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Abstract 
Since the 2007 Financial Crisis, regulators have been very interested in modeling and measuring 
systemic risk in the financial system.  In this study, a network approach is taken to characterize the 
systemic risk of two nontraditional insurance industries: the bond insurer industry and the CDS market. 
These industries were chosen since traditional insurance industries do not generate significant systemic 
risk.  The network model for bond insurers demonstrates that after an exogenous shock (a fall in the 
housing market), bond insurers become insolvent not because of the cross holding of assets but because 
of the drastic increase in their liabilities.  A second, structurally different network model of the CDS 
market shows how certain parameters of a network can affect the expected loss of the system relative 
to the initial loss caused by a default. This model also demonstrates how a clearinghouse stymies loss 
propagation and highlights the usefulness of important data such as counterparty exposures that are 
not publicly available.  If regulators collected counterparty exposure data, they could use it in this kind 
of model to identify systemically important institutions and better monitor the financial system. 
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INTRODUCTION 
The 2007 Financial Crisis illustrated the severity of losses resulting from systemic risk.  Top European and 
U.S. banks lost over $1.3 trillion on toxic assets and bad loans from 2007-2010.2  Bank bailouts cost the 
U.S. government in excess of $200 billion.3

executive pay

  With the bailouts being financed by the tax-paying public, 
the Dodd-Frank Wall Street Reform and Consumer Protection Act was passed in 2010 to address 
consumer protection, , and bank capital requirements.  The act also expanded regulation 
on the shadow banking system and financial derivatives and enhanced authority of the Federal Reserve 
to safely wind-down systemically important institutions.  As part of the Act, The Financial Stability 
Oversight Council and the Office of Financial Research were created.4

Systemic risk is the risk that the failure of one significant financial institution can cause or significantly 
contribute to the failure of other significant financial institutions as a result of their linkages to each 
other.

  Since its creation, the new 
Financial Stability Oversight Council has been charged with identifying and regulating threats to financial 
stability with systemic risk being the key focus.   

5

Systemic failure can arise from four different sources: direct bilateral interbank exposures, common 
asset exposure among banks, net settlement systems for large payments, and imitative runs fueled by 
information contagion.

  Systemic risk can also be defined to include the possibility that one exogenous shock may 
simultaneously cause or contribute to the failure of multiple significant financial institutions in an 
economy. 

6  Direct bilateral exposures between institutions represent one of the most 
common sources of systemic risk.  Failures can occur when one bank holds deposits from several other 
banks, and the failure in the first bank results in either distress or failure that spreads to other firms that 
are connected to the distressed institution.  Similarly, systemic failure can occur from the counterparty 
exposure risk in derivative transactions.  The most common and recognized of these activities are credit 
default swaps (CDS).  Systemic risk arises from CDS when one institution fails to settle its derivative 
position with another institution – the end result being that both institutions fail.  If the second 
institution fails to settle its obligations with its other counterparties, the contagion7

                                                           
2 Reuters, Factbox – European, U.S. Bank Writedowns and Credit Losses, February 24, 2011.  

 of failures continues 
through the exposed institutions until only institutions with adequate capital remain or the system itself 
fails.  Systemic failure also occurs when a commonly-held asset or a class of assets such as a mortgage-

3 CNN Money, “Special Report: Bailed Out Banks,” 
http://money.cnn.com/news/specials/storysupplement/bankbailout, November 19, 2010.  
4 The Financial Stability Oversight Committee was established by the Dodd-Frank Wall Street Reform and 
Consumer Protection Act in 2010 to coordinate across agencies in monitoring risks and emerging threats to U.S. 
financial stability. 
5 ECB Workshop, “Recent Advances in Modelling Systemic Risk Using Network Analysis,” January 2010. 
6 Hal Scott, “Reduction of Systemic Risk in the United States Financial System,” Harvard Journal of Law & Public 
Policy, Vol.33, 2009. 
7 Contagion is a mechanism describing how systemic failures can occur. It can be thought of as a “domino effect,” a 
failure of one institution leading to failures of more institutions.  

http://en.wikipedia.org/wiki/Executive_pay�
http://en.wikipedia.org/wiki/Shadow_banking_system�
http://en.wikipedia.org/wiki/Derivative_(finance)�
http://money.cnn.com/news/specials/storysupplement/bankbailout�
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backed security (MBS) suddenly drops in value, and the resulting devaluation leads to distress in or 
failure of a large portion of the industry.  Systemic failure also occurs when one bank fails to settle a very 
large position in a clearinghouse, or some other version of a net settlement system.  Then, other 
counterparty banks do not get paid and as a result, fail themselves.  In addition, chain reaction failures 
result from imitative runs when one bank fails, and depositors in other banks withdraw funds in a panic.  
The ensuing liquidity crisis in these banks ultimately leads to failure. 

The severity of direct bilateral exposure failure is dependent on the degree of interconnectivity among 
the financial institutions involved in the derivative transactions.  The lack of existing information on the 
degree of connectedness among the institutions remains a concern to the Financial Stability Oversight 
Council and other governmental regulatory bodies. 

This paper proposes two network models to identify and measure the systemic risk in a financial system 
which may have a high degree of interconnectedness and whose failures may result in further distress or 
breakdowns in the system.  Networks are particularly useful for modeling risk in a financial system due 
to their handling of contagion, resulting in either losses propagating through a financial system in crisis 
or the absorption of shocks in a resilient, well capitalized financial system.  Network models have been 
applied in other areas, notably in communications, transportation, and electric power distribution.  In 
each of these areas, some item flows from point to point through a network that involves connections 
between points.  In the financial system there is interest in the flow of cash and credit between financial 
institutions.  

While networks have been used to model systemic risk in financial institutions since 2003, only modest 
research exists for systemic risk in the insurance industry.  A study by the Geneva Association in 2010 
suggests a reason for this lack of research.8  The Geneva Association paper states that traditional 
insurance and reinsurance businesses are relatively small sources of systemic risk compared to banks 
and other financial institutions.  The Association posits that the structure of the traditional insurance 
model – upfront premiums, relative lack of interconnectedness, and “substitutability”9

This research paper adds to the existing research in systemic risk by specifically applying network 
models to two non-traditional insurance industries that experienced disaster stemming from systemic 
risk during the 2007 Financial Crisis: the monoline bond insurance industry and the credit default swap 
(CDS) security industry.  The bond insurance model focuses only on a particular segment of the financial 
system while the CDS model incorporates a broader portion of the financial system, covering multiple 
industry segments.  

 -- reduces the 
systemic impact of the insurance industry.  The group also states systemic risk does exist for two specific 
groups that are involved in more non-traditional activities in insurance.  These two groups include firms 
involved in credit derivative security activities such as AIG and bond insurers such as FSA, AMBAC, and 
MBIA. 

                                                           
8 Geneva Association Systemic Risk Working Group, “Systemic Risk in Insurance – An Analysis of Insurance and 
Financial Stability,” March 2010. 
9 In this context, “substitutability” means the opposite of “Too big to fail.” 
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RELATED LITERATURE 
Current research on systemic risk in the financial system can be divided into two camps:  an econometric 
approach based on high frequency data and a network approach based on modeling the inherent 
structures and links in the system.  While the two approaches are different in methodology, the general 
conclusions from both research camps are somewhat similar. 

Econometric Approach 
Billio et al (2011) propose several econometric measures of connectedness based on principal 
component analysis and Grainger-Causality networks.  They apply this structure using high frequency 
data including the monthly returns of hedge funds, banks, brokers, and insurance companies to capture 
the causal relationships among the largest financial institutions across these sectors.  The authors find 
that all four sectors have become highly interrelated over the past decade, likely increasing the level of 
systemic risk through a complex and time-varying network of relationships.  They find that these 
measures can identify and quantify financial crisis periods and contain some predictive power in out-of-
sample tests.  Finally, their results show that an asymmetry exists in the degree of connectedness 
among the four sectors indicating that banks and insurance companies are greater sources of systemic 
risk compared to hedge funds and brokers.10

Chen et al (2012) use high frequency market value data on credit default swap spreads and intra-day 
stock prices to measure systemic risk in the insurance sector.  The authors extend non-linear causality 
tests, finding evidence of significant bi-directional causality between insurers and banks.  After 
correcting for conditional heteroskedasticity, the researchers find however that the impact of banks on 
insurers is stronger and of longer duration than the impact of insurers on banks.  They also use stress 
tests to confirm that banks create significant systemic risk for insurers but not vice versa. 

  The authors cite the Geneva Association study mentioned 
above in suggesting that the insurance industry contributes to systemic risk not from its traditional 
activities but rather from “non-core activities such as insuring financial products, credit-default swaps, 
derivatives trading, and investment management.”  

Brownlees and Engle (2011) define the systemic risk of a financial institution as its expected contribution 
to the total capital shortfall of the system in a future crisis.  They propose a systemic risk measure that 
captures a firm’s capital shortage by incorporating the firm’s leverage and Marginal Expected Shortfall, 
the tail expectation of the firm equity returns conditional on a substantial loss in the market.  In order to 
estimate Marginal Expected Shortfall, they build a dynamic model for the market and firm returns 
characterized by time varying volatility and correlations.  Their sample consists of data from 94 top U.S. 
financial firms between July 2000 and July 2010.  The results indicate that this methodology may provide 
useful rankings of systemically risky firms at various stages of a financial crisis.  

                                                           
10   One of Billio’s explanations for the asymmetry is that banks lend capital to other institutions, so the nature of 
their relationships with counterparties is not symmetric. Also, by competing with other financial institutions in 
non-traditional businesses, banks and insurers take on risks more appropriate for hedge funds, resulting in a 
“shadow hedge fund system” that cannot be managed by traditional regulatory instruments. 
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Econometric Approach Drawbacks 
Current econometric methods as shown in Billio et al (2011) take advantage of the large amount of the 
more readily available capital market data to perform modeling.  In hindsight, some of the econometric 
models are able to confirm insights from real-world observations.  However, econometric models have 
some disadvantages.  First, market prices are subject to daily swings of market sentiment, resulting in 
significant noise when connecting market instrument values to the systemic effects.  Second, most 
econometric methods fail to take into account the structural connections of various institutions through 
common or cross holdings in the balance sheet.  Econometric models can indicate correlation among 
important variables in the financial system but fail to define the actual cause-and-effect in the system.  
Without this type of understanding, the capability to incorporate drivers of market valuations, such as 
the Case-Schiller housing price index for the housing sector, is difficult.  

The econometric, high-frequency data modeling of systemic risk further suffers from a lack of flexibility 
in its framework.  Most econometric methods lack the capability to perform sensitivity testing on the 
effect of the structure of the financial network, and this inability makes it difficult for regulators to 
determine the effect of firm heterogeneity and concentration on risk to the system.  Similarly, an 
inability of the econometric framework to model the structural effects of a system makes the 
assessment of the inclusion of a national clearinghouse for credit default swaps impossible.  
Furthermore, econometric methods generally lack the ability to characterize the effect of common asset 
holdings on risk propagation.  Consequently, such methods fail to demonstrate the mechanism of how 
loss is propagated among various institutions and do not provide the insight into how insolvency of a 
single or several institutions can disrupt the whole financial system.  This limitation of econometric 
models invites other approaches to assess systemic risk.   

Network Approach 
Researchers have recently proposed that network models can help model the systemic risk in financial 
systems which display complex degrees of connectedness.  Network models have been used in many 
fields such as communications, transportation, and utility distribution where the intricacies of the 
connections make optimization of the system flow analytically challenging.  The application of networks 
to model systemic risk in financial systems has seen significant progress since the 2007 sub-prime 
mortgage initiated crisis.  Most current research in the area of financial network models uses institution-
level financial firms or banks as the nodes in the system and their bilateral exposures as the arcs or 
connections.  Within this framework, the existing literature can be further divided by the types of data 
used to populate the model.  Nier et al (2008), Gai (2009), and Georg (2010) use simulated data to 
capture insights into the network system.  Castren (2009), Markose (2010), and Cont (2010) use 
empirical data to model their system. 

Nier et al (2008) use simulated data in their network model to investigate the effect of the financial 
system’s structure on systemic risk.  In their simulated framework, banks serve as the nodes, and their 
interbank exposures act as the connections or the arcs in the network.  The authors determine the 
effects of capitalization, connectivity, and concentration on contagious default in this simulated 
framework.  They find that better capitalized banks are more resilient to contagious defaults, but the 
effect is non-linear.  The researchers also determine that connectivity’s effect on systemic risk depends 
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on the level of connectivity.  At low levels, an increase in connectivity acts as a shock transmitter, 
increasing the contagion effect, whereas, at sufficiently high levels, the shock absorption effect 
dominates, and the initial shock is spread over more and more of the bank nodes.  Finally, the authors 
show that everything else equal, more concentrated banks are prone to larger systemic risk. 

Gai and Kapadia (2009) also investigate the dual nature of connectivity in their paper.  In their model, 
banks are again the nodes, and the interbank exposures are the arcs.  Then, they assume a random 
(Poisson) probability that each node is linked.  From this model, the authors find that the complex 
financial networks exhibit a “robust-yet-fragile” nature; greater connectivity helps lower the probability 
of contagion but increases its spread in the event that problems do occur.  Furthermore, they find that 
illiquid markets for key financial assets compound the contagion problem, amplifying both the likelihood 
and the severity of the risk.  Finally, they argue that credit derivatives create far-reaching inter-linkages 
that reduce the probability of contagion with greater use under some plausible scenarios, but the 
resultant exposure leads to greater financial impact in a crisis. 

Georg and Poschmann (2010) continue the research in financial network models by using numerical 
simulations to examine the effect of a central bank in the network model of the financial system.  In 
their model, bank nodes including a central bank are connected via their balance sheet exposures and 
incorporate a constant relative risk aversion utility function in determining their portfolios.  The authors 
find that the presence of a central bank has a stabilizing effect on the financial system, and this stability 
effect may arise from the enhanced liquidity allocation provided by the central bank.  From their model, 
the researchers find that systemic risk increases with credit “lumpiness,” defined as fewer, large credit 
counterparties.  The authors define two types of shocks, one resulting from the insolvency of a large 
bank and resulting in contagion effects throughout the network and another in which a shock affects all 
the banks in a network via commonly held assets.  They posit that the destabilizing effect of common 
shocks poses a greater threat to systemic stability than the direct contagion effect. 

Castren and Kavonius (2009) use historical Euro Area Accounts data to calibrate a sector-level network 
model to help identify the potential key triggers to instability, to detect the contagion mechanisms in 
the system, and to determine the effects of leverage on a system’s resistance to shock and contagion in 
a multi-period setting.  In their model, the sectors include households, banks, non-financial 
corporations, insurance and pension fund companies, other financial intermediaries, general 
government, and the rest of the world.  They extend the accounting based bilateral exposure connected 
network to a risk-based network by applying a contingent claims analysis approach developed by 
Moody’s KMV.  The authors find that in the 10 years since the creation of the European Monetary 
Union, the interlinking arcs represented by the bilateral financial accounts have grown significantly with 
the banking sector playing a key role in the system.  They determine in their simulations that local cash-
flow shocks can spread quickly via the bilateral exposures and even without the presence of defaults in 
the process.  The authors also find that sectors with highest leverage are the most vulnerable ones to 
shocks. 

Markose et al (2009) apply a complex agent-based computational variant of the financial network model 
to assess systemic risk.  The authors use FDIC data and market share data of 26 banks to create a U.S. 
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credit default swap (CDS) market-based network to investigate the consequences of the fact that the 
top 5 banks are responsible for 92% of the activity in the $16 trillion U.S. CDS market.  Their network 
model uses the major banks as the main nodes in the system and incorporates a “non-U.S. bank” node 
to include monolines11

Cont et al (2010) examine the financial network approach to modeling system risk in the Brazilian 
financial system and to measuring the systemic importance of a single institution in the system.  Their 
model incorporates Brazilian interbank exposure data including fixed income instruments, borrowing 
and lending, derivatives, foreign exchange, and instruments linked to exchange-traded equity risk.  The 
authors stress test the model by applying correlated market shocks to the balance sheets of all the 
banks in the network in various default scenarios.  They find that connectivity and concentration of 
exposures as measured by counterparty susceptibility and local network fragility are highly correlated to 
the systemic importance of an institution.  The researchers also show that a minimum capital ratio 
reduces the effect of large institution defaults and that a similar effect can occur by requiring minimum 
capital reserves on only those systemically important firms and those who are exposed to them.  Finally, 
they introduce a “Contagion Index” which measures the expected loss to the network triggered by the 
default of the institution subjected to a market shock. 

, hedge funds, and other insurers.  The links are the bilateral obligations of the 
CDS.  The authors argue that the implied incentives of the credit risk transfer scheme included in Basel II 
may have contributed to the 2007 Financial Crisis in two ways.  First, the use of risk transfer mechanism 
allows a decrease in the actual regulatory reserve requirements which may have stopped the contagion 
from spreading.  Second, the growth and popularity of the synthetic securitization of these risk transfers 
concentrates the risk among a few large dominant players.  The authors determine that the intervention 
of the Federal Reserve to bail out certain “too large to fail” institutions could not be averted because 
their large number of links to other institutions could have resulted in the failure of the whole CDS 
market and possibly the whole financial system.  Furthermore, they identify these “super-spreaders” 
and propose a “system risk ratio” which quantifies how much capital is lost collectively when one of 
these firms fail.   

 Common Findings in the Network Model Literature 
There seems to be some consensus in the Network Model research of systemic risk that structural 
parameters of a network, such as connectivity and concentration, matter as much as size when 
assessing the systemic importance of an institution.  Size alone cannot be used to determine a firm’s 
systemic importance.  The Cont study is unique in that it studied the effect of local measures of 
connectivity and concentration on systemic risk.  Most studies, like the Nier study, focus on aggregate 
measures of connectivity and concentration.  The Cont study found that their two local measures, 
counterparty susceptibility and local network frailty, can significantly explain default contagion.   

There is some disagreement over the relationship between the connectivity of a network and contagion 
risk.  Some authors including Babus found that greater connectivity reduces contagion risk in interbank 
markets, and if a certain connectivity threshold is reached, contagion risk is practically nonexistent.  Gai, 

                                                           
11 Monolines in this study refer to bond insurance companies such as AMBAC, MBIA, and FSA who provided 
guarantees to financial assets.   
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Georg and Nier came to different conclusions.  The Gai and Georg studies found that financial networks, 
especially interbank networks, exhibited a “robust-yet-fragile” property.  Greater connectivity of a 
network does help to lower the probability of contagion but actually increases its spread in the event 
that contagion breaks out.  In the network constructed by Nier, greater connectivity led to a more 
resilient system after a certain connectivity threshold was reached, but for a low degree of connectivity, 
greater connectivity actually led to an increased contagion effect.  Thus, Gai, George and Nier observed 
that connectivity has a contingent nature: depending on the actual level of connectivity, greater 
connectivity can either increase or decrease contagion risk.  

Most papers focus almost exclusively on systemic risk through contagion effects, but the Georg and 
Cont papers argue that common asset shocks which affect all institutions of a network via commonly 
held assets may pose an even greater threat to systemic stability.  The Cont study, in particular, shows 
that systemic risk is understated when common shocks are not considered. 

This paper introduces a network model to characterize the systemic risk in the financial system as 
performed in some of the literature above.  The study differs from the other papers by specifically 
testing the structure of the network applied to two existing financial systems: the monoline bond 
insurer network and the credit default swap based network.  Furthermore, the paper identifies 
information that may not be publicly available but would be vital for regulators in monitoring systemic 
risk. 

MODELS 

Bond Insurer Network 

Introduction 
Monoline bond insurers provide insurance coverage for various types of securities such as municipal 
bonds, residential mortgage-backed securities (RMBS), asset-backed securities (ABS), and collateralized 
debt obligations (CDO).  The nature of the bond insurance business is to provide credit enhancement to 
relatively low-rated bonds in order to reduce the borrowing costs of the bond issuer.  Consequently, a 
strong credit rating is critical for the bond insurer’s business. 

At the start of the 2007 Financial Crisis, numerous insured financial assets such as RMBS, CDO, and other 
securities were heavily downgraded by rating agencies.  Subsequently, the corresponding insurers were 
forced to book large loss reserves.  Moreover, since bond insurers’ assets include their own insured 
bonds as well as bonds insured by others, the devaluation of insured bonds resulted in the deterioration 
of the insurers’ balance sheet as well.  As a result, most of the insurers became financially distressed, 
and their credit ratings were downgraded.  Ultimately, the rating downgrades of the bond insurers 
triggered large-scale downgrades of all the relevant insured bonds, which ultimately depreciated the 
value of the entire bond market.  In the end, many bond insurers either declared bankruptcy or merged 
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with other insurers due to the dramatically increased liabilities and the deterioration of assets.  Since 
the crisis, the bond insurer market and its business model have undergone drastic changes.  

Bond Insurer Market Structure 
In the bond insurer network, a change in an insurer’s credit rating is transmitted directly to the insured 
asset’s rating.  Thus, credit downgrades of insurers affect the value of insured bonds.  Rather unique to 
the industry, bond insurers hold the same bonds that they insure as a part of their asset portfolio.  
Hence, the value of the bonds impacts the asset value of the insurers.  Additionally, some bonds such as 
ABS and RMBS represent a pool of securitized mortgage loans or debts which may be backed by similar 
assets.  This structure implies that a change in the value of one underlying asset may result in the 
change in value of multiple bonds or securities.  For example, a drop in one home’s value results in a 
drop in the value of the homes in the surrounding neighborhood.  Consequently, values of those bonds 
whose underlying assets are the surrounding homes drop. 

Network Model of the Bond Insurer Market 
The structure of the bond insurance market can be viewed as a network where the bond insurers and 
the insured securities are the nodes, and the bilateral balance sheet exposures are the arcs.  The nodes 
are entities with their own balance sheets.  For bond insurers, a percentage of the assets is invested in 
the bonds that they insure; a percentage of the liabilities is shown as the loss reserve; and a certain 
amount of surplus is reflected as capital on the balance sheet.  The insured bonds are also treated as 
balance sheet nodes in which the assets are represented by the marked-to-market (MtM) value of the 
underlying homes, and the liabilities reflect the face value of the loan that needs to be repaid.  The arcs 
in the model are bilateral balance sheet exposures.  The asset side of an insurer is linked to the liability 
side of each of the insured bonds it owns.  This model assumes that each bond is insured by only one 
insurer so that the liability side of an insurer is linked only to the bonds it insures.  An illustration of the 
bond insurer network structure is shown in Figure 1. 
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Figure 1. Simple Illustration of the Bond Insurer Network Structure 

 
 

Model Assumptions 
The following assumptions are used in setting up the network model to analyze the bond insurer 
structure and to reveal the systemic risk factors.  First, the model includes only those bonds that are 
residential mortgage-backed securities (RMBS).  Second, this model assumes that there are only six 
bond insurers and six RMBS in the world, and that each insurer proportionally invests in all the RMBS, 
including the bond it insures.  Third, any one bond is insured by only one insurer, implicitly specifying a 
one-to-one bilateral linkage.  Finally, the connection between different RMBS is measured by the 
compound effect of the Asset Closeness Factor which is defined in Appendix 1.  

In the bond insurer network model, a downgrading cycle mechanism causes the contagion effect within 
the network, propagating the losses and initiating systemic risk.  The downgrading cycle can be 
described as follows: 

1. Downgrades to the RMBS deteriorate the financial status of bond insurers and indirectly cause the 
downgrade of the insurers.  

2. Downgrades of the insurers trigger further downgrades of all the insured bonds. 

3. Downgrades of the insured bonds lead to further downgrades of the insurers since the insurers hold 
the insured bonds as their assets.  

Each time there is a devaluation or ratings downgrade, additional losses occur.  In the model, an initial 
shock means a sudden large-scale price decline in the housing market along with a rising default 
probability, which is exogenous to the model.  When the network system suffers a shock, the losses can 
propagate through the arcs until the network reaches equilibrium.  This paper assumes that bankruptcy 
does not occur while the network achieves equilibrium.  

The complexity of the bond insurer network arises from the fact that a bond insurer holds the same 
bond that it insures.  Since insurers hold the insured RMBS in the market as an asset, the price of the 
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mortgage backed security affects the value of the insurer’s total assets.  Additionally, since the 
underlying asset value and default probability of RMBS affect the loss reserves of the insurers, the RMBS 
asset can also affect the insurer’s liabilities. 

 

Model Mechanism 
The bond insurer network model, at its heart, determines whether the system will survive after a given 
exogenous shock, i.e. a significant drop in the housing market.  The ultimate objective of this model is to 
determine the asset and liability value of each insurer after the exogenous shock and compare them to 
the pre-shock asset and liability values, which are found empirically.  The insurer’s assets are composed 
of RMBS, other insured bonds, treasury bonds, and other securities.  Its liabilities are composed of a 
reserve for the insured RMBS and a reserve for other insured bonds.  In this model, since the shock hits 
the housing market, this paper is particularly concerned with valuing RMBS and the insurer’s loss 
reserves for the RMBS.  This valuation method is inspired by the Black-Scholes framework and Moody’s 
KMV methodology.   

Pre-Shock 
This paper assumes that the underlying assets of the RMBS follow a geometric Brownian motion.  Based 
on the observed yields to maturity, the risk free rate and the insurer’s balance sheet information, this 
paper derives the implied volatility of RMBS underlying assets before the shock.  This is done by using a 
manipulation of the Black-Scholes option pricing formula.  With this implied volatility, the underlying 
asset distribution can be simulated.12

This paper uses this underlying asset distribution to obtain the implied liability.  When the price of an 
underlying asset falls below its mortgage face value, or implied liability, default occurs.  Consequently, 
the insurer then has to cover the difference.  Given an observed default probability 𝑝0, an implied 
liability can be calculated as the 𝑉𝑎𝑅(𝑝0) of the underlying asset distribution.  

  

Post-shock 
Once a shock hits the housing market, the distribution of the implied asset value shifts.  The mean of the 
distribution decreases while the volatility increases, as seen in Figure 3 (note that the distributions here 
are normal, not lognormal, for illustrative purposes).  Once the underlying asset value falls below the 
liability of the RMBS, the difference between the underlying asset value and liability of the RMBS is the 
insurer’s loss.  As a result, the probability of default for the RMBS rises as well as the loss reserves of the 
bond insurer.  The loss reserves are represented by the shaded area to the left of the implied liability of 
the RMBS.  These loss reserves are found via simulation.  As a result, the liabilities of the insurer 
increase.  

When the liabilities of the insurer increase, the insurer becomes less solvent, and the firm’s rating falls.  
This leads to a drop in the RMBS value, and because the insurer holds the same RMBS that it insures, the 

                                                           
12 The final loss reserve calculations require a comparison of the distributions before and after the shock. Under 
the Black-Scholes framework, these distributions are assumed to be lognormal.  
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value of the insurer’s assets decreases too.  This cycle continues until equilibrium is reached and at such 
a point, one can solve for the equilibrium value of the insurer’s assets.  The equilibrium value of an 
insurer’s assets can be written as: 

 𝐼𝑖∗(T) = ∑ 𝛽𝑖,𝑛𝑉𝑛𝑖𝑛𝑠
∗(T) 6

n=1 + 𝐴𝑖 , 𝑖 = 1,2, … ,6,𝑛 = 1,2, … ,6  

where 𝛽𝑖,𝑛 is the holding weight of 𝑉𝑛𝑖𝑛𝑠
∗(T)  for insurer 𝑖, 𝑉𝑛𝑖𝑛𝑠∗ is the equilibrium value of insured 

RMBS, and 𝐴𝑖  represents all other assets of insurer 𝑖.  Both 𝛽𝑖,𝑛 and 𝐴𝑖  are assumed to be constant in 
the bond insurer model.   

 

Figure 3. The Loss Reserves for RMBS before and after Shock 

 
 

The equilibrium value of each insured RMBS that the insurer holds is as follows:  

 𝑉𝑛𝑖𝑛𝑠∗ = 𝐸�min�𝐵𝑛(𝑡0) + 𝐼𝑖�𝑉𝑛𝑖𝑛𝑠∗�,𝐷𝑛�� 

                         = 𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝑃𝑢𝑡(𝐵𝑛(𝑡0),𝐷𝑛 − 𝐼𝑖(𝑉𝑛𝑖𝑛𝑠∗), 𝑟0,𝑇,σ𝑛∗ )     

where 𝐵𝑛(𝑡) is the underlying asset value, 𝐷𝑛 the face value or the legal liability of the RMBS (debt), 𝐼𝑖 is 
the asset value of insurer 𝑖 before the shock and is a constant, σ𝑛∗  is the post-shock implied volatility of 
RMBS 𝑛, and Put(𝐵𝑛(𝑡),𝐷𝑛 − 𝐼𝑖, 𝑟0,𝑇,σ𝑛∗ ) represents a European put option with the risk-free rate 𝑟0, 
time to maturity 𝑇, and implied volatility of σ𝑛∗ .  This equation, where the RMBS is decomposed into a 
discounted bond and a put option, is derived from the Black-Scholes framework and Moody’s KMV 
methodology.  

After equilibrium has been reached and the insurer’s capital, defined as the assets less the liabilities, is 
not positive, the insurer defaults.  
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Data 
In order to populate the balance sheet structure of the six bond insurers in the bond insurer model, the 
historical balance sheet data of six insurers are imported as of Q4, 2006.  The six insurers are Ambac, 
ACA, CIFG, MBIA, FGIC and Syncora.  These six bond insurers dominated the market before the 2007 
Financial Crisis.  For simplicity in modeling, it is assumed that there are only six bond insurers in the 
bond insurance market.  Additionally, the model utilizes the commercial mortgage-backed security yield 
spread data in 200613 and the RMBS default probability14

 

 data to calculate the loss reserve and the 
marked-to-market value of the six RMBS. 

Scenario Test and Sensitivity Test 
1. Scenario Test 
Scenario tests are performed for the bond insurer network model to explore the sources of systemic risk 
and to examine the impact of initial shocks of differing scales.  Additionally, sensitivity tests are 
performed to examine the influence of the Asset Closeness Factor 𝑟. 

Some basic assumptions and settings are addressed below.  There are six bond insurers in the market, 
denoted as C1, C2,…, C6.  There are various kinds of bonds in the market in this model world, however, 
only six of them are the resident mortgage-backed securities (RMBS), denoted as B1, B2,…, B6.  Each 
RMBS is insured by only one insurer, which means a one-to-one relationship.  A shock is defined as an 
exogenous event that causes significant devaluation of one or more RMBS in the market.  The historical 
balance sheet data of Ambac, ACA, CIFG, MBIA, FGIC and Syncora as of Q4, 2006, are adopted to mimic 
the historical balance sheet structure before the shock.  Each insurer’s liability is only composed of two 
kinds of loss reserves, where 50% is used to cover the RMBS it insures, and the rest is for “other reserves” 
that will not be affected by a shock in the housing market.  The market shares of the six RMBS are 
determined by the percentage of its loss reserve to the total loss reserve for all six RMBS.  For the asset 
side of an insurer, 25% of the total assets represent the investments in the six RMBS, where the 
portfolio composition matches the market share of the six RMBS.  Another 25% is the investments in 
other insured bonds in the market.  Although the loss reserves for other insured bonds will not be 
affected by the shock (the default probability stays constant), the market price of these bonds will 
decline since the deterioration of an insurer’s financial status has a negative impact on all the bonds it 
insures.  The remaining 50% of the total assets is an investment in Treasury bonds and will not be 
influenced by the shock.  Before starting the tests, the value of basic parameters are derived from 
empirical data including the risk free rate, the RMBS market price, and default probability.  Based on the 
empirical data and the formulas, the pre-shock regime implied volatility for each RMBS is determined. 

                                                           
13 Credit Suisse, “CMBS Market Watch Weekly”, Fixed Income Research, http://www.credit-
suisse.com/researchandanalytics, January 19, 2012 
14 Donchev, T. “Modeling Defaults in Residential Mortgage Backed Securities: An Intensity Based Approach.”, 
Unpublished Paper, August 2008 

http://www.credit-suisse.com/researchandanalytics�
http://www.credit-suisse.com/researchandanalytics�
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In the real housing market, it can be observed that there is a simultaneous movement of housing prices.  
For instance, if the price of homes in one region goes up, it is highly likely that the price of other homes 
in surrounding regions will rise too.  Moreover, the housing price of other regions may also increase due 
to the positive market trend.  Since the RMBS’ underlying asset is the house, different RMBS are also 
correlated.  In this model, one factor is introduced to specifically manage the correlation between 
different RMBS.  This is called Asset Closeness Factor 𝑟.  It is related but not equivalent to the housing 
sector correlation.  The range of 𝑟 is between 0 and 1, with the default value of 𝑟 set to 0.7 in the model, 
and larger 𝑟 values represent closer correlation.  A more detailed explanation is presented in Appendix 1. 

By incorporating the Asset Closeness Factor into the bond insurer network model, the underlying assets 
of RMBS are linked together to create a more reasonable network structure that may assist regulators in 
verifying the source of systemic risk.  In order to demonstrate how the model reacts to shocks, and to 
provide more insight on the bond insurer network, six different scenarios are tested: 

1. The underlying asset of B6 drops 10%, where the market share of B6 is less than 1%. 

2. The underlying asset of B1 drops 10%, where the market share of B1 is around 38%. 

3. The underlying assets of B1 and B2 both drop 10%, where the total market share of two bonds is 

around 80%. 

4. The underlying asset of B6 drops 20%, where the market share of B6 is less than 1%. 

5. The underlying asset of B1 drops 20%, where the market share of B1 is around 38%. 

6. The underlying assets of B1 and B2 both drop 20%, where the total market share of two bonds is 

around 80%. 

Table 1. The Market Share of Six RMBS in the Bond Insurer Model 
Bond Name B1 B2 B3 B4 B5 B6 
Market Share (6 bond) 38.07%  41.28%  16.59%  2.21%  1.33%  0.53%  

 

The scenario tests are designed to define a shock from two perspectives: the amount of bond 
devaluation it causes, and the percentage of the market it initially affects.  Table 2 illustrates the results 
of the scenario tests.  For a bond insurer, the Asset Change represents the change of the asset value 
compared with the total asset value before shock, as a percentage.  Similarly, the Liability Change 
portion measures the change in the insurers’ liabilities.   

Starting with the Asset Change scenarios from Table 2, it is clear that shock has little impact on the value 
of the insurers’ assets.  Due to the common asset holding in RMBS, the decline in asset value is similar 
for all six insurers, no matter the size of the market that the shock impacts.   
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Table 2. The Scenario Test Results for the Bond Insurer Model 

Scenario Asset Change 
 C1 C2 C3 C4 C5 C6 

1 -0.01% -0.01% -0.01% -0.01% -0.01% -0.01% 
2 -1.53% -1.53% -1.53% -1.53% -1.53% -1.53% 
3 -2.04% -2.04% -2.04% -2.04% -2.04% -2.04% 
4 -0.04% -0.04% -0.04% -0.04% -0.04% -0.04% 
5 -3.55% -3.55% -3.55% -3.55% -3.55% -3.55% 
6 -15.26% -15.26% -15.26% -15.26% -15.26% -15.26% 

Scenario Liability Change 
 C1 C2 C3 C4 C5 C6 

1 0.3% 0.0% 0.2% 0.1% 0.4% 34.3% 
2 186.7% 88.9% 138.4% 39.9% 38.3% 23.1% 
3 227.5% 219.9% 243.3% 67.9% 64.9% 39.2% 
4 2.19% 0.81% 0.66% 0.24% 1.23% 91.77% 
5 738.81% 331.05% 519.17% 133.98% 141.36% 75.04% 
6 3394.29% 3322.66% 4022.54% 1669.54% 1592.73% 988.66% 

 

For example, in Scenario 2, the asset value of the bonds falls 1.53% for all six insurers when the 
underlying asset value falls 10% while the asset value falls 3.55% when housing values fall 20% in 
scenario 5.  This relationship indicates that inter-connections may amplify the initial shock. 

The liabilities of the bond insurers are significantly influenced by a shock.  In scenarios 1 and 4, only C6 
experiences notable liability increases since C6 has a tiny market share and has fewer connections to the 
other insurers.  When a shock hits C1, it can be seen that the liabilities of all six insurers rise significantly.  
In scenario 2, the three largest insurers become bankrupt, while in scenario 5 all insurers except C6 
become insolvent after the shock.  In the worst case scenario where a very severe shock hits a large 
portion (80%) of the market (as in scenario 6), all six insurers become insolvent and the whole bond 
insurance system collapses.  Moreover, there is a non-linear relationship between the shock severity 
and a change in insurer liability.  In scenario 3, the liability increase associated with a less severe shock 
(10% value devaluation) is less than 250%, while a relatively large shock (20% value devaluation) in 
scenario 6 leads to an extraordinary increase in all six insurers’ liabilities. 

Above all, an exogenous shock has a significant impact on the insurers’ liabilities and may lead to a 
collapse of the entire system if it causes a sufficient devaluation of the insured security that represents a 
portion of the market.  The results also reveal there is a non-linear relationship between the shock and 
the liability, which implies that the existing bond insurer network structure acts as a shock amplifier 
rather than a shock absorber.  

2. Sensitivity Test 
The sensitivity tests are designed to examine the effect of the Asset Closeness Factor. The Asset 
Correlation Factor acts as a proxy for the implied correlation among the insured securities but is not 
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equivalent to the correlation itself. The Asset Closeness Factor 𝑟 reflects only one parameter in the 
correlation relationship with 𝛼  the other parameter given weights wi and wj in the correlation equation:  

𝜌�𝑖,𝑗 = 𝑟
𝛼( 1

wi
+ 1
wj

)
. 

The results are shown in Table 3.  The value of 𝛼 is fixed as 0.17, and three values of 𝑟 are specified as 
0.66, 0.70, and 0.74.  All the tests are completed under the assumption that a shock causes the 
underlying asset of B1 to drop 10%, and other assumptions are consistent with those in the scenario 
tests. 

The test results in Table 3 imply that the Asset Closeness Factor 𝑟 has little effect on the asset value of 
insurers, whereas it significantly impacts the insurers’ liabilities.  As the value of 𝑟 increases, the liability 
of every insurer also increases, and thus the aggregate liability of the bond insurance industry becomes 
larger.  Initially, when 𝑟 is no greater than 0.70, C1, C2, and C3 become insolvent after a shock.  When 𝑟 
reaches 0.74, C4 in addition to C1 through C3 becomes insolvent, suggesting that larger 𝑟 leads to 
greater systemic risk.  Additionally, as the value of 𝑟 becomes larger, the marginal effect of 𝑟 on the 
liability side of insurers also becomes greater, implying that a non-linear relationship between 𝑟 and 
insurers’ liabilities exists.  For instance, as 𝑟 goes up to 0.70 from 0.66 (6% change), C1’s Liability 
increases by around 0.3%.  As 𝑟 rises to 0.74 from 0.70 (6% change), C1’s Liability increases 8.67%.  This 
non-linear effect is valid for all six insurers. 

 

Table 3. Sensitivity Test on 𝒓 (Asset Closeness Factor) 

Parameter Asset Change Liability Change 
𝒓 𝜶 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

0.66 0.17 -1.5% -1.5% -1.5% -1.5% -1.5% -1.5% 186.2% 82.1% 128.6% 36.4% 34.8% 21.1% 
0.70 0.17 -1.5% -1.5% -1.5% -1.5% -1.5% -1.5% 186.7% 88.9% 138.4% 39.9% 38.3% 23.1% 
0.74 0.17 -1.7% -1.7% -1.7% -1.7% -1.7% -1.7% 202.9% 109.0% 170.5% 48.2% 46.7% 27.9% 

 

Credit Derivative Securities Based Network 

Introduction 
Credit default swaps have been commonly blamed for the 2007 Financial Crisis.  Nevertheless, CDS still 
dominate the credit derivatives market and are at the center of the global financial system.15

The CDS market can be recognized as a financial network structure that connects various financial 
institutions through complex CDS bilateral exposures and cross holdings.  Some major players in the 

  The U.S., 
Europe, as well as other global financial institutions possess large exposures to CDS markets.  The 2007 
Financial Crisis underscored the challenge of measuring, monitoring and pricing credit risk.  

                                                           
15 http://www.gailfosler.com/featured/credit-default-swaps-and-the-financial-system-an-interview-with-marti-
subrahmanyam 

http://www.gailfosler.com/featured/credit-default-swaps-and-the-financial-system-an-interview-with-marti-subrahmanyam�
http://www.gailfosler.com/featured/credit-default-swaps-and-the-financial-system-an-interview-with-marti-subrahmanyam�
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center of the CDS market, such as AIG, have become “too interconnected to fail” since the failure of one 
of these institutions can bring down the entire financial system.  Asymmetric and insufficient 
information disclosure imposes even more credit risk on financial institutions.  Therefore, it is critical to 
develop a network model specifically for the CDS market, so that regulators or other market participants 
are able to identify those systemically important financial institutions, as well as assess the systemic risk 
under a certain set of circumstances.  This paper proposes a CDS network model to assist regulators in 
monitoring the CDS network system and identifying those “hot spots”16

Currently, the CDS market can be viewed as a capstone in the financial system.  The CDS market is a 
network consisting of major banks, insurance companies, hedge funds and other institutions, all 
connected via CDS exposure, as shown in Figure 1.  The various sectors of the CDS market may be 
viewed as large nodes, such as the mortgage-backed securities (MBS) market or the European sovereign 
debt market.  The arcs between those markets and the CDS market are CDS exposures that cover the 
underlying securities from those markets.  If one market sector encounters a crisis, the loss shock can 
propagate to the banks and insurance companies through the exposure links. 

 which may result in total 
systemic failure. 

Figure 1. CDS Market in Financial System 

 

 

In the CDS network, the large nodes, which represent certain market sectors, contain many small nodes 
which are banks and other major financial institutions.  Each of the smaller nodes may have exposure to 

                                                           
16 “Hot Spots” are nodes where the firm is “too big to fail”; where failure could have a devastating impact on the 
entire network. 
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more than one market sector, and each smaller node has its own balance sheet.  The arcs linking 
different nodes are the various types of CDS exposures from different sectors. 

Figure 2. CDS Network Structure 

 

Figure 2 illustrates a plausible CDS network structure.  Suppose a financial institution defaults as it 
suffers losses exceeding a certain threshold of its core capital.  If a European debt market crisis causes 
Bank A and Insurance Company C to become bankrupt, the losses due to their defaults can propagate 
to other nodes who have bought Euro Debt CDS from Bank A and Insurance Company C.  Given this 
condition, the Systemic Risk Ratio of a sector is defined as the ratio of the expected final loss of the 
total system to the expected initial loss of a sector:   

𝑆𝑒𝑐𝑡𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑅𝑖𝑠𝑘 𝑅𝑎𝑡𝑖𝑜 = 𝐸(𝐹𝑖𝑛𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐿𝑜𝑠𝑠) 𝐸(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑒𝑐𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 ⁄ ) 

Similarly, the Systemic Risk Ratio of a financial institution is defined as the ratio of the expected final 
loss of the total system to the expected initial loss caused by a specific institutional default: 

𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑅𝑖𝑠𝑘 𝑅𝑎𝑡𝑖𝑜 = 𝐸(𝐹𝑖𝑛𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐿𝑜𝑠𝑠) 𝐸(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑜𝑠𝑠 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑎 𝐷𝑒𝑓𝑎𝑢𝑙𝑡⁄ ) 

The network structure of different market sectors may vary considerably.  A big CDS seller in the RMBS 
market may be a big CDS buyer in the European debt market.  Separate modules can be established to 
analyze the shock from a specific market sector (e.g. European debt crisis, sharp decline in housing 
prices), and to verify those “hot spots” in different market sectors.  This paper proposes that the 
following five factors have the greatest impact on the systemic risk ratio: 

Market A 

Market B Market D 

Market C 

Bank A Ins. B 

 

Ins. C Bank D 

Sell Euro Debt CDS  

Sell RMBS CDS  
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• Weight of a sector in the CDS market 
• Capital level  
• Recovery rate (salvage ratio) 
• Default criterion 
• Degree of bilateral exposure within a sector 

The impact of adding a national clearinghouse into the financial system is discussed later in the paper.  
This paper illustrates how a clearinghouse can restrain loss propagation and mitigate the systemic risk 
ratio. 

In summary, this paper establishes a framework eligible for further development and expansion through 
building modules for different market sectors and collecting bilateral exposure data from banks, 
insurance companies, and other financial institutions.  This network model aims to help regulators 
identify the companies that are too big or too interconnected to fail during any specific market crisis. 

Network Model for CDS Market 

Network Structure 
CDS contracts are off balance sheet items, and therefore, “neither the SEC nor any regulator has 
authority over the CDS market, even to require minimal disclosure to the market.”17

In order to construct a network structure for the CDS market in this study, an algorithm has been 
developed in which a bilateral connection matrix is generated stochastically in order to simulate a 
plausible CDS network reflecting the real market.

 Hence, there is no 
explicit one-to-one bilateral CDS exposure data currently available.  However, for each FDIC registered 
bank, the gross CDS purchase or sell data can be acquired from the FDIC database.  

18

It is important to understand that the network model requires only one bilateral connection matrix for 
input in order to produce its results.  However, since the authors do not have access to complete data, 
they generate a large number of “plausible” matrices for the input, and run the model for each one.  
This generates a large number of “plausible” results that can be averaged or analyzed in other ways.  
This stochastic element of the model process would not be required if complete data were available.   

  The bilateral connection matrix is generated in a 
manner that replicates the gross buy (sell) totals for each bank, but with connections to other banks that 
are randomly generated portions of the totals.  In this way, the larger CDS market participants tend to 
have more connections and larger connections in the generated bilateral connection matrix.    

The details of the algorithm used to generate a “plausible” bilateral connection matrix are presented 
below.   

 

                                                           
17 “Testimony Concerning Turmoil in U.S. Credit Markets: Recent Actions Regarding Government Sponsored 
Entities, Investment Banks and Other Financial Institutions”, 
http://www.sec.gov/news/testimony/2008/ts092308cc.htm 
18 This simulation of the one-to-one bilateral connections is performed as current data are not available.  
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Suppose there are N FDIC banks participating in the CDS market (Assume the gross CDS buy or sell 
amount is greater than zero), which are indexed as i=1, 2,…, N.  The N+1th agent represents an 
external node that includes all other CDS trading entities except FDIC banks and is named “Other 
Entities.”  Based on the gross CDS buy (sell) data, the market share for each bank can be obtained in the 
following way: 

𝑆𝑖𝐵 =
𝐵𝑖
𝐵
∶  𝐵𝑎𝑛𝑘𝑖 𝑚𝑎𝑟𝑘𝑒𝑡 𝑠ℎ𝑎𝑟𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑢𝑦 𝑠𝑖𝑑𝑒 𝑜𝑓 𝐶𝐷𝑆 

𝑆𝑖𝑠 =
𝑆𝑖
𝑆
∶  𝐵𝑎𝑛𝑘𝑖 𝑚𝑎𝑟𝑘𝑒𝑡 𝑠ℎ𝑎𝑟𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑙𝑙 𝑠𝑖𝑑𝑒 𝑜𝑓 𝐶𝐷𝑆 

where, 

𝐵𝑖  is the amount of CDS which 𝐵𝑎𝑛𝑘𝑖 buys. 

𝑆𝑖 is the amount of CDS which 𝐵𝑎𝑛𝑘𝑖 sells. 

𝐵 is the total amount of CDS bought within all banks. 

𝑆 is the total amount of CDS sold within all banks. 

For 𝐵𝑎𝑛𝑘𝑖, the number of banks from which it buys CDS is calculated: 

𝑁𝑖𝐵 = 𝑆𝑖𝐵 ∙ 𝑁𝑆  

where 𝑁𝑠 is the total number of banks that have written CDS as guarantor (i.e. the number of banks for 
which S(i,s)>0 . 

Also, an 𝑁 × 𝑁 bilateral trading probability matrix X is derived from CDS market share data of N banks: 
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where 𝑥𝑖,𝑗  represents the likelihood of 𝐵𝑎𝑛𝑘𝑗 buys CDS from 𝐵𝑎𝑛𝑘𝑖, equal to 𝑆𝑖𝑠/(1 − 𝑆𝑗𝑠) when 𝑖 ≠ 𝑗, 
and is zero when 𝑖 = 𝑗.  Since the bank index is following the order from the largest to the smallest CDS 
market share,  𝑥𝑚,𝑗 > 𝑥𝑛,𝑗,∀ 𝑚 < 𝑛, 𝑚 ≠ 𝑗 𝑎𝑛𝑑 𝑛 ≠ 𝑗.  

A vector of random numbers is introduced to establish the bilateral connections of a plausible network 
structure.  For example, when establishing the bilateral connections for 𝐵𝑎𝑛𝑘𝑗, the number of banks it 
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buys CDS from is represented by 𝑁𝑗𝐵.  Hence, 𝑁𝑗𝐵 random numbers that are uniformly distributed from 0 

to 1 are generated, denoted as 𝑟𝑗,𝑘
𝐵 ,𝑘 = 1,2, … ,𝑁𝑗𝐵. 

In order to determine the first counterparty of 𝐵𝑎𝑛𝑘𝑗, a vector of trading probabilities 𝑦𝑖,𝑗, 𝑖 = 0, 1, … ,𝑁 
is obtained, where 𝑦𝑖,𝑗 = 𝑥𝑖,𝑗 ∑ 𝑥𝑖,𝑗𝑁

𝑖=1⁄ .  The trading relationships between 𝐵𝑎𝑛𝑘𝑗 and other banks are 
noted as 𝐼𝑖,𝑗𝐵 , 𝑖 = 1,2, … ,𝑁, and where 𝐼𝑖,𝑗𝐵 = 1 indicates that 𝐵𝑎𝑛𝑘𝑗 has bought CDS from 𝐵𝑎𝑛𝑘𝑖, 
whereas 𝐼𝑖,𝑗𝐵 = 0 means there is no CDS bilateral exposure between 𝐵𝑎𝑛𝑘𝑗 and 𝐵𝑎𝑛𝑘𝑖.  The bank index 

number of the first counterparty is 𝑛∗, where 𝑛∗ = inf�𝑛�∑ 𝑦𝑖,𝑗𝑛
𝑖=1 > 𝑟𝑗,1

𝐵 ,𝑛 = 1,2, … ,𝑁�, and the 
counterparty is noted as 𝐵𝑎𝑛𝑘𝑛∗.  The basic idea of this algorithm is to split the total probability space 
into 𝑁𝑗𝐵 sections that reflect the corresponding trading probabilities, and the random number is used to 
anchor a bilateral connection within the total probability space and to determine the counterparty 
accordingly.  

After the first counterparty is determined, a similar random process is performed for selecting the 
second one.  However, the trading probability 𝑦𝑖,𝑗 is modified as 𝑦𝑖,𝑗 = 𝑥𝑖,𝑗 ∑ 𝑥𝑖,𝑗𝑁

𝑖=1⁄ , 𝑖 ≠ 𝑛∗, to exclude 
𝐵𝑎𝑛𝑘𝑛∗ from the bank list.  Then, 𝑟𝑗,2

𝐵  is used to determine the index number of the second 
counterparty.  By repeating this stochastic selection procedure, 𝑁𝑗𝐵 counterparties of 𝐵𝑎𝑛𝑘𝑗 are set.  A 
stochastic bilateral connection matrix can be established by adopting a similar stochastic process for 
𝐵𝑎𝑛𝑘𝑖, 𝑖 = 1,2, … ,𝑁.  However, when 𝐼𝑖,𝑗𝐵 = 𝐼𝑗,𝑖

𝐵 = 1, a random number (0~1) is generated.  If it is less 
than 0.5, 𝐼𝑖,𝑗𝐵 =0; otherwise, 𝐼𝑗,𝑖

𝐵 =0.  In the end, a stochastic bilateral connection matrix can be written: 

1,2 1,

2,1

1,

,1 , 1

0 ...
0 .

. 0
... 0

B B
N

B

B
N N

B B
N N N

I I
I

I
I

I I
−

−

 
 
 =  
 
  

 

Based on the stochastic bilateral connection matrix I, the matrix of CDS trading amounts is obtained: 

1,2 1,

2,1

1,

,1 , 1

0 ...
0 .

. 0
... 0

N

N N

N N N

T T
T

T
T

T T
−

−

 
 
 =
 
 
 

 

where 𝑇𝑖,𝑗 = 𝐼𝑖,𝑗𝐵 ∙ 𝐵𝑖 ∙ 𝑆𝑗𝑠 ∙ 𝑆/𝐵,   𝑖, 𝑗 = 1,2, … ,𝑁. 

The upper limit for the number of banks from which 𝐵𝑎𝑛𝑘𝑗 can buy CDS is 𝑁𝑗𝐵.  If ∑ 𝑇𝑖,𝑗𝑁
𝑗=1 < 𝐵𝑖, the 

unallocated CDS purchasing amount is linked to the Other Entities.   

In addition, the user of the CDS network model is allowed to input predetermined CDS trading 
connections and trading amounts with the model simulating the rest of the network structure.  Users 
can accordingly test the systemic risk ratios under different network structures.  
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Contagion Mechanism 
To simplify the model, naked CDS positions are prohibited.  A naked CDS position means that a bank 
buys CDS but does not hold the underlying debt or sells corresponding CDS to a third party.  

In this paper, the primary reason that a bank buys CDS is to hedge its CDS selling position.  After the 
selling position is fully covered, the remaining CDS long position aims to hedge the credit risk of the debt 
it holds.  When 𝐵𝑎𝑛𝑘𝑖 suffers losses exceeding 20% of its Tier One Capital19

Within a financial network, 𝐵𝑎𝑛𝑘𝑗 may suffer losses caused by a specific bank default or multiple bank 
defaults due to a common shock.  If the aggregate loss 𝐵𝑎𝑛𝑘𝑗 suffers becomes greater than 20% of its 
Tier One Capital, it defaults too.  The insolvency of  𝐵𝑎𝑛𝑘𝑗 triggers further losses, and these losses 
propagate to other banks.  This domino effect stops only when banks no longer become bankrupt.  The 
ultimate loss that the system suffers may be a multiple of the initial shock.  

, it enters bankruptcy.  If 
𝐵𝑎𝑛𝑘𝑖 becomes bankrupt, all the CDS it has written become worthless.  Suppose that 𝐵𝑎𝑛𝑘𝑗 has bought 
CDS from 𝐵𝑎𝑛𝑘𝑖, and therefore 𝐵𝑎𝑛𝑘𝑗 needs additional capital to cover the emerged credit risk due to 
losing the CDS coverage.  It is assumed that 𝐵𝑎𝑛𝑘𝑗 is not able to inject sufficient capital in time, hence 
𝐵𝑎𝑛𝑘𝑗 has to write down its capital, and the loss amount equals the notional amount of debt that CDS 
covered.  

Measure of the Systemic Risk 

Company Failure 
The Company Failure scenario is designed to estimate the systemic risk that a specific bank (noted as 
Bank A) may pose to a certain market sector.  In this scenario, the initial loss to the system equals the 
total CDS amount that Bank A sells for that specific sector.  Remember this is still a scenario based stress 
test, which means that only one sector of the CDS market fails.  If any bank fails due to Bank A’s default, 
the losses spread to other banks.  The system becomes stable when banks stop failing.  

The Systemic Risk Ratio of a financial institution is defined as the ratio of the expected final loss of the 
total system to the expected initial loss due to the institution’s default: 

𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑅𝑖𝑠𝑘 𝑅𝑎𝑡𝑖𝑜 = 𝐸(𝐹𝑖𝑛𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐿𝑜𝑠𝑠) 𝐸(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑜𝑠𝑠 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑎 𝑑𝑒𝑓𝑎𝑢𝑙𝑡⁄ ) 

Sector Failure 
The Sector Failure scenario is designed to assess the systemic risk associated with a market sector.  If a 
market sector collapses and the related debt defaults, all the banks that have written CDS in this market 
suffer losses.  The model sets the initial loss suffered by each bank equal to a proportion of the initial 
sector loss, where the proportion is the CDS market share of that bank.  The losses start to spread if any 
of the banks become insolvent after suffering their initial losses.  

The Systemic Risk Ratio of a sector is defined as the ratio of the expected final loss of the total system 
to the expected initial loss from a sector failure:   

                                                           
19 The 20% threshold of Tier One Capital is commonly proposed as a critical point in literature 
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𝑆𝑒𝑐𝑡𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑅𝑖𝑠𝑘 𝑅𝑎𝑡𝑖𝑜 = 𝐸(𝐹𝑖𝑛𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐿𝑜𝑠𝑠) 𝐸(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑒𝑐𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 ⁄ ) 

Clearinghouse 
In this model, a clearinghouse is set up as an intermediate between CDS buyers and sellers.  By 
embedding a clearinghouse into the financial network model, loss shocks will not spread from an 
insolvent bank to other parts of the system.  The clearinghouse guarantees that CDS are still valid even 
though the original writer defaults.  The capital that is needed to support a clearinghouse can be 
estimated subject to a certain network structure, where accurate CDS bilateral exposure data is crucial 
for estimation.  Because bilateral exposure data is unavailable, the authors do not analyze the capital 
adequacy of the clearinghouse in this paper. 

By comparing the expected final loss of the system with the expected first round loss, the effect of a 
clearinghouse’s contribution to the system robustness is demonstrated. 

 

Sensitivity Testing 
There are five major factors that are incorporated into this network model including Segment Weight, 
Recovery Ratio, Capital Level, Default Criterion and Bilateral Exposure.  When performing a sensitivity 
test for one specific factor, the values of the other factors are held constant.  However, since the true 
bilateral exposure structure is not known, only two major CDS players (JP Morgan Chase and Citibank) 
are chosen for investigating the impact of bilateral exposure between certain nodes on the whole CDS 
system.  The common network structure is derived from FDIC 2008 Q4 CDS aggregate exposure data. 

All the sensitivity tests are based on the Sector Failure scenario.  The sensitivity test results are 
summarized for each of the five factors’ effects on systemic risk ratio and expected system loss, with 
and without a clearinghouse.  Table 1 shows a list of default values of major factors (except degree of 
bilateral exposure), as well as the sensitivity test range. 

Table 1. The Default Value and Test Range of Four Major Factors 
Factor Default Value Lower Level Upper Level 

Segment Weight as of total CDS market 5% 0% 50% 
Capital level 100% 0% 500% 
Recovery Ratio (Salvage Ratio) 50% 0% 90% 
Default Criterion (as % of Tier One Capital) 20% 0% 100% 

 

 

1. Segment weight as a percentage of total CDS market 
First, this paper examines the effect of segment weight on the systemic risk ratio and expected 
system loss.  A higher segment weight implies that a sector represents more of the CDS market 
share, and therefore is more important.  The failure of a dominant sector is more likely to trigger 
a systemic failure. 
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Figure 3. Impact of Segment Weight 
  

   
 
Figure 3 shows these results.  The segment weight shows a positive but non-linear relationship 
with the systemic risk ratio.  With all other factors held constant, the systemic risk ratio 
increases sharply as segment weight rises from 0% to about 8%, and then plateaus at a high 
level.  The relationship between segment weight and expected system loss without a 
clearinghouse seems linear but shows some jumps in the lower range.  In contrast, there is a 
clear linear relationship between segment weight and expected system loss with a 
clearinghouse.  It is observed that the expected system loss with a clearinghouse is always 
smaller than without a clearinghouse.   
 

 

2. Recovery ratio (salvage ratio) 
In a second sensitivity test, this paper investigates the effect of the recovery ratio (salvage ratio) 
on the systemic risk ratio as well as the expected system loss.  High recovery ratios mitigate 
losses from defaulting banks and bolster the system’s robustness.  Keeping other factors the 
same, recovery ratios between 0% and 90% are tested. 

 
Figure 4. Impact of Recovery Ratio (Salvage Ratio) 
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From Figure 4, it is apparent that up to a threshold of 40%, the recovery ratio does not affect the 
systemic risk ratio.  Once the recovery ratio exceeds that threshold, the systemic risk ratio starts 
to decline and eventually converges to 1, which means there is no more contagion effect in the 
network.  Figure 4 also implies an effect of the recovery ratio on the expected loss which is a 
mixture of linearity and jumps, but this effect is in the opposite direction of the segment weight 
effect. 
 

3. Bank capital level and default criterion 
Capital level measures capital sufficiency.  Default criterion establishes the benchmark level of 
capital loss that a bank can bear while remaining solvent.  With a fixed default criterion, higher 
capital levels decrease the default probability.  If the capital level remains constant, a higher 
default criterion reduces the default probability.  The sensitivity test results of banks’ capital 
levels and default criteria (as % of Tier One Capital) in one sector are presented together 
because the effects of these two factors are essentially the same but on different scales.  
 

Figure 5. Impact of Capital Level 
  

  
 

 
 
 

Figure 6. Impact of Default Criterion (as % of Tier One Capital) 
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Figures 5 and 6 indicate that capital level and default criterion have almost identical effects on 
the systemic risk ratio if viewed on the same horizontal axes.  When these two factors increase, 
the systemic risk ratio gradually decreases to 1.  Similarly, the impact of these two factors on the 
expected system loss seems to be identical.  Particularly for the network with a clearinghouse, 
the expected loss is constant.  This implies that the clearinghouse absorbs the first round losses, 
and thus capital level and default criterion can be viewed as independent of expected system 
loss. 
 

4. Degree of bilateral exposure 
Degree of bilateral exposure is expressed as the bilateral exposure amount, which has two 
opposing effects.  Bilateral exposures may propagate losses to other institutions and then to the 
whole system, or the losses may be absorbed into the network via the bilateral exposure.  
 
In a specific bilateral exposure sensitivity test, the authors establish a series of nominal CDS 
exposure amounts that JP Morgan Chase buys from Citibank, ranging from $0 to $100 million.  
The authors initially investigated the effect of bilateral exposure on the systemic risk ratio.  From 
figure 7, two opposing effects can be seen over different ranges, generating a non-linear and 
non-monotonous curve.  First, for low levels of exposure, the systemic risk ratio rises along with 
increases in bilateral exposure until a threshold is reached, and then it starts declining.  As the 
exposure increases further, the systemic risk ratio rises again.  But when exposure is sufficiently 
large, further increases in bilateral exposure decrease the systemic risk ratio. 
 
Figure 7 also shows how the degree of bilateral exposure may affect the expected system loss, 
where a similar, non-linear relationship is observed in the system without a clearinghouse.  
However, when the exposure becomes sufficiently large, the expected system loss continues to 
rise as exposure increases, which is the opposite effect of the systemic risk ratio.  This 
divergence implies that the systemic risk ratio may underestimate the systemic risk in some 
conditions.  Consequently, using the systemic risk ratio is not enough to assess systemic risk.  
For the system with a clearinghouse, the system loss curve emulates a strangle20

 
 payoff curve.  

 
 
 
 
 
 
 
 
 
 
 
 

                                                           
20 A long strangle is an investment strategy implemented by buying both a call option and a put option of the same underlying security. 
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Figure 7. Impact of bilateral exposure (JP Morgan Chase and Citibank) 
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CONCLUSION 
 

Network models can be applied to different segments of the financial system in order to characterize 
systemic risk.  In this study, network models of systemic risk were applied to a specific section of the 
financial market, the monoline bond insurance industry, as well as a broader section, the CDS market.    

For the bond insurer network model, this study indicated that a dramatic drop in prices in the U.S. 
housing market resulted in significant systemic risk to the bond insurer system.  Specifically, home price 
decreases in the U.S. housing market (the exogenous shock) did not reduce the value of the bond 
insurers’ assets significantly, but the shock did dramatically increase the bond insurers’ liabilities, 
particularly the reserves for the bonds.  Thus, bond insurers became insolvent not because of the cross 
holding of assets but because of drastic increases in their liabilities.  

For the CDS network model, the study indicated that higher segment weights, lower recovery ratios, 
lower capital levels and a lower default criterion resulted in higher systemic risk ratios, and these 
relationships were non-linear in nature.  In contrast, the impact of bilateral exposure on the systemic 
risk ratio was more complicated, non-linear and non-monotonous.  

Besides the systemic risk ratio, the other measure of systemic risk tested was the expected system loss.  
Under the scenarios without a clearinghouse, the sensitivity tests of the five factors on the expected 
system loss showed two general types of impacts.  For segment weight and recovery ratio, the 
relationship was a mixture of linearity and jumps.  Segment weight exhibited a positive relationship with 
expected system loss while recovery ratio exhibits a negative relationship.  Capital level and default 
criterion sensitivity tests revealed negative, non-linear relationships while bilateral exposure had a more 
complicated, non-linear relationship with the expected system loss.  

In scenarios where a clearinghouse was introduced to the system, the study showed that capital level 
and default criterion no longer affected the expected losses.  Not surprisingly, the expected loss with a 
clearinghouse was always lower than the expected loss without a clearinghouse.  This difference in 
expected system loss in the two scenarios was most notable when the default criterion, the capital level, 
or the recovery ratio was low or when the segment weight was high.  

As seen in the bilateral exposure sensitivity tests, solely using the systemic risk ratio to assess systemic 
importance may be misleading because the expected system loss can still rise while the systemic risk 
ratio is declining.  Thus, the authors propose incorporating both the systemic risk ratio and expected loss 
to assess systemic risk more comprehensively.  

For both models, data limitations exist.  Currently, there are no public data on one-to-one bilateral CDS 
exposures nor the individual bond liability associated with each secured bond in the system.  Stochastic 
algorithms were performed to simulate the one-to-one exposures in the CDS market as well as the 
individual bond liability.  A bilateral connection matrix was generated stochastically to simulate a 
plausible CDS network.  
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This study points out to the Financial Stability Oversight Committee critical data that are not available 
publicly or currently missing.  By structuring the models so that the stochastically generated data can be 
replaced with data that may be obtained by the Financial Stability Oversight Committee, flexible models 
can be created to measure systemic risk in the financial system. 
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APPENDICES 

Appendix 1 Asset Closeness Factor  
The RMBS is backed by residential real estate.  In the real world, the prices in the housing market are 
correlated.  For instance, if the price of one house in a neighborhood goes up, the price of other houses 
in surrounding neighborhoods will probably rise too.  Moreover, the housing prices in other regions may 
also increase.  The co-movement of housing prices leads to correlation between different RMBS.  
However, the RMBS correlation is implicitly incorporated in the market so it is not observable.  In order 
to capture the implied RMBS correlation, an Asset Closeness Factor 𝑟 is introduced to estimate the 
RMBS correlation.  However, 𝑟 is not equivalent to the correlation itself.  The Asset Closeness Factor 𝑟  
reflects only one parameter in the correlation relationship.  

In the model, it is assumed that the marked-to-market underlying asset values of different RMBS follow 
a correlated geometric Brownian motion.  

For illustrative purposes, suppose there are two correlated RMBS underlying assets in the market, 
whose prices follow a correlated geometric Brownian motion: 

𝑑𝐵1(𝑡) 𝐵1(𝑡)⁄ = 𝑟0𝑑𝑡 + 𝜎1𝑑𝑋1(𝑡) 

𝑑𝐵2(𝑡) 𝐵2(𝑡)⁄ = 𝑟0𝑑𝑡 + 𝜎2𝑑𝑋2(𝑡) 

where 𝑋1(𝑡) and 𝑋2(𝑡) are two correlated Brownian motions,  

𝑋1(𝑡) and 𝑋2(𝑡) can be expressed as 𝑋1(𝑡) = 𝜌1𝑊0 + �1 − 𝜌12𝑊1, and 𝑋2(𝑡) = 𝜌2𝑊0 + �1 − 𝜌22𝑊2, 
where 𝑊0, 𝑊1 and 𝑊2 are three independent Brownian motions and 𝜌1 and 𝜌2 are the coefficients of 
correlation. 

When considering 𝑛 assets, the correlation between RMBS 𝑖 and RMBS 𝑗 can be written as 𝜌𝑖,𝑗, which is 
unobservable in the market.  The authors simulate different pairs of bond market share, and from these 
results, determine that the coefficient of correlation in the correlated Brownian motion is 𝜌�𝑖,𝑗 =

𝑟
𝛼( 1

wi
+ 1
wj

)
, where 𝑟 is the Asset Closeness Factor and 𝑤𝑖 represents the market share of RMBS 𝑖.  Based 

on the change of the monoline bond insurance industry’s liabilities from before the 2007 Financial Crisis 
to after the crisis (obtained from Bloomberg), the default value of 𝑟 is calibrated as 0.7 and the default 
value of 𝛼 is 0.17. 
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Appendix 2 – Asset and Liability Pricing Module Mechanism 

Model Construction 
The bond insurer model is inspired by both the Black-Scholes framework and Moody’s KMV Credit 
methodology.  The insured RMBS price is derived from the option pricing theory, and the marked-to-
market values of the insured RMBS’s underlying assets follow a log-normal distribution.  

The Asset Pricing Module is designed to estimate the market value of RMBS as well as the asset value of 
insurers.  In the Liability Pricing Module, the marked-to-market RMBS’s underlying asset distribution is 
simulated by applying a two-layer compound model.  Subsequently, the loss reserves for RMBS are 
calibrated based on the asset distribution, the liability of the RMBS, and the default probability.  The 
liabilities of insurers are obtained accordingly.  These two modules are connected by cross referencing 
some key parameters, including the implied volatility.  Ultimately, the balance sheet structures of 
insurers before and after shock are calculated, revealing the impact of a shock on the bond insurer 
network. 

1. Asset Pricing Module 
Suppose in the bond insurance market there are 𝑖 insurers, 𝑖 = 1,2, … ,6, denoted by C1, C2,…, C6.  
Meanwhile, there are  𝑛 RMBS, 𝑛 = 1,2, … ,6, denoted by B1, B2,…, B6.  B1 is insured by C1, B2 is 
insured by C2, etc.  For modeling simplification, an assumption is made that all RMBS are zero coupon 
bonds.  

The total assets of insurer 𝑖 at time 𝑡 can be written as: 

𝐼𝑖(t) = ∑ 𝛽𝑖,𝑛𝑉𝑛𝑖𝑛𝑠(𝑡) 6
n=1 + 𝐴𝑖  ,    (1) 

where 𝑉𝑛𝑖𝑛𝑠(𝑡) represents the marked-to-market value of insured RMBS and 𝛽𝑖,𝑛 is the holding weight of 
𝑉𝑛𝑖𝑛𝑠(𝑡)  for insurer 𝑖.  Additionally, 𝐴𝑖  represents all other assets of the insurer 𝑖.  Both 𝛽𝑖,𝑛 and 𝐴𝑖  are 
assumed to be constant in the bond insurer model.   

In order to obtain 𝐼𝑖(t), the marked-to-market value of insured RMBS 𝑉𝑛𝑖𝑛𝑠(𝑡) has to be captured first.  
Starting with pricing an uninsured RMBS, suppose that a zero coupon RMBS 𝑛 has marked-to-market 
underlying asset value 𝐵𝑛 and face value 𝐷𝑛.  𝐵𝑛(𝑡) is assumed to follow a geometric Brownian motion 
process: 

                                                       𝑑𝐵𝑛(𝑡) 𝐵𝑛(𝑡)⁄ = 𝑟𝑑𝑡 + 𝜎𝑛𝑑𝑋𝑛     (2) 

The marked-to-market value of RMBS 𝑛 without any insurance can be expressed as: 

                                                       𝑉𝑛(t) = 𝐸𝑄[min(𝐵𝑛(𝑡),𝐷𝑛)|𝐹𝑡] 

                       =  𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝐸𝑄[(𝐷𝑛 − 𝐵𝑛(𝑇))+|𝐹𝑡] 

                                                                 =  𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝑃𝑢𝑡(𝐵𝑛(𝑡),𝐷𝑛, 𝑟0,𝑇, σn)   (3) 
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where EQ[ ] is the expectation in the risk neutral probability space.  The Put(𝐵𝑛(𝑡),𝐷𝑛, 𝑟0,𝑇,σn) 
represents a European put option with the risk-free rate 𝑟0, the time to maturity 𝑇, and the pre-shock 
regime implied volatility 𝜎𝑛.21

The uninsured RMBS marked-to-market price is equivalent to the difference between the discounted 
face value of its liability and a put option of its underlying asset with strike price equal to 𝐷𝑛.  The value 
of the put option can be calculated using the Black-Sholes formula.  

 

Based on this preliminary equation (2), the marked-to-market price of the insured RMBS 𝑛 can be 
developed, as: 

                                                       𝑉𝑛𝑖𝑛𝑠(𝑡) = 𝐸𝑄[min(𝐵𝑛(𝑡) + 𝐼𝑖(t),𝐷𝑛) |𝐹𝑡] 

                                                                     = 𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝐸𝑄[(𝐷𝑛 − 𝐼𝑖(t) − 𝐵𝑛(𝑇))+|𝐹𝑡] 

           = 𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝑃𝑢𝑡(𝐵𝑛(𝑡),𝐷𝑛 − 𝐼𝑖(t), 𝑟0,𝑇,σn)  (4) 

where 𝐼𝑖(t) is the asset value of the insurer 𝑖 at time t.  In order to get a closed-form solution of 
equation (3), a simplifying assumption is made: the value of the insurer’s assets stays constant, i.e. 
𝐼𝑖(t) = 𝐼𝑖, where 𝐼𝑖 is the asset value of the insurer 𝑖 as of Q4, 2006.  Hence 𝑉𝑛𝑖𝑛𝑠(𝑡) can be calculated as: 

                            𝑉𝑛𝑖𝑛𝑠(𝑡) = 𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝑃𝑢𝑡(𝐵𝑛(𝑡),𝐷𝑛 − 𝐼𝑖, 𝑟0,𝑇,σn)  (5) 

The insured RMBS marked-to-market price is equal to the difference between the discounted face value 
of the bond and the value of a put option with a strike price (𝐷𝑛 − 𝐼𝑖).  The insured RMBS 𝑛 defaults 
when 𝐵𝑛(𝑡) + 𝐼𝑖 < 𝐷𝑛, which means the total value of the bond’s underlying asset plus the insurer’s 
marked-to-market assets is less than the face value of its liability. 

Before a shock strikes the bond insurer network, 𝐵𝑛(𝑡) is the marked-to-market implied value of the 
RMBS underlying asset and is unobservable.  There is no explicit value for σn either.  In order to calibrate 
these two parameters, the insured and uninsured RMBS prices are addressed as present values of future 
cash flows. 

The value of an uninsured RMBS can be expressed as the present value discounted at the yield rate 𝑦𝑛: 

                                                          𝑉𝑛(t) = 𝐷𝑛 (1 + yn)T⁄       (6) 

where 𝑦𝑛 is derived from historical data. 

Similarly, the value of an insured RMBS can be calculated as the present value discounted at the yield 
rate 𝑦𝑛𝑖𝑛𝑠: 

                                                        𝑉𝑛𝑖𝑛𝑠(𝑡) = 𝐷𝑛 (1 + 𝑦𝑛𝑖𝑛𝑠)𝑇⁄      (7) 

                                                           
21 The pre-shock regime implied volatility  σn is the implied volatility valid before the network suffers a shock. In 
the bond insurer network model, if a shock occurs, the implied volatility value will be changed to a so-called 
regime equilibrium volatility σ𝑛∗  whose value is different from σn. 
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where 𝑦𝑛𝑖𝑛𝑠 comes from historical data and typically, 𝑦𝑛𝑖𝑛𝑠 < yn. 

However, in this model, it is assumed the loss reserve of RMBS, denoted as 𝑅𝑛 is known before the 
shock.  The loss reserve can be expressed as: 

𝑅𝑛(𝑡) = 𝐸𝑄[(𝐷𝑛 − 𝐵𝑛(𝑇))+|𝐹𝑡] 

     = 𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝑉𝑛(t)     (8) 

Re-arrange equation (8) to obtain: 

                                                 𝐷𝑛 = (𝑅𝑛(𝑡) + 𝑉𝑛(t))/𝑒−𝑟𝑇     (9) 

Suppose a shock occurs at 𝑡0.  Combining equations (3), (6), and (9) results in equation (10) and 
combining equations (5), (7), and (9) results in equation (11): 

(𝑅𝑛(𝑡) + 𝑉𝑛(t)) (𝑒−𝑟𝑇(1 + yn)T) = 𝑅𝑛(𝑡) + 𝑉𝑛(t) − Put(𝐵𝑛(𝑡0),𝐷𝑛, 𝑟0,𝑇,σn)⁄   (10) 

(𝑅𝑛(𝑡) + 𝑉𝑛(t)) (𝑒−𝑟𝑇(1 + 𝑦𝑛𝑖𝑛𝑠)𝑇)⁄ = 𝑅𝑛(𝑡) + 𝑉𝑛(t)− 𝑃𝑢𝑡(𝐵𝑛(𝑡0),𝐷𝑛 − 𝐼𝑖, 𝑟0,𝑇,σn)     (11) 

Only parameters 𝐵𝑛(𝑡0) and σn need to be calculated since all other parameters can be acquired from 
empirical data.  Moreover, 𝐵𝑛(𝑡0) and σn are used as initial values in the Liability Pricing Module. 

As already mentioned, once the bond insurer network suffers a shock, the losses can spread through the 
network following the downgrading cycle mechanism until equilibrium is achieved.  Usually, it takes 
several rounds of interactions before the network converges to a steady state.  Due to the assumption 
that no insurer claims bankruptcy until the network reaches equilibrium, the asset value of the insurers 
after shock can be captured by analyzing the equilibrium value of RMBS.  

Equation (1) shows that the asset value of the insurer can be expressed as a linear function of the 
marked-to-market insured RMBS.  Thus, equation (5) can be modified as below: 

          𝑉𝑛𝑖𝑛𝑠(𝑡) = 𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝑃𝑢𝑡(𝐵𝑛(𝑡0),𝐷𝑛 − 𝐼𝑖(𝑉𝑛𝑖𝑛𝑠(𝑡)), 𝑟0,𝑇,σn)      (12) 

where the asset value of the insurer 𝐼𝑖 is denoted as a function of insured RMBS.   

Equation (12) implies that a smaller 𝑉𝑛𝑖𝑛𝑠(𝑡) will reduce 𝐼𝑖, and accordingly lead to a higher strike 
price 𝐷𝑛 − 𝐼𝑖(𝑉𝑛𝑖𝑛𝑠(𝑡)), which makes 𝑃𝑢𝑡(𝐵𝑛(𝑡0),𝐷𝑛 − 𝐼𝑖(𝑉𝑛𝑖𝑛𝑠(𝑡)), 𝑟0,𝑇,σn) become a less out-of-the-
money put option.  As a result, the put option value will increase, whereas 𝑉𝑛𝑖𝑛𝑠(𝑡) will decrease. 

The value of an RMBS when the network reaches equilibrium is denoted as 𝑉𝑛𝑖𝑛𝑠∗.  The formula for 𝑉𝑛𝑖𝑛𝑠∗ 
is: 

        𝑉𝑛𝑖𝑛𝑠∗ = 𝑒−𝑟𝑇 ∗ 𝐷𝑛 − 𝑃𝑢𝑡(𝐵𝑛(𝑡0),𝐷𝑛 − 𝐼𝑖(𝑉𝑛𝑖𝑛𝑠∗), 𝑟0,𝑇, σ𝑛∗ )           (13) 

where σ𝑛∗  is the shock regime implied volatility of RMBS 𝑛, whose value is different from σ𝑛.  σ𝑛∗  comes 
from the Liability Pricing Module, which will be explained in the subsequent section.  
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Recall that 𝐼𝑖(t) = ∑ 𝛽𝑖,𝑛𝑉𝑛𝑖𝑛𝑠(𝑡) 6
n=1 + 𝐴𝑖.  The asset value of insurer i  at equilibrium is as follows: 

       𝐼𝑖∗(T) = ∑ 𝛽𝑖,𝑛𝑉𝑛𝑖𝑛𝑠
∗(T) 6

n=1 + 𝐴𝑖, 𝑖 = 1,2, … ,6,𝑛 = 1,2, … ,6          (14) 

 

2. Liability Pricing Module 
This module is built to quantify the loss reserves for RMBS, and thus determines the liabilities of insurers.  
Briefly summarized, the loss reserve of RMBS is estimated based on its underlying asset value 
distribution and its default probability.  During the 2007 Financial Crisis, it was observed that a bond’s 
asset value distribution and default probability not only depend on its own characteristics, but also on 
the overall market.  If a shock that strikes several bonds causes upheaval of the bond market, all the 
bonds, including those that are not affected by the initial shock, will be negatively impacted.  

In order to incorporate market conditions, a two-layer model is established.  More precisely, the 
distribution of the marked-to-market RMBS’s underlying asset is derived from the product of two 
distributions: a Systematic Distribution and an Individual Bond Distribution, both of which follow a log-
normal distribution.  Additionally, it is assumed that the network will take one year to revert to 
equilibrium after an initial shock; thus, the time to maturity is fixed at  𝑇 = 1.  In this section, both the 
systematic and individual distributions will be presented in the form of 𝐿𝑁(𝜇,𝜎2).  

The Systematic Distribution is a lognormal distribution with mean 𝜇𝑠𝑦𝑠 and variance 𝜎𝑠𝑦𝑠2 , denoted as 
𝐿𝑁𝑠𝑦𝑠(𝜇𝑠𝑦𝑠,𝜎𝑠𝑦𝑠2 ).  It is used to measure the robustness of the whole industry under the Black-Scholes 
framework.  Particularly, the change of market robustness is defined as the variance change of the 
distribution; in other words, when a shock or a rating downgrade occurs, the σsys2  will change but the 
𝜇𝑠𝑦𝑠 will not be affected.  On the other hand, the Individual Bond Distribution is written as 
LNind(𝜇𝑖𝑛𝑑,𝑛,σind,n

2 ), where 𝜇𝑖𝑛𝑑,𝑛 and σind,n
2  can be different for each RMBS.  𝜇𝑖𝑛𝑑,𝑛  will be affected by 

the initial shock but σind,n
2  will not change. 

The RMBS Asset Value Distribution, denoted as 𝐷𝑖𝑠𝑖𝑅𝑀𝐵𝑆, is used to quantify the loss reserves of insurers.  
This distribution is compounded by LNsys(𝜇𝑠𝑦𝑠, σ𝑠𝑦𝑠2 ) and LNind(𝜇𝑖𝑛𝑑,𝑛,σind,n

2 ) to comprehensively 
reflect market conditions and the bond’s own characteristics: 

                                                          𝐷𝑖𝑠𝑛𝑅𝑀𝐵𝑆 = 𝐿𝑁𝑠𝑦𝑠�𝜇𝑠𝑦𝑠,σ𝑠𝑦𝑠2 � ∗ LNind(𝜇𝑖𝑛𝑑,𝑛,σind,n
2 )     (15) 

Since the product of two lognormal distributed variables still follows a lognormal distribution, the 
𝐷𝑖𝑠𝑛𝑅𝑀𝐵𝑆 can be denoted as 𝐿𝑁𝑛(𝜇𝑛,𝜎𝑛2), and is the distribution of 𝐵𝑛. 

The total liability of the insurer 𝑖 at time 𝑡 can be written as: 

𝐿𝑖(t) = 𝑅𝑛(t) + 𝑙𝑖      (16) 

where 𝑅𝑛(t) is the loss reserve for RMBS 𝑛 at time 𝑡.  𝑙𝑖 represents all other liabilities and is assumed to 
be constant. 
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For RMBS 𝑛, the face value of its liability is a fixed value denoted as 𝐷𝑛, and its marked-to-market 
underlying asset value, which is denoted as 𝐵𝑛(t), follows a lognormal distribution 𝐿𝑁𝑛(𝜇𝑛,𝜎𝑛2).  With 
these two factors being incorporated, 𝑅𝑛(t) is defined as the tail value-at-risk (TVaR) given the bond 
default probability 𝑝𝑛.  At time 𝑡0 (right before the shock occurs), 𝜎𝑛 is derived from the Asset Pricing 
Module and 𝑝𝑛 is imported from historical data.  𝑅𝑛(𝑡0), as well as 𝐿𝑖(𝑡0) can then be calibrated.  When 
a shock strikes the network system, the value of σ𝑠𝑦𝑠 will increase.  Meanwhile, for some or even all 
RMBS, the corresponding 𝜇𝑖𝑛𝑑,𝑛 value will decline.  Accordingly, the parameter values  𝜇𝑛 and 𝜎𝑛2 will 
change.  By introducing the Asset Closeness factor 𝑟, a mechanism is developed so that 𝜎𝑛 goes from 
pre-shock regime volatility to an equilibrium implied volatility 𝜎𝑛∗, and the default probability converges 
to 𝑝𝑛∗ .  The details of the mechanism are described in the next section.  When the system achieves 
equilibrium at time 𝑇,  loss reserve 𝑅𝑛(𝑇)∗ is calibrated as the TVaR given the default probability 𝑝𝑛∗  
under the lognormal distribution 𝐿𝑁𝑛(𝜇𝑛∗ ,𝜎𝑛∗2).  

Finally, the total liability of the insurer 𝑖 after the shock can be expressed as: 

                                                         𝐿𝑖(𝑇)∗ = 𝑅𝑛(𝑇)∗ + 𝑙𝑖      (17) 

Therefore, the liability change of an insurer 𝑖 can be written as follows: 

∆𝐿𝑖 = 𝐿𝑖(𝑇)∗ − 𝐿𝑖(𝑡0)     (18) 

𝜎𝑛∗ is then applied in the Asset Pricing Module to determine 𝑉𝑛𝑖𝑛𝑠∗ and 𝐼𝑖∗(𝑇) as in equations (13) and 
(14).  

 

The Mechanism of the Liability Pricing Module 
The mechanism of the Liability Pricing Module is illustrated here.  All the distribution parameters are 
presented as relative values for computing convenience, and they are subsequently adjusted by the 
corresponding market share of the bond.  Consequently, the final results will be the same as using the 
absolute value directly.   

Before the shock: 

1. The parameter of Systematic Distribution is estimated as 𝜇𝑠𝑦𝑠 = 1 and 𝜎𝑠𝑦𝑠2 = 0.1. 
2. For each RMBS, the pre-shock regime implied volatility 𝜎𝑛 is calibrated from the Asset Pricing 

Module, and 𝜇𝑛 is set equal to 1.  As the result, the RMBS Asset Distribution LNn(µn,σn2) is known. 
3. The RMBS aggregate liability 𝐿0 = ∑ 𝑤𝑛 ∙ 𝐷𝑛6

𝑛=1 , where wn is the market share of RMBS n.  Based 
on the compound distribution of 𝐿𝑁𝑛(𝜇𝑛,𝜎𝑛2), 𝑛 = 1,2, … . ,6, the bond market default probability 
𝑝0 can be obtained by simulation.  As the asset value 𝐴𝑛 of each RMBS is randomly generated, the 
market becomes default when 𝐿0 > ∑ 𝐴𝑛6

𝑛=1 .  After simulating 𝑁 = 1,000,000 times, 𝑝0 = 𝑚/𝑁, 
where 𝑚 is the total counts that default occurs. 

After the Shock: 
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4. The underlying asset value of one or several RMBS decreases.  For illustrative purposes, assume 
RMBS 1’s asset value drops 10% due to the shock.  

5. The mean of 𝐿𝑁𝑖𝑛𝑑�𝜇𝑖𝑛𝑑,1,𝜎𝑖𝑛𝑑,1
2 � decreases from 1 to 0.9.  Thus, the value of 𝜇𝑖𝑛𝑑,1is recalibrated, 

denoted as 𝜇𝑖𝑛𝑑,1
′ . 

6. For other RMBS in the market, the mean of 𝐿𝑁𝑖𝑛𝑑�𝜇𝑖𝑛𝑑,𝑛,𝜎𝑖𝑛𝑑,𝑛
2 � drops from 1 to (1 - 0.1*r

1
wn), 

where 𝑟 is the Asset Closeness Factor.  Accordingly, the value of µind,n is recalculated and is noted as 
µind,n
′ . 

7. RMBS Asset Distribution changes, as 𝐿𝑁𝑛(𝜇𝑛′ ,𝜎𝑛′2) =  𝐿𝑁𝑠𝑦𝑠�𝜇𝑠𝑦𝑠,𝜎𝑠𝑦𝑠2 � ∗ 𝐿𝑁𝑖𝑛𝑑(𝜇𝑖𝑛𝑑,𝑛
′ ,𝜎𝑖𝑛𝑑,𝑛

2 ) .  
8. Accordingly, a series of evolved RMBS Asset Distribution is obtained as 𝐿𝑁𝑛(𝜇𝑛′ ,𝜎𝑛′2), then an 

evolved bond market default probability 𝑝0′  is calculated, subject to 𝑉𝑎𝑅(𝑝0′ ) = ∑ 𝑤𝑛 ∙ 𝐷𝑛6
𝑛=1 .   

9. An updated Systematic volatility 𝜎𝑠𝑦𝑠′  is recalibrated, based on the equation 𝐿0 = 𝑉𝑎𝑅 (𝑝0∗ ). 
10. RMBS Asset Distribution is evolved as 𝐿𝑁𝑛(𝜇𝑛′ ,𝜎𝑛′2) =  𝐿𝑁𝑠𝑦𝑠�𝜇𝑠𝑦𝑠,𝜎𝑠𝑦𝑠′2 � ∗ 𝐿𝑁𝑖𝑛𝑑(𝜇𝑖𝑛𝑑,𝑛

′ ,𝜎𝑖𝑛𝑑,𝑛
2 ). 

11. Back to step 8 to recalculate the bond market default probability, and repeat the loop from step 8 to 
step 10 until 𝑝0′  converged to equilibrium default probability 𝑝0∗, and the corresponding equilibrium 
Asset Distribution is 𝐿𝑁𝑛(𝜇𝑛∗ ,𝜎𝑛∗2).  

12. Calculate Tail Value at Risk (TVaR) given 𝑝0∗ under 𝐿𝑁𝑛(𝜇𝑛∗ ,𝜎𝑛∗2), as the loss reserve for RMBS. 
13. 𝜎𝑛∗ is embedded in the Asset Pricing Module to quantify the RMBS market value after shock. 
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