation_Communication 0.1132 0.05137 45% 0.0409 0.06683 163%

WholesaleTrade -0.1814 0.06904 38% -0.0267 0.07985 299%

Female & A_0_25 0.7181 0.28235 39% 0.5924 0.38183 64%

Female & B_25_30 0.345 0.20726 60% 0.7181 0.23088 32%

Female & C_30_35 0.361 0.13274 37% 0.4798 0.15729 33%

Female & D_35_40 0.4652 0.08812 19% 0.5008 0.1059 21%

Female & E_40_45 0.3081 0.07112 23% 0.3233 0.08456 26%

Train Test
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When performing the factor comparison, it is important to be on the lookout for two items: 

factors switching signs and factor instability.   

Switching signs occurs when the exponential of the linear predictor is above/below 0 in one 

dataset and below/above 0 in another dataset.  Since the variables direction versus the base level 

cannot be determined, these variables should be grouped with the base. 

Factor instability occurs when the direction versus the base is the same between train and test, 

but the difference between the exponential of linear predictors is large.  The exhibit shows two 

variable levels that show instability.  The 2 month EP has a 19% difference between train and 

test.  However, the indications in both datasets lie between the 1 and 3 month EP indications.  

Therefore, judgment can be used to determine how to treat these variables.  

When reviewing models that do not use a log link function, you can compare linear predictors to 

determine if the variable is switching signs.  To compare factor stability, you may want to apply 

the intercept and the parameter being reviewed to the link function.  For example, in a logit link 

model with a binomial error term, you would calculate the following: 

𝑒𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡+𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

1 +  𝑒𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡+𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟
 

This will allow the modeler to compare the two datasets and the effect of the linear predictor on 

the final formula. 

The level of the interaction for Female Ages 25-30 and Female Ages 30-35 show another 

instance of factor instability.  Although the train and test indications are both greater than 1, their 

relativity to the next grouping (ages 30-35) changes direction.  In the train dataset, the 25-30 

indication is less than the 30-35 while in the test dataset the 25-30 indication is greater than the 

Train Test Abs(Diff)

01_Month 2.6464 2.6894 2%

02_Month 2.0913 1.7545 19%

03_Month 1.3792 1.3967 1%

04_Month 1.3792 1.3967 1%

05_Month 1.0000 1.0000 0%

06_Month 1.0000 1.0000 0%

09_Month 0.7245 0.7678 6%

12_Month 0.7245 0.7678 6%

Female & B_25_30 1.2652 1.8815 33%

Female & C_30_35 1.3384 1.5315 13%

Female & D_35_40 1.5329 1.6027 4%

Female & E_40_45 1.3398 1.3656 2%

exp(LP)
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30-35 indication.  You must decide whether the instability justifies grouping the 25-30 level with 

the base or if it is appropriate to group 25-30 and 30-35.   

In this instance, we chose to group 25-30, 30-35, and 35-40.  Business intuition would imply that 

women in these age groups experience higher than average long term disability incidence. Since 

females age 25-30 fall in this category, it was more appropriate to group them with ages 30-35 

than with the base.   

This process can be repeated for multiple versions of train and test to gain comfort in your 

model.  As mentioned earlier, you can compare factors from datasets in two different time 

periods (eg. 2007-2009 vs 2010-2012) or datasets from different sampling methods.   

After making these adjustments, the model had 22 parameters. 

Offset Train Model and Score on the Test Dataset 
If the modeling software allows the train model to be scored on the test dataset with ease, it is a 

worthwhile exercise.  The results of this analysis will be similar to factor validation above for 

variables that are included in the model.  However, this approach is more useful when reviewing 

the models performance on variables that are excluded from the model.  Offsetting refers to the 

approach of fixing model factors. Scoring is the approach of applying these factors to a new 

dataset.  In other words, you are just applying the algorithm to the observations in the test 

dataset.  It is useful to look at the actual versus predicted (A/P) values to determine if the model 

is sufficient.  An experienced modeler expects the A/P to be very close for variable levels with 

sufficient credibility.  We expect greater A/P deviation for levels with low credibility.  A good 

rule of thumb for evaluating model sufficiency is if the actual versus predicted values are within 

5%.  A model can still be sufficient if the A/Ps are greater than 5%.  The modeler and business 

partners must determine this threshold based on the context of the problem being solved and 

business intuition. 

Backwards Regression 
Backwards regression is a technique that reverses the model building process.  We added 

variables to the model to check their significance, while backwards regression removes variables 

to test their significance.  After each variable is removed, the same statistics will be analyzed 

(Chi-square, AIC, etc.).  If a variable fails the criteria (e.g. Chi-square > 5%), the variable will be 

removed.  If the variable passes the criteria, it will be added back to the model and the next 

variable will be tested.  This continues until all variables in the model have been tested.  It is 

prudent to perform this test on both the train and test datasets.   

The final validated model has 22 parameters – a reduction from 86!  
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Model Evaluation 

Gini 

The Gini score is a metric that signifies how well the model segments the response.  The metric 

is calculated by ordering the predicted values from highest to lowest.  The data is then bucketed 

into equal exposures.  Starting with the bucket with the highest predicted value, the cumulative 

sum of predicted values is calculated and plotted with the cumulative percentage of data.  The 

Gini coefficient is the area between the two curves.  The higher the Gini value, the better the 

model segments the variables.   

 

The Gini value is difficult to compare across projects.  It is more appropriate to compare the Gini 

scores across two models built on the same data.  It is not appropriate to compare the Gini scores 

across two separate datasets.   

The green line represents a perfect Gini score.  This is only possible if less than 5% of your 

exposures represent the entire value of the response (e.g. all claim dollars or all claim counts).  If 

the response has positive values across a large portion of your exposures, the maximum Gini 

score is reduced. 

Out-of-Time 
As mentioned earlier, the 2013 data was reserved for out-of-time sampling.  This test is very 

similar to the offset train and score on test approach above.  In this test, you take the model 

developed above and score it on the withheld data.  The first check is to determine if the model 

predicts the response on average. The comparison of incidence is as follows: 
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Actual incidence is 4% less than predicted incidence.  As long as the model does a good job of 

segmenting risks (predicting the slope) the slight difference in the overall level is not concerning. 

The only consideration is what intercept should be used when implementing the model.  Do the 

modeler and business partners believe that the 2013 incidence was a better than average year? If 

yes, the intercept from the original model may be appropriate.  If the belief is that the 2013 

incidence is more indicative of the future, a 4% decrease to the intercept may be appropriate. 

As mentioned above, it is important to review the actual and predicted values of each variable.  

The graph below reviews the observed and predicted values for salary in the out of time dataset. 

  

The graph shows the actual line jumping around the predicted values.  Given that this is only 1 

year of data, we do not expect the lines to match exactly.  As long as the actual values appear to 

indicate volatility (actuals jumping around predicted values) rather than an emerging trend 

(actuals moving further and further from predicted at the endpoints), we feel comfortable with 

the model. 

Decile Charts 
A decile chart is produced in a similar manner to the Gini coefficient.   The model is applied to 

each observation and sorted from lowest predicted value to highest predicted values.  Ten 

buckets are then created with equal exposures.  You then compare the actual and expected values 

in each bucket.  The graph below shows that the actual and predicted values align in each bucket.   

Actual Predicted A/P-1
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You may run into instances where the A/P is not close and you can investigate the particular 

bucket to determine if there are specific cases that are not aligning.  It is also useful to perform 

the decile analysis on other versions of the data.  For example, you can calculate the graph on 

train, test, and the out-of-time sample. 

Combining Models 
Once the aforementioned process has been completed for both the incidence and severity models, 

it is now time to combine them to develop the total estimated claim cost.  At this point, the 

choice to use the log link for severity in lieu of the canonical link function becomes clear.  The 

log link is multiplicative, therefore combining the factors for each variable is as simple as 

multiplying the incidence and severity factors together.  The table and graphs below show the 

final indicated factors for elimination period and the associated graph: 
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Incidence Severity Final Indication

01_Month 2.6894 0.5475 1.4726

02_Month 1.7546 0.8332 1.4618

03_Month 1.3968 0.8319 1.1620

04_Month 1.3968 0.8319 1.1620

05_Month 1.0000 1.0000 1.0000

06_Month 1.0000 1.0000 1.0000

09_Month 0.7679 1.0000 0.7679

12_Month 0.7679 1.0000 0.7679
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The combined model factors will then be used in the selection process. 

Selection and Dislocation 
Once you are finished evaluating the model and you are comfortable with the results, it is time to 

begin the post-modeling phase.  This involves selection and dislocation. 

Selection 
Selection is the process of either developing factors that could not be derived in the modeling 

process or adjusting the modeled indications. 

A successful selection process should involve the expertise of both the modeling team and the 

business partners.  The modelers will be able to provide insights that could only be derived 

through model building, while the business partners have insights that could only be derived 

through years of experience.   

As we discussed earlier in the model participants section, this may be a good time to bring sales 

and underwriting into the discussion.  The selection process may benefit from their front line 

knowledge of the product and the potential impact of some of the modeling changes.   

In the modeling phase above, we discussed the need to group the Elimination Period variable 

because not all levels were statistically significant.  Although we grouped EP 4 with EP 3 and EP 

5 with EP 6 during the modeling phase, we know that this grouping does not make sense as we 

look to implement the model.  In the graph below, we show the modeled factors and the selected 

factors.  EP 4 and EP5 were linearly interpolated values between EP 3 and EP 6.  We chose 

linear interpolation because EP 4 and EP 5 have such low exposures that they would not 

materially impact the initial indications of EP 3 and EP 6.  For EP 9 and EP 12, we chose to 
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group them together in the modeling phase.  Therefore, the grouped indication is somewhere 

between the true impact of the two variables. Therefore, the selected factor for EP 9 is above the 

grouped indication and the selected factor for EP 12 is below the grouped indication.   

 

The selection phase is much more of an art than a science.  When looking at the results from EP 

1 to EP 3, it seems that the graph follows a convex shape.  We chose to linearly interpolate, but 

we could have chosen to follow the convex shape of the graph for the EP 4 and EP 5 selections.  

The decision is up to the modeling team and their business partners.   

Dislocation 
After the selection phase is completed, dislocation is the comparison of the newly developed 

algorithm versus the old approach.  During the LTD pricing project, it would be the comparison 

of old versus new premiums.  

To this point, we have only looked at the pieces to construct estimated claim cost.  However, to 

truly see the impact of the model, it is necessary to gross up the claim costs for expenses and 

profit.  After applying expenses and profit, it is possible to look at the impact of the model on the 

market rates.  In this context, dislocation refers to the change in premium across notable 

variables.  For example, sales will be interested in the dislocation of premium across sales region 

or industry classification.   
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Implementation 
The first phase of implementation is building the scoring engine.  The scoring engine is the 

infrastructure that applies the final algorithm to future data.  This is not generally performed by 

the modeling team or business partners.  However, the modeling team will be heavily involved in 

giving direction to IT. The most important aspect of IT implementation from the business 

partner’s point of view is testing.  It will take a considerable amount of time to ensure that the 

months of work that were invested in building your model are not foiled by implementation 

mishaps. 

After the scoring engine is built, the team will need to determine how the score (predicted 

values) will be interpreted.  This will range from building a structured decision engine to training 

individuals to interpret the scoring engine.  The raw score or the interpretation of the score will 

then be delivered to the end users through some sort of interface.  The scope and structure of the 

implementation phase will vary from project to project. 

Documentation 
Often an overlooked aspect of any project, documentation is imperative for a few reasons: 

1. Future modelers can use your documentation as a guide to understand the learnings that 

will not be clear from the pricing algorithm.  This will save considerable resources when 

trying to refresh the model in the future.  Refreshing the model is the process of applying 

new data to the model to see if the indications have changed. 

2. Documentation will increase the credibility of the modeling team.  Having clear 

documentation on decisions will help validate the work and curb doubts regarding your 

project. 

3. Documentation is a perfect forum to showcase all of the hard work that has gone into 

modeling.  This point cannot be emphasized enough.  A large part of your success as a 

modeler hinges on ensuring that other departments understand the time and effort that 

you have put into your models.  Documentation is one of many avenues that can help 

showcase your work. 

4. In any finance/insurance context, internal/external audits are likely to occur due to the 

increased prevalence of model governance, model risk management, and regulatory 

oversight.  Proper documentation will help meet these audit requirements. 

Monitoring/Reporting 
After your project is complete, the business will want to monitor and report the performance of 

the model.  No model is perfect.  A good monitoring program will help identify any potential 

issues with the final algorithm before it has a substantial impact.  Additionally, monitoring will 

help determine when the model needs to be refreshed. As mentioned earlier in the paper, the 
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model is only as good as the data used to build it.  As time goes on and the environment changes, 

the model may no longer do a good job of predicting the future.  Monitoring will help identify 

when the modeling team should start the whole process again. 

Conclusion 
Applying the process above may prove very useful in your future analyses.  Although the process 

is very time consuming, it may provide real business value to both you and your business 

partners.  As with any project, your ability to acquire resources to embark on future projects 

requires an ability to clearly articulate the benefits of your analysis.  If you want to embark on 

similar projects in the future, do not be afraid to showcase your work.  The current state of 

technology and the availability of data make it an ideal time to start using predictive modeling in 

your day-to-day work.   

If you have any questions, please feel free to reach out to the authors at their email addresses 

below: 

Michael.Ewald@thehartford.com 

Qiao.Wang@thehartford.com 
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