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The growing number of people living beyond age 100 emphasizes the need for accurate 
measurement and modeling of mortality at advanced ages. However, mortality measurement at 
extremely old ages poses serious challenges to researchers: age reporting at extreme ages 
may be inaccurate; small numbers of people at advanced ages requires pooling data for people 
belonging to different birth cohorts, which results in data heterogeneity; and, finally, a standard 
approach based on annual mortality estimates may not be applicable to extremely high and 
rapidly changing risk of death at advanced ages.  

 
The study uses data from the Social Security Administration Death Master File (DMF) to 

conduct mortality estimates for more homogeneous single-year birth cohorts with hazard rates 
estimated for narrow (monthly) age intervals. Mortality after age 88 was estimated for 1881-95 
single-year extinct birth cohorts. Data quality control checks demonstrated that deceleration of 
mortality in later life is more expressed for data with lower quality. Additional quality checks 
using female-to-male ratio at advanced ages identified age 107 as the upper limit for acceptably 
good level of age reporting. Model comparison using Bayesian information criterion (BIC) 
showed that in the age interval 88 to 106 years and for data with reasonably good quality (U.S. 
Northern states), the Gompertz model shows better fitting of hazard rates than the logistic 
model. Hazard rate estimates obtained on the basis of DMF data agree well with estimates 
calculated on the basis of the 1900 actuarial cohort life table.  

 
This study shows that mortality deceleration in humans observed at advanced ages may 

be an artifact caused by age exaggeration, data heterogeneity or use of improper estimates of 
hazard rate. The phenomenon of mortality deceleration at older ages vanishes for datasets of 
higher data quality.  
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Introduction 
 
Accurate estimates of mortality at advanced ages are essential for improving forecasts 

of mortality and predicting the population size of the oldest-old age group. It is now considered 
an established fact that mortality at advanced ages has a tendency to deviate from the 
Gompertz law (Gavrilov and Gavrilova 1991), so that the logistic model often is used to fit 
human mortality (Horiuchi and Wilmoth 1998). The estimates of mortality force at extreme ages 
are difficult because of small numbers of survivors to these ages in most countries. Data for 
extremely long-lived individuals are scarce and subjected to age exaggeration. Traditional 
demographic estimates of mortality based on period data encounter well-known denominator 
problem. More accurate estimates are obtained using the method of extinct generations 
(Vincent 1951). To obtain good quality estimates of mortality at advanced ages, researches are 
forced to pool data for several calendar periods. Single-year life tables for many countries have 
very small numbers of survivors to age 100 that makes estimates of mortality at advanced ages 
unreliable. On the other hand, aggregation of deaths for several calendar periods creates a 
heterogeneous mixture of cases from different birth cohorts. Mortality deceleration observed in 
these data could be at least partially related to population heterogeneity. In addition to that, 
many assumptions about distribution of deaths in the age/time interval used in mortality 
estimation are not valid for extreme old ages when mortality is particularly high.  

 
Thus, the estimation of hazard rates at extremely old ages poses several serious 

challenges to researchers:  
 
1. The observed mortality deceleration may be at least partially an artifact of mixing 

different birth cohorts with different mortality (heterogeneity effect);  
2. Standard assumptions of hazard rate estimates may be invalid when risk of 

death is extremely high at old ages; and 
3. Ages of very old people may be exaggerated. 
 
One way of obtaining estimates of mortality at extreme ages is to pool international 

records of people surviving to extreme ages with subsequent efforts of strict age validation 
(Robine and Vaupel 2001; Robine et al. 2005). This approach helps to resolve the third problem 
mentioned above but does not allow researchers to resolve the first two problems because of 
inevitable data heterogeneity when data for people belonging to different birth cohorts and 
countries are pooled together. In this paper, we propose an alternative approach, which allows 
us to resolve partially the first two problems. This approach is based on using data from the 
Social Security Administration Death Master File (DMF), which allows compiling data for large 
single-year birth cohorts. Some already extinct birth cohorts covered by DMF could be studied 
by the method of extinct generations. Availability of month-of-birth and month-of-death 
information provides a unique opportunity to obtain hazard rate estimates for every month of 
age. Possible ways of resolving the third problem of hazard rate estimation are also elaborated. 
 
Hazard Rate (Mortality Force) Estimation at Advanced Ages 

 
A conventional way to obtain estimates of mortality at advanced ages is a construction of 

a demographic life table with probability of death (qx) as one important life table function. 
Although probability of death is a useful indicator for mortality studies, it may not be the most 
convenient one for studies of mortality at advanced ages. First, the values of qx depend on the 
length of the age interval Δx for which it is calculated. This hampers both analyses and 
interpretation. For example, if one-year probability of death follows the Gompertz law of 
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mortality, probability of death calculated for other age intervals does not follow this law (Le Bras 
1976; Gavrilov and Gavrilova 1991). Thus, it turns out that the shape of age trajectory for qx 
depends on the arbitrary choice of age interval. Also, by definition, qx is bounded by unity, which 
would inevitably produce apparent mortality deceleration when death rates are particularly high.  

 
A more useful indicator of mortality at advanced age is instantaneous mortality rate 

(mortality force) or hazard rate, µx which is defined as follows: 
 

µ� x =
dN x

N x dx
=

d ln( )N x

dx ≈�
∆� ln( )N x

∆� x
 

 
 
where Nx is a number of living individuals exposed to risk of death at age x. This 

definition refers to a cohort closed to migration when dNx does not involve migration. It follows 
from the definition of hazard rate that it is equal to the rate of decrease of logarithmic survival 
function with age. In actuarial practice, hazard rate is often called mortality force as it was done 
in the famous paper by Benjamin Gompertz (Gompertz 1825). Hazard rate does not depend on 
the length of the age interval (it is measured at the instant of time x), has no upper boundary 
and has a dimension of rate (time-1). It should also be noted that the famous law of mortality, the 
Gompertz law, was proposed for fitting the age-specific hazard rate function rather than 
probability of death (Gompertz 1825).  

 
The empirical estimates of hazard rates are often based on suggestion that age-specific 

mortality rate or death rate (number of deaths divided by exposure) is a good estimate of 
theoretical hazard rate. One of the first empirical estimates of hazard rate was proposed by 
George Sacher (Sacher 1956; Sacher 1966):  
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This estimate is unbiased for slow changes in hazard rate if ∆� x∆�µ� x << 1  (Sacher 
1966) and was shown to be the maximum likelihood estimate. A simplified version of Sacher 
estimate (for small age intervals equal to unity) is often used in biodemographic studies of 
mortality: µx = -ln(1-qx). This estimate was initially suggested by Gehan, who called it a “Sacher” 
estimate (Gehan 1969; Gehan and Siddiqui 1973). It is based on the assumption that hazard 
rate is constant over age intervals and is shifted by one half of a year to younger ages 
compared to the original Sacher estimate.  

 
Another empirical estimate of hazard rate, often used in life table construction (Klein and 

Moesberger 1997), is the actuarial estimate, which is calculated in the following way (Kimball 
1960):  
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This estimate assumes uniform distribution of deaths over the age interval and is 
bounded by 2/∆x, so this is not the best estimate of hazard rate at very old ages (Gavrilov and 
Gavrilova 1991). 

 
At advanced ages, when death rates are very high, the assumptions about small 

changes in hazard rate or a constant hazard rate within the age interval become questionable. 
The same is true for the assumption of uniform distribution of deaths within the age interval. 
Simulation studies showed that the bias in hazard rate estimation increases with the increase of 
the interval (Kimball 1960). Narrowing the age interval for hazard rate estimation from one year 
to one month helps to improve the accuracy of hazard rate estimation.  

 
Social Security Administration Death Master File as a Source of Mortality Data for 
Advanced Ages  

 
Social Security Administration Death Master File (DMF) is a publicly available data 

source that allows a search for individuals using various search criteria including birth date, 
death date, first and last names, social security number and place of last residence. This 
resource covers deaths that occurred between 1937 and 2010 (Faig 2001) and captures about 
95 percent of deaths recorded by the National Death Index (Sesso et al. 2000). According to 
other estimates, DMF covers about 90 percent of all deaths for which death certificates are 
issued (see Faig 2001) and about 92 to 96 percent of deaths for people older than 65 (Hill, 
Rosenwaike 2001). 

 
Social Security Administration DMF was used in our study of age-related mortality 

dynamics after ages 85 to 90. The advantage of this data source is that some birth cohorts 
covered by DMF could be studied by the method of extinct generations (Vincent 1951; Kannisto 
1988; Kannisto 1994). Availability of month-of-birth and month-of-death information provides a 
unique opportunity to obtain hazard rate estimates for every month of age, which is important 
given extremely high mortality after age 100. Table 1 presents information available in the 
Social Security Administration Death Master File, which is publicly available at Rootsweb.com.  

 
The information from the DMF was collected for individuals who lived 88 years or more 

and died before 2011. The DMF database is unique because it represents mortality experience 
for very large birth cohorts of the oldest-old people. In this study, mortality measurements were 
made for cohorts, which are more homogeneous in respect to the year of birth and historical life 
course experiences. Despite certain limitations, this data source allows researchers to obtain 
detailed estimates of mortality at advanced ages. We already used this data resource for 
centenarians’ age validation in the study of centenarian family histories (Gavrilova and Gavrilov 
2007). This data resource is also useful in mortality estimates for several extinct or almost 
extinct birth cohorts in the United States. 

 
 
1. First and last names, and social security number (SSN) date, month and 

year of birth 
2. Month and year of death 
3. State of the SSN issuance 
4. Town, county, state and ZIP code of the last residence 
5. Death date verification code  
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Hazard Rate Estimates at Advanced Ages Using Data From the Social Security 
Death Master File 

 
In this study, we collected information from the DMF publicly available at Rootsweb.com. 

The total number of records collected from this resource was about 9 million with more than 
900,000 records belonging to people who lived 100 years or more. Several birth cohorts (those 
born before 1895) may be considered extinct or almost extinct, so it is possible to apply the 
method of extinct generations (Vincent 1951) and estimate age-related mortality dynamics at 
very advanced ages—up to 115 years.  

 
We obtained data for people who died before 2011 and were born in 1875-95. People 

born in these years and alive in 2010 should survive to at least 115 years, which can be 
considered as very unlikely event. Thus, the 1875-95 birth cohorts in this sample may be 
considered extinct or almost extinct. Assuming that the number of living people belonging to 
these birth cohorts in 2010 is close to zero, it is possible to construct a cohort life table using 
well-known method of extinct generations, which was suggested and explained by Vincent 
(1951) and developed further by Kannisto (Kannisto 1994). In the first stage of our analyses, we 
calculated an individual life span in completed months:  

 
Lifespan in Months = (Death Year – Birth Year) x 12 + Death Month – Birth Month 

 
Having this information, it is possible to estimate hazard rates at each month of age by 

standard methods of survival analysis. All calculations were done using the Stata statistical 
software, Release 11 (StataCorp 2009). This software calculates nonparametric estimates of 
major survival functions including the Nelson-Aalen estimator of hazard rate (force of mortality). 
Note that hazard rate, µ(x), in contrast to probability of death, q(x), has a dimension of time 
frequency because of the time interval in the denominator (reciprocal time, time-1). Thus the 
values of hazard rates depend on the chosen units of time measurement (day-1, month-1 or year-

1). In this study, survival times were measured in months, so the estimates of hazard rates 
initially had a dimension of month-1. For the purpose of comparability with other published 
studies, which typically use the year-1 time scale, we transformed the monthly hazard rates to 
the more conventional units of year-1, by multiplying these estimates by a factor of 12 (one 
month in the denominator of hazard rate formula is equal to 1/12 year). It should be noted that 
hazard rate, in contrast to probability of death, can be greater than 1, and therefore its logarithm 
can be greater than 0 (and we indeed observed this at extreme old ages in some rare cases as 
will be described later). In this paper, we focus our analyses on 1881-95 birth cohorts because 
data quality for cohorts born before 1881 is not particularly good.  

 
In our study, we used the Nelson-Aalen hazard rate estimates calculated by Stata 

statistical software (StataCorp 2009). In fact, the Nelson-Aalen method was initially proposed for 
cumulative hazard rate estimation (particularly for right-censored survival data) (Klein and 
Moesberger 1997). The way of hazard rate estimation conducted in Stata is similar to 
calculation of life table probability of death (StataCorp 2009), i.e., the number of deaths in the 
studied age interval is divided by the number alive at the beginning of the age interval. At 
advanced ages when mortality is high and for relatively large age intervals, the number of 
people exposed to risk of death in the middle of the age interval is substantially lower than the 
number alive at the beginning of the age interval. This would result in downward bias in hazard 
rate estimates at advanced ages, which we observed in our study when the Nelson-Aalen 
estimates (used in Stata package) were applied to yearly age intervals (data not shown). 
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However, for smaller monthly age intervals, the problem described above is not so crucial and 
the Nelson-Aalen method still can be applied (as we did in our study).  

 
Results of the age-specific hazard rate estimates for the 1891 birth cohort (in semi-log 

scale) is presented in Figure 1. Note that mortality in this large single-year birth cohort follows 
the Gompertz law up to very advanced ages (linear increase of logarithm of mortality force with 
age). Previous studies of mortality at advanced ages used aggregated data combining several 
birth cohorts with different mortality levels and this aggregation may lead to apparent mortality 
deceleration and subsequent leveling-off as suggested by the heterogeneity model of mortality 
proposed by British actuary Eric Beard (Beard 1959; Beard 1971). 

 
Note that hazard rate demonstrates steady exponential growth up to the age 105. After 

age 105, mortality trajectories show a small tendency for deceleration with age. Estimates of 
hazard rates for several other single-year birth cohorts (1886-95) revealed similar age patterns 
for mortality at advanced ages. Using single-year birth cohort data from the SSA DMF, we were 
able to minimize the effects of population heterogeneity on age-related mortality dynamics. We 
were also able to calculate more accurate monthly estimates of hazard rates, which are less 
prone to possible biases caused by violation of typical assumptions used in mortality estimation. 
However we were not able to control for possible age misreporting among the deceased. The 
most common type of age misreporting among very old individuals is age exaggeration (Willcox 
et al. 2008). This type of age misreporting results in underestimation of mortality rates at 
advanced ages. Thus, we may suggest that mortality deceleration after age 105 among DMF 
cohorts may be caused by poor data quality (age exaggeration) at very advanced ages. If this 
hypothesis is correct, then mortality deceleration at advanced ages should be less expressed 
for data with presumably better quality. To test this hypothesis, we conducted a data quality 
study for DMF birth cohorts. 
 

Figure 1 
Data From the Social Security Administration Death Master File 
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Measures to Improve Data Quality 
 
Mortality deceleration and even decline of mortality is observed usually for data of low 

quality. On the other hand, improvement of data quality results in straighter mortality trajectory 
in semi-log scale (Kestenbaum and Ferguson 2001). Thus, we may suggest that mortality 
estimates at advanced ages should be lower in populations with less accurate age reporting 
compared to populations with more accurate age reporting. To test this hypothesis, we 
compared mortality trajectories at advanced ages for populations with presumably different 
quality of age reporting.  

 
Study of age validation among individuals age 110 or more (Rosenwaike and Stone 

2003) demonstrated that age reporting among supercentenarians in the Social Security 
Administration database is rather accurate with the exception of people born in the Southern 
states. To compare populations with presumably different data quality, we split DMF records 
into two groups. In the first group, we included records for those people who applied for a social 
security number in the Southeast states (Arkansas, Alabama, Georgia, Mississippi, Louisiana, 
Tennessee, Florida, Kentucky, South Carolina, North Carolina, Virginia and West Virginia), 
Southwest states (Arizona, New Mexico, Texas and Oklahoma), Puerto Rico and Hawaii. We 
also added to this group all records for people who applied for a SSN in New York and 
California because of very high proportion of immigrants (with unknown quality of age reporting) 
residing in these states. In the second group with presumably better data quality, we included 
people applying for a social security number in all other states as well as retired railroad 
workers.  

 
Estimates of age-specific mortality for these two groups demonstrated straighter 

trajectory of mortality in semi-log scale for population of non-Southern states with presumably 
better quality of age reporting (verified using quadratic fit of mortality data). Figure 2 shows age-
trajectories of mortality for people born in 1891 who applied for a SSN either in Southern or non-
Southern states. Note that the line corresponding to quadratic fit of the logarithm of mortality 
with age is straighter for the non-Southern group compared to the line corresponding to 
mortality of the Southern group.  
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Figure 2 
Mortality Data With Presumably Different Quality 

Hazard Rate (Per Year) for the 1891 Birth Cohort in a Log Scale; 
Comparison of Less Reliable (Southern Group) and More Reliable 

(Non-Southern Group) Data; Solid Lines Show Fit With Quadratic Function; 
Data From the Social Security Administration Death Master File 

 

 
 
 
 
Similar phenomenon is observed when mortality data for an earlier birth cohort are 

compared to mortality data for a later birth cohort. Records for later-born people are supposed 
to be of better quality due to improvement of age reporting over time. Taking into account that 
age reporting is improving, we may suggest that mortality for later birth cohorts follows the 
Gompertz law more closely compared to the mortality of earlier birth cohorts with presumably 
lower data quality. This suggestion is confirmed by comparing 1881 and 1891 birth cohorts 
(Figure 3). The more recent 1891 birth cohort demonstrates straighter trajectory and lower 
statistical noise after age 105 than the older 1881 set (see Figure 3). Thus, we may expect that 
cohorts born after 1891 would demonstrate even better fit by the Gompertz model than the older 
ones because of improved quality of age reporting.  

 



 

9 

Figure 4 
Mortality Data With Presumably Different Quality; Comparison of 

Less Reliable (1881 Birth Cohort) and More Reliable (1891 Birth Cohort) Data; 
Solid Lines Show Fit With Quadratic Function; Data From the Social Security 

Administration Death Master File 
 

 
 
 
Based on the results presented above, we may conclude that the better the quality of 

mortality data at advanced ages, the closer mortality trajectories are to the Gompertz function. 
However, we need to admit that the data at very old ages are noisy and have quality problems 
even for the non-Southern group and the most recent birth cohorts. Thus, our next step in data 
quality control is to identify the age interval with reasonably good data quality and then to 
compare competing mortality models in this age interval.  

 
One approach to test the data quality at advanced ages is to calculate the female-to-

male ratio at advanced ages. Taking into account that female mortality is always lower than 
male mortality at advanced ages, it is reasonable to expect that the female-to-male ratio should 
continuously increase with age. On the other hand, men have a tendency for age exaggeration, 
and, in populations with poor age registration, there is a relative excess of men at very 
advanced ages (Caselli et al. 2006; Willcox et al. 2008).  

 
The SSA DMF does not have information about sex of the deceased. To cope with this 

limitation of data sample, we conducted a procedure of sex identification using information 
about the 1,000 most commonly used baby first names in the 1900s provided by the Social 
Security Administration (http://www.ssa.gov/OACT/babynames). These data come from a 
sample of 5 percent of all Social Security cards issued to individuals born during the 1900s in 
the United States. From the lists of male and female names, we removed names consisting of 
initials and potentially unisex names (such as Jessie or Lonnie). It is interesting to note that the 

http://www.ssa.gov/OACT/babynames�
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SSA male list contains some obviously female names (Mary, Elizabeth) and the same problem 
was observed for the female list, which indicates that the SSA data apparently contain many sex 
misidentifications. These female names were removed from the male list and the same 
procedure was done for the female list. Additional male or female names found in the DMF were 
also added to our sex identification name lists. Using the final lists of male and female first 
names, we applied the sex identification procedure to the sample of 1879-95 birth cohorts. 
Eventually, we were able to identify sex for 91 to 93 percent of records for people in our sample. 
The remaining 7 to 9 percent of people with unknown sex had approximately the same mean 
lifespan as the remaining percent of individuals with identified sex pooled together (checked 
with the t-test statistics), so the existence of possible sex non-identification bias in mortality is 
unlikely. This data sample of 774,926 individuals with known sex (out of 846,982 individuals) 
was used for identifying the age interval of reasonably good data quality using information on 
the female-to-male ratio at advanced ages.  
 

Figure 5 
Age-Specific Hazard Rates (Log Scale) for Men and Women Born in 1891; 

Solid Lines Show Fit With Quadratic Function; Data From the Social Security 
Administration Death Master File 

 

 
 
 
The result of hazard rate estimation for men and women born in 1891 is presented in 

Figure 5. Note that male mortality continues to exceed female mortality up to very advanced 
ages and this mortality differential narrows very slowly with age. At age 110, the number of 
remaining males (nine) and females (61) is too small for accurate estimates of hazard rate after 
this age.  

 
We calculated female-to-male ratio after age 95 for 1881-95 U.S. birth cohorts from the 

SSA DMF. Figure 6 demonstrates the age-specific dependency of this ratio for the combined 
sample of 1887-92 birth cohorts (these single-year birth cohorts have similar levels of mortality). 
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Note that the female-to-male ratio is growing steadily with age up to ages 106-107. After this 
age, the female-to-male ratio starts to decrease, indicating declining quality of age reporting. 
Thus, the estimates of hazard rates obtained from the SSA DMF are of acceptable quality up to 
the age of 106. Figure 7 shows the maximum age or tipping point when the female-to-male ratio 
starts to decline for different birth cohorts. It demonstrates that this age varies from 104 to 107, 
indicating the upper limit for data of reasonably good quality in terms of age reporting.  
 

Figure 6 
Observed Female-to-Male Ratio at Advanced Ages for Combined 1887-92 Birth Cohort; 

If Data are of Good Quality, Then This Ratio Should Grow With Age 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 
Age of Maximum Female-to-Male Ratio, by Birth Cohort 
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Thus, our study of female-to-male ratio for different birth cohorts indicates that age 
reporting has reasonably good quality up to the age of about 106. For this reason, we used age 
interval 88 to 106 years for mortality modeling.  

 
Modeling Mortality at Advanced Ages 

 
The next step of our study was to compare two competing models of mortality at 

advanced ages—the Gompertz and the logistic models—using data of reasonably good quality. 
Study of data quality control at advanced ages described earlier suggests that age reporting 
among the oldest-old in the United States is good until the age of 106. It means that comparing 
mortality models beyond this age is not feasible because of poor quality of mortality data. For 
this reason, we used a subsample of deaths for people who applied for SSNs in the Northern 
states (described above) in 1886-95  because these data have relatively good quality. We 
applied Gompertz and logistic (Kannisto) models (Thatcher et al. 1998) to mortality modeling in 
the age interval 88 to 106 years using nonlinear regression method for parameter estimation. 
Calculations were performed using Stata statistical software, Release 11.  
 

Figure 8 
Mortality Fitting Using Gompertz and Logistic Models; 

1891 Birth Cohort of People Who Applied for SSNs in the Northern States; 
Data From the Social Security Administration Death Master File 

 

 
 
Figure 8 shows mortality fitting after age 88 for Gompertz and Kannisto models using 

data for Northern states of the 1891 birth cohort. Goodness-of-fit for each model was estimated 
using the Bayesian information criterion (BIC). Table 2 shows values of BIC for both Gompertz 
and logistic model for 10 studied birth cohorts. Note that in eight out of 10 cases (studied birth 
cohorts), the Gompertz model demonstrates better fit (lower BIC) than the logistic model for age 
interval 88 to 106.  
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TABLE 2 
Comparison of Goodness-of-fit (Bayesian Information Criterion, BIC) 

for Gompertz and Logistic Models of Mortality in the 
Age Interval 88 to 106 for 10 U.S. Birth Cohorts†. 

 
Birth Cohort Size  

at 88 Years 
Bayesian Information Criterion (BIC) 

 Gompertz Model†† Logistic Model 
1886 111,657 -594776.2  -588049.5 
1887 114,469 -625303.0 -618721.4 
1888 128,768 -709620.7  -712575.5 
1889 131,778 -710871.1 -715356.6 
1890 135,393 -724731.0 -722939.6 
1891 143,138 -767138.3 -739727.6 
1892 152,058 -831555.3 -810951.8 
1893 156,189 -890022.6 -862135.9 
1894 160,835 -946219.0 -905787.1 
1895 165,294 -921650.3 -863246.6 

† Data of enhanced accuracy for individuals who applied to SSNs in the Northern states (see 
explanation in the text). 

†† Cases when the Gompertz model fits data better than the logistic model are highlighted in 
bold. 

 
At this moment, we cannot make a conclusion that the Gompertz model fits mortality 

data after age 106 better than the logistic model because of low quality of age reporting, which 
results in potential underestimation of mortality after age 106. At the same time, it is reasonable 
to conclude that the Gompertz model fits mortality data well until age 106. Taking into account 
that survival beyond age 106 is a rather rare event, it would be reasonable to suggest the use of 
Gompertz model for closing cohort life tables in actuarial practice.  
 
Comparison of DMF Mortality Data with Actuarial Life Tables  

 
Due to natural limitations of the DMF data (poor completeness of death registration 

before the 1970s), we were not able to estimate mortality before age 85 to 88. There is also a 
question of whether our estimates of Gompertz parameters (slope parameter in particular) are 
applicable to a wider age interval or they are specific only for advanced ages (so-called two-
stage Gompertz model). In this study, we compared our empirical estimates of cohort mortality 
at advanced ages based on DMF data with the 1900 actuarial cohort life table (Bell et al. 1992). 
Unfortunately, there are no reliable U.S. cohort life tables for cohorts older than 1900, so we 
compared our mortality data for earlier birth cohorts to later 1900 birth cohorts. It should be 
noted that the adult U.S. population did not experience substantial mortality changes between 
1890 and 1900. According to the estimates made by historical demographers, life expectancy at 
age 40 in the United States in 1890 (27.61 years) was practically the same as in 1900 (27.52 
years) (Haines 1998). Thus, we believe that mortality at advanced ages for the 1900 birth cohort 
in the actuarial study and the 1894 birth cohort we used for comparison should not be 
substantially different.  
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Figure 9 
Deaths at Extreme Old Ages Are Not Distributed Uniformly Over One-Year 

Interval; 1891 Birth Cohort From the SSA DMF 
a) Distribution for 90-year-olds 
b) Distribution for 102-year-olds 

 
a) 

 
 
b) 

 
 
 
We initially compared our DMF data with probability of death estimates from the actuarial 

life table (qx) and found that life table values of probability of death show deceleration after age 
100. It should be noted, however, that the annual estimates of probability of death (qx) and 
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mortality force (µx) substantially diverge at advanced ages. This happens because probability of 
death cannot continue its rapid growth when it approaches its mathematical upper limit equal to 
1, while mortality force theoretically can increase indefinitely with age. Therefore, estimates of 
probability of death at advanced ages are biased downward compared to the hazard rate 
estimates. Hence, probability of death estimates beyond age 100 show deceleration in semi-log 
coordinates even if estimates of hazard rates follow the Gompertz model. 

 
Another issue is the shape of death distribution within studied age intervals. This issue is 

important because some estimates of hazard rate (for example, the actuarial estimate of hazard 
rate) are based on the assumption of approximately uniform distribution of deaths within one-
year age intervals (Kimball 1960; Watson and Leadbetter 1964; Gehan and Siddiqui 1973). 
Indeed, this assumption is consistent with the data for 90-year-olds, presented in Figure 9a. 
However for 102-year-olds, the distribution of deaths is obviously not uniform, with far more 
deaths occurring at the beginning of the age interval (Figure 9b). To alleviate this problem, it is 
preferable to make mortality estimates at advanced ages for shorter (monthly) age intervals, 
rather than for traditional one-year age intervals if the actuarial estimate of hazard rate is 
applied.  
 

Figure 10 
Actuarial 1900 U.S. Cohort Life Table and DMF 1887 Birth Cohort; 

Source for Actuarial Life Table: Bell, F.C., Miller, M.L. Life Tables for the 
United States Social Security Area 1900-2100; Actuarial Study No. 116 
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The formula proposed by Sacher (Sacher 1956; Sacher 1966) gives more accurate 
estimates of hazard rate for yearly age intervals, so we applied a simplified Sacher formula for 
age-specific hazard rate calculations to the 1900 actuarial cohort life table:  

 
µx = -ln(1-qx)  

 
where qx is a probability of death value from the life table. 
 
Figure 10 shows the trajectories of age-specific hazard rates for the 1900 birth cohort 

from the actuarial study and the 1894 birth cohort from the SSA DMF over a broad interval 
starting at age 40. Note that hazard rate estimates for the 1894 birth cohort are practically 
identical to the hazard rate estimates calculated on the basis of the actuarial life table. Also note 
that mortality of the 1894 birth cohort has the same slope in semi-log coordinates as mortality of 
the actuarial birth cohort calculated for a much wider age interval, which does not support the 
suggestion about the two-stage Gompertz model of mortality at advanced ages. Indeed, the 
maximum likelihood estimator of the Gompertz slope parameter for mortality in the 1894 cohort 
measured in the interval 88 to 106 years (0.0786 year-1, 95 percent confidence interval: 0.0786-
0.0787) does not differ from the slope parameter calculated over the age interval 40 to 104 
years in the 1900 life table (0.0785 year-1, 95 percent confidence interval: 0.0772-0.0797). Thus, 
we may conclude that more accurate estimates of hazard rates at advanced ages based on 
individual mortality data practically coincide with hazard rate estimates calculated on the basis 
of the 1900 actuarial cohort life table (Bell et al. 1992). It is remarkable that estimates in the 
actuarial life table obtained by extrapolation of annual probabilities of death after age 95 (Bell et 
al. 1992) are practically identical to the observed estimates of hazard rates based on mortality 
experience of a very large cohort of old individuals.  

 
 



 

17 

Discussion  
 
Our study of large single-year U.S. birth cohorts revealed that mortality deceleration at 

advanced ages is not observed up to the age of 106. Below the age of 107 and for data of 
reasonably good quality, the Gompertz model fits mortality better than the logistic model (no 
mortality deceleration). We also found that deceleration of mortality in later life is more 
expressed for data with lower quality. Quality of age reporting in DMF becomes particularly poor 
after the age of 107. It is also interesting that the DMF mortality data agree remarkably well with 
mortality data reported by the 1900 actuarial cohort life table (if hazard rate values are 
compared).  

 
There are several reasons the earlier studies, including our own research (Gavrilov 

1984; Gavrilov and Gavrilova 1991), reported mortality deceleration and mortality leveling-off at 
advanced ages (Kannisto 1994; Horiuchi and Wilmoth 1998; Thatcher et al. 1998; Thatcher 
1999; Robine and Vaupel 2001). First, many studies present information for age-specific 
probability of death rather than hazard rate (Robine and Vaupel 2001; Gallop and Macdonald 
2005). It is not surprising that probability of death has a tendency of deceleration at advanced 
ages when mortality is high, taking into account that this mortality indicator has an upper limit 
equal to one. For example, a study of mortality among supercentenarians demonstrated that 
probability of death for this group does not increase with age (Robine and Vaupel 2001). The 
authors do not provide estimates of hazard rate for this small heterogeneous population, so, at 
this moment, it is difficult to make a conclusion about the real mortality trajectory in this sample 
of very old individuals. In the study of validated French-Canadian centenarians born in 1870-94, 
the authors found no growth of mortality with age for life table death rates rather than hazard 
rates (Beaudry-Godin et al. 2008). It is true that for young and middle ages (when mortality is 
relatively low), probability of death and hazard rate values are practically identical. As a result, 
some authors do not distinguish between probability of death and hazard rate in their 
calculations (Le Bras 2005). 

 
In the studies of period mortality, deceleration at advanced ages is probably caused by 

mixing together data for several birth cohorts with different mortality levels (heterogeneity effect) 
and using cross-sectional instead of cohort data (Kannisto 1994; Horiuchi and Wilmoth 1998; 
Thatcher et al. 1998). In addition to that, if information about population at risk is taken from 
censuses, there is always a possibility of mismatch in the accuracy of age reporting between 
deaths and population at risk due to higher proportion of age misreporting in censuses (so-
called denominator problem). It should be noted that mortality deceleration was also reported for 
cohort mortality data (Thatcher et al. 1998). In this case, mortality deceleration can be caused 
by age misreporting in death data for older people, as we already found in our study. Earlier 
studies, conducted more than 10 years ago, used data for older birth groups when age reporting 
was not particularly accurate even for such countries as the United Kingdom (Gallop and 
Macdonald 2005). In addition to that, most developed countries have much smaller populations 
compared to the United States and hence studies of mortality at advanced ages for these 
countries have to combine many single-year birth cohorts, thereby increasing the heterogeneity 
of the sample. Thus, age exaggeration, data heterogeneity and use of probabilities of death 
instead of hazard rates are the main causes for downward biases in mortality estimates at older 
ages found in previous studies.  

 
In our study, we found no significant mortality deceleration at advanced age for humans 

while many lower organisms demonstrate very long late-age mortality plateaus (Gavrilov and 
Gavrilova 1991; Carey et al. 1992; Curtsinger et al. 1992; Vaupel et al. 1998). Earlier studies 
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showed that the period of mortality deceleration in mammalian species is very short (Lindop 
1961; Sacher 1966) compared to lower organisms (Vaupel et al. 1998; Gavrilov and Gavrilova 
2006). It appears to be relatively short in humans too. This observation agrees with the 
prediction of the reliability theory of aging that more complex living systems/organisms with 
many vital subsystems (such as mammals) may experience very short or no period of mortality 
plateau at advanced ages in contrast to more simple living organisms (Gavrilov and Gavrilova 
1991; Gavrilov and Gavrilova 2001; Gavrilov and Gavrilova 2006). Thus, human mortality at 
advanced ages may show very short or even negligible mortality plateau despite the evidence of 
mortality leveling-off among lower organisms such as insects. 

 
The results obtained in this study may be important for actuarial practice, particularly if 

mortality is analyzed for real birth cohorts. For cohort data, hazard rates can be extrapolated 
with the Gompertz formula up to 107 years of age and then probabilities of death can be 
reconstructed with the Sacher formula if necessary. Our study also suggests that improvement 
of age reporting in history should result in mortality trajectories that better follow the Gompertz 
function until very advanced ages. SSA DMF data confirm that the 1900 actuarial cohort life 
table (Bell et al. 1992) provides a good description of mortality at advanced ages, suggesting 
that cohort life tables obtained in this study may be useful in actuarial practice.  
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