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Foreword 
 

Over the years, I’ve heard from many health actuaries of their desire to incorporate more 
statistical concepts into their daily responsibilities, such as reserve estimates, benefit pricing, etc. 
At the same time, as a result of greater scrutiny on financial reports because of Sarbanes-Oxley 
and other measures, the pressure on health actuaries to demonstrate validity in their estimates has 
grown steadily. 
 
Recognizing an opportunity to help serve its members in this age of increased financial 
oversight, the Health Section of the Society of Actuaries commissioned this series of guides on 
the use of statistical techniques specifically geared for the work of health actuaries. In this first 
guide in the series, the topic is an estimate well-known to health actuaries—the calculation of 
incurred but not reported (IBNR) health claims reserves. In particular, this guide focuses on the 
development of confidence intervals around IBNR estimates. Future guides to be published in 
this series include applications of credibility theory to health actuarial tasks and statistical 
approaches to prescription drug claim data. 
 
The guides have been written with a number of distinct audiences in mind, and these audiences 
will likely want to use the guides differently. For this guide on IBNR calculations, an 
experienced health actuary with distant, yet pleasant (well, maybe not so pleasant) memories of 
actuarial exams may choose to skip over the introductory chapters and concentrate more on the 
later chapters. For beginning health actuaries, the statistical concepts in the guide may be fresh 
on their minds, but they might not yet have actually calculated an IBNR claim reserve. These 
actuaries can use the guide as an introduction to how IBNR claims reserves are typically 
calculated in practice and then move on to the statistical perspective. 
 
Finally, for experienced health actuaries who have already incorporated statistical techniques 
into their daily practice, I hope this guide inspires them to further their work and devise new 
methods that they might want to share with the health actuarial community. Related to this, it 
should be noted that the techniques outlined in the guide represent a sample of those that can be 
used. The intent of the guide is neither to be all-inclusive of the variety of techniques applied in 
practice nor to demonstrate the absolute best or most advanced application of statistical theory 
for IBNR claims reserves calculations. Those topics, while worthy of research, are the subjects 
for other work and not the purpose of this guide.  
 
The guide is divided into five sections along with an appendix with supplementary material. The 
following is a brief description of each section: 
 
Section 1: Overview of Health Care Liabilities and Introduction to the Completion Factor 
Method 
This section provides general information about health care liabilities and outlines a simplified 
example of how the completion factor method is commonly used in practice to calculate IBNR 
claims reserves. Experienced health actuaries will most likely find they will want to skip the 
material in this section. 
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Section 2: The Completion Factor Method Using Medical Insurance Data 
In this section, the completion factor method is more fully explained with an expanded example. 
Typical refinements to the method are discussed, including the removal of outliers and other 
adjustments to the data. This section then begins to introduce a statistical perspective on the data 
and previews the technique to be used in Section 3. 
 
Section 3: Regression Analysis for Recent Months and a Description of the Regression 
Workbook 
This section provides an example of how regression can be used to calculate a confidence 
interval on the IBNR claim estimate for the two most recent months of incurred and paid claim 
data. Practical considerations of the claim data, such as benefit changes and different coverage 
levels, are discussed. 
 
Section 4: Simulation Techniques to Estimate Confidence Intervals for IBNR Reserves 
In this section, a step by step guide for employing simulation techniques to calculate confidence 
intervals and fitting probability distributions to the claim data is presented. For ease of 
application, the techniques in this section make use of an Excel add-in called @RISK. The 
techniques may be used with other simulation programs or Excel add-in software, but for 
illustrative purposes and to provide a completely workable example, detailed steps in @RISK are 
provided. As of the publication of this guide, a 10-day, free trial version of @RISK may be 
downloaded at www.palisade.com. 
 
Section 5: Key Statistical Terms 
For reference purposes, brief definitions of statistical terms and concepts used throughout the 
document are provided in this section.  
 
Appendix 
The appendix provides further reference material on multicolinearity to supplement the examples 
in the guide.  
 
No introduction to this topic can be complete without mentioning the role of actuarial judgment. 
The techniques in the guide present the groundwork for producing IBNR estimates and 
confidence intervals. However, what cannot be taught in a guide is the experience that is gained 
over time through working with particular claim data and familiarity with an organization’s 
business practices and unique circumstances. In this regard, any technique is only as good as the 
ultimate actuarial judgment that renders its results reasonable. 
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Introduction 
 
In this document, we illustrate how to use statistical methods to estimate unknown values and 
create confidence intervals in the context of setting reserves for health (other than disability) 
insurance claims that have been incurred but not reported (IBNR).  
 
Two general statistical approaches used in developing estimates and corresponding confidence 
intervals are: 
 

• Statistical methods. For instance, a regression analysis might be applied to estimate a 
range for the value of claims liability. 

 
• Additional knowledge of factors outside of the statistical method. For instance, the range 

calculated statistically might be adjusted to reflect a known change in benefit plan design. 
 
It is possible to use both approaches on the same problem. However, it is important to have a 
framework for combining both approaches.  
 
This guide also includes discussion of the most common non-statistical method used in the health 
care industry—the completion factor method.  
 
This document is organized into the following sections: 

• Section 1: Overview of Health Care Liabilities and Introduction to the Completion Factor 
Method  

• Section  2: The Completion Factor Method Using Medical Insurance Data  
• Section 3: Regression Analysis for Recent Months and a Description of the Regression 

Workbook  
• Section 4: Simulation Techniques to Estimate Confidence Intervals for IBNR Reserves  
• Section 5: Key Statistical Terms  
• Appendix I: Multicolinearity  

 
 
A note on terminology usage: For the sake of clarity and familiarity to readers, the terms 
confidence interval or simply interval are primarily used to describe our calculation of interest 
throughout the text. From a statistical point of view, the term prediction interval is more accurate 
to describe this calculation in most circumstances in this guide and in particular, regression. For 
interested readers, Section 5 contains the technical definitions of confidence intervals and 
prediction intervals. 
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Section 1—Overview of Health Care Liabilities and Introduction to the Completion Factor 
Method 
 
In this section, we give an overview of health care liabilities and a description of one of the well-
known methods for computing the health plan liability: the completion factor method. 
 
1.1 Overview of Health Care Liabilities 
 
1.1.1 Definitions 
 
We will refer to the insured under a health insurance contract under consideration as the member 
of the health insurance plan. Members seeking medical care incur a cost that may be 
reimbursable by the insurance company (a claim). The month in which a member sees a provider 
for medical care is called the incurred month. 
 
The amount ultimately paid for claims incurred in a given month is modeled by a process called 
development. One common method of modeling the development process is called the chain 
ladder method. This method is applied by estimating the ratios of amounts paid in consecutive 
months (development factors) or percentages of ultimate cost paid up to a given date (completion 
factors). These factors are related to one another in a way that will be illustrated in the examples 
that follow. 
 
After a claim is incurred, it is submitted to the insurance company that is providing health care 
coverage for the claimant. The month during which the claim is reported to the insurance 
company is called the reported month, and the month in which the insurance company pays the 
claim is called the paid month. In this document, we are only concerned with the incurred and 
paid months. 
 
The paid month comes after the incurred month, and it can, of course, occur no earlier than the 
incurred month. (In this document, we are not considering the issue of pre-paid medical care, or 
capitation.)  In a report of paid claims by incurred month, each incurred month is given a row 
and each paid month is given a column (or each incurred month is given a column and each paid 
month is given a row). Only cells in which the paid month is equal to or later than the incurred 
month are nonzero. Since the nonzero values form a triangle, this report is typically called a 
triangle report. 
 
Lag is the measure of the difference between incurred month and paid month. For instance, a 
claim that is incurred in July 2005 and paid in July 2005 is defined as being paid at lag 0. A 
claim that is incurred in July 2005 and paid in August 2005 has a lag of 1. 
 
The process of calculating insurance liabilities is referred to as valuation. Unless stated 
otherwise, when we are using a month as a valuation date, we are referring to the last day of the 
month, which is the date as of which valuations are usually performed. 
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1.1.2 Types of Health Reserves 
 
Health (other than disability) insurance reserves may be classified broadly into the following 
categories: 
 
- Policy reserves: amounts necessary for contract obligations created by future claims. 
 
- Expense liabilities: amounts needed to pay loss adjustment expenses, taxes and other expenses 
related to liabilities incurred by the insurer from operations prior to the statement date. 
 
- Claims reserves: amounts needed to pay claims already incurred but not yet reported or paid. 
 
In this document, we will be concerned with claims reserves only. 
 
U.S. statutory reserving practices for health insurance in general are governed by the National 
Association of Insurance Commissioners’ (NAIC) Model Minimum Reserve Standards for 
Individual and Group Health Insurance.  
 
1.1.3 Claims Reserves 
 
Claims reserves represent estimates of the amounts that the insurer expects to pay in the future 
on claims that have been incurred prior to the end of the reporting period. Three major types of 
claims reserves are: claims due and unpaid, claims in the course of settlement and claims that 
have been incurred but not reported. Claims due and unpaid are usually small and known with 
reasonable precision. The two other types of claims reserves, either because the amount due to 
the provider of medical care (or policyholder) has not been determined, or because the insurance 
company has no knowledge of the claims yet, produce a significant level of uncertainty requiring 
actuarial analysis. The classic methodology for estimating health claims reserves is similar to the 
methodology used in property/casualty insurance loss reserving. There are, however, notable 
differences in the data. Key differences include the following: 
 

• Claim frequency. In property/casualty insurance, the policyholder rarely makes a 
claim. In many types of health insurance, there is a high probability that an individual 
policyholder will make a claim. Consequently, the number of claims that a health 
insurer must process and manage is staggering compared to the number processed and 
managed by a property/casualty insurer. 

 
• Claim characteristics. Due to the enormous volume of claims, specific details, helpful 

in determining the expected amount of individual claims, are usually not known by 
the health valuation actuary. The exception to this may be large catastrophic claims, 
such as claims for severe burns and for low-weight premature infants. 

 
• Contractual information. An actuary sometimes has knowledge of hospital contract 

details, which would help derive expected payment rates for specific known claims. 
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• Payment patterns. Health insurance claims develop much more quickly than many 
types of casualty claims, such as liability and workers’ compensation. The 
development of health claims from unknown to known (to the insurer) and paid is 
measured in months. For some casualty products, the development from unknown to 
known takes years. 

 
1.2 Introduction to the Completion Factor Method 
 
Suppose we know the following about claims incurred in August 2005: 
 

Exhibit 1.1 
Claims Incurred, August 2005 

 
Paid Month Lag Amount Paid

August 2005 0 $2,000 
September 2005 1 1,000 
October 2005 2 1,000 
November 2005 3 400 
December 2005 4 1,100 
Total Incurred  $5,500 

 
In addition, we know that all claims incurred in August 2005 have been paid by the end of 
December 2005. Based on this information, we can derive development factors and completion 
factors for the month of August 2005 as follows: 

 
Exhibit 1.2 

Derivation of Development and Completion Factors 
August 2005 

 
(1) 

 
Lag 

(2) 
Amount 

Paid 

(3) 
Cumulative 

Paid 

(4) 
Development 

Factor 

(5) 
Derivation of 

(4) 

(6) 
Completion 

Factor 

(7) 
Derivation of 

(6) 
0 $2,000 $2,000   36.4% (1) (3) Lag 0/(3) Lag 4 
1 1,000 3,000 1.50 (2) (3) Lag 1 ÷ (3) Lag 0 54.5% (3) Lag 1/(3) Lag 4 
2 1,000 4,000 1.33 (3) Lag 2 ÷ (3) Lag 1 72.7% (3) Lag 2/(3) Lag 4 
3 400 4,400 1.10 (3) Lag 3 ÷ (3) Lag 2 80.0% (3) Lag 3/(3) Lag 4 

4 1,100 5,500 1.25 (3) Lag 4 ÷ (3) Lag 3 100.0% Assumed 
 

(1) 36.4% = $2,000 / $5,500 
(2) 1.50 = $3,000 / $2,000 

 
Exhibit 1.2 shows the relationship between development factors and completion factors. Given 
an assumption about when claims are complete and a set of development factors, the 
corresponding completion factors can be calculated. 
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Now suppose we have the following information about claims incurred between August and 
December 2005 and paid through the end of December 2005. 
 

Exhibit 1.3a 
Claims Incurred August – December 2005, Paid Through December 2005 

 
Paid Month Incurred 

Month Aug-05 Sep-05 Oct-05 Nov-05 Dec-05 
 

Total 
Aug-05 $2,000 $1,000 $1,000 $400 $1,100 $5,500 
Sep-05  $2,000 1,800 1,400 800 $6,000 
Oct-05  $3,000 3,000 2,000 $8,000 
Nov-05  900 600 $1,500 
Dec-05  $5,000 $5,000 

 
Rather than use the row to indicate the incurred month and the column to indicate the paid 
month, it is possible to do the opposite, as in Exhibit 1.3b. The particular choice between the two 
formats is somewhat arbitrary, but one format may be more convenient depending on the further 
calculations to be performed. 
 

Exhibit 1.3b 
Claims Incurred August – December 2005, Paid Through December 2005 

 
Incurred Month Paid 

Month Aug-05 Sep-05 Oct-05 Nov-05 Dec-05 
Aug-05 $2,000  
Sep-05 1,000 $2,000  
Oct-05 1,000 1,800 $3,000  
Nov-05 400 1,400 3,000 $   900  
Dec-05 1,100 800 2,000 600 $5,000 

Total $5,500 $6,000 $8,000 $1,500 $5,000 
 
Exhibit 1.4 below shows how we can apply the completion factors from Exhibit 1.2 to the claims 
paid to date in Exhibit 1.3a in order to estimate claims reserves for IBNR as of the end of 
December 2005. 



 
 

10

Exhibit 1.4 
IBNR Claims Reserves 
As of December 2005 

 
(1) 

Incurred 
Month 

(2) 
Lag Through 

Dec-05 

(3) 
Claims Paid 

Through Dec-05 

(4) 
Completion 

Factor 

(5) = (3) ÷ (4) 
Estimated 
Incurred 

(6) = (5) – (3) 
 

IBNR 
Aug-05 4 $  5,500 100.0% $  5,500 $         - 
Sep-05 3 6,000 80.0% 7,500 1,500 
Oct-05 2 8,000 72.7% 11,000 3,000 
Nov-05 1 1,500 54.5% 2,750 1,250 
Dec-05 0 5,000 36.4% 13,750 8,750 
Total  $26,000  $40,500 $14,500 

 
The completion factors used to calculate IBNR in Exhibit 1.4 are based solely on claims incurred 
in August 2005. It is clear, however, that every month does not develop in the same way. For 
example, the lag 1 development factor based on September 2005 data is 1.90, not 1.50 as we 
derived for August 2005. 
 
As an additional example, if we were to calculate the development factors using data from 
September 2005 only, we would obtain the following development factors, based on the data 
from Exhibit 1.3b: 

 
Lag 1 Development Factor = ($2,000 + $1,800) ÷ $2,000 = 1.90 
Lag 2 Development Factor = ($2,000 + $1,800 + $1,400) ÷ $3,800 = 1.37 
Lag 3 Development Factor = $6,000 ÷ $5,200 = 1.15 

 
Moreover, there is a great deal of information about the development process implicit in the 
development observed through December 2005 of claims incurred during September, October 
November and December 2005. The chain ladder method enables us to take advantage of this 
additional information. 
 
Exhibit 1.5 rearranges and calculates the cumulative claims by incurred month and lag from the 
information found in Exhibit 1.3b above. 



 
 

11

Exhibit 1.5 
Cumulative Paid Claims by Incurred Month and Lag 

August – December 2005 
 

Incurred Month  
Lag Aug-05 Sep-05 Oct-05 Nov-05 Dec-05 

0 $2,000 $2,000 $3,000 $   900 $5,000 
1 3,000 3,800 6,000 1,500  
2 4,000 5,200 8,000   
3 4,400 6,000    
4 5,500     

 
Exhibit 1.6 below shows an intermediate step in the chain ladder method. It calculates 
cumulative sums across different combinations of lags and incurred months. 
 

Exhibit 1.6 
Chain Ladder Method 

Intermediate Cumulative Sums 
 

Incurred Months  
Lag Aug-05 Aug-05 - Sep-05 Aug-05 - Oct-05 Aug-05 - Nov-05 

0    $  7,900 
1   $12,800 $14,300 
2  $  9,200 (1) $17,200  
3 $4,400 $10,400 (2)   
4 $5,500    

 
(1) $9,200 = $4,000 + $5,200 
(2) $10,400 = $4,400 + $6,000 

 
Exhibit 1.7 uses the intermediate sums found in Exhibit 1.6 to calculate estimates of the 
development factors based upon the development observed through December 2005 of claims 
incurred between August and December 2005. 
 

Exhibit 1.7 
Development Factor Estimates 

Claims Incurred August – December 2005, Paid Through December 2005 
 

Development Factors Based on Incurred Months  
Lag Aug-05 Aug-05 - Sep-05 Aug-05 - Oct-05 Aug-05 - Nov-05 

 
Derivation 

1  1.81 Lag 1 ÷ Lag 0 
2   1.34  Lag 2 ÷ Lag 1 
3  1.13   Lag 3 ÷ Lag 2 
4 1.25    Lag 4 ÷ Lag 3 
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Finally, Exhibit 1.8 translates the estimated development factors from Exhibit 1.7 into estimated 
completion factors using the method shown in Exhibit 1.2 above. 
 

Exhibit 1.8 
Estimated Completion Factors 

 
(1) 

 
Lag 

(2) 
Development 

Factor 

(3) 
Completion 

Factor 

(4) 
 

Derivation 
0  29.1% (3) Lag 1 ÷ (2) 

Lag 1 
1 1.81 52.7% (3) Lag 2 ÷ (2) 

Lag 2 
2 1.34 70.8% (1) (3) Lag 3 ÷ (2) 

Lag 3 
3 1.13 80.0% (2) (3) Lag 4 ÷ (2) 

Lag 4 
4 1.25 100.0% Assumed 

 
(1) 70.8% = 80.0% divided by 1.13 
(2) 80.0% = 100.0% divided by 1.25 
 

Based on the completion factors we just derived and our calculation method in Exhibit 1.4, we 
estimate claims reserves (IBNR) as follows: 
 

Exhibit 1.9 
Estimated IBNR 

 
Incurred 
Month 

Lag Through 
Dec-05 

Claims Paid 
Through Dec-05 

Completion 
Factor 

Estimated 
Incurred 

 
IBNR 

Aug-05 4 $  5,500 100.0% $  5,500 $         -   
Sep-05 3 6,000 80.0% 7,500 1,500 
Oct-05 2 8,000 70.8% 11,304 3,304 
Nov-05 1 1,500 52.7% 2,848 1,348 
Dec-05 0 5,000 29.1% 17,185 12,185 
Total  $26,000  $44,338 $18,338 

 
For most business and regulatory purposes, an actuary would like to ultimately estimate an IBNR 
that is sufficient with high probability. A sufficient IBNR is a value for the liability calculated 
such that, once all of the claims are paid, the IBNR was greater than or equal to the actual 
outstanding claims paid. The sufficiency of the estimate that is ultimately recorded for 
accounting purposes can be measured using a confidence interval. 
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In succeeding sections, we further explore the calculation of a confidence interval for an IBNR 
estimate, starting with the completion factor method and then using other techniques. 
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Section 2—The Completion Factor Method Using Medical Insurance Data 
 
In Section 1, we illustrated a simple example of the completion factor method. In this section, we 
expand that example to a 36-month data set. 
 
This section is organized as follows: 
 

1. We describe the data set for the 36-month example. 
2. We discuss the determination of outliers. 
3. We derive completion factors using the completion factor method. 
4. We analyze the completion factors and describe limitations of the completion factor 

method. 
 
2.1 The Data Set 
 
Our data set is expanded from the example in Section 1 in the following ways: 
 

• Instead of five months of data, we use 36 months of data. 
• In addition to paid claims, we have membership data by incurred month. 

 
Our data set consists of claims for medical coverage for the time period January 2001 through 
December 2003. The claims data: 
 

• Is summarized in a paid vs. incurred month grid (triangle). 
• Represents medical coverage with no deductibles and coinsurance and relatively low co-

payments such as $10 per office visit. Thus we assume that the same percentage of claims 
is paid by the insurer in each month. 

• Excludes prescription drug claims. Prescription drug claims usually have a shorter lag 
pattern than other medical claims. 

 
The paid total claims data set can be found in the worksheet entitled “OriginalData” in the file 
called “Statistical Methods – Regression Method – Workbook.xls”, available on the Web page of 
the SOA Web site containing this document. 
 
The observation in each cell of the paid by incurred month grid is the sum of many individual 
transactions. Each transaction can typically be described as one of the following: 
 

• Non-catastrophic initial claims—claims of smaller amounts when they are first paid by 
the claims department. Such claims are often auto-adjudicated (that is, no human 
intervention), so there is relatively little lag between the report date and the paid date. 

• Catastrophic initial claims—larger amount claims that have on average a longer payment 
lag because of adjudication complexities and may cause significant changes in total 
IBNR. 

• Adjustments—adjustments to existing reported claims for any new information or 
administrative errors. 
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With sufficient data, each of these transaction types could be modeled separately. As a 
simplification, we will treat the transactions as though they come from a single distribution. 
 
The lag time for when initial claims are paid is dependent on: 

• how quickly providers (e.g., hospitals, physicians) or claimants submit claims following 
incurral; and 

• the speed at which the insurer processes and pays claims. 
 
An adjustment occurs when a claim is paid and later the insurance company determines that a 
different amount is needed. Two of the key reasons for adjustments are: 
 

• Claims paid in error—for instance, a claim was paid twice. 
• Third party liability—these occur typically through coordination of benefits, subrogation 

and other similar contractual provisions. 
 
When negative adjustments exceed the combination of initial claims and positive adjustments, an 
incurred/paid month cell will show a negative amount. 
 
As the processes underlying initial claims and subsequent adjustments differ, their underlying 
statistical distributions are different; thus, by combining these processes, we add additional 
variation to our eventual model. This is particularly true at the longer lags, such as lags 9, 10 and 
11 in our sample data. 
 
The variation in adjustments is more important at later durations because: 
 

• adjustments cannot be made until after initial claims are paid; 
 

• initial claims payments become significantly less frequent at later durations. 
 
For each month, we have corresponding membership information. We truncated the data set to 
assume that all claims are paid within 12 months (e.g., all claims incurred in January 2001 are 
paid by January 31, 2002). We truncated the data set because the vast majority of medical claims 
are paid within the first 12 months following incurral; thus, the applicability of our models to 
real life IBNR calculations is not significantly impacted by this truncation. 
 
2.2 Outliers 
 
An outlier is a claim amount that is outside the normal or expected range of values. The 
determination of an outlier depends on the model or method used to estimate IBNR. In this 
regard, an outlier with respect to one model may not necessarily be an outlier relative to another 
model. A general two-step procedure for determining and handling outliers is as follows: 
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First, graph the data to visually inspect which points may be considered as candidates for 
outliers. In many cases, a visual inspection will be enough to determine any claims that are 
obvious outliers. If a visual inspection does not reveal outliers, another method is to apply a 
statistical test such as the six-sigma rule. This rule states that if a point is within three standard 
deviations of the mean, it is not considered an outlier. This test can be applied easily by using the 
Standard Deviation function in Excel or another similar program. 
 
Second, either remove the outlier completely from the data or adjust it to a value that would be 
more within the expected range of claim values. It is also helpful to calculate the IBNR with and 
without the outlier to determine its ultimate impact on the calculation and how significant it is. 
For instance, we may decide for the purposes of the calculation that an outlier that impacts the 
calculation by 5 percent or more is significant and requires action, but less than that requires no 
adjustment. If the outlier is removed completely, for most purposes, it is advisable to make a 
final adjustment to the calculated IBNR to account for the claim amount removed. 
 
It is important when identifying outlier claims to clearly document the justification for why a 
claim has been identified as such and how the outlier was treated in the IBNR calculation 
method. This can become particularly relevant if revisions or adjustments are needed to the 
IBNR estimate that is eventually recorded for accounting purposes. 
 
Adjustment for outliers and catastrophic cases is further discussed in Sections 3.5.1 and 3.6.  
 
 
2.2.1 Screening Our Data for Outliers 
 
In analyzing our data for potential outliers, we plot our data as in Exhibit 2.1. In that graph, t is 
the lag and i is the incurred month. “Original Y” is the claims amount incurred in month i, 
0 ≤ i ≤ 35, and paid at lag t, 0 ≤ t ≤ 12. This plot shows that there is a potential outlier in the 
middle of the data set. We have identified this as the observation corresponding to i = 12 and 
t = 7. This point corresponds to the $756,000 that was incurred in January 2002 and paid in 
August 2002. 
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The graph in Exhibit 2.1 helps identify positive outliers, whereas Exhibit 2.2 illustrates all of the 
negative values in the data. 
 

Exhibit 2.1 
Initial Scatter Plot of the Data 
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Exhibit 2.2 

Data Points with Negative Values 
Amount <0
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The graph in Exhibit 2.2 shows negative data points by lag. The graph shows no negative data 
points in lags 0 through 5. We see a potential outlier at lag 10. The actual value is -$62,165, 
which occurs at i = 19 (month). This point is the sum of all claims transactions that were incurred 
in August 2002 and paid in June 2003. For this example, our next step would be to further 
investigate the outliers and consult with the claims processing department, as needed. 
 
A consultation with the claims processing department reveals the following information: 
 

• There was a $750,000 severe burn case that was incurred in January 2002 and paid in 
August 2002. 

• The health insurance carrier paid, in September 2002, $60,000 for an auto accident claim 
that was incurred in August 2002. An auto insurance company reimbursed the health 
insurance carrier $60,000 for this claim in June 2003. 

 



 
 

19

Based on this information, if we remove these claims as outliers, the new values in the triangle 
would be the following: 

Exhibit 2.3 
Potential Outliers 

 
   (1) (2) (3) = (1) – (2)  

Incurred 
Month 

Paid 
Month 

Lag Current Value 
in Claims 
Triangle 

Potential 
Outlier 
Claim 

New Value in 
Claims 

Triangle 

Cause of Claim 

Jan-02 Aug-
02 

7 $756,000 $750,000 $6,000 Severe Burn Case 

Aug-02 Jun-03 10 ($62,165) ($60,000) ($2,165) Auto Accident— 
Third party 
payment received 
after claim paid 

 
When we use the completion factor method, these are the two data points we will assess to 
determine their significance as outliers and how they will be treated for the calculation. 
 
2.3 The Completion Factor Method 
 
In Exhibit 2.4, we calculate the completion factors as we did in Exhibit 1.8 for the example in 
Section 1. The calculation is as follows: 
 

Exhibit 2.4 
Calculation of Completion Factors 

36-month Sample Data 
 

Completion Factor – Lag12 1.00000 (1) Due to data truncation 
as discussed above 

Lag 12 claims (January 2001 through 
December 2002 – 24 months) 

$43,464,941 (*) (2) 

Lag 11 claims (January 2001 through 
December 2002 – 24 months) 

$43,428,968 (3) 

Completion Factor – Lag 11 0.99917 (4) = (3) ÷ (2) 
Lag 11 claims (January 2001 through 
January 2003 – 25 months) 

$45,977,288 (5) 

Lag 10 claims (January 2001 through 
January 2003 – 25 months) 

$45,861,250 (6) 

Lag 10 claims divided by Lag 11 
Claims 

0.99748 (7) = (6) ÷ (5) 

Completion Factor – Lag 10 0.99665 (8) = (4) × (7) 
(*) The workbook (named “Statistical Methods – Regression Method – Workbook.xls”) has IBNR calculated with a 
$750,000 outlier excluded. The value $42,714,941, which is $750,000 less than $43,464,941, can be obtained by 
summing cells P6 through P29 in Tab WorkData2. 
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In a manner similar to Exhibit 1.4 in Section 1, we calculate IBNR by lag as follows: 
 

Exhibit 2.5 
Calculation of IBNR—Sample Data 

Lags 0 Through 12 
No Outliers Removed 

 
(1) (2) (3)=(1)÷(2) (4)=(3)-(1)  

 
Incurred 
Month 

 
 
 

Lag 

Cumulative 
Paid Through 
December '03 

 
Completion 

Factor 

Estimated 
Incurred 
Claims 

 
 

IBNR 
      

Dec-03 0 $     96,378 0.03936 $2,448,572 $2,352,193 
Nov-03 1 1,283,817 0.59821 2,146,086 862,269 
Oct-03 2 2,193,388 0.84701 2,589,571 396,184 
Sep-03 3 2,688,921 0.91445 2,940,472 251,551 
Aug-03 4 2,466,086 0.94775 2,602,055 135,969 
Jul-03 5 2,502,042 0.96126 2,602,876 100,834 
Jun-03 6 2,196,919 0.97130 2,261,842 64,923 
May-03 7 2,385,024 0.99008 2,408,921 23,897 
Apr-03 8 2,237,437 0.99275 2,253,778 16,341 
Mar-03 9 2,361,919 0.99583 2,371,810 9,891 
Feb-03 10 2,187,349 0.99665 2,194,699 7,351 
Jan-03 11 2,548,319 0.99917 2,550,430 2,111 
Dec-02 12 1,860,925 1.00000 1,860,925 0 

      

Total—Lags 0 Through 12 $27,008,524  $31,232,037 $4,223,513 
Total—Lags 2 Through 12 25,628,328  26,637,379 1,009,051 

 
All of the incurred estimates for lags 2 through 11 are between $2 million and $3 million. The 
incurred claim estimates for lags 0 and 1, $2,448,572 and $2,146,085, respectively, seem to be 
reasonable estimates at first glance. However, as we will describe in later sections, the variation 
in these estimates is relatively large. 
 
Returning to the evaluation of outliers, we previously identified two potential outliers: 

• the $750,000 claim incurred in January 2002 and paid in August 2002; 
• the ($60,000) claim adjustment incurred in August 2002 and paid in June 2003. 

 



 
 

21

In Exhibit 2.6, we illustrate the impact of these potential outliers on IBNR for lags 2 through 12. 
 

Exhibit 2.6 
Effect of Potential Outliers on IBNR for Lags 2 through 12 

Completion Factor Method 
 

 With Both 
Outliers Included 

With $750,000 Claim 
Excluded 

With ($60,000) Claim 
Adjustment Excluded 

IBNR $1,009,051 $833,796 $1,033,963 
Change in IBNR 
Due to Outlier 

N/A (17.4%) 2.5% 

 
For this document, we assume that an absolute change, i.e., positive or negative, of 5 percent or 
more in IBNR is significant. 
 
Based on that criterion, in analyzing the IBNR for lags 2 through 12, we conclude that the 
$750,000 claim is an outlier and the ($60,000) claim adjustment is not an outlier. In the 
regression workbook accompanying this guide, we have removed the $750,000 claim. In 
practice, there are several ways to treat this claim for IBNR purposes. Among possible 
approaches would be to include it in the experience during the factor development process, but to 
adjust it to a pre-determined amount consistent with an internal pooling arrangement, external 
reinsurance agreement or other reasonably expected amount. For the purposes of illustrating the 
methods in this guide, we have chosen to remove it completely from the experience during the 
factor development process. 
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When excluding the $750,000 burn case, our IBNR by month is as displayed in Exhibit 2.7. 
 

Exhibit 2.7 
IBNR with Catastrophic Burn Case Excluded 

 
  (1) (2) (3) = (1) ÷ (2) (4) = (3) – (1) 
  Cumulative  Estimated  

Incurred  Paid through Completion Incurred  
Month Lag December '03 Factor Claims IBNR 
Dec-03 0 $     96,378 0.03990 $2,415,373 $2,318,994 
Nov-03 1 1,283,817 0.60644 2,116,988 833,171 
Oct-03 2 2,193,388 0.85865 2,554,461 361,073 
Sep-03 3 2,688,921 0.92702 2,900,603 211,682 
Aug-03 4 2,466,086 0.96077 2,566,775 100,689 
Jul-03 5 2,502,042 0.97447 2,567,585 65,543 
Jun-03 6 2,196,919 0.98465 2,231,175 34,255 
May-03 7 2,385,024 0.98993 2,409,296 24,272 
Apr-03 8 2,237,437 0.99263 2,254,040 16,603 
Mar-03 9 2,361,919 0.99576 2,371,975 10,056 
Feb-03 10 2,187,349 0.99659 2,194,823 7,475 
Jan-03 11 2,548,319 0.99916 2,550,467 2,148 
Dec-02 12 1,860,925 1.00000 1,860,925 - 

   
  IBNR    
  Dec-02 – Oct-03 (Lags 2 through 12) $   833,796 
  Nov-03 – Dec-03 (Lags 0 and 1) 3,152,165 
  Total IBNR Dec-02 – Dec-03 $3,985,962 

 
2.3.1 Analysis of the Completion Factor Method 
 
As can be observed from Exhibit 2.7, over 79 percent of the IBNR ($3,152,165/$3,985,962) is 
represented by lags 0 and 1. Given this observation and the relative concentration of the IBNR, it 
is useful to analyze further the variation in the cumulative completion factors that were 
developed and in particular review the estimates for the most recent lags. 
 
In this section, we will 
 

• Demonstrate an approach for using descriptive statistics to analyze the variation in the 
cumulative completion factors to help assess the reasonability of the factors. 

• Conclude that the completion factor method does not produce consistently reliable 
estimates for the most recent lag months based on our test of acceptable variability. 

 
To test the cumulative completion factors, we analyze the unweighted monthly completion 
factors derived for each of the completed months, January 2001 through December 2002. Thus 
we have 24 data points on which to analyze the 13 completion factors developed (for lags 0 
through 12, inclusive). 
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When comparing our cumulative completion factors with the mean of the unweighted monthly 
completion factors (after eliminating the $750,000 outlier, as described before), we obtain the 
following comparison: 
 

Exhibit 2.8 
Comparison of Completion Factors 

 
 

Lag 
Cumulative

Factors 
Mean of Unweighted 

Monthly Factors 
0 0.03990 0.03215 
1 0.60644 0.58789 
2 0.85865 0.84632 
3 0.92702 0.92366 
4 0.96077 0.95917 
5 0.97447 0.97211 
6 0.98465 0.98437 
7 0.98993 0.98975 
8 0.99263 0.99223 
9 0.99576 0.99551 

10 0.99659 0.99645 
11 0.99916 0.99904 
12 1.00000 1.00000 

 
The derivation of the mean of unweighted individual months is shown in a calculation in Tab 
“Unweighted Completion Factors” in the workbook “Statistical Methods – Regression Method – 
Workbook.xls.” Because the values for each lag in Exhibit 2.8 are relatively close, we conclude 
that we can use the factor data from individual months to gain additional insight into the 
cumulative completion factors derived from using weighted averages. 
 
Note that it might not always be the case that the monthly unweighted completion factors 
provide useful observations about the weighted average (cumulative) completion factors. For 
example, if the values in columns in Exhibit 2.8 appear to have large differences or show erratic 
patterns, then further analysis may not prove meaningful. For this approach, actuarial judgment 
will play a role in the ultimate value of the information. 
 
In analyzing the monthly unweighted completion factors, a good measure of their stability is the 
standard deviation of the monthly unweighted completion factors divided by their mean for each 
lag. This ratio is analogous to a statistical measure known as the coefficient of variation. 
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Using the completion factor data from our 24 completed months, we obtain the results in Exhibit 
2.9. 
 

Exhibit 2.9 
Completion Factor Method 

Calculation of the Coefficient of Variation 
 

Completion Factor  
 

Lag 
Mean of 

Individual Months 
Standard 
Deviation 

Coefficient of variation 
(Std. Dev./Mean) 

0 0.03215 0.02548 0.79237 
1 0.58789 0.12032 0.20467 
2 0.84632 0.06114 0.07225 
3 0.92366 0.04414 0.04778 
4 0.95917 0.02483 0.02588 
5 0.97211 0.02271 0.02336 
6 0.98437 0.01471 0.01494 
7 0.98975 0.01410 0.01425 
8 0.99223 0.01444 0.01455 
9 0.99551 0.01460 0.01467 

10 0.99645 0.01025 0.01028 
11 0.99904 0.00293 0.00294 
12 1.00000 - - 

 
Note that the coefficient of variation at lag 12 is 0 since we assumed that all claims are paid by 
lag 12. In other words, we assumed that no claims are paid after lag 12 with 100 percent 
probability and no variation. Therefore, the standard deviation of the amount paid after lag 12 is 
0, resulting in the same value for the coefficient of variation. 
 
For the purposes of this document, we define a completion factor with acceptable variability as 
one with a coefficient of variation less than 0.1. This definition is based on our objective for 
stability of the completion factor estimate. Depending on the purpose of the analysis, a different 
threshold for the coefficient of variation might be used. Exhibit 2.9 indicates that, based on our 
definition, the completion factor method is producing estimates with unacceptable variability for 
lags 0 and 1. If we had selected 0.05 as our threshold, we would have concluded that the 
completion factor method is producing estimates with unacceptable variation for lags 0, 1 and 2. 
 
An alternative illustration of the variation in the cumulative completion factors is to pose the 
following question:  For every $100 of claims already paid, how much is the corresponding 
IBNR? 
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Exhibit 2.10 provides an example of the calculation implied by this question if the completion 
factor were 0.75. 
 

Exhibit 2.10 
Example of How Claims Paid and 

Completion Factor Determine IBNR 
 

Claims Paid $100 (1) 
Completion Factor 0.75 (2) 
Incurred Claims $133.33 (3) = (1) ÷ (2) 
IBNR = Incurred Claims Minus Claims Paid 33.33 (4) = (3) –(1) 

 
Applying this calculation to our set of completion factors yields the values shown in Exhibit 
2.11. 
 

Exhibit 2.11 
IBNR per $100 of Paid Claims 

for the Calculated Completion Factors 
 

(1) (2) = $100÷(1) - $100 (3)  
 

Lag
Completion

Factor* 
IBNR for 

$100 in Paid Claims 
Coefficient of 

Variation 
0 0.03990 $2,406.14 0.79237 
1 0.60644 64.90 0.20467 
2 0.85865 16.46 0.07225 
3 0.92702 7.87 0.04778 
4 0.96077 4.08 0.02588 
5 0.97447 2.62 0.02336 
6 0.98465 1.56 0.01494 
7 0.98993 1.02 0.01425 
8 0.99263 0.74 0.01455 
9 0.99576 0.43 0.01467 

10 0.99659 0.34 0.01028 
11 0.99916 0.08 0.00294 
12 1.00000 - - 

 
* With catastrophic case excluded 
 
As can be seen in comparing Exhibits 2.10 and 2.11, the coefficient of variation decreases as the 
“IBNR for $100 in Paid Claims” decreases (except in lags 8 and 9, where there is a slight 
increase). Again, we conclude that the variation is concentrated in the most recent lag months 
and the estimates for the most recent lag months have unacceptable variability.  
 



 
 

26

2.3.2 Limitations of the Completion Factor Method 
 
Limitations of the completion factor method include the following: 
 

• The method, as presented, is cumulative; thus if incurred month a has twice as many 
claims as incurred month b, then the claims payment pattern of month a will have twice 
the weight in determining the completion factors as the claims payment pattern of month 
b. (Note that, in practice, alternatives to a cumulative approach may be applied.) 

• For a given value of incurred claims, as more claims are paid, IBNR should decrease. In 
the completion factor method, incurred claims are determined by claims paid to date 
divided by completion factors. If the speed at which claims are paid increases, IBNR will 
increase even when incurred claims have not increased. 

• The method uses a chain ladder approach to model the claim development process. 
Because no underlying probability distribution is defined, the method does not easily lend 
itself to the derivation of statistical measures such as confidence intervals. 

 
2.3.3 Summary and Objective of Subsequent Sections 
 
Now that we have completed an expanded example of the completion factor method including 
the treatment of outliers, it is helpful to review our ultimate goal in the context of what we know 
about the method. First, the objective of this guide is to describe techniques for calculating 
confidence intervals for IBNR estimates. In order to do so, we need to define an underlying 
probability distribution for either the claims data or the factors that are calculated by the 
completion factor method. 
 
The completion factor method is considered a deterministic, as opposed to stochastic, method 
because, as it is applied, it results in only one estimated value for a particular completion factor, 
rather than a distribution of values. Because of this characteristic of the method, it does not easily 
lend itself to comprehensively defining an underlying probability distribution. Another 
characteristic of the completion factor method, as was illustrated in Section 2.3.1, is that much of 
the variation in the IBNR estimate is typically concentrated in the most recent lag months. The 
problem at hand is thus to use the known characteristics of the completion factor method in 
combination with other techniques to develop confidence intervals. 
 
The remainder of this guide approaches this problem from a couple of perspectives. Section 3 
presents an approach whereby regression is used to estimate the IBNR for the most recent lag 
months combined with a standard application of the completion factor method for the remaining 
prior months. Using regression allows us to define confidence intervals for the estimates on the 
most recent lag months. 
 
Section 4 introduces simulation techniques to allow us to calculate a confidence interval for the 
entire IBNR estimate using the standard completion factor method as well as other approaches. 
 
 



 
 

27

Section 3—Regression Analysis for Recent Months and a Description of the Regression 
Workbook 
 
As described in Section 2, the completion factor method is considered a deterministic approach 
as it yields single value estimates, as opposed to a distribution of values. In this section, we 
combine regression techniques with the standard completion factor method. Furthermore, as 
demonstrated in Section 2, much of the estimate variation of the completion factor method is 
concentrated in the most recent lag months. For this reason, regression will be the approach for 
the IBNR estimates for lags 0 and 1 with the standard completion factor used for all other lags. 
 
This section is organized as follows: 
 

1. Description of the problem and variables. 
2. Discussion of key statistical concepts used. 
3. Description of the models we have in the regression workbook which we use in 

analyzing our data. 
4. Detailed instructions on how to use the regression workbook. 
5. Derivation of incurred claim costs using the regression workbook. 
6. Explanation of how to calculate IBNR. 
7. Confidence intervals 
8. Expanding our analysis to nonuniform claim costs 
9. Summary 

 
3.1 Our Problem and Variables 
 
To put our problem in the context of a regression analysis, the monthly claims data can be 
considered in terms of data points used to derive a regression line. Each point can be described 
by the month that claims were incurred and the estimate of total incurred claims for that month. 
Exhibit 3.1 presents a table of these data points. An example data point in the table would be: 
Lag Month 10, Incurred Claim Estimate $2,194,823. The incurred claim estimates for Lag 
Months 2-12 were previously derived in Section 2 by applying the completion factor method. 
The remaining incurred claim estimates come directly from the data set because we assume all 
claims are paid within 12 months after they were incurred. Exhibit 3.1 does not show data for 
Lag Months 0 and 1 because we will be using regression later in this section to estimate those 
values. 
 
Exhibit 3.1 also provides the per member per month (PMPM) incurred claim estimate for each 
lag month. The PMPM is simply calculated by dividing the total incurred claim estimate for a 
particular month by the number of members covered that month. The PMPM incurred claim 
estimate is commonly used in practice as a way to normalize the level of claim activity that 
occurs from changes in plan membership. 
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With this perspective in mind, there are 34 data points—one each for months 0 through 33 
(January 2001 through October 2003)—in our data set. Further extending this regression 
perspective, the primary independent variable for each point is time (the month incurred) and the 
dependent variable is the total or PMPM incurred claim estimate. Since time is the primary 
independent variable, Column 3 in Exhibit 3.1, “Months in Regression,” specifies the 
chronological sequence of the months in the regression model. For instance, January 2001, the 
earliest month in our data set, is labeled Month 0 in Column 3. 
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Exhibit 3.1 
PMPM Incurred Claim Estimates from Completion Factor Method 

 
 

(1) (2) (3) (4) (5) (6)=(4)÷(5) 
 

Lag 
Incurred 
Month 

Months in 
Regression 

Estimated 
Incurred Claims 

 
Membership 

PMPM 
Estimate 

2 Oct-03 33 $2,554,461 11,843 $215.69 
3 Sep-03 32 2,900,603 11,731 247.26 
4 Aug-03 31 2,566,775 11,689 219.59 
5 Jul-03 30 2,567,585 11,787 217.83 
6 Jun-03 29 2,231,175 11,814 188.86 
7 May-03 28 2,409,296 11,927 202.00 
8 Apr-03 27 2,254,040 11,986 188.06 
9 Mar-03 26 2,371,975 12,130 195.55 

10 Feb-03 25 2,194,823 12,201 179.89 
11 Jan-03 24 2,550,467 12,227 208.59 
12 Dec-02 23 1,860,925 12,132 153.39 
13 Nov-02 22 1,762,655 11,951 147.49 
14 Oct-02 21 2,034,275 11,889 171.11 
15 Sep-02 20 1,699,016 11,735 144.78 
16 Aug-02 19 1,859,121 11,655 159.51 
17 Jul-02 18 2,103,032 11,577 181.66 
18 Jun-02 17 1,872,651 11,580 161.71 
19 May-02 16 1,933,155 11,703 165.18 
20 Apr-02 15 1,974,315 11,654 169.41 
21 Mar-02 14 1,589,754 11,753 135.26 
22 Feb-02 13 1,715,552 11,823 145.10 
23 Jan-02 12 1,843,543 11,705 157.50 
24 Dec-01 11 1,410,154 11,555 122.04 
25 Nov-01 10 1,673,063 11,444 146.20 
26 Oct-01 9 1,852,522 11,456 161.71 
27 Sep-01 8 1,587,443 11,400 139.25 
28 Aug-01 7 1,915,574 11,420 167.74 
29 Jul-01 6 1,722,416 11,180 154.06 
30 Jun-01 5 1,755,594 11,174 157.11 
31 May-01 4 1,602,252 11,130 143.96 
32 Apr-01 3 1,610,332 11,069 145.48 
33 Mar-01 2 1,962,246 11,070 177.26 
34 Feb-01 1 1,765,964 11,118 158.84 
35 Jan-01 0 1,609,389 11,154 144.29 
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The data from Exhibit 3.1 can be found in Tab “Workdata3” in our workbook, “Statistical 
Methods – Regression Method – Workbook.xls.” 
 
There are two other independent variables which will be analyzed: 
 

• Weekday/weekend indicator (Day Factor). Many medical offices are closed (or have 
limited hours) on weekends and holidays while hospitals and other facilities remain open 
for emergency and urgent care. We assume that on an average weekend/holiday, 35 
percent of the utilization of an average weekday is experienced. The effect of including 
this variable in the model is to normalize the number of weekdays per month. 

 
• Unspecified time variable (Time 2). There is the capacity in the regression workbook to 

add this additional time variable for each month. This variable has been purposely left 
undefined. It may be assigned values of 0 or 1 and would be incorporated into the 
regression model if its inclusion improves the model from a statistical standpoint. As 
well, its inclusion in the model should be reasonable from a practical understanding of 
the data. For instance, if we knew that all health care providers increased their rates by 
10 percent on January 1, 2002, we could set this variable equal to 0 for months in 2001 
and 1 for months in 2002 and 2003. This variable is different from the primary 
independent variable in the sense that it is assigned one of only two possible values, 
whereas the primary variable can take on a myriad of values depending on the unit of 
time we use to measure time. 

 
3.2 Key Statistical Concepts 
 
Before applying regression directly to IBNR estimation, the following key statistical concepts 
relating to regression are reviewed in this section for the benefit of the reader: 
 

• R-square and adjusted R-square values; 
• Number of data points; 
• p-values in a regression output; 
• Interval estimation; 
• Interval estimates for simple linear regression; 
• Residuals. 

 
3.2.1 R-Square and Adjusted R-Square Values 
 
When regression models are run, among the first results reviewed are the R-square and adjusted 
R-square values. 
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R-square is the coefficient of determination of the regression model. This measure is interpreted 
as the percentage of the variation in the observed values of the dependent variable that is 
explained by the regression model. The larger the value of R-square, the greater is the indication 
that the model is satisfactory. R-square is defined as 

2 1SSR SSER
SST SST

= = − , 

with 

 
 
In the above, SSR is the sum of squares accounted for in the regression model, SST is the total 
sum of squares of the deviations of the dependent variable values from their mean, and 
SSE = SST - SSR. 
 
One drawback of R-square is that adding more independent variables to the model causes the R-
square value to increase even though the improvement to the model, if any, may not justify the 
addition. In order to correct for this, the adjusted R-square is defined to be 

2 /( 1)( ) 1
/( 1)

SSE n kR adj
SST n

− −
= −

−
, 

where k is the number of independent variables (also known as regressors) in the regression 
model and n is the total number of observations on the dependent variable. Larger adjusted R-
square values indicate a better fit of the model. 
 
3.2.2 Number of Data Points 
 
The number of data points can impact the R-square value. In our example, there are 34 data 
points. Let’s say that the best model we can derive with 34 points has an adjusted R-square value 
of x. Furthermore, let’s assume that if we use 30 data points, we can derive an adjusted R-square 
value of y, with y being 1 percent greater than x. Should we use the model with 30 data points?  
If we take this reduction in the number of points to the extreme, R-square and adjusted R-square 
would equal their maximum value of 1 if we had only two data points. 
 
We follow the principle that, unless we have a compelling reason to exclude points, such as with 
outliers, we do not eliminate data points just to produce a model with a slightly better fit. 
However, we often transform variables or add additional variables to produce a better fit. 
 
3.2.3 p-Values in a Regression Output 
 
For a regression analysis, there are several associated test statistics and corresponding p-values. 
These are normally included as output from a statistical package. The F-statistic and 
corresponding p-value test if the overall model is statistically significant. A p-value less than 
0.05 is an indicator that the overall model is statistically significant when compared to a model 
using none of the independent variables. The t-statistics and corresponding p-values test each 
individual regression coefficient (beta value). The independent (predictor) variables with p-
values less than 0.05 are considered to be useful in describing the relationship between the 
independent (predictor) variables and the dependent (response) variable. 
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3.2.4 Interval Estimation 
 
As described in the introduction to this guide, we are using the term confidence interval 
throughout the text to represent both confidence interval and prediction interval because of its 
familiarity with readers. However, in terms of a regression model, there is a technical distinction 
between the two terms that is of interest to actuaries estimating IBNR. To help elucidate the 
distinction between the two terms, it is useful to frame the terms by the following questions: 
 

• Do we want the expected (average) value of the incurred claims PMPM corresponding to 
new values of the independent variables (lags 0 and 1)?  We then need confidence 
intervals. 

 
• Do we want the actual value of the incurred claims PMPM corresponding to new values 

for lags 0 and 1?  We then need prediction intervals. 
 
Note that the subtle difference in the two terms is focused on expected values versus actual 
values. An actuary would ordinarily be interested in the potential range of values of IBNR, 
which is the prediction interval. The range within which the average value of IBNR would be 
likely to fall is usually not of interest. We note that prediction intervals are larger than 
confidence intervals. Again, as earlier noted in the introduction to this guide, we will be 
primarily using the term confidence interval or interval throughout the text, unless further 
clarification is needed. 
 
3.2.5 Interval Estimates for Simple Linear Regression 
 
We now develop interval estimates in the context of simple linear regression. The description in 
this section is limited to the simple regression model.  
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Suppose that we want to find the relationship between a dependent variable Y and an 
independent variable X based on a set of sample observations collected on the two variables, 
given in Exhibit 3.2. 

Exhibit 3.2 
Sample Data for Linear Regression Example 

 
x y 

10 8.03
8 6.90

13 7.58
9 8.81

10 8.33
14 9.96
6 7.24
4 4.26

12 10.85
7 4.82

 
Let 1, , nx xK  and nyyy ,,, 21 K  be these observed values (with n = 10). 
 
Using simple linear regression, we will estimate the linear function that best fits this data. The 
model is written as 

2
0 1 ,  ~ (0, ); 1, , .  i i i iY x N i nβ β ε ε σ= + + = L  

The approach is to develop a model to predict the values of the dependent random variable Y for 
given values of the independent random variable X. Hence the x-values are considered to be 
fixed and the Y-values are considered to be random. 
 
The following are the least squares estimates of the parameters: 

2 2
1 0 1

1

1ˆ ˆ ˆ ˆ ˆ, , ( )
2
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y x y y
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− ∑  
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2

1 1 1 1

0 1

1 1, , ( ) , ( )( ),  and 

ˆ ˆˆ ,  1, .

n n n n

i i xx i xy i i
i i i i

i i

x x y y S x x S x x y y
n n

y x i nβ β
= = = =

= = = − = − −

= + =

∑ ∑ ∑ ∑
L

 

 
Suppose that we want to predict the value of the dependent variable corresponding to a new 
observation on the independent variable X, say x*. 
 
The point estimate of the mean of the new observation is * *

0 1
ˆ ˆŷ xβ β= + . 
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A 100(1 )%α− prediction interval for the new observation is 
* 2 * 2

* 2 * 2
/ 2 / 2

1 ( ) 1 ( )ˆ ˆ ˆ ˆ( 2) 1   ,  ( 2) 1
xx xx

x x x xy t n y t n
n S n Sα ασ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥− − + + + − + +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

where / 2 ( 2)t nα − is the upper tail / 2α  value of the student t-distribution with n – 2 degrees of 
freedom. 
 
Note that the estimate is most accurate at the mean of the observed values of the independent 
variable x and the prediction interval is narrowest at x* = x . The further away the estimate is 
from x , the wider the prediction interval becomes. 
 
Using our sample data, the regression equation derived is y = 2.885 + 0.5154 x + ε. Exhibits 3.3 
and 3.4 illustrate output that is typically generated when a linear regression is run through a 
statistical package. Later on, we will discuss how some of these measures can be used to assess 
the appropriateness of the model. 
 

Exhibit 3.3 
Regression Output 

Linear Regression Example 
 

 Coefficient SE Coef t p-Value (p) 
Constant 2.8849 1.3534 2.13 0.066 
X 0.5154 0.1385 3.72 0.006 

 
Standard deviation (s) = 1.31457 
R-square = 63.4% 
R-square (adj) = 58.8% 
 
The following are descriptions of the data shown in Exhibit 3.3: 

• The column labeled “Coefficient” provides the estimates of the regression coefficients 
values in the model. The equation is found using the least-squares method that minimizes 
the sum of the squares of the errors. 

• The “SE Coef” column provides the standard error of the estimate of the corresponding 
coefficient. 

• The t values column provides the value of the t-statistic to test the null hypothesis that the 
corresponding regression coefficient is zero. 

• The p-values column conveys if the data supports the corresponding null hypothesis or 
not. In practice, 0.05 is typically the value chosen to determine the meaning of the t-
statistic, although this choice is somewhat arbitrary and may vary. If the p-value is less 
than 0.05, then this is viewed as the data not supporting the null hypothesis. This means 
that the corresponding independent variable is useful in predicting the dependent 
variable. Note that very small p-values are reported as zeros by most software packages. 
This does not mean that these p-values are zeros. 

• “s” is the estimate of the model standard deviation. 
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• R-square (R-sq) conveys the percentage of variability in the dependent variable explained 
by the regression model. The R-square value has a drawback, namely, that just adding 
any unrelated variable into the model results in an increase in the R-square value. 

• R-square (adj) (R-sq (adj)) is the R-square adjusted to remedy the shortcoming of the 
standard R-sq. In this sense R-sq (adj) is a good measure of how well the model explains 
the variability in the dependent variable. 

 
The analysis of variance shown in Exhibit 3.4 deconstructs the total variation in the model to 
measure how much of it is contributed by each model component. For a linear regression model, 
the variation is caused by the Regression and Residual Error. 

 
Exhibit 3.4 

Analysis of Variance 
Linear Regression Example 

 
 Degrees of Sum of Mean   

Source Freedom (df) Squares (SS) Square (MS) F-Value (F) p-Value (p)
Regression 1 23.932 23.932 13.849 0.006
Residual Error 8 13.825 1.728  
Total 9 37.757  

 
The following are descriptions of the data contained in Exhibit 3.4: 
 
• The mean square (MS) is calculated by dividing the SS value by the corresponding 

degrees of freedom. 
• The F-value is the value of the F-statistic used to test the overall effectiveness of the 

model. 
• The p-value is the corresponding p-value of the test. As a general rule used in practice, if 

the p-value is greater than 0.05, the corresponding model is not appropriate. 
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To illustrate how an interval would be calculated on this sample, we will choose three points 
with values for x, the independent variable, of 11, 15 and 18. Note that the mean of the 
independent variable for our data, x , is 9.30. Applying the interval formula with α = 0.05 yields 
the following 95 percent prediction intervals shown in Exhibit 3.5: 
 

Exhibit 3.5 
Predicting Values 

Linear Regression Example 
 

Independent 
Variable 

Dependent 
Variable 

 
Prediction Interval

 
Length 

11 8.554 5.329 11.780 6.451 
15 10.616 6.952 14.279 7.327 
18 12.162 7.939 16.384 8.445 

 
As can be observed from Exhibit 3.5, when the difference between a given value of the 
independent variable and the mean of the variable increases, the length of the prediction interval 
also increases. 
 
When calculating IBNR, because our main independent variable is time, increasing the 
difference from the mean is equivalent to projecting further out into the future. Because the 
width of the prediction interval is increasing as this difference increases, it is advisable to restrict 
regression projections to as few time periods into the future as is deemed necessary. Hence, we 
might use data from regression months 0 through 32 to project the PMPM values for months 33 
to 35, but we would not use that same data to project the PMPM value for month 44 unless there 
was some particular need to do so. 
 
3.2.6 Residuals 
 
In regression analysis, a primary assumption is that the dependent variable is random and the 
independent variable is not random. Furthermore, there is a relationship between the dependent 
variable and the independent variables, and this relationship is fixed except for a random factor. 
As shown earlier, a regression equation that estimates this relationship can be derived by using a 
set of observations of the dependent and independent variables. This regression equation can be 
used to predict the value of the dependent variable for any set of values of the independent 
variables. The difference between the predicted value and the observed value of the dependent 
variable is called the residual for each observed value. The residuals are essentially estimates of 
the errors that are inherent in our model. In other words, if all the residuals were 0, the regression 
equation would perfectly model our data set. Given this characteristic of the residuals, an 
analysis of them can reveal information about the appropriateness of the model. 
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We test the assumption that the model is appropriate in the following ways using the residuals: 
 

• Residual Plot 
• Histogram 
• Shapiro-Wilk Test 

 
All three of these approaches are shown in the accompanying regression workbook in the Tab 
“Graph of Residuals.” 
 
The residual plot represents a graph of each of the residuals. If the model meets its assumptions, 
the graph of the residuals should not exhibit any discernable pattern, but rather appear random 
and unsystematic. If an expanding or contracting pattern emerges in one direction or another, 
then the assumption of constant variance is not supported. 
 
The histogram is another tool used to assess the regression model. If the regression model is a 
good fit for the data, the histogram of residuals should exhibit a normal curve or bell-shaped, 
pattern. In the regression workbook, there is an option for how many bins or intervals to use in 
the histogram. A user can choose between 7 and 12 bins. With a histogram, the approach for 
assessing whether or not it is a normal curve shape is purely visual. 
 
The other tool that can be used is a Shapiro-Wilk Test, which is a more rigorous test for 
normality. In this section, the residuals will be only analyzed visually. 
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3.3 Models Available in the Workbook 
 
Returning to our data from Exhibit 3.1 as an example, in this section we describe the models that 
are available in the regression workbook accompanying this guide. Exhibit 3.6 lists the models 
including the applicable independent variables and regression equation: 
 

Exhibit 3.6 
Statistical Models in the Workbook 

 
Name Type of 

Model 
Independent 

Variables 
Equation 

LinRegr Linear Time t (1) ty 10 ββ += + ε 
QuadRegr Quadratic Time t 2

210 tty βββ ++= + ε 
ExpRegr Exponential Time t Y = exp (β0 + β1t + ε) 
Lin2Var Linear Time t1, User Input t2

  (2) ty 10 ββ += 1 + β2t2 + ε 
Quad2VarRegr Quadratic Time t1, User Input t2 Y = β0 + β1t1 + β2(t1)2 + β3t2 + ε 
Exp2VarRegr Exponential Time t1, User Input t2 y = exp (β0 + β1t1 + β2t2 + ε) 
AdjLinRegr Linear Time t, 

Weekday/weekend wt 
y/wt = β0 + β1t + ε 

AdjQuadRegr Quadratic Time t, 
Weekday/weekend wt 

y/wt = β0 + β1t + β2t2 + ε 

AdjExpRegr Exponential Time t, 
Weekday/weekend wt 

y/wt = exp (β0 + β1t + ε) 

AdjLin2Var Linear Time t1, User Input t2
 , 

Weekday/weekend wt 
y/wt = β0 + β1t1 + β2t2 + ε 

AdjQuad2VarRegr Quadratic Time t1, User Input t2
 , 

Weekday/weekend wt 
y/wt = β0 + β1t1 + β2(t1)2 + β3t2 
+ ε 

AdjExp2VarRegr Exponential Time t1, User Input t2
 , 

Weekday/weekend wt 
y/wt = exp (β0 + β1t1 + β2t2 + ε) 

 
We note the following: 
(1) The values of Time (t or t1) are the positive integers assigned to each month. 
(2) The input variable (t2) is an unspecified variable whose values for each month are assigned 

by the user. In the initial example in this section, the use of this variable is limited to values 
of 0 and 1. This variable enables the user to differentiate certain months from the others. For 
example, an actuary may have information about hospital pricing changes that occurred at a 
certain date. In this instance, it may be appropriate to model the data before and after the 
pricing change by applying this variable. 
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3.3.1 Key Steps to Applying the Methodology Discussed Above to Our Data 
 
There are a number of approaches for determining the most appropriate regression model. For 
the purposes of this section of the document, it is recommended that the overall approach focus 
on maximizing adjusted R-square for all of the models that are tested. Other approaches may use 
the p-values of the coefficients and other diagnostics to help determine the most appropriate 
model. Readers may wish to consult Econometric Models and Economic Forecasts by Pindyck 
and Rubinfeld to learn more about regression approaches. 
 
The following is a high-level outline of the steps for determining estimates for lags 0 and 1. The 
steps describe an iterative approach for selecting an appropriate model. An alternative is to 
simply run all models and compare the adjusted R-square values. In either case, the goal for this 
section of the document is to maximize adjusted R-square. We will discuss how these steps are 
applied in terms of the regression workbook in Section 3.4. 
 

1. Plot the dependent variable against the independent variables to observe the visual 
patterns of the data. 

 
2. Based on a visual inspection of the plot, determine which model programmed in the 

regression workbook appears to be an appropriate choice for our data. In addition to the 
model that the user thinks is most appropriate, it is recommended to run the simple 
regression model as a baseline for comparison against other models. 

 
3. Fit the model and review the diagnostics. The key statistical value to review is the 

adjusted R-square value, with the goal of maximizing it. It is also useful to review the 
residuals, checking the normality and constant variance assumptions, and spotting 
outliers. 
 
In addition to assessing the model for statistical appropriateness, the model should be 
reasonable based on knowledge of outside factors affecting the health care plan or book 
of business for which incurred claims are being estimated. 

 
4. For comparison purposes, run additional models as necessary and review the diagnostics. 

When trying different models, it is useful to change only one model component with each 
successive model that is run. The benefit of this approach is that it is easier to gauge the 
impact of the addition or deletion of each individual model component. For instance, say 
the first model run is a linear regression model with one independent variable—time. If 
you want to improve on this model, you might next add either the weekend/weekday 
variable or the additional time variable, but not both at the same time. 

 
3.4 Using the Regression Workbook 
 
This section outlines the steps for deriving the IBNR estimates through use of the regression 
workbook. 
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1. Open up the file and navigate to Tab “OriginalData.”  The statement and valuation dates 
are fixed at December 31, 2003. Column A lists the incurred months and Row 4 lists the 
paid months. The claims data is shown in tabular form. In Column AO, the values for the 
second variable are input. 

 
2. Calculate IBNR for all months by pressing “Alt-F8,” selecting the macro 

“CalcCompletionFactor” and selecting “Run.”  In order to run the macros, you may need 
to adjust the macro security level in Excel. You will be asked: “How many months are in 
the latest year of your triangle?”  For the sample data, the answer is 12. After the macro 
“CalcCompletionFactor” is completed, the Tab “Graph of PMPM” graphically represents 
the incurred claims estimates for months 0 through 35 derived using the completion 
factor method. (If you do not want to use the completion factor method for the two most 
recent months, ignore the values shown for months 34 and 35.) 

 
3. If you plan on using Model Lin2Var (one of the model choices listed in Exhibit 3.6) or 

any other model that has “2Var” in its name, set the values in Column AO in Tab 
“Original Data” to the desired values. Column AO represents the User Input t2. For the 
purposes of this section, we limit modelling of this variable to the following conditions: 

• It only has values of 0 or 1. 
• It can only change between 0 and 1 once. In other words, we will set the value of 

this variable to 0 for lag 0. If we set the value of this variable to 1 for lag n 
(n > 0), all lags greater than n will have this variable set to 1. 

 
4. If we want to apply a different method for estimating months 34 and 35 (which usually 

will be the case), we select “Alt-F8” again and select the macro whose name corresponds 
to the model listed in Exhibit 3.6 that we want to use to derive PMPM estimates for lags 
0 and 1. After selecting the desired model, you will be asked: “How many months do you 
want to include in this regression?”  If you are using the complete set of data points, the 
answer for our example is 34, corresponding to the months January 2001 through October 
2003. If there is a reason for eliminating the data point January 2001, input 33, 
corresponding to the months February 2001 through October 2003. The number of 
months selected will always correspond to the same number of most recent months in the 
regression. The minimum number of data points that must be selected is 10. 

 
At this point, the user is then prompted to input a confidence interval. 
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Two clarifications are needed for this input: 
 
• A confidence level needs to be input in order to calculate an interval, regardless of 

whether it is a confidence interval or a prediction interval. The type of interval 
depends on the estimate that is desired (an average value or a single value). The 
magnitude of the confidence level depends on how certain we want to be that the 
estimated value falls within the calculated (confidence or prediction) interval. 

 
• When the desired confidence level is input, ensure that the decimal separator 

corresponds to your computer’s language settings. For most anticipated users, it will 
be a period, but for some it may be a comma. If the wrong decimal separator is 
used, the macro will fail. 

 
5. After the desired confidence level is input, the macro completes and the cursor lands on 

the Tab “Graph of Residuals,” where key output is shown. 
 

6. In Tab “Graph of Residuals,” the following graphs and statistics appear: 
• Graph of residuals 
• Normal probability plot 
• Histogram of residuals 
• Shapiro-Wilk Test for normality of residuals showing both the Shapiro-Wilk W 

statistic and the p-value range. 
 

7. In the Tab “Recast Example,” a recasting calculation is illustrated. Recasting is when the 
IBNR calculation is compared with the actual claim runout experience. For instance, 
consider a best estimate IBNR calculated in October 2003. Two months later, in 
December 2003, with an additional two months of paid claims, recasting would compare 
the original October 2003 IBNR estimate with an updated IBNR estimate for October 
2003 incorporating the additional data. 

8. To use the workbook with different data for membership, claims and weekday/weekend 
factors, input this data in the following areas of the workbook:  

• Membership data in Column B in Tab “Original Data” 
• Claims data starting in Cell D6 of Tab “Original Data”  
• Weekday/weekend factors in Tab “Weight factors” 

Note: The workbook is designed to use exactly 36 months of claims data. If less than 36 
months is input, the program will not run correctly. If less than 36 months of actual 
claims data is available, a workaround for this limitation is to estimate claims data for any 
missing months.  
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3.5 Numerical Example:  Deriving IBNR for Our Data Set 
 
As a first step, we graph and visually inspect our data. The plot of the 34 PMPM estimates for 
the time period January 2001 through October 2003 exhibits the following pattern: 
 

Exhibit 3.7 
Graphical View of the Data for the Regression Analysis Example 
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Instead of a pattern of constantly increasing claims costs over time, the graph seems to exhibit 
two relative levels of claims costs, with one level for months 0 through 23 and another level for 
months 24 through 33; therefore, we will assign the User Input t2 (0,1) variable as follows: 
 

 0 for months 0 through 23; 
 1 for months 24 though 35. 

 
Note that we are assuming that the claims pattern that commenced at lag 24 will continue on for 
lags 34 and 35, the two lags that we are predicting. 
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Based on this observation, the first two models we choose to run for this example are the 
following: 
 

• LinRegr: Linear regression model as a base; 
• Lin2Var: Linear regression model with the User Input t2 variable defined on the basis of 

the pattern observed in Exhibit 3.7 previously described. 
 
The key output values from LinRegr from the “Regression-Results” Tab in the regression 
workbook are shown in Exhibit 3.8: 
 

Exhibit 3.8 
Regression Results 

LinRegr Model 
 

Estimators for coefficients p-values 
beta_0 135.2215 7.03E-20
beta_1 2.095960 9.19E-07
 
Standard Error 19.79333
R^2 0.534173
Adjusted R^2 0.519616
p-value for F-test 9.19E-07

                                              
 
This model has an adjusted R-square of 0.520. For the purposes of our estimate, we wish to see if 
this value can be improved. Therefore, if we cannot improve on our adjusted R-square value, we 
would use LinRegr. 
 
The key output values from Lin2Var are shown in Exhibit 3.9: 
 

Exhibit 3.9 
Regression Results 

Lin2Var Model 
 

Estimators for coefficients p-values 
beta_0 148.5258 7.83E-22
beta_1 0.526894 2.49E-01
beta_2 42.78974 1.07E-04
   
Standard Error 15.72873  
R^2 0.715039  
Adjusted R^2 0.696654  
p-value for F-test 3.54E-09  
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With Lin2Var, our adjusted R-square has improved from 0.520 to 0.697, an increase of 0.177. 
This relatively high increase in adjusted R-square indicates that our second time variable 
(referred to as a “Boolean variable”) is contributing significantly in predicting the value of the 
dependent variable. 
 
Further assessing the best model for our data, we add the Weekday/weekend wt variable, which 
has the effect of transforming the Lin2Var model into AdjLin2Var. The results of the 
AdjLin2Var model are shown in Exhibit 3.10: 
 

Exhibit 3.10 
Regression Results 
AdjLin2Var Model 

 
Estimators for coefficients p-values 
beta_0 153.5872 1.39E-23
beta_1 0.523993 2.05E-01
beta_2 43.62881 2.09E-05
   
Standard Error 14.20020  
R^2 0.760245  
Adjusted R^2 0.744777  
p-value for F-test 2.43E-10  

 
The adjusted R-square value for the AdjLin2Var model is 0.745, which is an improvement over 
the adjusted R-square value of 0.697 that was obtained from the Lin2Var model. Thus, the 
addition of the Weekday/weekend wt  variable has improved the model’s predictive power. 
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Continuing on with our pursuit of the best model, we now test to see if the exponential model, 
AdjExp2VarRegr, results in an improved R-square value. Recall from Exhibit 3.6 that the 
AdjExp2VarRegr model includes the User Input t2 and Weekday/weekend wt variables. The 
results of applying this model are illustrated in Exhibit 3.11. 
 

Exhibit 3.11 
Regression Results 

AdjExp2VarRegr Model 
 

Estimators for coefficients p-values 
beta_0 5.036368 2.66E-47
beta_1 0.002916 2.02E-01
beta_2 0.234549 3.12E-05
   
Standard Error 0.078531  
R^2 0.752189  
Adjusted R^2 0.736201  
p-value for F-test 4.06E-10  

 
With this model, our adjusted R-square value decreases to 0.736 from the adjusted R-square 
value of 0.745. As a result, we will not use this model because it is more complicated than the 
previous models and it yields a lower adjusted R-square. 
 
With the conclusion that the exponential model, AdjExp2VarRegr, does not improve the adjusted 
R-square, we now try the quadratic model, AdjQuad2VarRegr. This model includes the User 
Input t2 and Weekday/weekend wt variables. The results of using the AdjQuad2VarRegr model 
are shown in Exhibit 3.12. 
 

Exhibit 3.12 
Regression Results 

AdjQuad2VarRegr Model 
 

Estimators for coefficients p-values 
beta_0 163.0751 1.09E-21
beta_1 -1.646172 1.07E-01
beta_2 0.085859 2.46E-02
beta_3 25.54311 2.93E-02
   
Standard Error 13.25123  
R^2 0.797954  
Adjusted R^2 0.777749  
p-value for F-test 1.54E-10  
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As can be observed from Exhibit 3.12, the adjusted R-square value with this model is 0.778, 
which is the largest adjusted R-square value we have obtained. We select this model for further 
analysis. 
 
In certain cases, the introduction of additional variables into the model does not increase its 
accuracy. This effect is usually referred to as multicolinearity. This topic is discussed in more 
depth in the appendix. 
 
As a check for reasonableness of the model choice, we compare the adjusted R-square value of 
all of the models included in the regression workbook. Exhibit 3.13 lists the models and 
corresponding adjusted R-square value. 
 

Exhibit 3.13 
Summary of Adjusted R-Square Values 

 
Name Type of 

Model 
Adjusted R-Square Value 

LinRegr Linear 0.519616 
QuadRegr Quadratic 0.721356 
ExpRegr Exponential 0.502923 
Lin2Var Linear 0.696654 
Quad2VarRegr Quadratic 0.739865 
Exp2VarRegr Exponential 0.675682 
AdjLinRegr Linear 0.552597 
AdjQuadRegr Quadratic 0.747338 
AdjExpRegr Exponential 0.548943 
AdjLin2Var Linear 0.744777 
AdjQuad2VarRegr Quadratic 0.777749 
AdjExp2VarRegr Exponential 0.736201 

                         
 
As this exhibit shows, the AdjQuad2VarRegr model has the highest adjusted R-square value.  
The residual graph for the AdjQuad2VarRegr model appears in Exhibit 3.14. 
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Exhibit 3.14 
Residuals 

AdjQuad2VarRegr 
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Note that the residuals for the AdjQuad2VarRegr model do not exhibit a consistent visual pattern 
and appear to be random. If the graph of the residuals did exhibit a pattern, it would indicate that 
the model is not meeting the regression assumptions. Therefore, Exhibit 3.14 is confirmation of 
the appropriateness of the model based on an examination of the residuals. 
 
Using the AdjQuad2VarRegr model results in PMPM incurred value estimates of $207.70 for 
November 2003 and $230.08 for December 2003. Before accepting the values from the 
AdjQuad2VarRegr model as our estimates, one more reasonability check is in order. Comparing 
the PMPM values from the completion method, the figures for January 2003 to October 2003 are 
shown in Exhibit 3.15. 
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Exhibit 3.15 

Testing for Reasonableness of Results 
2003 Per Member Per Month Input Values 

 
Jan-03 $208.59
Feb-03 179.89
Mar-03 195.55
Apr-03 188.06
May-03 202.00
Jun-03 188.86
Jul-03 217.83

Aug-03 219.59
Sep-03 247.26
Oct-03 215.69

 
Scanning Exhibit 3.15 for the most recent year’s values, the PMPM values of $207.70 for 
November 2003 and $230.08 for December 2003 appear to be within a reasonable range of 
values we would have expected. For instance, if the values were, say, $600 or $20, we would 
reject the estimates as being either too high or too low. However, since the values for November 
and December 2003 appear consistent with other months, we accept the values from 
AdjQuad2VarRegr as our PMPM estimates. 
 
3.5.1 Adjustment for Catastrophic Cases 
 
Recall that for the completion factor method calculation, a $750,000 catastrophic case was 
removed (refer to Section 2.2 for a general discussion of outliers). Consequently, the IBNR 
calculation presently does not include any reserve for catastrophic cases. In practice, there are 
several ways to treat catastrophic claims for IBNR purposes. Among possible approaches would 
be to include it in the experience in the process of developing completion, but to adjust it to a 
pre-determined amount consistent with an internal pooling arrangement, external reinsurance 
agreement, or other reasonably expected amount. Another approach is to simply remove it from 
the experience and set up a separate catastrophic reserve for catastrophic claims. 
 
In preparing financial statements, it is important to document the approach for catastrophic case 
reserving as well as describing any risk of understatement due to catastrophic cases, if needed. 
From a practical perspective, the best way to minimize the risk of an understatement due to 
catastrophic claims is to obtain relevant information about them from case management or other 
internal company sources as close as possible to their original incurral date. In other words, 
although the occurrence of catastrophic claims cannot be minimized, the lag time for properly 
accounting for them can be minimized. 
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3.6 Calculating IBNR 
 
In Section 3.5, we derived PMPM incurred claims estimates for November and December 2003. 
To calculate IBNR from these estimates, the following formula is used: 
 

IBNR = Incurred Claims – Claims paid to date 
 
where Incurred Claims = PMPM × Membership. 
 
The IBNR calculation for November and December 2003 is illustrated in Exhibit 3.16: 
 

Exhibit 3.16 
Calculation of IBNR for Lags 0 and 1 

 
 Incurred Month  
 November 2003 December 2003  

PMPM Estimate $207.70 $230.08 (1)  
Members 11,902 11,844 (2) 
Total Incurred 
Claims 

$2,472,045 $2,725,068 (3) = (1) * (2) 

Claims Paid  
  Paid Month  
  Nov 2003 $58,510 N/A (4) * 
  Dec 2003 $1,225,307 $96,378 (5) 
  Total Paid $1,283,817 $96,378 (6) = (4) + (5) 
  
IBNR $1,188,228 $2,628,690 (7) = (3) – (6) 
 
* By definition, in our data, the paid date occurs on or after the incurred date; therefore, the value 
for claims incurred in December 2003 and paid in November 2003 is not applicable. The value 
$58,510, claims paid and incurred in November 2003, can be found in Cell AL40 in Tab 
“OriginalData” in the “Statistical Methods – Regression Method – Workbook.xls.” 
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Our total IBNR is shown in Exhibit 3.17. 
 

Exhibit 3.17 
Total IBNR as of December 2003 

 
December 2003 – Lag 0 $2,628,690 (1)
November 2003 – Lag 1 1,188,228 (2)
December 2002 Through October 2003 – Lags 2 through 12 833,796 (3)
Sub-total 4,650,714 (4)=(1)+(2)+(3)
IBNR for Catastrophic Cases 218,750 (5)
  
Total $4,869,464 (6)=(4)+(5)

 
For the purposes of this calculation, we are assuming a separate reserve for catastrophic cases of 
$218,750. Recall that a catastrophic claim of $750,000 was removed from the data. To account 
for catastrophic claim exposure and the removal of the $750,000 claim, $218,750 has been added 
into the calculation of the Total IBNR. As noted in Section 3.5.1, there are a number of 
approaches for estimating IBNR due to catastrophic claims. Discussion of these approaches is 
beyond the scope of this document. It should be noted that depending on the ultimate 
catastrophic claim amount experienced, the $218,750 estimate may cause a situation of under- or 
over-reserving. Furthermore, the variability in the frequency and severity of catastrophic claims 
often represents a source of added complexity in determining the final IBNR for accounting 
purposes. 
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3.7 Confidence Intervals 
 
The upper bound of the 95 percent confidence interval is shown in Exhibit 3.18. The interval 
length results are obtained from the Tab “Regression Results” of the regression workbook. 
 

Exhibit 3.18 
Calculation of the Upper Bound of a Prediction Interval (with 95% Confidence Level) 

 
 November 

2003 
December 

2003 
Total  

PMPM Value $207.70 $230.08  (1) 
One-Sided Prediction 
Interval Length 

28.82 33.00  (2) 

Upper Bound— 
Prediction Interval 

236.52 263.08  (3) = (1) + (2) 

Members 11,902 11,844  (4) 
One-Sided Interval 
for All Members (Margin) 

$343,016 $390,852 $733,868 (5) = (2) * (4) 

IBNR—Best Estimate   $4,650,714 (6) Line (4) – 
Exhibit 3.17 

Upper Bound of IBNR with 
95% Prediction Interval 

  $5,384,582 (7) = (5) + (6) 

Margin as 
Percent of Best Estimate 

  15.8% (8) = (5) ÷ (6) 

 
Applying the results from Exhibit 3.18, we are 97.5 percent confident (the upper bound is only 
one side of the confidence interval) that, after all of the claims incurred on or before December 
2003 have been paid, the total paid claim amount will be less than or equal to $5,384,582, 
excluding catastrophic claims. The margin (item 8) is the amount added to have sufficient IBNR 
to cover paid claims 97.5 percent of the time. 
 
Note that there was no confidence interval assigned around the catastrophic case IBNR. 
 
If different levels of confidence are desired for the prediction intervals, we can use the regression 
workbook to derive these levels. Other prediction levels with the AdjQuad2VarRegr model are 
shown in Exhibit 3.19. These values were obtained by running the model with different 
prediction intervals. 



 
 

52

 
Exhibit 3.19 

IBNR with Different Prediction Intervals 
 
Prediction 
Interval 

One Sided 
Prediction 
Interval 

IBNR With Margin 
(Without Catastrophic 
IBNR) 

IBNR With Margin (With 
$218,750 Catastrophic IBNR) 

95% 97.5% $5,384,582 $5,603,332 
50% 75%   4,896,088   5,114,838 
90% 95%   5,260,648   5,479,398 
99% 99.5%   5,638,978   5,857,728 
 
A major limitation of the method described in this section for calculating prediction intervals is 
that the intervals are just based on our calculations for the most recent two months (lags 0 and 1). 
In Section 4, we discuss methods for calculating prediction intervals for all lags. 
 
3.8 Nonuniform Data 
 
In previous sections, we assumed that the underlying benefit plan resulted in uniform data. In 
this section, we examine adjustments to the regression models when the pattern of data is 
impacted by a change in the benefit plan or introduction of a high deductible plan. 
 
3.8.1 Scenario 1: Known Benefit Changes 
 
Common health plan benefit changes include increasing deductibles and co-pays as well as 
reductions in covered services. Consider a health plan that wishes to reduce benefits by 5 percent 
starting January 1, 2002 and an additional 10 percent reduction effective January 1, 2003 through 
a combination of benefit changes. 
 
Exhibit 3.20 illustrates the relative value of plan benefits for this health plan for years 2001–
2003, assuming a factor of 1.000 before any changes. 

 
Exhibit 3.20 

Scenario 1—Known Benefit Changes 
Relative Value of Plan Benefits 

 
Year Factor
2001 1.000 
2002 0.950 
2003 0.855 

 
What is an appropriate way to model the benefit changes in the regression model and estimate 
the IBNR for the most recent lag months? 
 
Since we will be estimating values for 2003 and onward using data from 2001 and 2002, we will 
want all the regression model data to reflect the impact of the benefit changes that were applied 
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through the end of 2003. In other words, we want the value of the benefit plan to be normalized 
(sometimes also referred to as “on level”) for all years of data in the regression model. A similar 
adjustment approach is also typically applied when estimating future claim costs for pricing 
purposes. 
 
To normalize the regression model data, the adjustment factors shown in Exhibit 3.21 would be 
multiplied by incurred claim cost data for the corresponding incurred year. 
 

Exhibit 3.21 
Scenario 1—Known Benefit Changes 
Regression Data Adjustment Factors 

By Incurred Year 
 

Incurred Year Factor
2001 0.855 
2002 0.900 
2003 1.000 

 
The logic for the adjustment factors is as follows:  
 
- For 2003, the incurred claims data reflects all benefit plan changes, so no adjustment is needed. 
Therefore, the factor is 1.000. 
 
- For 2002, the incurred claims data reflects the 5 percent decrease on January 1, 2002, but not 
the 10 percent decrease on January 1, 2003. Therefore, the 2002 data needs to be adjusted by a 
factor of 0.900 to represent a 10 percent reduction. 
 
- For 2001, the incurred claims data reflects neither the January 1, 2002 nor January 1, 2003 
reductions. Therefore, the 2001 data needs to be adjusted by the compound effect of the 10 
percent and 5 percent reduction: 0.90*0.95 = 0.855. 
 
Once the data has been adjusted, the appropriate regression model can be selected using the 
process described earlier in this section, focusing on maximizing adjusted R-square. 
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3.8.2 Scenario 2: High Deductible Health Plan 
 
In Scenario 1, known benefit changes were modelled. For Scenario 2, it will be assumed that a 
new high deductible health plan is instituted effective January 1, 2002. This high deductible plan 
significantly changes the pattern of claims over the course of a calendar year. Scenario 2 is more 
complicated than Scenario 1 because the new benefit plan seasonally affects the claim pattern. 
 
With a high deductible plan, claim activity is reduced significantly in the early part of the year as 
insureds are accumulating costs towards the deductible. Exhibit 3.22 illustrates the relative value 
of the benefits by month before and after the introduction of the high deductible plan for 
Scenario 2. We will assume claim costs have a relative factor of 1.000 before introduction of the 
high deductible plan. 

 
Exhibit 3.22 

Relative Factors Used to Model High Deductible Plan 
 

Month Before High Deductible Plan
- 2001 

After High Deductible Plan
- 2002 

January 1.000 0.100 
February 1.000 0.250 

March 1.000 0.500 
April 1.000 0.750 

May through December 1.000 1.000 
 
What is an appropriate way to model the new benefit plan in the regression model and estimate 
the IBNR for the most recent lag months? 
 
We will describe two approaches that can be used to model this. 
 
• Approach 1 
 
The first approach follows a similar logic to that used in Scenario 1, except with a slight 
alteration. Rather than adjust the data to reflect the impact of the change after the high deductible 
plan was put into effect, we will normalize the data to reflect the plan value before the high 
deductible plan was put into effect. We adjust the data in this way because the high deductible 
plan data exhibits a more complicated claim pattern than the previous plan, making it more 
difficult to model. 
 
Extending this logic, for 2001 incurred data, no adjustment is made. For 2002 incurred data, 
adjustments are made to back out the impact of the high deductible plan. For example, a claim 
incurred in January 2002 would be divided by 0.100 to normalize it to the 2001 data. Similarly, a 
claim incurred in March 2002 would be divided by 0.500. 
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After the data has been adjusted, the appropriate regression model would be selected based on 
the process described earlier. Once the model has been selected, estimates for the IBNR can be 
calculated. However, a final seasonality adjustment must be made to the estimates produced by 
the regression model because the model does not reflect the impact of the high deductible. For 
example, an IBNR estimate produced by the model for February 2003 would be multiplied by 
0.250 to account for the seasonality of the high deductible plan. 
 
• Approach 2 
 
Rather than adjust the actual data as in Approach 1, we could use the models with the wt factor to 
model the high deductible plan. Inputting the wt column in the Tab “Regression” with the After 
High Deductible Plan relative factors values shown in Exhibit 3.22 will accomplish the same 
adjustment as in Approach 1. Once the regression model is selected and estimates produced by 
the model, a similar final adjustment for seasonality would be made to those estimates. 
 
3.9 Summary 
 
In this section, a regression method was used to calculate IBNR for the most recent two months 
combined with the completion factor method for prior months. Using the regression 
methodology enabled us to establish a confidence level for the IBNR calculated in the last two 
months. Since 70 percent of IBNR is typically concentrated in the last two months, a confidence 
interval for these last two months is a good initial estimate of the variance in the total IBNR 
estimate. This section also illustrated how the regression method could be applied in instances of 
benefit plan changes. 
 
In the next section, we will introduce a method for calculating the confidence interval for the 
entire IBNR through simulation. 
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Section 4—Simulation Techniques to Estimate Confidence Intervals for IBNR Reserves 
 
4.1 Introduction to Simulation 
 
In previous sections, regression was used to calculate confidence intervals for the IBNR 
estimates of the most recent months of claim data. This section introduces a different approach—
simulation (or sometimes formally referred to as Monte Carlo simulation). The techniques 
described in this section were suggested by Walter James, ASA, MAAA, life & health actuary 
for the North Carolina Department of Insurance. He uses simulation as a practical way to convey 
the level of variability in his IBNR estimates for different audiences. 
 
In general, simulation is an approach through which certain values in a spreadsheet or other 
program are recalculated hundreds of times, with the goal of describing a distribution of possible 
outcomes. For our purposes, the possible outcomes that we will focus on are the values of the 
total IBNR for all months in our data (rather than just the most recent months). By using 
simulation, we can describe a distribution of possible values of the total IBNR and use this 
distribution to calculate various confidence intervals as well as other statistics. 
 
Another key element of simulation is generating random values repeatedly for the input variables 
that feed the IBNR calculation. A new set of random values is generated each time the computer 
calculates a possible outcome. One cycle of this process is sometimes referred to as a model 
“iteration.”  In previous sections, the input variables feeding the IBNR calculation have been 
completion factors or PMPM factors. For the example illustrated in this section, we will use the 
average claim amount per member as the primary input variable for the IBNR calculation. 
However, the simulation technique may also be applied to completion factors, completion ratios, 
or other types of PMPM factors when they are used as the primary input variables in the IBNR 
calculation. 
 
In describing the input variables, we are using the term “random values” somewhat loosely. They 
are not completely random. Instead, they are generated from one or more probability 
distributions that we will use to describe the input variables. How can we determine an 
appropriate probability distribution to describe the input variables?  The process that we will use 
is known as distribution fitting. In simple terms, we will try several types of probability 
distributions with specific parameters and then use a statistical test to rate them and select the 
most appropriate. 
 
To compare the probability distributions and rate them, there are several types of statistical tests 
that can be employed. For the illustration in this section, a Chi-square test is used to rate the 
distributions. Further information about Chi-square tests can be found in statistical textbooks or 
reference pages on the Internet. Once the appropriate probability distributions have been selected 
to describe the input variables, the actual simulation process begins with values for the input 
variables generated repeatedly and the resulting output variable (the total IBNR) recorded for 
each iteration. 
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To illustrate the approach described in the preceding paragraphs, we will use a simple example 
and outline each step on the following pages. To perform the distribution fitting and simulation 
calculations, we will use an Excel add-in program called @RISK. (A trial version of @RISK can 
be obtained from www.palisade.com.)  For the example illustrated in this section, either the 
Professional or Industrial version of @RISK is needed because each contains distribution fitting 
capability (the Standard version of @RISK does not). Other simulation software packages are 
available for purchase as well as several freeware packages that can be downloaded from a 
number of different Web sites. For instance, another Excel add-in for purchase that performs 
simulation is Crystal Ball, which can be obtained from www.crystalball.com.  
 
4.2 Illustrative Example 
 
An Excel workbook containing the illustrative example can be downloaded from the same Web 
page on the SOA Web site on which this guide is available. The name of the workbook file is 
“Simulation Example.xls.”  It would be helpful to have this workbook open as you follow these 
steps. Also, to complete certain steps in Section 4.3, @RISK should be launched and running in 
Excel. 
 
The workbook contains two spreadsheets: “Claims and Membership Data” and “Claim PMPM 
and Calculations.” 
 
The “Claims and Membership Data” spreadsheet contains the source data for the IBNR 
calculation. For illustrative purposes, the data has been truncated to show history of claims paid 
for a given incurred month for up to seven months following that incurral month. Consequently, 
for this example, we will assume that all claims are paid by the seventh month following the 
incurred month. Membership for each incurred month also appears on this spreadsheet. 
 
The “Claim PMPM and Calculations” spreadsheet converts the claim amounts for each month in 
the grid that appears in the “Claims and Membership Data” spreadsheet into per member per 
month (PMPM) amounts. 
 
In each column in this spreadsheet, there is a series of colored cells that appear at the bottom of 
the column (see Figure 4.1). These cells represent paid months for a particular incurred month 
that have not yet occurred and are values that we will be estimating. They also represent the 
input variables for the simulation we will perform. Essentially, we will specify a probability 
distribution to describe each of the columns and then generate values for the colored cells based 
on the applicable probability distribution. 
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Figure 4.1 
Outstanding Payment Months (Colored Cells) 

Prior to Distribution Fitting and Simulation 
 

36
37
38
39
40
41
42
43
44
45

A B C D E F G H I
Apr-03 14.27 67.25 28.57 11.62 4.49 1.59 0.57 0.04
May-03 14.29 68.59 27.32 11.15 5.01 1.62 0.58 0.04
Jun-03 14.86 65.51 26.18 11.39 4.85 1.63 0.55
Jul-03 15.74 62.74 26.74 11.45 4.53 1.57

Aug-03 17.73 64.47 27.05 11.06 4.22
Sep-03 14.82 64.63 25.87 11.37
Oct-03 16.51 62.19 26.77
Nov-03 16.31 63.98
Dec-03 13.89

 
 
To the right of the claims data is a small table that contains the IBNR calculations (see Figure 
4.2). We will sum all PMPM amounts for the outstanding paid months for a particular incurred 
month and multiply this by the membership for that incurred month. This calculation will be 
done for all incurred months that still have outstanding payments, i.e., seven months have not yet 
elapsed since the incurred month. The sum of all months then represents the Total IBNR (our 
output variable). When the worksheet is first opened prior to running the simulation, columns K 
and M in the IBNR calculations table will show $0, as in Figure 4.2. The table appears as such 
because values for the formulas contained in columns K and M in the IBNR calculations table 
have not yet been generated by the simulation.  
 

Figure 4.2 
The IBNR Calculations Table prior to Simulation 

 

34
35
36
37
38
39
40
41
42
43
44
45

K L M

Sum of PMPM 
for Outstanding 
Paid Months Membership IBNR 

$0 226,398 $0
$0 226,590 $0
$0 225,432 $0
$0 226,333 $0
$0 225,886 $0
$0 226,742 $0
$0 226,809 $0

Total IBNR $0

IBNR Calculations

 
 
The process of generating values for each of the colored cells will occur over and over again 
depending on the number of iterations we specify (for our illustrative example, we will use 
10,000). As a result, a new set of values for the cells in Columns K and M will appear in the 
IBNR calculations table during each iteration. At the same time, a new Total IBNR will be 
calculated and stored by @RISK for each iteration to form a sample probability distribution of 
the Total IBNR.  
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Again, we should emphasize that this is a simplified example. The complexity of the IBNR 
calculation can be greatly enhanced depending on the data that is available and the method that is 
applied. Our intent is to illustrate how simulation can be used to specify statistics that describe 
the IBNR. 
 
The following are steps to complete the simulation. 
 
4.3 Step by Step Guide 
 
Step 1—Place the cursor on Cell C44 (shaded in blue). 
 
Step 2—Right click the mouse on Cell C44. A window will appear with @RISK as one of the 
choices. 
 
Step 3—Move to the @RISK choice and select Define Distribution from the @RISK 
subwindow that appears. 
 
Step 4—A window titled Define Distribution for C44 will appear (see Figure 4.3).  
 

Figure 4.3 
The Define Distribution Window prior to the Distribution for Cell C44 Being Fitted 
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Step 5—Click on the New Fit button in the lower left hand corner of the window. 
 
Step 6—A new window titled Fit Excel Data will appear (see Figure 4.4). The selections on this 
window tell @RISK which data is being used to fit the probability distribution. The window has 
options for specifying the Type of Data, Domain and Filtering Options. The filtering options can 
be used if there are outliers present in the claim or membership data. 
 
Step 7—Specify the Excel Data Range in the Fit Excel Data window by highlighting the 
applicable cells to be fitted. For Cell C44, the applicable cells are C9 through C43. For Cells D43 
and D44, applicable cells are D9 through D42. 
 
Step 8—Click OK in the Fit Excel Data window. 
 

Figure 4.4 
The Fit Excel Data Window prior to Specifying the Range of Data 

to Be Used for the Simulation 
 

 
 
Step 9—The window titled Define Distribution for C44 will reappear (see Figure 4.5). At the 
center of this window is a graph with the probability distribution that has been fitted to the data 
(in this example, Cells C9 through C43) and is ranked the highest based on a Chi-square test. 
Statistics about the distribution such as mean, variance, 95 percentile, etc. appear at the right of 
the window. Other possible distributions can be reviewed by clicking on them at the left of the 
window. They can also be ranked by other tests by clicking on the Rank By dropdown box, but 
for the purposes of this example, we will use the Chi-square test. 
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At this point, the distribution should also be reviewed for reasonability. For example, if the 
recommended distribution contains values that are unrealistic for the PMPM figures, the 
distribution may need to be revised and refitted. Alternatively, @RISK offers a function called 
RiskTruncate that allows you to use the fitted distribution, but exclude values outside a 
minimum-maximum range when sample values are generated from the fitted distribution. For 
more on the properties and uses of particular probability distributions, there are a number of 
excellent references that can be accessed on the Internet. 
 
Click the Apply button in the window when you are satisfied with the distribution. 
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Figure 4.5 
The Define Distribution Window after the Range Has Been Fitted 

 

 
 

Note: This distribution is ranked highest based on the Chi-square test. 
 
Step 10—Cell C44 now contains the @RISK formula that describes the fitted probability 
distribution that will be used in the simulation to generate values for that cell. 
 
Step 11—Repeat Steps 1–10 for the remaining columns starting with Cell D43. When the 
@RISK formula for the fitted probability distribution for Cell D43 has been created, copy that 
formula down to the remaining cells in the column (Cell D44). Continue the process until all 
remaining colored columns are completed. 
 
Step 12—Right click on Cell M45. Move to the @RISK selection and choose Add Output from 
the @RISK subwindow that appears (see Figure 4.6). Enter a name for the output (such as Total 
IBNR) and click on the OK button. For the simulation, @RISK will record the value of the 
output for each iteration. This step has now specified that Total IBNR is the output that we want 
to record. 
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Figure 4.6 
Add Output Window to Specify Total IBNR 

 

 
        

 
Step 13—On the @RISK tool bar, click on the Simulation Settings button. The Simulation 
Settings window appears (see Figure 4.7). Enter the number of iterations by selecting one of the 
dropdown choices or typing in the number in the # Iterations box, say 10,000. Check the 
Update Display box. Click OK. 
 

Figure 4.7 
Simulation Settings Window 

 

 
      

 
Step 14—Click the Start Simulation button on the @RISK toolbar. The simulation starts and 
the spreadsheet display is updated for each iteration. When all iterations are completed, the 
@RISK Summary Statistics sheet appears (see Figure 4.8). It should be noted that because the 
Summary Statistics sheet displays simulation results, the values seen by the user are unlikely to 
be exactly the same as in Figure 4.8.  
 
Step 15—The @RISK Summary Statistics sheet lists each of the output and input cells used in 
the simulation. For each cell, the following statistics appear: minimum, mean, maximum and two 
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user-changeable percentile values and percentile choices, (x1 and x2, p1 and p2, respectively), 
and the difference between the percentile values (x2-x1, p2-p1). 
 
Step 16—From the information in the Summary Statistics sheet, varying levels of confidence 
intervals around the mean can be calculated. For instance, to calculate a 95 percent interval of the 
Total IBNR, enter p1 of 2.5 percent and p2 of 97.5 percent into the Total IBNR line that appears 
in the Summary Statistics sheet. The percentile values are automatically updated and the 
difference between x2 and x1 represents the length of the interval. Other statistics about the Total 
IBNR can be obtained from the Detailed Statistics sheet that can be obtained from the @RISK 
toolbar. 
 

Figure 4.8 
Summary Statistics Window Showing the Output Values for Total IBNR 

 

 
 

Note: Columns x1 and x2 from a 95 percent confidence interval for Total IBNR. 
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4.4 Practical Considerations 
 
Some practical considerations when performing the simulation include: 
 

• Carefully review the range of values that can be generated by each fitted distribution to 
ensure it is reasonable. For example, if negative claim values or large claim outliers were 
used to fit a distribution, spurious results may be generated during the simulation. Adjust 
the data manually or use the @RISK RiskTruncate function to eliminate unreasonable 
input values. 

• If claims have increased rapidly over time, the fitted distributions may underestimate the 
impact of the increase. The results should be reviewed carefully for such patterns and 
adjusted accordingly. 

• The number of iterations run will impact both the speed of the simulation and the 
accuracy of the results. For most Total IBNR calculations, the complexity of the 
calculations can be readily handled in Excel. As such, a high number of iterations (10,000 
or more) should be able to be performed rapidly. 

 
4.5 Summary 
 
In this section, we presented an illustrative example of how to apply simulation to the confidence 
intervals on the total IBNR. Simulation can be applied at differing levels of complexity 
depending on data availability and the IBNR calculation methods. The greater the complexity of 
the underlying simulation calculations, the more important it is to run a sufficient number of 
iterations to ensure robust results. 
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Section 5—Key Statistical Terms 

 

For reference purposes, this section contains brief explanations of the key statistical terms and 
concepts presented in the previous sections. 
 

Mean 

For a set of data, the mean is the arithmetic average of the data values, equal to the sum of all 
values divided by the number of values. For a random variable, the mean is its expected value. 
 
For a set of data nxx ,,1 K , 

x
n

xi === ∑
ValuesData ofNumber 

Values Data of SumMean  

 
where xi 's  are points of data and n is the number of points of data. 
 
For discrete random variables, the mean equals the sum of each value multiplied by its 
probability 

E(X) = xi∑ ⋅ p(xi ) = μ  
where n is the number of values X can take (the weighted sum is over all n values) and )( ixp  is 
the probability that X takes on the value xi. 
 
For continuous random variables, the mean equals the integral of x (i.e., a value of the random 
variable) multiplied by the density function. For non-negative random variables, the mean equals 
the integral from zero to infinity of the survival function of the random variable. 
 

Variance and Standard Deviation 

Two sets of data can have the same mean, but be composed of different values. One way to 
describe this difference quantitatively is to use a measure of dispersion which represents the 
amount of variation in a data set. This measure is known as the variance for a random variable or 
the sample variance for a set of data. For a data set, the sample variance is calculated as 

1
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)( 1

2

−

−
=
∑
=
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XVar
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i

 

It is important to note the sample variance is in units that are the square of the original unit. If we 
were to take the square root of Var(X), we would have the sample standard deviation, s. 
 
For a random variable, its variance is calculated as  

Var X( )= E X − E X( )( )2( )= E X − μ( )2( ).  
and the standard deviation isσ = Var X( ).  
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Coefficient of Variation 

The coefficient of variation is a relative measure of dispersion of a random variable. It relates the 
mean and standard deviation, and is calculated as the standard deviation divided by the mean: 

Var(X)
E(X)

=
σ
μ

. 

 
In terms of IBNR estimates, the greater the coefficient of variation, the greater the probability 
that actual claim runout will be materially different from the best estimate. Conversely, the lower 
the coefficient of variation, the lower the probability that actual experience, as it emerges, will be 
materially different from the best estimate. 
 
Confidence Interval 

A confidence interval provides an estimated range of values which is likely to include an 
unknown population parameter. The estimated range is calculated from a given set of sample 
data. If independent samples are taken repeatedly from the same population, and a confidence 
interval calculated for each sample, then a certain percentage of the intervals will include the 
unknown population parameter. Confidence intervals are usually calculated so that this 
percentage is 95 percent, but any percentage can be used. The width of the confidence interval 
provides some indication of the level of uncertainty about the estimate of the unknown 
parameter. A very wide interval may indicate that more data should be collected before definitive 
statements about the parameter can be made. 
 
Prediction Interval 

A prediction interval bears the same relationship to a future observation that a confidence 
interval bears to an unobservable population parameter. Prediction intervals predict the 
distribution of individual points, whereas confidence intervals estimate the true population mean 
or other quantity of interest that cannot be observed. For calculating an interval around an IBNR 
estimate, a prediction interval is normally the measure that is calculated, in technical terms. 
 
Deterministic Method 

Deterministic methods produce values for a dependent variable based on independent variables 
that do not assume any inherent randomness in those variables. Such a method is usually formula 
or algorithm based, and it does not use statistical techniques such as regression, time series or 
confidence intervals. For example, the standard application of the completion factor method is a 
deterministic method. 
 

Statistical Method 

Statistical methods account for randomness and uncertainty in observations. In terms of IBNR 
estimates, a method that assumes claim values follow a probability distribution is considered a 
statistical method. 
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Linear Regression 

This is a technique in which a straight line is fit to a set of data points to measure the effect of a 
single independent variable on the value of a dependent variable. The slope of the line is the 
measure of the impact of the independent variable. The regression technique, in general, seeks to 
derive the expected value of a random variable Y (dependent variable) given a value of an 
independent random variable X. The technique is rooted in the observation that if X and Y have 
the bivariate normal distribution, then the conditional mean of Y given that X = x is a linear 
function of x. This is a basic methodology for building practical statistical models. Estimation of 
parameters of the line is done by minimizing the mean square error, i.e., the average of the 
square of the distance between the value of Y obtained from the actual data and the value of it 
predicted by the linear relationship. Standard linear regression uses one dependent variable Y and 
one independent random variable X. Its generalization, called multiple regression, assumes a 
more complicated linear relationship of the form nn XbXbXbaY ++++= K2211 . 
 
Modeling Process 
 
The modeling process is a procedure for taking data and applying a logical structure to it in order 
to replicate certain situations, produce statistical estimates, or predict future conditions. In 
calculating IBNR, a model is often used to estimate incurred claim amounts by replicating the 
underlying process and properties of claim payments. In this context, the modeling process is a 
series of steps for deciding which underlying model is most appropriate for estimating incurred 
claims. This process is outlined in Section 3. 
 
Exponential Regression 

This is a regression technique that produces an exponential curve as the best fit of data composed 
of values of the independent random variable X and dependent random variable Y. This 
technique effectively applies linear regression methodology to lnY and X. For an exponential 
form of regression, the following relationships are effectively assumed: 

Y = Arx 
lnY = ln A + X ln r.  

thus, the exponential curve is transformed to a linear equation where the slope is ln r and the y-
intercept is ln A and we can use linear regression to find the slope and the intercept. 
 
Quadratic Regression 

This is a regression technique that produces a quadratic relationship of the form Y = aX2 + bX + c 
as the best fit of a set of data composed of values of the independent random variable X and 
dependent random variable Y. This is a generalization of the linear relationship of the form Y = 
aX + b assumed in linear regression. 
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Multicolinearity 

Multicolinearity is the degree of correlation between independent variables. A high degree of 
multicolinearity produces unacceptable uncertainty (large variance) in regression coefficient 
estimates. Specifically, the coefficients can change drastically depending on which terms are 
included in the model and also the order they are placed in the model. When applied to a model 
of the form nn XbXbXbaY ++++= K2211 , multicolinearity of the model means that some of 
the independent variables nXXX ,,, 21 K  are superfluous, because of their dependence on other 
variables. In other words, the superfluous variables could be fully predicted by those other 
variables that they are dependent upon. Multicolinearity is usually produced in multiple 
regression models by adding too many variables to the model, without consideration for the 
possibility of those variables being dependent on each other. Thus adding variables to a model 
would not necessarily produce a better predictive model, or even produce a model that has the 
same predictive ability as the original model, but in fact might produce a worse model. 
 
Outlier 

An outlier is an observation that is far removed from the general pattern of the data. For the 
purposes of IBNR estimation, the determination of an outlier depends on the model used to 
estimate the IBNR. An outlier with respect to one model may not be an outlier relative to another 
model. 
 
Test Statistics and p-Values 

For a regression analysis, there are several associated test statistics and corresponding p-values. 
These are normally included as output from a statistical package. The F-statistic and 
corresponding p-value test if the overall model is statistically significant. A p-value less than 
0.05 is an indicator that the overall model is statistically significant when compared to a model 
using none of the independent variables. The t-statistics and corresponding p-values test each 
individual regression coefficient (beta value). The independent (predictor) variables with p-
values less than 0.05 are considered to be useful in describing the relationship between the 
independent (predictor) variables and the dependent (response) variable. 
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R-Square and Adjusted R-Square Values 

When regression models are developed, among the first results reviewed are the R-square and 
adjusted R-square values. 
 
R-square and adjusted R-square are defined as follows: 
 
R-square is the name of the coefficient of determination of the regression model. It can be 
interpreted as the percentage of the variation in the observed values of the dependent variable 
that is explained by the regression model. The larger the R-square value, the greater is the 
indication that the model is satisfactory. R-square is defined as 

2 1SSR SSER
SST SST

= = − , 

where SSR is the sum of squares accounted for in the regression model, SST is the total sum of 
squares of the deviations of the dependent values from their mean, and SSE = SST - SSR. One 
drawback of R-square is that adding more independent variables causes the R-square value to 
increase even though there is no significant improvement to the model. In order to correct for 
this effect, an adjustment can be made to the R-square formula. The adjusted R-square is defined 
to be 

2 /( 1)( ) 1
/( 1)

SSE n kR adj
SST n

− −
= −

−
, 

where k is the number of predictors in the regression model and n is the total number of 
observations on the response variable. Larger adjusted R-square values indicate a better fit of the 
model. 
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Final Comments  
 
This document has presented approaches for incorporating statistical techniques into actuarial 
methods used for calculating medical liabilities. These approaches will hopefully motivate 
practitioners to consider the use of statistical approaches as a way to enhance their current 
practice. As noted throughout the document, the techniques described are not intended to 
represent the state of the art in the application of statistics to IBNR calculations. Rather, it is the 
authors’ wish that this guide serve to stimulate further research and development of innovative 
techniques for more accurate IBNR predictions. 
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Appendix I—Multicolinearity 
 
In this section, we discuss the issue of multicolinearity, which can occur when the model 
contains two independent variables that are closely correlated. 
 
I.1 Multiple Regression Model: Correlation between Variables 
 
Let us say there are two linear regression models with the following independent variables: 
 

Model 1: X1 
Model 2: X1, X2 

 
In many cases, Model 2 will provide an estimate that is better (or at least as good) as Model 1. 
However, there are situations where the estimates from Model 2 could be unstable and 
misleading due to the correlation between X1 and X2. This situation occurs in what is known as 
multicolinearity. 
 
In a multiple linear regression model, when two or more independent variables are highly 
correlated, multicolinearity or colinearity is present in the model. When multicolinearity occurs, 
the estimates of the regression coefficients are very unstable, and the predictions made using the 
model could be misleading. 
 
Multicolinearity is defined to be the existence of near linear relationships between the 
independent variables. P-values reported in the regression output cannot be used to detect the 
presence of the colinearity. However in the presence of high colinearity it sometimes occurs that 
almost all the p-values corresponding to individual coefficients (independent variables) are 
relatively large indicating that these variables are of no use in predicting the dependent variable, 
while the p-value corresponding to the F-statistic for the effectiveness of the overall model is 
small. This normally happens when there is a severe case of multicolinearity, but not in all 
instances. 
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Exhibit I.1 provides an illustration of a data set with an extreme case of multicolinearity. 
 

Exhibit I.1 
Data Set With Extreme Multicolinearity 

 
Y X1 X2 X3 

77.2163 0.9853 13.6 58.4385
80.4335 1.0938 16.6 65.2210
73.3477 0.9280 10.2 49.7600
68.3209 0.9462 5.4 46.6790
71.4829 0.8885 15.0 54.9825
73.9800 1.0267 9.0 55.0015
76.3007 0.9225 12.3 53.9125
73.9351 0.9372 16.3 58.7740
75.0595 0.8858 15.4 54.7610
78.2235 0.9643 13.0 57.0935
77.8391 0.9316 14.4 57.0220
73.5727 0.9705 10.0 51.4725
82.4024 1.1240 10.2 61.9800
73.1462 0.8517 9.5 47.3265
64.9958 0.7851 1.5 36.3295
80.6591 0.9186 18.5 58.3370
84.3041 1.0395 12.6 59.5775
83.1205 0.9573 17.5 58.8785
67.4872 0.9106 4.9 45.4770
79.7789 1.0070 15.9 59.8150
69.7220 0.9806 8.5 51.4270
77.1627 0.9693 10.6 52.2185
72.1725 0.9496 13.9 57.9320
85.8880 1.1184 14.9 62.3280

 
This data set contains 24 observations. We will use the variable Y as the dependent (response) 
variable and X1, X2 and X3 as independent variables. 
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Exhibit I.2 is a 3-D graph illustrating the correlation of the independent variables. 
 

Exhibit I.2 
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Exhibit I.2 shows that the variables X1 and X2 are positively correlated with X3 and the 
scatterplots of X3 versus X1 (Exhibit I.4) and X3 versus X2 (Exhibit I.5) confirm this. 
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Exhibit I.3 is a scatterplot of X1 versus X2. 
 

Exhibit I.3 
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Exhibit I.3 shows that the variables X1 and X2 are not highly correlated. 
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Exhibit I. 4 is a scatterplot of X1 versus X3. 
 

Exhibit I.4 
 

X3

X
1

65605550454035

1.15

1.10

1.05

1.00

0.95

0.90

0.85

0.80

Scatterplot of X1 vs X3

 
 
Exhibit I.4 clearly shows that the variables X1 and X3 are highly correlated. 
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Exhibit I.5 is a scatterplot of X2 versus X3. 
 

Exhibit I.5 
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Exhibit I.5 also shows that the variables X2 and X3 are highly correlated. 
 
The correlation coefficients between X1, X2 and X3 shown in Exhibit I.6 confirm the scatterplots. 
 

Exhibit I.6 
Correlation Coefficients Between Independent Variables 

 
 X1 X2 
X2 0.310 --- 
X3 0.752 0.837

 
It is evident X3 is highly correlated with both X1 and X2. 
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The results of several multiple linear regression models representing differing combinations of 
independent variables are shown in Exhibit I. 7. Notice that there are several relatively large p 
(probability) values in some of the models. (A value of less than 0.05 indicates that the 
independent variable is useful in explaining the values of the dependent variable.) 
 

Exhibit I.7 
Comparison of Key Values from Models 

 
 Model     
 1 2 3 4 5 
Independent Variables X1, X2 X1, X3 X2, X3 X3 X1, X2, X3 
R-Square (Adjusted) Value 71.4% 67.2% 66.2% 67.7% 70.6% 
      
P-Values:      
Intercept 0.000 0.000 0.000 0.000 0.000 
X1 0.000 0.419 N/A N/A 0.056 
X2 0.000 N/A 0.936 N/A 0.081 
X3 N/A 0.001 0.001 0.000 0.526 

 
The detailed regression data can be found in Appendix I-A. 
 
None of the independent variables are significant in Model 5 based on the 0.05 threshold. Only 
the intercept term is significant. This indicates that the model implies that no independent 
variable is useful in predicting the values of the dependent variable. Furthermore, this would 
imply that we might rather use the sample mean of the dependent variable to predict any value of 
the dependent variable. As can be seen from Model 1, this is completely misleading. This is 
because the estimators of the coefficients in Model 5 are very unreliable and their errors are very 
large. 
 
Let us look at the effect of multicolinearity on the prediction. When X1=0.8 and X2=2, the 
predicted value of Y using Model 1 is 63.075, which is close to the minimum value of Y in the 
data, 64.9958. When X1=0.8, X2=2, and X3=60, the predicted value of Y using Model 5 is 
55.178. This value is significantly out of range of the Y-values even though the values of the 
independent variables are in the range of the observations in the data. This is the consequence of 
the presence of multicolinearity. In this case just by removing the variable X3 from the model, 
we obtain a good model. 
 
In our extreme example, adding a variable made our model poor, and it is evident that adding 
variables could sometimes make models significantly worse. P-values greater than 0.05 are an 
indicator that there may be the presence of multicolinearity. 
 
For a more detailed description of multicolinearity, we recommend the text by Belsey, Kuh and 
Welsch, which is listed in the references section. 
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Appendix I-A—Regression Models Used in Multicolinearity Analysis 
 
In this section, we present the regression models used in Appendix I to demonstrate 
multicolinearity. 
 
Our first regression analysis is Y versus X1 and X2 (Model 1). 
 
The regression equation is 

Y = 33.0 + 35.8 X1 + 0.692 X2. 
 
Exhibit I-A.1 illustrates the regression output from Model 1. 
 

Exhibit I-A.1 
Regression Output 

Model 1 
 

  Coefficient SE Coef t p 
Independent Variable Constant 33.032 7.404 4.46 0.000 
 X1 35.823 8.043 4.45 0.000 
 X2 0.692 0.151 4.60 0.000 

 
Standard Deviation (S) = 2.913413 

R-Square (R-sq) = 73.9% 
R-Sq Adjusted (R-sq(adj)) = 71.4% 

 
The analysis of variance for Model 1 is shown in Exhibit I-A.2. 
 

Exhibit I-A.2 
Analysis of Variance 

Model 1 
 

 Degrees of Sum of Mean   
 Freedom Squares Square F-Value p-Value 
 (DF) (SS) (MS) (F) (p) 
Source      
Regression 2 503.866 251.933 29.68 0.000 
Residual Error 21 178.247 8.489  
Total 23 682.114  

 
We can see that all the variables are significant and the adjusted R-square value is 71.4 percent. 
In addition, the overall F-test for the model is highly significant. These are all indications of a 
good model fit. 
 
Now we review the results of the multiple linear regression model of Y on all three independent 
variables X1, X2 and X3. 
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First, we evaluate the regression analysis: Y versus X1 and X3; this is Model 2. 
 
The regression equation is 

Y = 32.6 + 10.2 X1 + 0.610 X3. 
 
Exhibit I-A.3 illustrates the regression output from Model 2. 
 

Exhibit I-A.3 
Regression Output 

Model 2 
 

  Coefficient SE Coef t p 
Independent variable Constant 32.600 7.918 4.12 0.000 
 X1 10.234 12.408 0.82 0.419 
 X3 0.610 0.154 3.97 0.001 

 
Standard Deviation (S) = 3.117639 

R-Square (R-sq) = 70.1% 
R-Sq Adjusted (R-sq(adj)) = 67.2% 

 
The analysis of variance for Model 2 is shown in Exhibit I-A.4. 
 

Exhibit I-A.4 
Analysis of Variance 

Model 2 
 

 Degrees of Sum of Mean   
 Freedom Squares Square F-Value p-Value 
 (DF) (SS) (MS) (F) (p) 
Source      
Regression 2 478.001 239.000 24.59 0.000 
Residual Error 21 204.113 9.720  
Total 23 682.114  

 
From the exhibits we observe that X1 has no significant effect in explaining the dependent 
variable Y in the presence of the independent variable X3. 
 
Next, we review the regression analysis of Y versus X2 and X3; this is Model 3. 
 
The regression equation is 

Y = 37.7 + 0.023 X2 + 0.692 X3. 
 
Exhibit I-A.5 illustrates the regression output from Model 3. 
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Exhibit I-A.5 
Regression Output 

Model 3 
 

  Coefficient SE Coef t p 
Independent variable Constant 37.656 7.685 4.90 0.000 

 X2 0.023 0.285 0.08 0.936 
 X3 0.692 0.188 3.68 0.001 

 
Standard Deviation (S) = 3.167226 

R-Square (R-sq) = 69.1% 
R-Sq Adjusted (R-sq(adj)) = 66.2% 

 
The analysis of variance for Model 3 is shown in Exhibit I-A.6. 
 

Exhibit I-A.6 
Analysis of Variance 

Model 3 
 

 Degrees of Sum of Mean   
 Freedom Squares Square F-Value p-Value 
 (DF) (SS) (MS) (F) (p) 
Source      
Regression 2 471.456 235.728 23.50 0.000 
Residual Error 21 210.658 10.031  
Total 23 682.114  

 
From the exhibits we observe that the variable X2 has no significant effect in explaining the 
dependent variable Y in the presence of the independent variable X3. 
 
The next model, Model 4, is a regression analysis of Y versus X3. 
  
The regression equation is 

Y = 37.2 + 0.705 X3. 
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Exhibit I-A.7 illustrates the regression output from Model 4. 
 

Exhibit I-A.7 
Regression Output 

Model 4 
 

  Coefficient SE Coef T p 
Independent variable Constant 37.232 5.542 6.72 0.000 
 X3 0.705 0.101 7.02 0.000 

 
Standard Deviation (S) = 3.094900 

R-Square (R-sq) = 69.1% 
R-Sq Adjusted (R-sq(adj)) = 67.7% 

 
The analysis of variance for Model 4 is shown in Exhibit I-A.8. 
 

Exhibit I-A.8 
Analysis of Variance 

Model 4 
 

 Degrees of Sum of Mean   
 Freedom Squares Square F-Value p-Value 
 (DF) (SS) (MS) (F) (p) 
Source      
Regression 1 471.389 471.389 49.21 0.000 
Residual Error 22 210.725 9.578  
Total 23 682.114  

 
Since the adjusted R-square for Model 4 is 67.7 percent versus 71.4 percent for Model 1, Model 
1 is better in explaining the dependent variable Y. 
 
As a final illustration of the effects of multicolinearity, we will review the Model 5 results. 
Model 5 is a regression of Y versus X1, X2 and X3.  
 
The regression equation is 

Y = 33.1 + 51.2 X1 + 1.05 X2 - 0.350 X3. 
 



 
 

83

Exhibit I-A.9 illustrates the regression output from Model 5. 
 

Exhibit I-A.9 
Regression Output 

Model 5 
 

  Coefficient SE Coef t p 
Independent variable Constant 33.113 7.510 4.41 0.000 
 X1 51.234 25.213 2.03 0.056 
 X2 1.047 0.569 1.84 0.081 
 X3 -0.350 0.542 -0.65 0.526 

 
Standard Deviation (S) = 2.954676 

R-Square (R-sq) = 74.4% 
R-Sq Adjusted (R-sq(adj)) = 70.6% 

 
The analysis of variance for Model 5 is shown in Exhibit I-A.10. 
 

Exhibit I-A.10 
Analysis of Variance 

Model 5 
 

 Degrees of Sum of Mean   
 Freedom Squares Square F-Value p-Value 
Source (DF) (SS) (MS) (F) (p) 
Regression 3 507.512 169.171 19.38 0.000 
Residual Error 20 174.602 8.730  
Total 23 682.114  

 
Notice that the overall F-test is highly significant and the adjusted R-square value is 70.6 
percent, which is comparable to the value obtained for Model 1, but Model 5 is not an 
appropriate model for our purposes. 
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